1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5/** \mainpage V8 API Reference Guide
6 *
7 * V8 is Google's open source JavaScript engine.
8 *
9 * This set of documents provides reference material generated from the
10 * V8 header file, include/v8.h.
11 *
12 * For other documentation see http://code.google.com/apis/v8/
13 */
14
15#ifndef INCLUDE_V8_H_
16#define INCLUDE_V8_H_
17
18#include <stddef.h>
19#include <stdint.h>
20#include <stdio.h>
21#include <utility>
22#include <vector>
23
24#include "v8-version.h"  // NOLINT(build/include)
25#include "v8config.h"    // NOLINT(build/include)
26
27// We reserve the V8_* prefix for macros defined in V8 public API and
28// assume there are no name conflicts with the embedder's code.
29
30#ifdef V8_OS_WIN
31
32// Setup for Windows DLL export/import. When building the V8 DLL the
33// BUILDING_V8_SHARED needs to be defined. When building a program which uses
34// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
35// static library or building a program which uses the V8 static library neither
36// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
37#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
38#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
39  build configuration to ensure that at most one of these is set
40#endif
41
42#ifdef BUILDING_V8_SHARED
43# define V8_EXPORT __declspec(dllexport)
44#elif USING_V8_SHARED
45# define V8_EXPORT __declspec(dllimport)
46#else
47# define V8_EXPORT
48#endif  // BUILDING_V8_SHARED
49
50#else  // V8_OS_WIN
51
52// Setup for Linux shared library export.
53#if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED)
54# ifdef BUILDING_V8_SHARED
55#  define V8_EXPORT __attribute__ ((visibility("default")))
56# else
57#  define V8_EXPORT
58# endif
59#else
60# define V8_EXPORT
61#endif
62
63#endif  // V8_OS_WIN
64
65/**
66 * The v8 JavaScript engine.
67 */
68namespace v8 {
69
70class AccessorSignature;
71class Array;
72class Boolean;
73class BooleanObject;
74class Context;
75class CpuProfiler;
76class Data;
77class Date;
78class External;
79class Function;
80class FunctionTemplate;
81class HeapProfiler;
82class ImplementationUtilities;
83class Int32;
84class Integer;
85class Isolate;
86template <class T>
87class Maybe;
88class Name;
89class Number;
90class NumberObject;
91class Object;
92class ObjectOperationDescriptor;
93class ObjectTemplate;
94class Platform;
95class Primitive;
96class Promise;
97class Proxy;
98class RawOperationDescriptor;
99class Script;
100class SharedArrayBuffer;
101class Signature;
102class StartupData;
103class StackFrame;
104class StackTrace;
105class String;
106class StringObject;
107class Symbol;
108class SymbolObject;
109class Private;
110class Uint32;
111class Utils;
112class Value;
113template <class T> class Local;
114template <class T>
115class MaybeLocal;
116template <class T> class Eternal;
117template<class T> class NonCopyablePersistentTraits;
118template<class T> class PersistentBase;
119template <class T, class M = NonCopyablePersistentTraits<T> >
120class Persistent;
121template <class T>
122class Global;
123template<class K, class V, class T> class PersistentValueMap;
124template <class K, class V, class T>
125class PersistentValueMapBase;
126template <class K, class V, class T>
127class GlobalValueMap;
128template<class V, class T> class PersistentValueVector;
129template<class T, class P> class WeakCallbackObject;
130class FunctionTemplate;
131class ObjectTemplate;
132class Data;
133template<typename T> class FunctionCallbackInfo;
134template<typename T> class PropertyCallbackInfo;
135class StackTrace;
136class StackFrame;
137class Isolate;
138class CallHandlerHelper;
139class EscapableHandleScope;
140template<typename T> class ReturnValue;
141
142namespace experimental {
143class FastAccessorBuilder;
144}  // namespace experimental
145
146namespace internal {
147class Arguments;
148class Heap;
149class HeapObject;
150class Isolate;
151class Object;
152struct StreamedSource;
153template<typename T> class CustomArguments;
154class PropertyCallbackArguments;
155class FunctionCallbackArguments;
156class GlobalHandles;
157}  // namespace internal
158
159
160/**
161 * General purpose unique identifier.
162 */
163class UniqueId {
164 public:
165  explicit UniqueId(intptr_t data)
166      : data_(data) {}
167
168  bool operator==(const UniqueId& other) const {
169    return data_ == other.data_;
170  }
171
172  bool operator!=(const UniqueId& other) const {
173    return data_ != other.data_;
174  }
175
176  bool operator<(const UniqueId& other) const {
177    return data_ < other.data_;
178  }
179
180 private:
181  intptr_t data_;
182};
183
184// --- Handles ---
185
186#define TYPE_CHECK(T, S)                                       \
187  while (false) {                                              \
188    *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);      \
189  }
190
191
192/**
193 * An object reference managed by the v8 garbage collector.
194 *
195 * All objects returned from v8 have to be tracked by the garbage
196 * collector so that it knows that the objects are still alive.  Also,
197 * because the garbage collector may move objects, it is unsafe to
198 * point directly to an object.  Instead, all objects are stored in
199 * handles which are known by the garbage collector and updated
200 * whenever an object moves.  Handles should always be passed by value
201 * (except in cases like out-parameters) and they should never be
202 * allocated on the heap.
203 *
204 * There are two types of handles: local and persistent handles.
205 * Local handles are light-weight and transient and typically used in
206 * local operations.  They are managed by HandleScopes.  Persistent
207 * handles can be used when storing objects across several independent
208 * operations and have to be explicitly deallocated when they're no
209 * longer used.
210 *
211 * It is safe to extract the object stored in the handle by
212 * dereferencing the handle (for instance, to extract the Object* from
213 * a Local<Object>); the value will still be governed by a handle
214 * behind the scenes and the same rules apply to these values as to
215 * their handles.
216 */
217template <class T>
218class Local {
219 public:
220  V8_INLINE Local() : val_(0) {}
221  template <class S>
222  V8_INLINE Local(Local<S> that)
223      : val_(reinterpret_cast<T*>(*that)) {
224    /**
225     * This check fails when trying to convert between incompatible
226     * handles. For example, converting from a Local<String> to a
227     * Local<Number>.
228     */
229    TYPE_CHECK(T, S);
230  }
231
232  /**
233   * Returns true if the handle is empty.
234   */
235  V8_INLINE bool IsEmpty() const { return val_ == 0; }
236
237  /**
238   * Sets the handle to be empty. IsEmpty() will then return true.
239   */
240  V8_INLINE void Clear() { val_ = 0; }
241
242  V8_INLINE T* operator->() const { return val_; }
243
244  V8_INLINE T* operator*() const { return val_; }
245
246  /**
247   * Checks whether two handles are the same.
248   * Returns true if both are empty, or if the objects
249   * to which they refer are identical.
250   * The handles' references are not checked.
251   */
252  template <class S>
253  V8_INLINE bool operator==(const Local<S>& that) const {
254    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
255    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
256    if (a == 0) return b == 0;
257    if (b == 0) return false;
258    return *a == *b;
259  }
260
261  template <class S> V8_INLINE bool operator==(
262      const PersistentBase<S>& that) const {
263    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
264    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
265    if (a == 0) return b == 0;
266    if (b == 0) return false;
267    return *a == *b;
268  }
269
270  /**
271   * Checks whether two handles are different.
272   * Returns true if only one of the handles is empty, or if
273   * the objects to which they refer are different.
274   * The handles' references are not checked.
275   */
276  template <class S>
277  V8_INLINE bool operator!=(const Local<S>& that) const {
278    return !operator==(that);
279  }
280
281  template <class S> V8_INLINE bool operator!=(
282      const Persistent<S>& that) const {
283    return !operator==(that);
284  }
285
286  template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
287#ifdef V8_ENABLE_CHECKS
288    // If we're going to perform the type check then we have to check
289    // that the handle isn't empty before doing the checked cast.
290    if (that.IsEmpty()) return Local<T>();
291#endif
292    return Local<T>(T::Cast(*that));
293  }
294
295
296  template <class S> V8_INLINE Local<S> As() {
297    return Local<S>::Cast(*this);
298  }
299
300  /**
301   * Create a local handle for the content of another handle.
302   * The referee is kept alive by the local handle even when
303   * the original handle is destroyed/disposed.
304   */
305  V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that);
306  V8_INLINE static Local<T> New(Isolate* isolate,
307                                const PersistentBase<T>& that);
308
309 private:
310  friend class Utils;
311  template<class F> friend class Eternal;
312  template<class F> friend class PersistentBase;
313  template<class F, class M> friend class Persistent;
314  template<class F> friend class Local;
315  template <class F>
316  friend class MaybeLocal;
317  template<class F> friend class FunctionCallbackInfo;
318  template<class F> friend class PropertyCallbackInfo;
319  friend class String;
320  friend class Object;
321  friend class Context;
322  friend class Private;
323  template<class F> friend class internal::CustomArguments;
324  friend Local<Primitive> Undefined(Isolate* isolate);
325  friend Local<Primitive> Null(Isolate* isolate);
326  friend Local<Boolean> True(Isolate* isolate);
327  friend Local<Boolean> False(Isolate* isolate);
328  friend class HandleScope;
329  friend class EscapableHandleScope;
330  template <class F1, class F2, class F3>
331  friend class PersistentValueMapBase;
332  template<class F1, class F2> friend class PersistentValueVector;
333  template <class F>
334  friend class ReturnValue;
335
336  explicit V8_INLINE Local(T* that) : val_(that) {}
337  V8_INLINE static Local<T> New(Isolate* isolate, T* that);
338  T* val_;
339};
340
341
342#if !defined(V8_IMMINENT_DEPRECATION_WARNINGS)
343// Local is an alias for Local for historical reasons.
344template <class T>
345using Handle = Local<T>;
346#endif
347
348
349/**
350 * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether
351 * the Local<> is empty before it can be used.
352 *
353 * If an API method returns a MaybeLocal<>, the API method can potentially fail
354 * either because an exception is thrown, or because an exception is pending,
355 * e.g. because a previous API call threw an exception that hasn't been caught
356 * yet, or because a TerminateExecution exception was thrown. In that case, an
357 * empty MaybeLocal is returned.
358 */
359template <class T>
360class MaybeLocal {
361 public:
362  V8_INLINE MaybeLocal() : val_(nullptr) {}
363  template <class S>
364  V8_INLINE MaybeLocal(Local<S> that)
365      : val_(reinterpret_cast<T*>(*that)) {
366    TYPE_CHECK(T, S);
367  }
368
369  V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
370
371  template <class S>
372  V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {
373    out->val_ = IsEmpty() ? nullptr : this->val_;
374    return !IsEmpty();
375  }
376
377  // Will crash if the MaybeLocal<> is empty.
378  V8_INLINE Local<T> ToLocalChecked();
379
380  template <class S>
381  V8_INLINE Local<S> FromMaybe(Local<S> default_value) const {
382    return IsEmpty() ? default_value : Local<S>(val_);
383  }
384
385 private:
386  T* val_;
387};
388
389
390// Eternal handles are set-once handles that live for the life of the isolate.
391template <class T> class Eternal {
392 public:
393  V8_INLINE Eternal() : index_(kInitialValue) { }
394  template<class S>
395  V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
396    Set(isolate, handle);
397  }
398  // Can only be safely called if already set.
399  V8_INLINE Local<T> Get(Isolate* isolate);
400  V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
401  template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
402
403 private:
404  static const int kInitialValue = -1;
405  int index_;
406};
407
408
409static const int kInternalFieldsInWeakCallback = 2;
410
411
412template <typename T>
413class WeakCallbackInfo {
414 public:
415  typedef void (*Callback)(const WeakCallbackInfo<T>& data);
416
417  WeakCallbackInfo(Isolate* isolate, T* parameter,
418                   void* internal_fields[kInternalFieldsInWeakCallback],
419                   Callback* callback)
420      : isolate_(isolate), parameter_(parameter), callback_(callback) {
421    for (int i = 0; i < kInternalFieldsInWeakCallback; ++i) {
422      internal_fields_[i] = internal_fields[i];
423    }
424  }
425
426  V8_INLINE Isolate* GetIsolate() const { return isolate_; }
427  V8_INLINE T* GetParameter() const { return parameter_; }
428  V8_INLINE void* GetInternalField(int index) const;
429
430  V8_INLINE V8_DEPRECATED("use indexed version",
431                          void* GetInternalField1() const) {
432    return internal_fields_[0];
433  }
434  V8_INLINE V8_DEPRECATED("use indexed version",
435                          void* GetInternalField2() const) {
436    return internal_fields_[1];
437  }
438
439  V8_DEPRECATED("Not realiable once SetSecondPassCallback() was used.",
440                bool IsFirstPass() const) {
441    return callback_ != nullptr;
442  }
443
444  // When first called, the embedder MUST Reset() the Global which triggered the
445  // callback. The Global itself is unusable for anything else. No v8 other api
446  // calls may be called in the first callback. Should additional work be
447  // required, the embedder must set a second pass callback, which will be
448  // called after all the initial callbacks are processed.
449  // Calling SetSecondPassCallback on the second pass will immediately crash.
450  void SetSecondPassCallback(Callback callback) const { *callback_ = callback; }
451
452 private:
453  Isolate* isolate_;
454  T* parameter_;
455  Callback* callback_;
456  void* internal_fields_[kInternalFieldsInWeakCallback];
457};
458
459
460// kParameter will pass a void* parameter back to the callback, kInternalFields
461// will pass the first two internal fields back to the callback, kFinalizer
462// will pass a void* parameter back, but is invoked before the object is
463// actually collected, so it can be resurrected. In the last case, it is not
464// possible to request a second pass callback.
465enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer };
466
467/**
468 * An object reference that is independent of any handle scope.  Where
469 * a Local handle only lives as long as the HandleScope in which it was
470 * allocated, a PersistentBase handle remains valid until it is explicitly
471 * disposed.
472 *
473 * A persistent handle contains a reference to a storage cell within
474 * the v8 engine which holds an object value and which is updated by
475 * the garbage collector whenever the object is moved.  A new storage
476 * cell can be created using the constructor or PersistentBase::Reset and
477 * existing handles can be disposed using PersistentBase::Reset.
478 *
479 */
480template <class T> class PersistentBase {
481 public:
482  /**
483   * If non-empty, destroy the underlying storage cell
484   * IsEmpty() will return true after this call.
485   */
486  V8_INLINE void Reset();
487  /**
488   * If non-empty, destroy the underlying storage cell
489   * and create a new one with the contents of other if other is non empty
490   */
491  template <class S>
492  V8_INLINE void Reset(Isolate* isolate, const Local<S>& other);
493
494  /**
495   * If non-empty, destroy the underlying storage cell
496   * and create a new one with the contents of other if other is non empty
497   */
498  template <class S>
499  V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
500
501  V8_INLINE bool IsEmpty() const { return val_ == NULL; }
502  V8_INLINE void Empty() { val_ = 0; }
503
504  V8_INLINE Local<T> Get(Isolate* isolate) const {
505    return Local<T>::New(isolate, *this);
506  }
507
508  template <class S>
509  V8_INLINE bool operator==(const PersistentBase<S>& that) const {
510    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
511    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
512    if (a == NULL) return b == NULL;
513    if (b == NULL) return false;
514    return *a == *b;
515  }
516
517  template <class S>
518  V8_INLINE bool operator==(const Local<S>& that) const {
519    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
520    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
521    if (a == NULL) return b == NULL;
522    if (b == NULL) return false;
523    return *a == *b;
524  }
525
526  template <class S>
527  V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
528    return !operator==(that);
529  }
530
531  template <class S>
532  V8_INLINE bool operator!=(const Local<S>& that) const {
533    return !operator==(that);
534  }
535
536  /**
537   *  Install a finalization callback on this object.
538   *  NOTE: There is no guarantee as to *when* or even *if* the callback is
539   *  invoked. The invocation is performed solely on a best effort basis.
540   *  As always, GC-based finalization should *not* be relied upon for any
541   *  critical form of resource management!
542   */
543  template <typename P>
544  V8_INLINE void SetWeak(P* parameter,
545                         typename WeakCallbackInfo<P>::Callback callback,
546                         WeakCallbackType type);
547
548  /**
549   * Turns this handle into a weak phantom handle without finalization callback.
550   * The handle will be reset automatically when the garbage collector detects
551   * that the object is no longer reachable.
552   * A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall
553   * returns how many phantom handles were reset by the garbage collector.
554   */
555  V8_INLINE void SetWeak();
556
557  template<typename P>
558  V8_INLINE P* ClearWeak();
559
560  // TODO(dcarney): remove this.
561  V8_INLINE void ClearWeak() { ClearWeak<void>(); }
562
563  /**
564   * Allows the embedder to tell the v8 garbage collector that a certain object
565   * is alive. Only allowed when the embedder is asked to trace its heap by
566   * EmbedderHeapTracer.
567   */
568  V8_INLINE void RegisterExternalReference(Isolate* isolate) const;
569
570  /**
571   * Marks the reference to this object independent. Garbage collector is free
572   * to ignore any object groups containing this object. Weak callback for an
573   * independent handle should not assume that it will be preceded by a global
574   * GC prologue callback or followed by a global GC epilogue callback.
575   */
576  V8_INLINE void MarkIndependent();
577
578  /**
579   * Marks the reference to this object partially dependent. Partially dependent
580   * handles only depend on other partially dependent handles and these
581   * dependencies are provided through object groups. It provides a way to build
582   * smaller object groups for young objects that represent only a subset of all
583   * external dependencies. This mark is automatically cleared after each
584   * garbage collection.
585   */
586  V8_INLINE V8_DEPRECATED(
587      "deprecated optimization, do not use partially dependent groups",
588      void MarkPartiallyDependent());
589
590  /**
591   * Marks the reference to this object as active. The scavenge garbage
592   * collection should not reclaim the objects marked as active.
593   * This bit is cleared after the each garbage collection pass.
594   */
595  V8_INLINE void MarkActive();
596
597  V8_INLINE bool IsIndependent() const;
598
599  /** Checks if the handle holds the only reference to an object. */
600  V8_INLINE bool IsNearDeath() const;
601
602  /** Returns true if the handle's reference is weak.  */
603  V8_INLINE bool IsWeak() const;
604
605  /**
606   * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
607   * description in v8-profiler.h for details.
608   */
609  V8_INLINE void SetWrapperClassId(uint16_t class_id);
610
611  /**
612   * Returns the class ID previously assigned to this handle or 0 if no class ID
613   * was previously assigned.
614   */
615  V8_INLINE uint16_t WrapperClassId() const;
616
617 private:
618  friend class Isolate;
619  friend class Utils;
620  template<class F> friend class Local;
621  template<class F1, class F2> friend class Persistent;
622  template <class F>
623  friend class Global;
624  template<class F> friend class PersistentBase;
625  template<class F> friend class ReturnValue;
626  template <class F1, class F2, class F3>
627  friend class PersistentValueMapBase;
628  template<class F1, class F2> friend class PersistentValueVector;
629  friend class Object;
630
631  explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
632  PersistentBase(const PersistentBase& other) = delete;  // NOLINT
633  void operator=(const PersistentBase&) = delete;
634  V8_INLINE static T* New(Isolate* isolate, T* that);
635
636  T* val_;
637};
638
639
640/**
641 * Default traits for Persistent. This class does not allow
642 * use of the copy constructor or assignment operator.
643 * At present kResetInDestructor is not set, but that will change in a future
644 * version.
645 */
646template<class T>
647class NonCopyablePersistentTraits {
648 public:
649  typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
650  static const bool kResetInDestructor = false;
651  template<class S, class M>
652  V8_INLINE static void Copy(const Persistent<S, M>& source,
653                             NonCopyablePersistent* dest) {
654    Uncompilable<Object>();
655  }
656  // TODO(dcarney): come up with a good compile error here.
657  template<class O> V8_INLINE static void Uncompilable() {
658    TYPE_CHECK(O, Primitive);
659  }
660};
661
662
663/**
664 * Helper class traits to allow copying and assignment of Persistent.
665 * This will clone the contents of storage cell, but not any of the flags, etc.
666 */
667template<class T>
668struct CopyablePersistentTraits {
669  typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
670  static const bool kResetInDestructor = true;
671  template<class S, class M>
672  static V8_INLINE void Copy(const Persistent<S, M>& source,
673                             CopyablePersistent* dest) {
674    // do nothing, just allow copy
675  }
676};
677
678
679/**
680 * A PersistentBase which allows copy and assignment.
681 *
682 * Copy, assignment and destructor bevavior is controlled by the traits
683 * class M.
684 *
685 * Note: Persistent class hierarchy is subject to future changes.
686 */
687template <class T, class M> class Persistent : public PersistentBase<T> {
688 public:
689  /**
690   * A Persistent with no storage cell.
691   */
692  V8_INLINE Persistent() : PersistentBase<T>(0) { }
693  /**
694   * Construct a Persistent from a Local.
695   * When the Local is non-empty, a new storage cell is created
696   * pointing to the same object, and no flags are set.
697   */
698  template <class S>
699  V8_INLINE Persistent(Isolate* isolate, Local<S> that)
700      : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
701    TYPE_CHECK(T, S);
702  }
703  /**
704   * Construct a Persistent from a Persistent.
705   * When the Persistent is non-empty, a new storage cell is created
706   * pointing to the same object, and no flags are set.
707   */
708  template <class S, class M2>
709  V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
710    : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
711    TYPE_CHECK(T, S);
712  }
713  /**
714   * The copy constructors and assignment operator create a Persistent
715   * exactly as the Persistent constructor, but the Copy function from the
716   * traits class is called, allowing the setting of flags based on the
717   * copied Persistent.
718   */
719  V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
720    Copy(that);
721  }
722  template <class S, class M2>
723  V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
724    Copy(that);
725  }
726  V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
727    Copy(that);
728    return *this;
729  }
730  template <class S, class M2>
731  V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
732    Copy(that);
733    return *this;
734  }
735  /**
736   * The destructor will dispose the Persistent based on the
737   * kResetInDestructor flags in the traits class.  Since not calling dispose
738   * can result in a memory leak, it is recommended to always set this flag.
739   */
740  V8_INLINE ~Persistent() {
741    if (M::kResetInDestructor) this->Reset();
742  }
743
744  // TODO(dcarney): this is pretty useless, fix or remove
745  template <class S>
746  V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
747#ifdef V8_ENABLE_CHECKS
748    // If we're going to perform the type check then we have to check
749    // that the handle isn't empty before doing the checked cast.
750    if (!that.IsEmpty()) T::Cast(*that);
751#endif
752    return reinterpret_cast<Persistent<T>&>(that);
753  }
754
755  // TODO(dcarney): this is pretty useless, fix or remove
756  template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
757    return Persistent<S>::Cast(*this);
758  }
759
760 private:
761  friend class Isolate;
762  friend class Utils;
763  template<class F> friend class Local;
764  template<class F1, class F2> friend class Persistent;
765  template<class F> friend class ReturnValue;
766
767  explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {}
768  V8_INLINE T* operator*() const { return this->val_; }
769  template<class S, class M2>
770  V8_INLINE void Copy(const Persistent<S, M2>& that);
771};
772
773
774/**
775 * A PersistentBase which has move semantics.
776 *
777 * Note: Persistent class hierarchy is subject to future changes.
778 */
779template <class T>
780class Global : public PersistentBase<T> {
781 public:
782  /**
783   * A Global with no storage cell.
784   */
785  V8_INLINE Global() : PersistentBase<T>(nullptr) {}
786  /**
787   * Construct a Global from a Local.
788   * When the Local is non-empty, a new storage cell is created
789   * pointing to the same object, and no flags are set.
790   */
791  template <class S>
792  V8_INLINE Global(Isolate* isolate, Local<S> that)
793      : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
794    TYPE_CHECK(T, S);
795  }
796  /**
797   * Construct a Global from a PersistentBase.
798   * When the Persistent is non-empty, a new storage cell is created
799   * pointing to the same object, and no flags are set.
800   */
801  template <class S>
802  V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that)
803      : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
804    TYPE_CHECK(T, S);
805  }
806  /**
807   * Move constructor.
808   */
809  V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) {  // NOLINT
810    other.val_ = nullptr;
811  }
812  V8_INLINE ~Global() { this->Reset(); }
813  /**
814   * Move via assignment.
815   */
816  template <class S>
817  V8_INLINE Global& operator=(Global<S>&& rhs) {  // NOLINT
818    TYPE_CHECK(T, S);
819    if (this != &rhs) {
820      this->Reset();
821      this->val_ = rhs.val_;
822      rhs.val_ = nullptr;
823    }
824    return *this;
825  }
826  /**
827   * Pass allows returning uniques from functions, etc.
828   */
829  Global Pass() { return static_cast<Global&&>(*this); }  // NOLINT
830
831  /*
832   * For compatibility with Chromium's base::Bind (base::Passed).
833   */
834  typedef void MoveOnlyTypeForCPP03;
835
836 private:
837  template <class F>
838  friend class ReturnValue;
839  Global(const Global&) = delete;
840  void operator=(const Global&) = delete;
841  V8_INLINE T* operator*() const { return this->val_; }
842};
843
844
845// UniquePersistent is an alias for Global for historical reason.
846template <class T>
847using UniquePersistent = Global<T>;
848
849
850 /**
851 * A stack-allocated class that governs a number of local handles.
852 * After a handle scope has been created, all local handles will be
853 * allocated within that handle scope until either the handle scope is
854 * deleted or another handle scope is created.  If there is already a
855 * handle scope and a new one is created, all allocations will take
856 * place in the new handle scope until it is deleted.  After that,
857 * new handles will again be allocated in the original handle scope.
858 *
859 * After the handle scope of a local handle has been deleted the
860 * garbage collector will no longer track the object stored in the
861 * handle and may deallocate it.  The behavior of accessing a handle
862 * for which the handle scope has been deleted is undefined.
863 */
864class V8_EXPORT HandleScope {
865 public:
866  explicit HandleScope(Isolate* isolate);
867
868  ~HandleScope();
869
870  /**
871   * Counts the number of allocated handles.
872   */
873  static int NumberOfHandles(Isolate* isolate);
874
875  V8_INLINE Isolate* GetIsolate() const {
876    return reinterpret_cast<Isolate*>(isolate_);
877  }
878
879 protected:
880  V8_INLINE HandleScope() {}
881
882  void Initialize(Isolate* isolate);
883
884  static internal::Object** CreateHandle(internal::Isolate* isolate,
885                                         internal::Object* value);
886
887 private:
888  // Uses heap_object to obtain the current Isolate.
889  static internal::Object** CreateHandle(internal::HeapObject* heap_object,
890                                         internal::Object* value);
891
892  // Make it hard to create heap-allocated or illegal handle scopes by
893  // disallowing certain operations.
894  HandleScope(const HandleScope&);
895  void operator=(const HandleScope&);
896  void* operator new(size_t size);
897  void operator delete(void*, size_t);
898
899  internal::Isolate* isolate_;
900  internal::Object** prev_next_;
901  internal::Object** prev_limit_;
902
903  // Local::New uses CreateHandle with an Isolate* parameter.
904  template<class F> friend class Local;
905
906  // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
907  // a HeapObject* in their shortcuts.
908  friend class Object;
909  friend class Context;
910};
911
912
913/**
914 * A HandleScope which first allocates a handle in the current scope
915 * which will be later filled with the escape value.
916 */
917class V8_EXPORT EscapableHandleScope : public HandleScope {
918 public:
919  explicit EscapableHandleScope(Isolate* isolate);
920  V8_INLINE ~EscapableHandleScope() {}
921
922  /**
923   * Pushes the value into the previous scope and returns a handle to it.
924   * Cannot be called twice.
925   */
926  template <class T>
927  V8_INLINE Local<T> Escape(Local<T> value) {
928    internal::Object** slot =
929        Escape(reinterpret_cast<internal::Object**>(*value));
930    return Local<T>(reinterpret_cast<T*>(slot));
931  }
932
933 private:
934  internal::Object** Escape(internal::Object** escape_value);
935
936  // Make it hard to create heap-allocated or illegal handle scopes by
937  // disallowing certain operations.
938  EscapableHandleScope(const EscapableHandleScope&);
939  void operator=(const EscapableHandleScope&);
940  void* operator new(size_t size);
941  void operator delete(void*, size_t);
942
943  internal::Object** escape_slot_;
944};
945
946class V8_EXPORT SealHandleScope {
947 public:
948  SealHandleScope(Isolate* isolate);
949  ~SealHandleScope();
950
951 private:
952  // Make it hard to create heap-allocated or illegal handle scopes by
953  // disallowing certain operations.
954  SealHandleScope(const SealHandleScope&);
955  void operator=(const SealHandleScope&);
956  void* operator new(size_t size);
957  void operator delete(void*, size_t);
958
959  internal::Isolate* isolate_;
960  internal::Object** prev_limit_;
961  int prev_sealed_level_;
962};
963
964
965// --- Special objects ---
966
967
968/**
969 * The superclass of values and API object templates.
970 */
971class V8_EXPORT Data {
972 private:
973  Data();
974};
975
976
977/**
978 * The optional attributes of ScriptOrigin.
979 */
980class ScriptOriginOptions {
981 public:
982  V8_INLINE ScriptOriginOptions(bool is_embedder_debug_script = false,
983                                bool is_shared_cross_origin = false,
984                                bool is_opaque = false)
985      : flags_((is_embedder_debug_script ? kIsEmbedderDebugScript : 0) |
986               (is_shared_cross_origin ? kIsSharedCrossOrigin : 0) |
987               (is_opaque ? kIsOpaque : 0)) {}
988  V8_INLINE ScriptOriginOptions(int flags)
989      : flags_(flags &
990               (kIsEmbedderDebugScript | kIsSharedCrossOrigin | kIsOpaque)) {}
991  bool IsEmbedderDebugScript() const {
992    return (flags_ & kIsEmbedderDebugScript) != 0;
993  }
994  bool IsSharedCrossOrigin() const {
995    return (flags_ & kIsSharedCrossOrigin) != 0;
996  }
997  bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; }
998  int Flags() const { return flags_; }
999
1000 private:
1001  enum {
1002    kIsEmbedderDebugScript = 1,
1003    kIsSharedCrossOrigin = 1 << 1,
1004    kIsOpaque = 1 << 2
1005  };
1006  const int flags_;
1007};
1008
1009/**
1010 * The origin, within a file, of a script.
1011 */
1012class ScriptOrigin {
1013 public:
1014  V8_INLINE ScriptOrigin(
1015      Local<Value> resource_name,
1016      Local<Integer> resource_line_offset = Local<Integer>(),
1017      Local<Integer> resource_column_offset = Local<Integer>(),
1018      Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(),
1019      Local<Integer> script_id = Local<Integer>(),
1020      Local<Boolean> resource_is_embedder_debug_script = Local<Boolean>(),
1021      Local<Value> source_map_url = Local<Value>(),
1022      Local<Boolean> resource_is_opaque = Local<Boolean>());
1023  V8_INLINE Local<Value> ResourceName() const;
1024  V8_INLINE Local<Integer> ResourceLineOffset() const;
1025  V8_INLINE Local<Integer> ResourceColumnOffset() const;
1026  /**
1027    * Returns true for embedder's debugger scripts
1028    */
1029  V8_INLINE Local<Integer> ScriptID() const;
1030  V8_INLINE Local<Value> SourceMapUrl() const;
1031  V8_INLINE ScriptOriginOptions Options() const { return options_; }
1032
1033 private:
1034  Local<Value> resource_name_;
1035  Local<Integer> resource_line_offset_;
1036  Local<Integer> resource_column_offset_;
1037  ScriptOriginOptions options_;
1038  Local<Integer> script_id_;
1039  Local<Value> source_map_url_;
1040};
1041
1042
1043/**
1044 * A compiled JavaScript script, not yet tied to a Context.
1045 */
1046class V8_EXPORT UnboundScript {
1047 public:
1048  /**
1049   * Binds the script to the currently entered context.
1050   */
1051  Local<Script> BindToCurrentContext();
1052
1053  int GetId();
1054  Local<Value> GetScriptName();
1055
1056  /**
1057   * Data read from magic sourceURL comments.
1058   */
1059  Local<Value> GetSourceURL();
1060  /**
1061   * Data read from magic sourceMappingURL comments.
1062   */
1063  Local<Value> GetSourceMappingURL();
1064
1065  /**
1066   * Returns zero based line number of the code_pos location in the script.
1067   * -1 will be returned if no information available.
1068   */
1069  int GetLineNumber(int code_pos);
1070
1071  static const int kNoScriptId = 0;
1072};
1073
1074
1075/**
1076 * A compiled JavaScript script, tied to a Context which was active when the
1077 * script was compiled.
1078 */
1079class V8_EXPORT Script {
1080 public:
1081  /**
1082   * A shorthand for ScriptCompiler::Compile().
1083   */
1084  static V8_DEPRECATE_SOON(
1085      "Use maybe version",
1086      Local<Script> Compile(Local<String> source,
1087                            ScriptOrigin* origin = nullptr));
1088  static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1089      Local<Context> context, Local<String> source,
1090      ScriptOrigin* origin = nullptr);
1091
1092  static Local<Script> V8_DEPRECATE_SOON("Use maybe version",
1093                                         Compile(Local<String> source,
1094                                                 Local<String> file_name));
1095
1096  /**
1097   * Runs the script returning the resulting value. It will be run in the
1098   * context in which it was created (ScriptCompiler::CompileBound or
1099   * UnboundScript::BindToCurrentContext()).
1100   */
1101  V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run());
1102  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context);
1103
1104  /**
1105   * Returns the corresponding context-unbound script.
1106   */
1107  Local<UnboundScript> GetUnboundScript();
1108};
1109
1110
1111/**
1112 * For compiling scripts.
1113 */
1114class V8_EXPORT ScriptCompiler {
1115 public:
1116  /**
1117   * Compilation data that the embedder can cache and pass back to speed up
1118   * future compilations. The data is produced if the CompilerOptions passed to
1119   * the compilation functions in ScriptCompiler contains produce_data_to_cache
1120   * = true. The data to cache can then can be retrieved from
1121   * UnboundScript.
1122   */
1123  struct V8_EXPORT CachedData {
1124    enum BufferPolicy {
1125      BufferNotOwned,
1126      BufferOwned
1127    };
1128
1129    CachedData()
1130        : data(NULL),
1131          length(0),
1132          rejected(false),
1133          buffer_policy(BufferNotOwned) {}
1134
1135    // If buffer_policy is BufferNotOwned, the caller keeps the ownership of
1136    // data and guarantees that it stays alive until the CachedData object is
1137    // destroyed. If the policy is BufferOwned, the given data will be deleted
1138    // (with delete[]) when the CachedData object is destroyed.
1139    CachedData(const uint8_t* data, int length,
1140               BufferPolicy buffer_policy = BufferNotOwned);
1141    ~CachedData();
1142    // TODO(marja): Async compilation; add constructors which take a callback
1143    // which will be called when V8 no longer needs the data.
1144    const uint8_t* data;
1145    int length;
1146    bool rejected;
1147    BufferPolicy buffer_policy;
1148
1149   private:
1150    // Prevent copying. Not implemented.
1151    CachedData(const CachedData&);
1152    CachedData& operator=(const CachedData&);
1153  };
1154
1155  /**
1156   * Source code which can be then compiled to a UnboundScript or Script.
1157   */
1158  class Source {
1159   public:
1160    // Source takes ownership of CachedData.
1161    V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
1162           CachedData* cached_data = NULL);
1163    V8_INLINE Source(Local<String> source_string,
1164                     CachedData* cached_data = NULL);
1165    V8_INLINE ~Source();
1166
1167    // Ownership of the CachedData or its buffers is *not* transferred to the
1168    // caller. The CachedData object is alive as long as the Source object is
1169    // alive.
1170    V8_INLINE const CachedData* GetCachedData() const;
1171
1172   private:
1173    friend class ScriptCompiler;
1174    // Prevent copying. Not implemented.
1175    Source(const Source&);
1176    Source& operator=(const Source&);
1177
1178    Local<String> source_string;
1179
1180    // Origin information
1181    Local<Value> resource_name;
1182    Local<Integer> resource_line_offset;
1183    Local<Integer> resource_column_offset;
1184    ScriptOriginOptions resource_options;
1185    Local<Value> source_map_url;
1186
1187    // Cached data from previous compilation (if a kConsume*Cache flag is
1188    // set), or hold newly generated cache data (kProduce*Cache flags) are
1189    // set when calling a compile method.
1190    CachedData* cached_data;
1191  };
1192
1193  /**
1194   * For streaming incomplete script data to V8. The embedder should implement a
1195   * subclass of this class.
1196   */
1197  class V8_EXPORT ExternalSourceStream {
1198   public:
1199    virtual ~ExternalSourceStream() {}
1200
1201    /**
1202     * V8 calls this to request the next chunk of data from the embedder. This
1203     * function will be called on a background thread, so it's OK to block and
1204     * wait for the data, if the embedder doesn't have data yet. Returns the
1205     * length of the data returned. When the data ends, GetMoreData should
1206     * return 0. Caller takes ownership of the data.
1207     *
1208     * When streaming UTF-8 data, V8 handles multi-byte characters split between
1209     * two data chunks, but doesn't handle multi-byte characters split between
1210     * more than two data chunks. The embedder can avoid this problem by always
1211     * returning at least 2 bytes of data.
1212     *
1213     * If the embedder wants to cancel the streaming, they should make the next
1214     * GetMoreData call return 0. V8 will interpret it as end of data (and most
1215     * probably, parsing will fail). The streaming task will return as soon as
1216     * V8 has parsed the data it received so far.
1217     */
1218    virtual size_t GetMoreData(const uint8_t** src) = 0;
1219
1220    /**
1221     * V8 calls this method to set a 'bookmark' at the current position in
1222     * the source stream, for the purpose of (maybe) later calling
1223     * ResetToBookmark. If ResetToBookmark is called later, then subsequent
1224     * calls to GetMoreData should return the same data as they did when
1225     * SetBookmark was called earlier.
1226     *
1227     * The embedder may return 'false' to indicate it cannot provide this
1228     * functionality.
1229     */
1230    virtual bool SetBookmark();
1231
1232    /**
1233     * V8 calls this to return to a previously set bookmark.
1234     */
1235    virtual void ResetToBookmark();
1236  };
1237
1238
1239  /**
1240   * Source code which can be streamed into V8 in pieces. It will be parsed
1241   * while streaming. It can be compiled after the streaming is complete.
1242   * StreamedSource must be kept alive while the streaming task is ran (see
1243   * ScriptStreamingTask below).
1244   */
1245  class V8_EXPORT StreamedSource {
1246   public:
1247    enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
1248
1249    StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
1250    ~StreamedSource();
1251
1252    // Ownership of the CachedData or its buffers is *not* transferred to the
1253    // caller. The CachedData object is alive as long as the StreamedSource
1254    // object is alive.
1255    const CachedData* GetCachedData() const;
1256
1257    internal::StreamedSource* impl() const { return impl_; }
1258
1259   private:
1260    // Prevent copying. Not implemented.
1261    StreamedSource(const StreamedSource&);
1262    StreamedSource& operator=(const StreamedSource&);
1263
1264    internal::StreamedSource* impl_;
1265  };
1266
1267  /**
1268   * A streaming task which the embedder must run on a background thread to
1269   * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
1270   */
1271  class ScriptStreamingTask {
1272   public:
1273    virtual ~ScriptStreamingTask() {}
1274    virtual void Run() = 0;
1275  };
1276
1277  enum CompileOptions {
1278    kNoCompileOptions = 0,
1279    kProduceParserCache,
1280    kConsumeParserCache,
1281    kProduceCodeCache,
1282    kConsumeCodeCache
1283  };
1284
1285  /**
1286   * Compiles the specified script (context-independent).
1287   * Cached data as part of the source object can be optionally produced to be
1288   * consumed later to speed up compilation of identical source scripts.
1289   *
1290   * Note that when producing cached data, the source must point to NULL for
1291   * cached data. When consuming cached data, the cached data must have been
1292   * produced by the same version of V8.
1293   *
1294   * \param source Script source code.
1295   * \return Compiled script object (context independent; for running it must be
1296   *   bound to a context).
1297   */
1298  static V8_DEPRECATED("Use maybe version",
1299                       Local<UnboundScript> CompileUnbound(
1300                           Isolate* isolate, Source* source,
1301                           CompileOptions options = kNoCompileOptions));
1302  static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript(
1303      Isolate* isolate, Source* source,
1304      CompileOptions options = kNoCompileOptions);
1305
1306  /**
1307   * Compiles the specified script (bound to current context).
1308   *
1309   * \param source Script source code.
1310   * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1311   *   using pre_data speeds compilation if it's done multiple times.
1312   *   Owned by caller, no references are kept when this function returns.
1313   * \return Compiled script object, bound to the context that was active
1314   *   when this function was called. When run it will always use this
1315   *   context.
1316   */
1317  static V8_DEPRECATED(
1318      "Use maybe version",
1319      Local<Script> Compile(Isolate* isolate, Source* source,
1320                            CompileOptions options = kNoCompileOptions));
1321  static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1322      Local<Context> context, Source* source,
1323      CompileOptions options = kNoCompileOptions);
1324
1325  /**
1326   * Returns a task which streams script data into V8, or NULL if the script
1327   * cannot be streamed. The user is responsible for running the task on a
1328   * background thread and deleting it. When ran, the task starts parsing the
1329   * script, and it will request data from the StreamedSource as needed. When
1330   * ScriptStreamingTask::Run exits, all data has been streamed and the script
1331   * can be compiled (see Compile below).
1332   *
1333   * This API allows to start the streaming with as little data as possible, and
1334   * the remaining data (for example, the ScriptOrigin) is passed to Compile.
1335   */
1336  static ScriptStreamingTask* StartStreamingScript(
1337      Isolate* isolate, StreamedSource* source,
1338      CompileOptions options = kNoCompileOptions);
1339
1340  /**
1341   * Compiles a streamed script (bound to current context).
1342   *
1343   * This can only be called after the streaming has finished
1344   * (ScriptStreamingTask has been run). V8 doesn't construct the source string
1345   * during streaming, so the embedder needs to pass the full source here.
1346   */
1347  static V8_DEPRECATED("Use maybe version",
1348                       Local<Script> Compile(Isolate* isolate,
1349                                             StreamedSource* source,
1350                                             Local<String> full_source_string,
1351                                             const ScriptOrigin& origin));
1352  static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1353      Local<Context> context, StreamedSource* source,
1354      Local<String> full_source_string, const ScriptOrigin& origin);
1355
1356  /**
1357   * Return a version tag for CachedData for the current V8 version & flags.
1358   *
1359   * This value is meant only for determining whether a previously generated
1360   * CachedData instance is still valid; the tag has no other meaing.
1361   *
1362   * Background: The data carried by CachedData may depend on the exact
1363   *   V8 version number or currently compiler flags. This means when
1364   *   persisting CachedData, the embedder must take care to not pass in
1365   *   data from another V8 version, or the same version with different
1366   *   features enabled.
1367   *
1368   *   The easiest way to do so is to clear the embedder's cache on any
1369   *   such change.
1370   *
1371   *   Alternatively, this tag can be stored alongside the cached data and
1372   *   compared when it is being used.
1373   */
1374  static uint32_t CachedDataVersionTag();
1375
1376  /**
1377   * Compile an ES6 module.
1378   *
1379   * This is an unfinished experimental feature, and is only exposed
1380   * here for internal testing purposes.
1381   * Only parsing works at the moment. Do not use.
1382   *
1383   * TODO(adamk): Script is likely the wrong return value for this;
1384   * should return some new Module type.
1385   */
1386  static V8_WARN_UNUSED_RESULT MaybeLocal<Script> CompileModule(
1387      Local<Context> context, Source* source,
1388      CompileOptions options = kNoCompileOptions);
1389
1390  /**
1391   * Compile a function for a given context. This is equivalent to running
1392   *
1393   * with (obj) {
1394   *   return function(args) { ... }
1395   * }
1396   *
1397   * It is possible to specify multiple context extensions (obj in the above
1398   * example).
1399   */
1400  static V8_DEPRECATE_SOON("Use maybe version",
1401                           Local<Function> CompileFunctionInContext(
1402                               Isolate* isolate, Source* source,
1403                               Local<Context> context, size_t arguments_count,
1404                               Local<String> arguments[],
1405                               size_t context_extension_count,
1406                               Local<Object> context_extensions[]));
1407  static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext(
1408      Local<Context> context, Source* source, size_t arguments_count,
1409      Local<String> arguments[], size_t context_extension_count,
1410      Local<Object> context_extensions[]);
1411
1412 private:
1413  static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal(
1414      Isolate* isolate, Source* source, CompileOptions options, bool is_module);
1415};
1416
1417
1418/**
1419 * An error message.
1420 */
1421class V8_EXPORT Message {
1422 public:
1423  Local<String> Get() const;
1424
1425  V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const);
1426  V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine(
1427      Local<Context> context) const;
1428
1429  /**
1430   * Returns the origin for the script from where the function causing the
1431   * error originates.
1432   */
1433  ScriptOrigin GetScriptOrigin() const;
1434
1435  /**
1436   * Returns the resource name for the script from where the function causing
1437   * the error originates.
1438   */
1439  Local<Value> GetScriptResourceName() const;
1440
1441  /**
1442   * Exception stack trace. By default stack traces are not captured for
1443   * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1444   * to change this option.
1445   */
1446  Local<StackTrace> GetStackTrace() const;
1447
1448  /**
1449   * Returns the number, 1-based, of the line where the error occurred.
1450   */
1451  V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const);
1452  V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const;
1453
1454  /**
1455   * Returns the index within the script of the first character where
1456   * the error occurred.
1457   */
1458  int GetStartPosition() const;
1459
1460  /**
1461   * Returns the index within the script of the last character where
1462   * the error occurred.
1463   */
1464  int GetEndPosition() const;
1465
1466  /**
1467   * Returns the index within the line of the first character where
1468   * the error occurred.
1469   */
1470  V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const);
1471  V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const;
1472
1473  /**
1474   * Returns the index within the line of the last character where
1475   * the error occurred.
1476   */
1477  V8_DEPRECATED("Use maybe version", int GetEndColumn() const);
1478  V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const;
1479
1480  /**
1481   * Passes on the value set by the embedder when it fed the script from which
1482   * this Message was generated to V8.
1483   */
1484  bool IsSharedCrossOrigin() const;
1485  bool IsOpaque() const;
1486
1487  // TODO(1245381): Print to a string instead of on a FILE.
1488  static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1489
1490  static const int kNoLineNumberInfo = 0;
1491  static const int kNoColumnInfo = 0;
1492  static const int kNoScriptIdInfo = 0;
1493};
1494
1495
1496/**
1497 * Representation of a JavaScript stack trace. The information collected is a
1498 * snapshot of the execution stack and the information remains valid after
1499 * execution continues.
1500 */
1501class V8_EXPORT StackTrace {
1502 public:
1503  /**
1504   * Flags that determine what information is placed captured for each
1505   * StackFrame when grabbing the current stack trace.
1506   */
1507  enum StackTraceOptions {
1508    kLineNumber = 1,
1509    kColumnOffset = 1 << 1 | kLineNumber,
1510    kScriptName = 1 << 2,
1511    kFunctionName = 1 << 3,
1512    kIsEval = 1 << 4,
1513    kIsConstructor = 1 << 5,
1514    kScriptNameOrSourceURL = 1 << 6,
1515    kScriptId = 1 << 7,
1516    kExposeFramesAcrossSecurityOrigins = 1 << 8,
1517    kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1518    kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1519  };
1520
1521  /**
1522   * Returns a StackFrame at a particular index.
1523   */
1524  Local<StackFrame> GetFrame(uint32_t index) const;
1525
1526  /**
1527   * Returns the number of StackFrames.
1528   */
1529  int GetFrameCount() const;
1530
1531  /**
1532   * Returns StackTrace as a v8::Array that contains StackFrame objects.
1533   */
1534  Local<Array> AsArray();
1535
1536  /**
1537   * Grab a snapshot of the current JavaScript execution stack.
1538   *
1539   * \param frame_limit The maximum number of stack frames we want to capture.
1540   * \param options Enumerates the set of things we will capture for each
1541   *   StackFrame.
1542   */
1543  static Local<StackTrace> CurrentStackTrace(
1544      Isolate* isolate,
1545      int frame_limit,
1546      StackTraceOptions options = kOverview);
1547};
1548
1549
1550/**
1551 * A single JavaScript stack frame.
1552 */
1553class V8_EXPORT StackFrame {
1554 public:
1555  /**
1556   * Returns the number, 1-based, of the line for the associate function call.
1557   * This method will return Message::kNoLineNumberInfo if it is unable to
1558   * retrieve the line number, or if kLineNumber was not passed as an option
1559   * when capturing the StackTrace.
1560   */
1561  int GetLineNumber() const;
1562
1563  /**
1564   * Returns the 1-based column offset on the line for the associated function
1565   * call.
1566   * This method will return Message::kNoColumnInfo if it is unable to retrieve
1567   * the column number, or if kColumnOffset was not passed as an option when
1568   * capturing the StackTrace.
1569   */
1570  int GetColumn() const;
1571
1572  /**
1573   * Returns the id of the script for the function for this StackFrame.
1574   * This method will return Message::kNoScriptIdInfo if it is unable to
1575   * retrieve the script id, or if kScriptId was not passed as an option when
1576   * capturing the StackTrace.
1577   */
1578  int GetScriptId() const;
1579
1580  /**
1581   * Returns the name of the resource that contains the script for the
1582   * function for this StackFrame.
1583   */
1584  Local<String> GetScriptName() const;
1585
1586  /**
1587   * Returns the name of the resource that contains the script for the
1588   * function for this StackFrame or sourceURL value if the script name
1589   * is undefined and its source ends with //# sourceURL=... string or
1590   * deprecated //@ sourceURL=... string.
1591   */
1592  Local<String> GetScriptNameOrSourceURL() const;
1593
1594  /**
1595   * Returns the name of the function associated with this stack frame.
1596   */
1597  Local<String> GetFunctionName() const;
1598
1599  /**
1600   * Returns whether or not the associated function is compiled via a call to
1601   * eval().
1602   */
1603  bool IsEval() const;
1604
1605  /**
1606   * Returns whether or not the associated function is called as a
1607   * constructor via "new".
1608   */
1609  bool IsConstructor() const;
1610};
1611
1612
1613// A StateTag represents a possible state of the VM.
1614enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE };
1615
1616// A RegisterState represents the current state of registers used
1617// by the sampling profiler API.
1618struct RegisterState {
1619  RegisterState() : pc(nullptr), sp(nullptr), fp(nullptr) {}
1620  void* pc;  // Instruction pointer.
1621  void* sp;  // Stack pointer.
1622  void* fp;  // Frame pointer.
1623};
1624
1625// The output structure filled up by GetStackSample API function.
1626struct SampleInfo {
1627  size_t frames_count;            // Number of frames collected.
1628  StateTag vm_state;              // Current VM state.
1629  void* external_callback_entry;  // External callback address if VM is
1630                                  // executing an external callback.
1631};
1632
1633/**
1634 * A JSON Parser and Stringifier.
1635 */
1636class V8_EXPORT JSON {
1637 public:
1638  /**
1639   * Tries to parse the string |json_string| and returns it as value if
1640   * successful.
1641   *
1642   * \param json_string The string to parse.
1643   * \return The corresponding value if successfully parsed.
1644   */
1645  static V8_DEPRECATED("Use the maybe version taking context",
1646                       Local<Value> Parse(Local<String> json_string));
1647  static V8_DEPRECATE_SOON("Use the maybe version taking context",
1648                           MaybeLocal<Value> Parse(Isolate* isolate,
1649                                                   Local<String> json_string));
1650  static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse(
1651      Local<Context> context, Local<String> json_string);
1652
1653  /**
1654   * Tries to stringify the JSON-serializable object |json_object| and returns
1655   * it as string if successful.
1656   *
1657   * \param json_object The JSON-serializable object to stringify.
1658   * \return The corresponding string if successfully stringified.
1659   */
1660  static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify(
1661      Local<Context> context, Local<Object> json_object,
1662      Local<String> gap = Local<String>());
1663};
1664
1665
1666/**
1667 * A map whose keys are referenced weakly. It is similar to JavaScript WeakMap
1668 * but can be created without entering a v8::Context and hence shouldn't
1669 * escape to JavaScript.
1670 */
1671class V8_EXPORT NativeWeakMap : public Data {
1672 public:
1673  static Local<NativeWeakMap> New(Isolate* isolate);
1674  void Set(Local<Value> key, Local<Value> value);
1675  Local<Value> Get(Local<Value> key);
1676  bool Has(Local<Value> key);
1677  bool Delete(Local<Value> key);
1678};
1679
1680
1681// --- Value ---
1682
1683
1684/**
1685 * The superclass of all JavaScript values and objects.
1686 */
1687class V8_EXPORT Value : public Data {
1688 public:
1689  /**
1690   * Returns true if this value is the undefined value.  See ECMA-262
1691   * 4.3.10.
1692   */
1693  V8_INLINE bool IsUndefined() const;
1694
1695  /**
1696   * Returns true if this value is the null value.  See ECMA-262
1697   * 4.3.11.
1698   */
1699  V8_INLINE bool IsNull() const;
1700
1701   /**
1702   * Returns true if this value is true.
1703   */
1704  bool IsTrue() const;
1705
1706  /**
1707   * Returns true if this value is false.
1708   */
1709  bool IsFalse() const;
1710
1711  /**
1712   * Returns true if this value is a symbol or a string.
1713   * This is an experimental feature.
1714   */
1715  bool IsName() const;
1716
1717  /**
1718   * Returns true if this value is an instance of the String type.
1719   * See ECMA-262 8.4.
1720   */
1721  V8_INLINE bool IsString() const;
1722
1723  /**
1724   * Returns true if this value is a symbol.
1725   * This is an experimental feature.
1726   */
1727  bool IsSymbol() const;
1728
1729  /**
1730   * Returns true if this value is a function.
1731   */
1732  bool IsFunction() const;
1733
1734  /**
1735   * Returns true if this value is an array. Note that it will return false for
1736   * an Proxy for an array.
1737   */
1738  bool IsArray() const;
1739
1740  /**
1741   * Returns true if this value is an object.
1742   */
1743  bool IsObject() const;
1744
1745  /**
1746   * Returns true if this value is boolean.
1747   */
1748  bool IsBoolean() const;
1749
1750  /**
1751   * Returns true if this value is a number.
1752   */
1753  bool IsNumber() const;
1754
1755  /**
1756   * Returns true if this value is external.
1757   */
1758  bool IsExternal() const;
1759
1760  /**
1761   * Returns true if this value is a 32-bit signed integer.
1762   */
1763  bool IsInt32() const;
1764
1765  /**
1766   * Returns true if this value is a 32-bit unsigned integer.
1767   */
1768  bool IsUint32() const;
1769
1770  /**
1771   * Returns true if this value is a Date.
1772   */
1773  bool IsDate() const;
1774
1775  /**
1776   * Returns true if this value is an Arguments object.
1777   */
1778  bool IsArgumentsObject() const;
1779
1780  /**
1781   * Returns true if this value is a Boolean object.
1782   */
1783  bool IsBooleanObject() const;
1784
1785  /**
1786   * Returns true if this value is a Number object.
1787   */
1788  bool IsNumberObject() const;
1789
1790  /**
1791   * Returns true if this value is a String object.
1792   */
1793  bool IsStringObject() const;
1794
1795  /**
1796   * Returns true if this value is a Symbol object.
1797   * This is an experimental feature.
1798   */
1799  bool IsSymbolObject() const;
1800
1801  /**
1802   * Returns true if this value is a NativeError.
1803   */
1804  bool IsNativeError() const;
1805
1806  /**
1807   * Returns true if this value is a RegExp.
1808   */
1809  bool IsRegExp() const;
1810
1811  /**
1812   * Returns true if this value is a Generator function.
1813   * This is an experimental feature.
1814   */
1815  bool IsGeneratorFunction() const;
1816
1817  /**
1818   * Returns true if this value is a Generator object (iterator).
1819   * This is an experimental feature.
1820   */
1821  bool IsGeneratorObject() const;
1822
1823  /**
1824   * Returns true if this value is a Promise.
1825   * This is an experimental feature.
1826   */
1827  bool IsPromise() const;
1828
1829  /**
1830   * Returns true if this value is a Map.
1831   */
1832  bool IsMap() const;
1833
1834  /**
1835   * Returns true if this value is a Set.
1836   */
1837  bool IsSet() const;
1838
1839  /**
1840   * Returns true if this value is a Map Iterator.
1841   */
1842  bool IsMapIterator() const;
1843
1844  /**
1845   * Returns true if this value is a Set Iterator.
1846   */
1847  bool IsSetIterator() const;
1848
1849  /**
1850   * Returns true if this value is a WeakMap.
1851   */
1852  bool IsWeakMap() const;
1853
1854  /**
1855   * Returns true if this value is a WeakSet.
1856   */
1857  bool IsWeakSet() const;
1858
1859  /**
1860   * Returns true if this value is an ArrayBuffer.
1861   * This is an experimental feature.
1862   */
1863  bool IsArrayBuffer() const;
1864
1865  /**
1866   * Returns true if this value is an ArrayBufferView.
1867   * This is an experimental feature.
1868   */
1869  bool IsArrayBufferView() const;
1870
1871  /**
1872   * Returns true if this value is one of TypedArrays.
1873   * This is an experimental feature.
1874   */
1875  bool IsTypedArray() const;
1876
1877  /**
1878   * Returns true if this value is an Uint8Array.
1879   * This is an experimental feature.
1880   */
1881  bool IsUint8Array() const;
1882
1883  /**
1884   * Returns true if this value is an Uint8ClampedArray.
1885   * This is an experimental feature.
1886   */
1887  bool IsUint8ClampedArray() const;
1888
1889  /**
1890   * Returns true if this value is an Int8Array.
1891   * This is an experimental feature.
1892   */
1893  bool IsInt8Array() const;
1894
1895  /**
1896   * Returns true if this value is an Uint16Array.
1897   * This is an experimental feature.
1898   */
1899  bool IsUint16Array() const;
1900
1901  /**
1902   * Returns true if this value is an Int16Array.
1903   * This is an experimental feature.
1904   */
1905  bool IsInt16Array() const;
1906
1907  /**
1908   * Returns true if this value is an Uint32Array.
1909   * This is an experimental feature.
1910   */
1911  bool IsUint32Array() const;
1912
1913  /**
1914   * Returns true if this value is an Int32Array.
1915   * This is an experimental feature.
1916   */
1917  bool IsInt32Array() const;
1918
1919  /**
1920   * Returns true if this value is a Float32Array.
1921   * This is an experimental feature.
1922   */
1923  bool IsFloat32Array() const;
1924
1925  /**
1926   * Returns true if this value is a Float64Array.
1927   * This is an experimental feature.
1928   */
1929  bool IsFloat64Array() const;
1930
1931  /**
1932   * Returns true if this value is a SIMD Float32x4.
1933   * This is an experimental feature.
1934   */
1935  bool IsFloat32x4() const;
1936
1937  /**
1938   * Returns true if this value is a DataView.
1939   * This is an experimental feature.
1940   */
1941  bool IsDataView() const;
1942
1943  /**
1944   * Returns true if this value is a SharedArrayBuffer.
1945   * This is an experimental feature.
1946   */
1947  bool IsSharedArrayBuffer() const;
1948
1949  /**
1950   * Returns true if this value is a JavaScript Proxy.
1951   */
1952  bool IsProxy() const;
1953
1954
1955  V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean(
1956      Local<Context> context) const;
1957  V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber(
1958      Local<Context> context) const;
1959  V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString(
1960      Local<Context> context) const;
1961  V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString(
1962      Local<Context> context) const;
1963  V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject(
1964      Local<Context> context) const;
1965  V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger(
1966      Local<Context> context) const;
1967  V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32(
1968      Local<Context> context) const;
1969  V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const;
1970
1971  V8_DEPRECATE_SOON("Use maybe version",
1972                    Local<Boolean> ToBoolean(Isolate* isolate) const);
1973  V8_DEPRECATE_SOON("Use maybe version",
1974                    Local<Number> ToNumber(Isolate* isolate) const);
1975  V8_DEPRECATE_SOON("Use maybe version",
1976                    Local<String> ToString(Isolate* isolate) const);
1977  V8_DEPRECATED("Use maybe version",
1978                Local<String> ToDetailString(Isolate* isolate) const);
1979  V8_DEPRECATE_SOON("Use maybe version",
1980                    Local<Object> ToObject(Isolate* isolate) const);
1981  V8_DEPRECATE_SOON("Use maybe version",
1982                    Local<Integer> ToInteger(Isolate* isolate) const);
1983  V8_DEPRECATED("Use maybe version",
1984                Local<Uint32> ToUint32(Isolate* isolate) const);
1985  V8_DEPRECATE_SOON("Use maybe version",
1986                    Local<Int32> ToInt32(Isolate* isolate) const);
1987
1988  inline V8_DEPRECATE_SOON("Use maybe version",
1989                           Local<Boolean> ToBoolean() const);
1990  inline V8_DEPRECATED("Use maybe version", Local<Number> ToNumber() const);
1991  inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const);
1992  inline V8_DEPRECATED("Use maybe version",
1993                       Local<String> ToDetailString() const);
1994  inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const);
1995  inline V8_DEPRECATE_SOON("Use maybe version",
1996                           Local<Integer> ToInteger() const);
1997  inline V8_DEPRECATED("Use maybe version", Local<Uint32> ToUint32() const);
1998  inline V8_DEPRECATED("Use maybe version", Local<Int32> ToInt32() const);
1999
2000  /**
2001   * Attempts to convert a string to an array index.
2002   * Returns an empty handle if the conversion fails.
2003   */
2004  V8_DEPRECATED("Use maybe version", Local<Uint32> ToArrayIndex() const);
2005  V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex(
2006      Local<Context> context) const;
2007
2008  V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const;
2009  V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const;
2010  V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue(
2011      Local<Context> context) const;
2012  V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value(
2013      Local<Context> context) const;
2014  V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const;
2015
2016  V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const);
2017  V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const);
2018  V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const);
2019  V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const);
2020  V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const);
2021
2022  /** JS == */
2023  V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const);
2024  V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context,
2025                                           Local<Value> that) const;
2026  bool StrictEquals(Local<Value> that) const;
2027  bool SameValue(Local<Value> that) const;
2028
2029  template <class T> V8_INLINE static Value* Cast(T* value);
2030
2031  Local<String> TypeOf(v8::Isolate*);
2032
2033 private:
2034  V8_INLINE bool QuickIsUndefined() const;
2035  V8_INLINE bool QuickIsNull() const;
2036  V8_INLINE bool QuickIsString() const;
2037  bool FullIsUndefined() const;
2038  bool FullIsNull() const;
2039  bool FullIsString() const;
2040};
2041
2042
2043/**
2044 * The superclass of primitive values.  See ECMA-262 4.3.2.
2045 */
2046class V8_EXPORT Primitive : public Value { };
2047
2048
2049/**
2050 * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
2051 * or false value.
2052 */
2053class V8_EXPORT Boolean : public Primitive {
2054 public:
2055  bool Value() const;
2056  V8_INLINE static Boolean* Cast(v8::Value* obj);
2057  V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value);
2058
2059 private:
2060  static void CheckCast(v8::Value* obj);
2061};
2062
2063
2064/**
2065 * A superclass for symbols and strings.
2066 */
2067class V8_EXPORT Name : public Primitive {
2068 public:
2069  /**
2070   * Returns the identity hash for this object. The current implementation
2071   * uses an inline property on the object to store the identity hash.
2072   *
2073   * The return value will never be 0. Also, it is not guaranteed to be
2074   * unique.
2075   */
2076  int GetIdentityHash();
2077
2078  V8_INLINE static Name* Cast(v8::Value* obj);
2079 private:
2080  static void CheckCast(v8::Value* obj);
2081};
2082
2083
2084enum class NewStringType { kNormal, kInternalized };
2085
2086
2087/**
2088 * A JavaScript string value (ECMA-262, 4.3.17).
2089 */
2090class V8_EXPORT String : public Name {
2091 public:
2092  static const int kMaxLength = (1 << 28) - 16;
2093
2094  enum Encoding {
2095    UNKNOWN_ENCODING = 0x1,
2096    TWO_BYTE_ENCODING = 0x0,
2097    ONE_BYTE_ENCODING = 0x4
2098  };
2099  /**
2100   * Returns the number of characters in this string.
2101   */
2102  int Length() const;
2103
2104  /**
2105   * Returns the number of bytes in the UTF-8 encoded
2106   * representation of this string.
2107   */
2108  int Utf8Length() const;
2109
2110  /**
2111   * Returns whether this string is known to contain only one byte data.
2112   * Does not read the string.
2113   * False negatives are possible.
2114   */
2115  bool IsOneByte() const;
2116
2117  /**
2118   * Returns whether this string contain only one byte data.
2119   * Will read the entire string in some cases.
2120   */
2121  bool ContainsOnlyOneByte() const;
2122
2123  /**
2124   * Write the contents of the string to an external buffer.
2125   * If no arguments are given, expects the buffer to be large
2126   * enough to hold the entire string and NULL terminator. Copies
2127   * the contents of the string and the NULL terminator into the
2128   * buffer.
2129   *
2130   * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
2131   * before the end of the buffer.
2132   *
2133   * Copies up to length characters into the output buffer.
2134   * Only null-terminates if there is enough space in the buffer.
2135   *
2136   * \param buffer The buffer into which the string will be copied.
2137   * \param start The starting position within the string at which
2138   * copying begins.
2139   * \param length The number of characters to copy from the string.  For
2140   *    WriteUtf8 the number of bytes in the buffer.
2141   * \param nchars_ref The number of characters written, can be NULL.
2142   * \param options Various options that might affect performance of this or
2143   *    subsequent operations.
2144   * \return The number of characters copied to the buffer excluding the null
2145   *    terminator.  For WriteUtf8: The number of bytes copied to the buffer
2146   *    including the null terminator (if written).
2147   */
2148  enum WriteOptions {
2149    NO_OPTIONS = 0,
2150    HINT_MANY_WRITES_EXPECTED = 1,
2151    NO_NULL_TERMINATION = 2,
2152    PRESERVE_ONE_BYTE_NULL = 4,
2153    // Used by WriteUtf8 to replace orphan surrogate code units with the
2154    // unicode replacement character. Needs to be set to guarantee valid UTF-8
2155    // output.
2156    REPLACE_INVALID_UTF8 = 8
2157  };
2158
2159  // 16-bit character codes.
2160  int Write(uint16_t* buffer,
2161            int start = 0,
2162            int length = -1,
2163            int options = NO_OPTIONS) const;
2164  // One byte characters.
2165  int WriteOneByte(uint8_t* buffer,
2166                   int start = 0,
2167                   int length = -1,
2168                   int options = NO_OPTIONS) const;
2169  // UTF-8 encoded characters.
2170  int WriteUtf8(char* buffer,
2171                int length = -1,
2172                int* nchars_ref = NULL,
2173                int options = NO_OPTIONS) const;
2174
2175  /**
2176   * A zero length string.
2177   */
2178  V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
2179
2180  /**
2181   * Returns true if the string is external
2182   */
2183  bool IsExternal() const;
2184
2185  /**
2186   * Returns true if the string is both external and one-byte.
2187   */
2188  bool IsExternalOneByte() const;
2189
2190  class V8_EXPORT ExternalStringResourceBase {  // NOLINT
2191   public:
2192    virtual ~ExternalStringResourceBase() {}
2193
2194    virtual bool IsCompressible() const { return false; }
2195
2196   protected:
2197    ExternalStringResourceBase() {}
2198
2199    /**
2200     * Internally V8 will call this Dispose method when the external string
2201     * resource is no longer needed. The default implementation will use the
2202     * delete operator. This method can be overridden in subclasses to
2203     * control how allocated external string resources are disposed.
2204     */
2205    virtual void Dispose() { delete this; }
2206
2207   private:
2208    // Disallow copying and assigning.
2209    ExternalStringResourceBase(const ExternalStringResourceBase&);
2210    void operator=(const ExternalStringResourceBase&);
2211
2212    friend class v8::internal::Heap;
2213  };
2214
2215  /**
2216   * An ExternalStringResource is a wrapper around a two-byte string
2217   * buffer that resides outside V8's heap. Implement an
2218   * ExternalStringResource to manage the life cycle of the underlying
2219   * buffer.  Note that the string data must be immutable.
2220   */
2221  class V8_EXPORT ExternalStringResource
2222      : public ExternalStringResourceBase {
2223   public:
2224    /**
2225     * Override the destructor to manage the life cycle of the underlying
2226     * buffer.
2227     */
2228    virtual ~ExternalStringResource() {}
2229
2230    /**
2231     * The string data from the underlying buffer.
2232     */
2233    virtual const uint16_t* data() const = 0;
2234
2235    /**
2236     * The length of the string. That is, the number of two-byte characters.
2237     */
2238    virtual size_t length() const = 0;
2239
2240   protected:
2241    ExternalStringResource() {}
2242  };
2243
2244  /**
2245   * An ExternalOneByteStringResource is a wrapper around an one-byte
2246   * string buffer that resides outside V8's heap. Implement an
2247   * ExternalOneByteStringResource to manage the life cycle of the
2248   * underlying buffer.  Note that the string data must be immutable
2249   * and that the data must be Latin-1 and not UTF-8, which would require
2250   * special treatment internally in the engine and do not allow efficient
2251   * indexing.  Use String::New or convert to 16 bit data for non-Latin1.
2252   */
2253
2254  class V8_EXPORT ExternalOneByteStringResource
2255      : public ExternalStringResourceBase {
2256   public:
2257    /**
2258     * Override the destructor to manage the life cycle of the underlying
2259     * buffer.
2260     */
2261    virtual ~ExternalOneByteStringResource() {}
2262    /** The string data from the underlying buffer.*/
2263    virtual const char* data() const = 0;
2264    /** The number of Latin-1 characters in the string.*/
2265    virtual size_t length() const = 0;
2266   protected:
2267    ExternalOneByteStringResource() {}
2268  };
2269
2270  /**
2271   * If the string is an external string, return the ExternalStringResourceBase
2272   * regardless of the encoding, otherwise return NULL.  The encoding of the
2273   * string is returned in encoding_out.
2274   */
2275  V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
2276      Encoding* encoding_out) const;
2277
2278  /**
2279   * Get the ExternalStringResource for an external string.  Returns
2280   * NULL if IsExternal() doesn't return true.
2281   */
2282  V8_INLINE ExternalStringResource* GetExternalStringResource() const;
2283
2284  /**
2285   * Get the ExternalOneByteStringResource for an external one-byte string.
2286   * Returns NULL if IsExternalOneByte() doesn't return true.
2287   */
2288  const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
2289
2290  V8_INLINE static String* Cast(v8::Value* obj);
2291
2292  // TODO(dcarney): remove with deprecation of New functions.
2293  enum NewStringType {
2294    kNormalString = static_cast<int>(v8::NewStringType::kNormal),
2295    kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized)
2296  };
2297
2298  /** Allocates a new string from UTF-8 data.*/
2299  static V8_DEPRECATE_SOON(
2300      "Use maybe version",
2301      Local<String> NewFromUtf8(Isolate* isolate, const char* data,
2302                                NewStringType type = kNormalString,
2303                                int length = -1));
2304
2305  /** Allocates a new string from UTF-8 data. Only returns an empty value when
2306   * length > kMaxLength. **/
2307  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8(
2308      Isolate* isolate, const char* data, v8::NewStringType type,
2309      int length = -1);
2310
2311  /** Allocates a new string from Latin-1 data.*/
2312  static V8_DEPRECATED(
2313      "Use maybe version",
2314      Local<String> NewFromOneByte(Isolate* isolate, const uint8_t* data,
2315                                   NewStringType type = kNormalString,
2316                                   int length = -1));
2317
2318  /** Allocates a new string from Latin-1 data.  Only returns an empty value
2319   * when length > kMaxLength. **/
2320  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte(
2321      Isolate* isolate, const uint8_t* data, v8::NewStringType type,
2322      int length = -1);
2323
2324  /** Allocates a new string from UTF-16 data.*/
2325  static V8_DEPRECATE_SOON(
2326      "Use maybe version",
2327      Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data,
2328                                   NewStringType type = kNormalString,
2329                                   int length = -1));
2330
2331  /** Allocates a new string from UTF-16 data. Only returns an empty value when
2332   * length > kMaxLength. **/
2333  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte(
2334      Isolate* isolate, const uint16_t* data, v8::NewStringType type,
2335      int length = -1);
2336
2337  /**
2338   * Creates a new string by concatenating the left and the right strings
2339   * passed in as parameters.
2340   */
2341  static Local<String> Concat(Local<String> left, Local<String> right);
2342
2343  /**
2344   * Creates a new external string using the data defined in the given
2345   * resource. When the external string is no longer live on V8's heap the
2346   * resource will be disposed by calling its Dispose method. The caller of
2347   * this function should not otherwise delete or modify the resource. Neither
2348   * should the underlying buffer be deallocated or modified except through the
2349   * destructor of the external string resource.
2350   */
2351  static V8_DEPRECATED("Use maybe version",
2352                       Local<String> NewExternal(
2353                           Isolate* isolate, ExternalStringResource* resource));
2354  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte(
2355      Isolate* isolate, ExternalStringResource* resource);
2356
2357  /**
2358   * Associate an external string resource with this string by transforming it
2359   * in place so that existing references to this string in the JavaScript heap
2360   * will use the external string resource. The external string resource's
2361   * character contents need to be equivalent to this string.
2362   * Returns true if the string has been changed to be an external string.
2363   * The string is not modified if the operation fails. See NewExternal for
2364   * information on the lifetime of the resource.
2365   */
2366  bool MakeExternal(ExternalStringResource* resource);
2367
2368  /**
2369   * Creates a new external string using the one-byte data defined in the given
2370   * resource. When the external string is no longer live on V8's heap the
2371   * resource will be disposed by calling its Dispose method. The caller of
2372   * this function should not otherwise delete or modify the resource. Neither
2373   * should the underlying buffer be deallocated or modified except through the
2374   * destructor of the external string resource.
2375   */
2376  static V8_DEPRECATE_SOON(
2377      "Use maybe version",
2378      Local<String> NewExternal(Isolate* isolate,
2379                                ExternalOneByteStringResource* resource));
2380  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte(
2381      Isolate* isolate, ExternalOneByteStringResource* resource);
2382
2383  /**
2384   * Associate an external string resource with this string by transforming it
2385   * in place so that existing references to this string in the JavaScript heap
2386   * will use the external string resource. The external string resource's
2387   * character contents need to be equivalent to this string.
2388   * Returns true if the string has been changed to be an external string.
2389   * The string is not modified if the operation fails. See NewExternal for
2390   * information on the lifetime of the resource.
2391   */
2392  bool MakeExternal(ExternalOneByteStringResource* resource);
2393
2394  /**
2395   * Returns true if this string can be made external.
2396   */
2397  bool CanMakeExternal();
2398
2399  /**
2400   * Converts an object to a UTF-8-encoded character array.  Useful if
2401   * you want to print the object.  If conversion to a string fails
2402   * (e.g. due to an exception in the toString() method of the object)
2403   * then the length() method returns 0 and the * operator returns
2404   * NULL.
2405   */
2406  class V8_EXPORT Utf8Value {
2407   public:
2408    explicit Utf8Value(Local<v8::Value> obj);
2409    ~Utf8Value();
2410    char* operator*() { return str_; }
2411    const char* operator*() const { return str_; }
2412    int length() const { return length_; }
2413   private:
2414    char* str_;
2415    int length_;
2416
2417    // Disallow copying and assigning.
2418    Utf8Value(const Utf8Value&);
2419    void operator=(const Utf8Value&);
2420  };
2421
2422  /**
2423   * Converts an object to a two-byte string.
2424   * If conversion to a string fails (eg. due to an exception in the toString()
2425   * method of the object) then the length() method returns 0 and the * operator
2426   * returns NULL.
2427   */
2428  class V8_EXPORT Value {
2429   public:
2430    explicit Value(Local<v8::Value> obj);
2431    ~Value();
2432    uint16_t* operator*() { return str_; }
2433    const uint16_t* operator*() const { return str_; }
2434    int length() const { return length_; }
2435   private:
2436    uint16_t* str_;
2437    int length_;
2438
2439    // Disallow copying and assigning.
2440    Value(const Value&);
2441    void operator=(const Value&);
2442  };
2443
2444 private:
2445  void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2446                                        Encoding encoding) const;
2447  void VerifyExternalStringResource(ExternalStringResource* val) const;
2448  static void CheckCast(v8::Value* obj);
2449};
2450
2451
2452/**
2453 * A JavaScript symbol (ECMA-262 edition 6)
2454 *
2455 * This is an experimental feature. Use at your own risk.
2456 */
2457class V8_EXPORT Symbol : public Name {
2458 public:
2459  // Returns the print name string of the symbol, or undefined if none.
2460  Local<Value> Name() const;
2461
2462  // Create a symbol. If name is not empty, it will be used as the description.
2463  static Local<Symbol> New(Isolate* isolate,
2464                           Local<String> name = Local<String>());
2465
2466  // Access global symbol registry.
2467  // Note that symbols created this way are never collected, so
2468  // they should only be used for statically fixed properties.
2469  // Also, there is only one global name space for the names used as keys.
2470  // To minimize the potential for clashes, use qualified names as keys.
2471  static Local<Symbol> For(Isolate *isolate, Local<String> name);
2472
2473  // Retrieve a global symbol. Similar to |For|, but using a separate
2474  // registry that is not accessible by (and cannot clash with) JavaScript code.
2475  static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
2476
2477  // Well-known symbols
2478  static Local<Symbol> GetIterator(Isolate* isolate);
2479  static Local<Symbol> GetUnscopables(Isolate* isolate);
2480  static Local<Symbol> GetToStringTag(Isolate* isolate);
2481  static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate);
2482
2483  V8_INLINE static Symbol* Cast(v8::Value* obj);
2484
2485 private:
2486  Symbol();
2487  static void CheckCast(v8::Value* obj);
2488};
2489
2490
2491/**
2492 * A private symbol
2493 *
2494 * This is an experimental feature. Use at your own risk.
2495 */
2496class V8_EXPORT Private : public Data {
2497 public:
2498  // Returns the print name string of the private symbol, or undefined if none.
2499  Local<Value> Name() const;
2500
2501  // Create a private symbol. If name is not empty, it will be the description.
2502  static Local<Private> New(Isolate* isolate,
2503                            Local<String> name = Local<String>());
2504
2505  // Retrieve a global private symbol. If a symbol with this name has not
2506  // been retrieved in the same isolate before, it is created.
2507  // Note that private symbols created this way are never collected, so
2508  // they should only be used for statically fixed properties.
2509  // Also, there is only one global name space for the names used as keys.
2510  // To minimize the potential for clashes, use qualified names as keys,
2511  // e.g., "Class#property".
2512  static Local<Private> ForApi(Isolate* isolate, Local<String> name);
2513
2514 private:
2515  Private();
2516};
2517
2518
2519/**
2520 * A JavaScript number value (ECMA-262, 4.3.20)
2521 */
2522class V8_EXPORT Number : public Primitive {
2523 public:
2524  double Value() const;
2525  static Local<Number> New(Isolate* isolate, double value);
2526  V8_INLINE static Number* Cast(v8::Value* obj);
2527 private:
2528  Number();
2529  static void CheckCast(v8::Value* obj);
2530};
2531
2532
2533/**
2534 * A JavaScript value representing a signed integer.
2535 */
2536class V8_EXPORT Integer : public Number {
2537 public:
2538  static Local<Integer> New(Isolate* isolate, int32_t value);
2539  static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2540  int64_t Value() const;
2541  V8_INLINE static Integer* Cast(v8::Value* obj);
2542 private:
2543  Integer();
2544  static void CheckCast(v8::Value* obj);
2545};
2546
2547
2548/**
2549 * A JavaScript value representing a 32-bit signed integer.
2550 */
2551class V8_EXPORT Int32 : public Integer {
2552 public:
2553  int32_t Value() const;
2554  V8_INLINE static Int32* Cast(v8::Value* obj);
2555
2556 private:
2557  Int32();
2558  static void CheckCast(v8::Value* obj);
2559};
2560
2561
2562/**
2563 * A JavaScript value representing a 32-bit unsigned integer.
2564 */
2565class V8_EXPORT Uint32 : public Integer {
2566 public:
2567  uint32_t Value() const;
2568  V8_INLINE static Uint32* Cast(v8::Value* obj);
2569
2570 private:
2571  Uint32();
2572  static void CheckCast(v8::Value* obj);
2573};
2574
2575
2576enum PropertyAttribute {
2577  None       = 0,
2578  ReadOnly   = 1 << 0,
2579  DontEnum   = 1 << 1,
2580  DontDelete = 1 << 2
2581};
2582
2583/**
2584 * Accessor[Getter|Setter] are used as callback functions when
2585 * setting|getting a particular property. See Object and ObjectTemplate's
2586 * method SetAccessor.
2587 */
2588typedef void (*AccessorGetterCallback)(
2589    Local<String> property,
2590    const PropertyCallbackInfo<Value>& info);
2591typedef void (*AccessorNameGetterCallback)(
2592    Local<Name> property,
2593    const PropertyCallbackInfo<Value>& info);
2594
2595
2596typedef void (*AccessorSetterCallback)(
2597    Local<String> property,
2598    Local<Value> value,
2599    const PropertyCallbackInfo<void>& info);
2600typedef void (*AccessorNameSetterCallback)(
2601    Local<Name> property,
2602    Local<Value> value,
2603    const PropertyCallbackInfo<void>& info);
2604
2605
2606/**
2607 * Access control specifications.
2608 *
2609 * Some accessors should be accessible across contexts.  These
2610 * accessors have an explicit access control parameter which specifies
2611 * the kind of cross-context access that should be allowed.
2612 *
2613 * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
2614 */
2615enum AccessControl {
2616  DEFAULT               = 0,
2617  ALL_CAN_READ          = 1,
2618  ALL_CAN_WRITE         = 1 << 1,
2619  PROHIBITS_OVERWRITING = 1 << 2
2620};
2621
2622/**
2623 * Property filter bits. They can be or'ed to build a composite filter.
2624 */
2625enum PropertyFilter {
2626  ALL_PROPERTIES = 0,
2627  ONLY_WRITABLE = 1,
2628  ONLY_ENUMERABLE = 2,
2629  ONLY_CONFIGURABLE = 4,
2630  SKIP_STRINGS = 8,
2631  SKIP_SYMBOLS = 16
2632};
2633
2634/**
2635 * Keys/Properties filter enums:
2636 *
2637 * KeyCollectionMode limits the range of collected properties. kOwnOnly limits
2638 * the collected properties to the given Object only. kIncludesPrototypes will
2639 * include all keys of the objects's prototype chain as well.
2640 */
2641enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes };
2642
2643/**
2644 * kIncludesIndices allows for integer indices to be collected, while
2645 * kSkipIndices will exclude integer indicies from being collected.
2646 */
2647enum class IndexFilter { kIncludeIndices, kSkipIndices };
2648
2649/**
2650 * Integrity level for objects.
2651 */
2652enum class IntegrityLevel { kFrozen, kSealed };
2653
2654/**
2655 * A JavaScript object (ECMA-262, 4.3.3)
2656 */
2657class V8_EXPORT Object : public Value {
2658 public:
2659  V8_DEPRECATE_SOON("Use maybe version",
2660                    bool Set(Local<Value> key, Local<Value> value));
2661  V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context,
2662                                        Local<Value> key, Local<Value> value);
2663
2664  V8_DEPRECATE_SOON("Use maybe version",
2665                    bool Set(uint32_t index, Local<Value> value));
2666  V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index,
2667                                        Local<Value> value);
2668
2669  // Implements CreateDataProperty (ECMA-262, 7.3.4).
2670  //
2671  // Defines a configurable, writable, enumerable property with the given value
2672  // on the object unless the property already exists and is not configurable
2673  // or the object is not extensible.
2674  //
2675  // Returns true on success.
2676  V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2677                                                       Local<Name> key,
2678                                                       Local<Value> value);
2679  V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2680                                                       uint32_t index,
2681                                                       Local<Value> value);
2682
2683  // Implements DefineOwnProperty.
2684  //
2685  // In general, CreateDataProperty will be faster, however, does not allow
2686  // for specifying attributes.
2687  //
2688  // Returns true on success.
2689  V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty(
2690      Local<Context> context, Local<Name> key, Local<Value> value,
2691      PropertyAttribute attributes = None);
2692
2693  // Sets an own property on this object bypassing interceptors and
2694  // overriding accessors or read-only properties.
2695  //
2696  // Note that if the object has an interceptor the property will be set
2697  // locally, but since the interceptor takes precedence the local property
2698  // will only be returned if the interceptor doesn't return a value.
2699  //
2700  // Note also that this only works for named properties.
2701  V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty",
2702                bool ForceSet(Local<Value> key, Local<Value> value,
2703                              PropertyAttribute attribs = None));
2704  V8_DEPRECATE_SOON("Use CreateDataProperty / DefineOwnProperty",
2705                    Maybe<bool> ForceSet(Local<Context> context,
2706                                         Local<Value> key, Local<Value> value,
2707                                         PropertyAttribute attribs = None));
2708
2709  V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key));
2710  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2711                                              Local<Value> key);
2712
2713  V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index));
2714  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2715                                              uint32_t index);
2716
2717  /**
2718   * Gets the property attributes of a property which can be None or
2719   * any combination of ReadOnly, DontEnum and DontDelete. Returns
2720   * None when the property doesn't exist.
2721   */
2722  V8_DEPRECATED("Use maybe version",
2723                PropertyAttribute GetPropertyAttributes(Local<Value> key));
2724  V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes(
2725      Local<Context> context, Local<Value> key);
2726
2727  /**
2728   * Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3.
2729   */
2730  V8_DEPRECATED("Use maybe version",
2731                Local<Value> GetOwnPropertyDescriptor(Local<String> key));
2732  V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor(
2733      Local<Context> context, Local<String> key);
2734
2735  V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key));
2736  V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
2737                                        Local<Value> key);
2738
2739  V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key));
2740  // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2741  Maybe<bool> Delete(Local<Context> context, Local<Value> key);
2742
2743  V8_DEPRECATED("Use maybe version", bool Has(uint32_t index));
2744  V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index);
2745
2746  V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index));
2747  // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2748  Maybe<bool> Delete(Local<Context> context, uint32_t index);
2749
2750  V8_DEPRECATED("Use maybe version",
2751                bool SetAccessor(Local<String> name,
2752                                 AccessorGetterCallback getter,
2753                                 AccessorSetterCallback setter = 0,
2754                                 Local<Value> data = Local<Value>(),
2755                                 AccessControl settings = DEFAULT,
2756                                 PropertyAttribute attribute = None));
2757  V8_DEPRECATED("Use maybe version",
2758                bool SetAccessor(Local<Name> name,
2759                                 AccessorNameGetterCallback getter,
2760                                 AccessorNameSetterCallback setter = 0,
2761                                 Local<Value> data = Local<Value>(),
2762                                 AccessControl settings = DEFAULT,
2763                                 PropertyAttribute attribute = None));
2764  // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2765  Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name,
2766                          AccessorNameGetterCallback getter,
2767                          AccessorNameSetterCallback setter = 0,
2768                          MaybeLocal<Value> data = MaybeLocal<Value>(),
2769                          AccessControl settings = DEFAULT,
2770                          PropertyAttribute attribute = None);
2771
2772  void SetAccessorProperty(Local<Name> name, Local<Function> getter,
2773                           Local<Function> setter = Local<Function>(),
2774                           PropertyAttribute attribute = None,
2775                           AccessControl settings = DEFAULT);
2776
2777  /**
2778   * Functionality for private properties.
2779   * This is an experimental feature, use at your own risk.
2780   * Note: Private properties are not inherited. Do not rely on this, since it
2781   * may change.
2782   */
2783  Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key);
2784  Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key,
2785                         Local<Value> value);
2786  Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key);
2787  MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key);
2788
2789  /**
2790   * Returns an array containing the names of the enumerable properties
2791   * of this object, including properties from prototype objects.  The
2792   * array returned by this method contains the same values as would
2793   * be enumerated by a for-in statement over this object.
2794   */
2795  V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames());
2796  V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
2797      Local<Context> context);
2798  V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
2799      Local<Context> context, KeyCollectionMode mode,
2800      PropertyFilter property_filter, IndexFilter index_filter);
2801
2802  /**
2803   * This function has the same functionality as GetPropertyNames but
2804   * the returned array doesn't contain the names of properties from
2805   * prototype objects.
2806   */
2807  V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames());
2808  V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
2809      Local<Context> context);
2810
2811  /**
2812   * Returns an array containing the names of the filtered properties
2813   * of this object, including properties from prototype objects.  The
2814   * array returned by this method contains the same values as would
2815   * be enumerated by a for-in statement over this object.
2816   */
2817  V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
2818      Local<Context> context, PropertyFilter filter);
2819
2820  /**
2821   * Get the prototype object.  This does not skip objects marked to
2822   * be skipped by __proto__ and it does not consult the security
2823   * handler.
2824   */
2825  Local<Value> GetPrototype();
2826
2827  /**
2828   * Set the prototype object.  This does not skip objects marked to
2829   * be skipped by __proto__ and it does not consult the security
2830   * handler.
2831   */
2832  V8_DEPRECATED("Use maybe version", bool SetPrototype(Local<Value> prototype));
2833  V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context,
2834                                                 Local<Value> prototype);
2835
2836  /**
2837   * Finds an instance of the given function template in the prototype
2838   * chain.
2839   */
2840  Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl);
2841
2842  /**
2843   * Call builtin Object.prototype.toString on this object.
2844   * This is different from Value::ToString() that may call
2845   * user-defined toString function. This one does not.
2846   */
2847  V8_DEPRECATED("Use maybe version", Local<String> ObjectProtoToString());
2848  V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString(
2849      Local<Context> context);
2850
2851  /**
2852   * Returns the name of the function invoked as a constructor for this object.
2853   */
2854  Local<String> GetConstructorName();
2855
2856  /**
2857   * Sets the integrity level of the object.
2858   */
2859  Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level);
2860
2861  /** Gets the number of internal fields for this Object. */
2862  int InternalFieldCount();
2863
2864  /** Same as above, but works for Persistents */
2865  V8_INLINE static int InternalFieldCount(
2866      const PersistentBase<Object>& object) {
2867    return object.val_->InternalFieldCount();
2868  }
2869
2870  /** Gets the value from an internal field. */
2871  V8_INLINE Local<Value> GetInternalField(int index);
2872
2873  /** Sets the value in an internal field. */
2874  void SetInternalField(int index, Local<Value> value);
2875
2876  /**
2877   * Gets a 2-byte-aligned native pointer from an internal field. This field
2878   * must have been set by SetAlignedPointerInInternalField, everything else
2879   * leads to undefined behavior.
2880   */
2881  V8_INLINE void* GetAlignedPointerFromInternalField(int index);
2882
2883  /** Same as above, but works for Persistents */
2884  V8_INLINE static void* GetAlignedPointerFromInternalField(
2885      const PersistentBase<Object>& object, int index) {
2886    return object.val_->GetAlignedPointerFromInternalField(index);
2887  }
2888
2889  /**
2890   * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
2891   * a field, GetAlignedPointerFromInternalField must be used, everything else
2892   * leads to undefined behavior.
2893   */
2894  void SetAlignedPointerInInternalField(int index, void* value);
2895
2896  // Testers for local properties.
2897  V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key));
2898  V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
2899                                                   Local<Name> key);
2900  V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
2901                                                   uint32_t index);
2902  V8_DEPRECATE_SOON("Use maybe version",
2903                    bool HasRealNamedProperty(Local<String> key));
2904  V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context,
2905                                                         Local<Name> key);
2906  V8_DEPRECATE_SOON("Use maybe version",
2907                    bool HasRealIndexedProperty(uint32_t index));
2908  V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty(
2909      Local<Context> context, uint32_t index);
2910  V8_DEPRECATE_SOON("Use maybe version",
2911                    bool HasRealNamedCallbackProperty(Local<String> key));
2912  V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty(
2913      Local<Context> context, Local<Name> key);
2914
2915  /**
2916   * If result.IsEmpty() no real property was located in the prototype chain.
2917   * This means interceptors in the prototype chain are not called.
2918   */
2919  V8_DEPRECATED(
2920      "Use maybe version",
2921      Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key));
2922  V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain(
2923      Local<Context> context, Local<Name> key);
2924
2925  /**
2926   * Gets the property attributes of a real property in the prototype chain,
2927   * which can be None or any combination of ReadOnly, DontEnum and DontDelete.
2928   * Interceptors in the prototype chain are not called.
2929   */
2930  V8_DEPRECATED(
2931      "Use maybe version",
2932      Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(
2933          Local<String> key));
2934  V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute>
2935  GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context,
2936                                                 Local<Name> key);
2937
2938  /**
2939   * If result.IsEmpty() no real property was located on the object or
2940   * in the prototype chain.
2941   * This means interceptors in the prototype chain are not called.
2942   */
2943  V8_DEPRECATED("Use maybe version",
2944                Local<Value> GetRealNamedProperty(Local<String> key));
2945  V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty(
2946      Local<Context> context, Local<Name> key);
2947
2948  /**
2949   * Gets the property attributes of a real property which can be
2950   * None or any combination of ReadOnly, DontEnum and DontDelete.
2951   * Interceptors in the prototype chain are not called.
2952   */
2953  V8_DEPRECATED("Use maybe version",
2954                Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
2955                    Local<String> key));
2956  V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
2957      Local<Context> context, Local<Name> key);
2958
2959  /** Tests for a named lookup interceptor.*/
2960  bool HasNamedLookupInterceptor();
2961
2962  /** Tests for an index lookup interceptor.*/
2963  bool HasIndexedLookupInterceptor();
2964
2965  /**
2966   * Returns the identity hash for this object. The current implementation
2967   * uses a hidden property on the object to store the identity hash.
2968   *
2969   * The return value will never be 0. Also, it is not guaranteed to be
2970   * unique.
2971   */
2972  int GetIdentityHash();
2973
2974  /**
2975   * Clone this object with a fast but shallow copy.  Values will point
2976   * to the same values as the original object.
2977   */
2978  // TODO(dcarney): take an isolate and optionally bail out?
2979  Local<Object> Clone();
2980
2981  /**
2982   * Returns the context in which the object was created.
2983   */
2984  Local<Context> CreationContext();
2985
2986  /**
2987   * Checks whether a callback is set by the
2988   * ObjectTemplate::SetCallAsFunctionHandler method.
2989   * When an Object is callable this method returns true.
2990   */
2991  bool IsCallable();
2992
2993  /**
2994   * True if this object is a constructor.
2995   */
2996  bool IsConstructor();
2997
2998  /**
2999   * Call an Object as a function if a callback is set by the
3000   * ObjectTemplate::SetCallAsFunctionHandler method.
3001   */
3002  V8_DEPRECATED("Use maybe version",
3003                Local<Value> CallAsFunction(Local<Value> recv, int argc,
3004                                            Local<Value> argv[]));
3005  V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context,
3006                                                         Local<Value> recv,
3007                                                         int argc,
3008                                                         Local<Value> argv[]);
3009
3010  /**
3011   * Call an Object as a constructor if a callback is set by the
3012   * ObjectTemplate::SetCallAsFunctionHandler method.
3013   * Note: This method behaves like the Function::NewInstance method.
3014   */
3015  V8_DEPRECATED("Use maybe version",
3016                Local<Value> CallAsConstructor(int argc, Local<Value> argv[]));
3017  V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor(
3018      Local<Context> context, int argc, Local<Value> argv[]);
3019
3020  /**
3021   * Return the isolate to which the Object belongs to.
3022   */
3023  V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
3024
3025  static Local<Object> New(Isolate* isolate);
3026
3027  V8_INLINE static Object* Cast(Value* obj);
3028
3029 private:
3030  Object();
3031  static void CheckCast(Value* obj);
3032  Local<Value> SlowGetInternalField(int index);
3033  void* SlowGetAlignedPointerFromInternalField(int index);
3034};
3035
3036
3037/**
3038 * An instance of the built-in array constructor (ECMA-262, 15.4.2).
3039 */
3040class V8_EXPORT Array : public Object {
3041 public:
3042  uint32_t Length() const;
3043
3044  /**
3045   * Clones an element at index |index|.  Returns an empty
3046   * handle if cloning fails (for any reason).
3047   */
3048  V8_DEPRECATED("Cloning is not supported.",
3049                Local<Object> CloneElementAt(uint32_t index));
3050  V8_DEPRECATED("Cloning is not supported.",
3051                MaybeLocal<Object> CloneElementAt(Local<Context> context,
3052                                                  uint32_t index));
3053
3054  /**
3055   * Creates a JavaScript array with the given length. If the length
3056   * is negative the returned array will have length 0.
3057   */
3058  static Local<Array> New(Isolate* isolate, int length = 0);
3059
3060  V8_INLINE static Array* Cast(Value* obj);
3061 private:
3062  Array();
3063  static void CheckCast(Value* obj);
3064};
3065
3066
3067/**
3068 * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1).
3069 */
3070class V8_EXPORT Map : public Object {
3071 public:
3072  size_t Size() const;
3073  void Clear();
3074  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
3075                                              Local<Value> key);
3076  V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context,
3077                                            Local<Value> key,
3078                                            Local<Value> value);
3079  V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3080                                        Local<Value> key);
3081  V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3082                                           Local<Value> key);
3083
3084  /**
3085   * Returns an array of length Size() * 2, where index N is the Nth key and
3086   * index N + 1 is the Nth value.
3087   */
3088  Local<Array> AsArray() const;
3089
3090  /**
3091   * Creates a new empty Map.
3092   */
3093  static Local<Map> New(Isolate* isolate);
3094
3095  V8_INLINE static Map* Cast(Value* obj);
3096
3097 private:
3098  Map();
3099  static void CheckCast(Value* obj);
3100};
3101
3102
3103/**
3104 * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1).
3105 */
3106class V8_EXPORT Set : public Object {
3107 public:
3108  size_t Size() const;
3109  void Clear();
3110  V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context,
3111                                            Local<Value> key);
3112  V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3113                                        Local<Value> key);
3114  V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3115                                           Local<Value> key);
3116
3117  /**
3118   * Returns an array of the keys in this Set.
3119   */
3120  Local<Array> AsArray() const;
3121
3122  /**
3123   * Creates a new empty Set.
3124   */
3125  static Local<Set> New(Isolate* isolate);
3126
3127  V8_INLINE static Set* Cast(Value* obj);
3128
3129 private:
3130  Set();
3131  static void CheckCast(Value* obj);
3132};
3133
3134
3135template<typename T>
3136class ReturnValue {
3137 public:
3138  template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
3139      : value_(that.value_) {
3140    TYPE_CHECK(T, S);
3141  }
3142  // Local setters
3143  template <typename S>
3144  V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead",
3145                              void Set(const Persistent<S>& handle));
3146  template <typename S>
3147  V8_INLINE void Set(const Global<S>& handle);
3148  template <typename S>
3149  V8_INLINE void Set(const Local<S> handle);
3150  // Fast primitive setters
3151  V8_INLINE void Set(bool value);
3152  V8_INLINE void Set(double i);
3153  V8_INLINE void Set(int32_t i);
3154  V8_INLINE void Set(uint32_t i);
3155  // Fast JS primitive setters
3156  V8_INLINE void SetNull();
3157  V8_INLINE void SetUndefined();
3158  V8_INLINE void SetEmptyString();
3159  // Convenience getter for Isolate
3160  V8_INLINE Isolate* GetIsolate() const;
3161
3162  // Pointer setter: Uncompilable to prevent inadvertent misuse.
3163  template <typename S>
3164  V8_INLINE void Set(S* whatever);
3165
3166  // Getter. Creates a new Local<> so it comes with a certain performance
3167  // hit. If the ReturnValue was not yet set, this will return the undefined
3168  // value.
3169  V8_INLINE Local<Value> Get() const;
3170
3171 private:
3172  template<class F> friend class ReturnValue;
3173  template<class F> friend class FunctionCallbackInfo;
3174  template<class F> friend class PropertyCallbackInfo;
3175  template <class F, class G, class H>
3176  friend class PersistentValueMapBase;
3177  V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
3178  V8_INLINE internal::Object* GetDefaultValue();
3179  V8_INLINE explicit ReturnValue(internal::Object** slot);
3180  internal::Object** value_;
3181};
3182
3183
3184/**
3185 * The argument information given to function call callbacks.  This
3186 * class provides access to information about the context of the call,
3187 * including the receiver, the number and values of arguments, and
3188 * the holder of the function.
3189 */
3190template<typename T>
3191class FunctionCallbackInfo {
3192 public:
3193  V8_INLINE int Length() const;
3194  V8_INLINE Local<Value> operator[](int i) const;
3195  V8_INLINE V8_DEPRECATED("Use Data() to explicitly pass Callee instead",
3196                          Local<Function> Callee() const);
3197  V8_INLINE Local<Object> This() const;
3198  V8_INLINE Local<Object> Holder() const;
3199  V8_INLINE Local<Value> NewTarget() const;
3200  V8_INLINE bool IsConstructCall() const;
3201  V8_INLINE Local<Value> Data() const;
3202  V8_INLINE Isolate* GetIsolate() const;
3203  V8_INLINE ReturnValue<T> GetReturnValue() const;
3204  // This shouldn't be public, but the arm compiler needs it.
3205  static const int kArgsLength = 8;
3206
3207 protected:
3208  friend class internal::FunctionCallbackArguments;
3209  friend class internal::CustomArguments<FunctionCallbackInfo>;
3210  static const int kHolderIndex = 0;
3211  static const int kIsolateIndex = 1;
3212  static const int kReturnValueDefaultValueIndex = 2;
3213  static const int kReturnValueIndex = 3;
3214  static const int kDataIndex = 4;
3215  static const int kCalleeIndex = 5;
3216  static const int kContextSaveIndex = 6;
3217  static const int kNewTargetIndex = 7;
3218
3219  V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
3220                                 internal::Object** values, int length);
3221  internal::Object** implicit_args_;
3222  internal::Object** values_;
3223  int length_;
3224};
3225
3226
3227/**
3228 * The information passed to a property callback about the context
3229 * of the property access.
3230 */
3231template<typename T>
3232class PropertyCallbackInfo {
3233 public:
3234  V8_INLINE Isolate* GetIsolate() const;
3235  V8_INLINE Local<Value> Data() const;
3236  V8_INLINE Local<Object> This() const;
3237  V8_INLINE Local<Object> Holder() const;
3238  V8_INLINE ReturnValue<T> GetReturnValue() const;
3239  V8_INLINE bool ShouldThrowOnError() const;
3240  // This shouldn't be public, but the arm compiler needs it.
3241  static const int kArgsLength = 7;
3242
3243 protected:
3244  friend class MacroAssembler;
3245  friend class internal::PropertyCallbackArguments;
3246  friend class internal::CustomArguments<PropertyCallbackInfo>;
3247  static const int kShouldThrowOnErrorIndex = 0;
3248  static const int kHolderIndex = 1;
3249  static const int kIsolateIndex = 2;
3250  static const int kReturnValueDefaultValueIndex = 3;
3251  static const int kReturnValueIndex = 4;
3252  static const int kDataIndex = 5;
3253  static const int kThisIndex = 6;
3254
3255  V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
3256  internal::Object** args_;
3257};
3258
3259
3260typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
3261
3262enum class ConstructorBehavior { kThrow, kAllow };
3263
3264/**
3265 * A JavaScript function object (ECMA-262, 15.3).
3266 */
3267class V8_EXPORT Function : public Object {
3268 public:
3269  /**
3270   * Create a function in the current execution context
3271   * for a given FunctionCallback.
3272   */
3273  static MaybeLocal<Function> New(
3274      Local<Context> context, FunctionCallback callback,
3275      Local<Value> data = Local<Value>(), int length = 0,
3276      ConstructorBehavior behavior = ConstructorBehavior::kAllow);
3277  static V8_DEPRECATE_SOON(
3278      "Use maybe version",
3279      Local<Function> New(Isolate* isolate, FunctionCallback callback,
3280                          Local<Value> data = Local<Value>(), int length = 0));
3281
3282  V8_DEPRECATED("Use maybe version",
3283                Local<Object> NewInstance(int argc, Local<Value> argv[]) const);
3284  V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3285      Local<Context> context, int argc, Local<Value> argv[]) const;
3286
3287  V8_DEPRECATED("Use maybe version", Local<Object> NewInstance() const);
3288  V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3289      Local<Context> context) const {
3290    return NewInstance(context, 0, nullptr);
3291  }
3292
3293  V8_DEPRECATE_SOON("Use maybe version",
3294                    Local<Value> Call(Local<Value> recv, int argc,
3295                                      Local<Value> argv[]));
3296  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context,
3297                                               Local<Value> recv, int argc,
3298                                               Local<Value> argv[]);
3299
3300  void SetName(Local<String> name);
3301  Local<Value> GetName() const;
3302
3303  /**
3304   * Name inferred from variable or property assignment of this function.
3305   * Used to facilitate debugging and profiling of JavaScript code written
3306   * in an OO style, where many functions are anonymous but are assigned
3307   * to object properties.
3308   */
3309  Local<Value> GetInferredName() const;
3310
3311  /**
3312   * displayName if it is set, otherwise name if it is configured, otherwise
3313   * function name, otherwise inferred name.
3314   */
3315  Local<Value> GetDebugName() const;
3316
3317  /**
3318   * User-defined name assigned to the "displayName" property of this function.
3319   * Used to facilitate debugging and profiling of JavaScript code.
3320   */
3321  Local<Value> GetDisplayName() const;
3322
3323  /**
3324   * Returns zero based line number of function body and
3325   * kLineOffsetNotFound if no information available.
3326   */
3327  int GetScriptLineNumber() const;
3328  /**
3329   * Returns zero based column number of function body and
3330   * kLineOffsetNotFound if no information available.
3331   */
3332  int GetScriptColumnNumber() const;
3333
3334  /**
3335   * Tells whether this function is builtin.
3336   */
3337  bool IsBuiltin() const;
3338
3339  /**
3340   * Returns scriptId.
3341   */
3342  int ScriptId() const;
3343
3344  /**
3345   * Returns the original function if this function is bound, else returns
3346   * v8::Undefined.
3347   */
3348  Local<Value> GetBoundFunction() const;
3349
3350  ScriptOrigin GetScriptOrigin() const;
3351  V8_INLINE static Function* Cast(Value* obj);
3352  static const int kLineOffsetNotFound;
3353
3354 private:
3355  Function();
3356  static void CheckCast(Value* obj);
3357};
3358
3359
3360/**
3361 * An instance of the built-in Promise constructor (ES6 draft).
3362 * This API is experimental. Only works with --harmony flag.
3363 */
3364class V8_EXPORT Promise : public Object {
3365 public:
3366  class V8_EXPORT Resolver : public Object {
3367   public:
3368    /**
3369     * Create a new resolver, along with an associated promise in pending state.
3370     */
3371    static V8_DEPRECATE_SOON("Use maybe version",
3372                             Local<Resolver> New(Isolate* isolate));
3373    static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New(
3374        Local<Context> context);
3375
3376    /**
3377     * Extract the associated promise.
3378     */
3379    Local<Promise> GetPromise();
3380
3381    /**
3382     * Resolve/reject the associated promise with a given value.
3383     * Ignored if the promise is no longer pending.
3384     */
3385    V8_DEPRECATE_SOON("Use maybe version", void Resolve(Local<Value> value));
3386    // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3387    Maybe<bool> Resolve(Local<Context> context, Local<Value> value);
3388
3389    V8_DEPRECATE_SOON("Use maybe version", void Reject(Local<Value> value));
3390    // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3391    Maybe<bool> Reject(Local<Context> context, Local<Value> value);
3392
3393    V8_INLINE static Resolver* Cast(Value* obj);
3394
3395   private:
3396    Resolver();
3397    static void CheckCast(Value* obj);
3398  };
3399
3400  /**
3401   * Register a resolution/rejection handler with a promise.
3402   * The handler is given the respective resolution/rejection value as
3403   * an argument. If the promise is already resolved/rejected, the handler is
3404   * invoked at the end of turn.
3405   */
3406  V8_DEPRECATED("Use maybe version of Then",
3407                Local<Promise> Chain(Local<Function> handler));
3408  V8_DEPRECATED("Use Then",
3409                V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Chain(
3410                    Local<Context> context, Local<Function> handler));
3411
3412  V8_DEPRECATED("Use maybe version",
3413                Local<Promise> Catch(Local<Function> handler));
3414  V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context,
3415                                                  Local<Function> handler);
3416
3417  V8_DEPRECATED("Use maybe version",
3418                Local<Promise> Then(Local<Function> handler));
3419  V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context,
3420                                                 Local<Function> handler);
3421
3422  /**
3423   * Returns true if the promise has at least one derived promise, and
3424   * therefore resolve/reject handlers (including default handler).
3425   */
3426  bool HasHandler();
3427
3428  V8_INLINE static Promise* Cast(Value* obj);
3429
3430 private:
3431  Promise();
3432  static void CheckCast(Value* obj);
3433};
3434
3435
3436/**
3437 * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition,
3438 * 26.2.1).
3439 */
3440class V8_EXPORT Proxy : public Object {
3441 public:
3442  Local<Object> GetTarget();
3443  Local<Value> GetHandler();
3444  bool IsRevoked();
3445  void Revoke();
3446
3447  /**
3448   * Creates a new empty Map.
3449   */
3450  static MaybeLocal<Proxy> New(Local<Context> context,
3451                               Local<Object> local_target,
3452                               Local<Object> local_handler);
3453
3454  V8_INLINE static Proxy* Cast(Value* obj);
3455
3456 private:
3457  Proxy();
3458  static void CheckCast(Value* obj);
3459};
3460
3461
3462#ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
3463// The number of required internal fields can be defined by embedder.
3464#define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
3465#endif
3466
3467
3468enum class ArrayBufferCreationMode { kInternalized, kExternalized };
3469
3470
3471/**
3472 * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
3473 * This API is experimental and may change significantly.
3474 */
3475class V8_EXPORT ArrayBuffer : public Object {
3476 public:
3477  /**
3478   * A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory.
3479   * The allocator is a global V8 setting. It has to be set via
3480   * Isolate::CreateParams.
3481   *
3482   * Memory allocated through this allocator by V8 is accounted for as external
3483   * memory by V8. Note that V8 keeps track of the memory for all internalized
3484   * |ArrayBuffer|s. Responsibility for tracking external memory (using
3485   * Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the
3486   * embedder upon externalization and taken over upon internalization (creating
3487   * an internalized buffer from an existing buffer).
3488   *
3489   * Note that it is unsafe to call back into V8 from any of the allocator
3490   * functions.
3491   *
3492   * This API is experimental and may change significantly.
3493   */
3494  class V8_EXPORT Allocator { // NOLINT
3495   public:
3496    virtual ~Allocator() {}
3497
3498    /**
3499     * Allocate |length| bytes. Return NULL if allocation is not successful.
3500     * Memory should be initialized to zeroes.
3501     */
3502    virtual void* Allocate(size_t length) = 0;
3503
3504    /**
3505     * Allocate |length| bytes. Return NULL if allocation is not successful.
3506     * Memory does not have to be initialized.
3507     */
3508    virtual void* AllocateUninitialized(size_t length) = 0;
3509    /**
3510     * Free the memory block of size |length|, pointed to by |data|.
3511     * That memory is guaranteed to be previously allocated by |Allocate|.
3512     */
3513    virtual void Free(void* data, size_t length) = 0;
3514  };
3515
3516  /**
3517   * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
3518   * returns an instance of this class, populated, with a pointer to data
3519   * and byte length.
3520   *
3521   * The Data pointer of ArrayBuffer::Contents is always allocated with
3522   * Allocator::Allocate that is set via Isolate::CreateParams.
3523   *
3524   * This API is experimental and may change significantly.
3525   */
3526  class V8_EXPORT Contents { // NOLINT
3527   public:
3528    Contents() : data_(NULL), byte_length_(0) {}
3529
3530    void* Data() const { return data_; }
3531    size_t ByteLength() const { return byte_length_; }
3532
3533   private:
3534    void* data_;
3535    size_t byte_length_;
3536
3537    friend class ArrayBuffer;
3538  };
3539
3540
3541  /**
3542   * Data length in bytes.
3543   */
3544  size_t ByteLength() const;
3545
3546  /**
3547   * Create a new ArrayBuffer. Allocate |byte_length| bytes.
3548   * Allocated memory will be owned by a created ArrayBuffer and
3549   * will be deallocated when it is garbage-collected,
3550   * unless the object is externalized.
3551   */
3552  static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
3553
3554  /**
3555   * Create a new ArrayBuffer over an existing memory block.
3556   * The created array buffer is by default immediately in externalized state.
3557   * The memory block will not be reclaimed when a created ArrayBuffer
3558   * is garbage-collected.
3559   */
3560  static Local<ArrayBuffer> New(
3561      Isolate* isolate, void* data, size_t byte_length,
3562      ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
3563
3564  /**
3565   * Returns true if ArrayBuffer is externalized, that is, does not
3566   * own its memory block.
3567   */
3568  bool IsExternal() const;
3569
3570  /**
3571   * Returns true if this ArrayBuffer may be neutered.
3572   */
3573  bool IsNeuterable() const;
3574
3575  /**
3576   * Neuters this ArrayBuffer and all its views (typed arrays).
3577   * Neutering sets the byte length of the buffer and all typed arrays to zero,
3578   * preventing JavaScript from ever accessing underlying backing store.
3579   * ArrayBuffer should have been externalized and must be neuterable.
3580   */
3581  void Neuter();
3582
3583  /**
3584   * Make this ArrayBuffer external. The pointer to underlying memory block
3585   * and byte length are returned as |Contents| structure. After ArrayBuffer
3586   * had been etxrenalized, it does no longer owns the memory block. The caller
3587   * should take steps to free memory when it is no longer needed.
3588   *
3589   * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3590   * that has been set via Isolate::CreateParams.
3591   */
3592  Contents Externalize();
3593
3594  /**
3595   * Get a pointer to the ArrayBuffer's underlying memory block without
3596   * externalizing it. If the ArrayBuffer is not externalized, this pointer
3597   * will become invalid as soon as the ArrayBuffer became garbage collected.
3598   *
3599   * The embedder should make sure to hold a strong reference to the
3600   * ArrayBuffer while accessing this pointer.
3601   *
3602   * The memory block is guaranteed to be allocated with |Allocator::Allocate|.
3603   */
3604  Contents GetContents();
3605
3606  V8_INLINE static ArrayBuffer* Cast(Value* obj);
3607
3608  static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
3609
3610 private:
3611  ArrayBuffer();
3612  static void CheckCast(Value* obj);
3613};
3614
3615
3616#ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
3617// The number of required internal fields can be defined by embedder.
3618#define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
3619#endif
3620
3621
3622/**
3623 * A base class for an instance of one of "views" over ArrayBuffer,
3624 * including TypedArrays and DataView (ES6 draft 15.13).
3625 *
3626 * This API is experimental and may change significantly.
3627 */
3628class V8_EXPORT ArrayBufferView : public Object {
3629 public:
3630  /**
3631   * Returns underlying ArrayBuffer.
3632   */
3633  Local<ArrayBuffer> Buffer();
3634  /**
3635   * Byte offset in |Buffer|.
3636   */
3637  size_t ByteOffset();
3638  /**
3639   * Size of a view in bytes.
3640   */
3641  size_t ByteLength();
3642
3643  /**
3644   * Copy the contents of the ArrayBufferView's buffer to an embedder defined
3645   * memory without additional overhead that calling ArrayBufferView::Buffer
3646   * might incur.
3647   *
3648   * Will write at most min(|byte_length|, ByteLength) bytes starting at
3649   * ByteOffset of the underling buffer to the memory starting at |dest|.
3650   * Returns the number of bytes actually written.
3651   */
3652  size_t CopyContents(void* dest, size_t byte_length);
3653
3654  /**
3655   * Returns true if ArrayBufferView's backing ArrayBuffer has already been
3656   * allocated.
3657   */
3658  bool HasBuffer() const;
3659
3660  V8_INLINE static ArrayBufferView* Cast(Value* obj);
3661
3662  static const int kInternalFieldCount =
3663      V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
3664
3665 private:
3666  ArrayBufferView();
3667  static void CheckCast(Value* obj);
3668};
3669
3670
3671/**
3672 * A base class for an instance of TypedArray series of constructors
3673 * (ES6 draft 15.13.6).
3674 * This API is experimental and may change significantly.
3675 */
3676class V8_EXPORT TypedArray : public ArrayBufferView {
3677 public:
3678  /**
3679   * Number of elements in this typed array
3680   * (e.g. for Int16Array, |ByteLength|/2).
3681   */
3682  size_t Length();
3683
3684  V8_INLINE static TypedArray* Cast(Value* obj);
3685
3686 private:
3687  TypedArray();
3688  static void CheckCast(Value* obj);
3689};
3690
3691
3692/**
3693 * An instance of Uint8Array constructor (ES6 draft 15.13.6).
3694 * This API is experimental and may change significantly.
3695 */
3696class V8_EXPORT Uint8Array : public TypedArray {
3697 public:
3698  static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer,
3699                               size_t byte_offset, size_t length);
3700  static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3701                               size_t byte_offset, size_t length);
3702  V8_INLINE static Uint8Array* Cast(Value* obj);
3703
3704 private:
3705  Uint8Array();
3706  static void CheckCast(Value* obj);
3707};
3708
3709
3710/**
3711 * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
3712 * This API is experimental and may change significantly.
3713 */
3714class V8_EXPORT Uint8ClampedArray : public TypedArray {
3715 public:
3716  static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer,
3717                                      size_t byte_offset, size_t length);
3718  static Local<Uint8ClampedArray> New(
3719      Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset,
3720      size_t length);
3721  V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
3722
3723 private:
3724  Uint8ClampedArray();
3725  static void CheckCast(Value* obj);
3726};
3727
3728/**
3729 * An instance of Int8Array constructor (ES6 draft 15.13.6).
3730 * This API is experimental and may change significantly.
3731 */
3732class V8_EXPORT Int8Array : public TypedArray {
3733 public:
3734  static Local<Int8Array> New(Local<ArrayBuffer> array_buffer,
3735                              size_t byte_offset, size_t length);
3736  static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3737                              size_t byte_offset, size_t length);
3738  V8_INLINE static Int8Array* Cast(Value* obj);
3739
3740 private:
3741  Int8Array();
3742  static void CheckCast(Value* obj);
3743};
3744
3745
3746/**
3747 * An instance of Uint16Array constructor (ES6 draft 15.13.6).
3748 * This API is experimental and may change significantly.
3749 */
3750class V8_EXPORT Uint16Array : public TypedArray {
3751 public:
3752  static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer,
3753                                size_t byte_offset, size_t length);
3754  static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3755                                size_t byte_offset, size_t length);
3756  V8_INLINE static Uint16Array* Cast(Value* obj);
3757
3758 private:
3759  Uint16Array();
3760  static void CheckCast(Value* obj);
3761};
3762
3763
3764/**
3765 * An instance of Int16Array constructor (ES6 draft 15.13.6).
3766 * This API is experimental and may change significantly.
3767 */
3768class V8_EXPORT Int16Array : public TypedArray {
3769 public:
3770  static Local<Int16Array> New(Local<ArrayBuffer> array_buffer,
3771                               size_t byte_offset, size_t length);
3772  static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3773                               size_t byte_offset, size_t length);
3774  V8_INLINE static Int16Array* Cast(Value* obj);
3775
3776 private:
3777  Int16Array();
3778  static void CheckCast(Value* obj);
3779};
3780
3781
3782/**
3783 * An instance of Uint32Array constructor (ES6 draft 15.13.6).
3784 * This API is experimental and may change significantly.
3785 */
3786class V8_EXPORT Uint32Array : public TypedArray {
3787 public:
3788  static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer,
3789                                size_t byte_offset, size_t length);
3790  static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3791                                size_t byte_offset, size_t length);
3792  V8_INLINE static Uint32Array* Cast(Value* obj);
3793
3794 private:
3795  Uint32Array();
3796  static void CheckCast(Value* obj);
3797};
3798
3799
3800/**
3801 * An instance of Int32Array constructor (ES6 draft 15.13.6).
3802 * This API is experimental and may change significantly.
3803 */
3804class V8_EXPORT Int32Array : public TypedArray {
3805 public:
3806  static Local<Int32Array> New(Local<ArrayBuffer> array_buffer,
3807                               size_t byte_offset, size_t length);
3808  static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3809                               size_t byte_offset, size_t length);
3810  V8_INLINE static Int32Array* Cast(Value* obj);
3811
3812 private:
3813  Int32Array();
3814  static void CheckCast(Value* obj);
3815};
3816
3817
3818/**
3819 * An instance of Float32Array constructor (ES6 draft 15.13.6).
3820 * This API is experimental and may change significantly.
3821 */
3822class V8_EXPORT Float32Array : public TypedArray {
3823 public:
3824  static Local<Float32Array> New(Local<ArrayBuffer> array_buffer,
3825                                 size_t byte_offset, size_t length);
3826  static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3827                                 size_t byte_offset, size_t length);
3828  V8_INLINE static Float32Array* Cast(Value* obj);
3829
3830 private:
3831  Float32Array();
3832  static void CheckCast(Value* obj);
3833};
3834
3835
3836/**
3837 * An instance of Float64Array constructor (ES6 draft 15.13.6).
3838 * This API is experimental and may change significantly.
3839 */
3840class V8_EXPORT Float64Array : public TypedArray {
3841 public:
3842  static Local<Float64Array> New(Local<ArrayBuffer> array_buffer,
3843                                 size_t byte_offset, size_t length);
3844  static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3845                                 size_t byte_offset, size_t length);
3846  V8_INLINE static Float64Array* Cast(Value* obj);
3847
3848 private:
3849  Float64Array();
3850  static void CheckCast(Value* obj);
3851};
3852
3853
3854/**
3855 * An instance of DataView constructor (ES6 draft 15.13.7).
3856 * This API is experimental and may change significantly.
3857 */
3858class V8_EXPORT DataView : public ArrayBufferView {
3859 public:
3860  static Local<DataView> New(Local<ArrayBuffer> array_buffer,
3861                             size_t byte_offset, size_t length);
3862  static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer,
3863                             size_t byte_offset, size_t length);
3864  V8_INLINE static DataView* Cast(Value* obj);
3865
3866 private:
3867  DataView();
3868  static void CheckCast(Value* obj);
3869};
3870
3871
3872/**
3873 * An instance of the built-in SharedArrayBuffer constructor.
3874 * This API is experimental and may change significantly.
3875 */
3876class V8_EXPORT SharedArrayBuffer : public Object {
3877 public:
3878  /**
3879   * The contents of an |SharedArrayBuffer|. Externalization of
3880   * |SharedArrayBuffer| returns an instance of this class, populated, with a
3881   * pointer to data and byte length.
3882   *
3883   * The Data pointer of SharedArrayBuffer::Contents is always allocated with
3884   * |ArrayBuffer::Allocator::Allocate| by the allocator specified in
3885   * v8::Isolate::CreateParams::array_buffer_allocator.
3886   *
3887   * This API is experimental and may change significantly.
3888   */
3889  class V8_EXPORT Contents {  // NOLINT
3890   public:
3891    Contents() : data_(NULL), byte_length_(0) {}
3892
3893    void* Data() const { return data_; }
3894    size_t ByteLength() const { return byte_length_; }
3895
3896   private:
3897    void* data_;
3898    size_t byte_length_;
3899
3900    friend class SharedArrayBuffer;
3901  };
3902
3903
3904  /**
3905   * Data length in bytes.
3906   */
3907  size_t ByteLength() const;
3908
3909  /**
3910   * Create a new SharedArrayBuffer. Allocate |byte_length| bytes.
3911   * Allocated memory will be owned by a created SharedArrayBuffer and
3912   * will be deallocated when it is garbage-collected,
3913   * unless the object is externalized.
3914   */
3915  static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length);
3916
3917  /**
3918   * Create a new SharedArrayBuffer over an existing memory block.  The created
3919   * array buffer is immediately in externalized state unless otherwise
3920   * specified. The memory block will not be reclaimed when a created
3921   * SharedArrayBuffer is garbage-collected.
3922   */
3923  static Local<SharedArrayBuffer> New(
3924      Isolate* isolate, void* data, size_t byte_length,
3925      ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
3926
3927  /**
3928   * Returns true if SharedArrayBuffer is externalized, that is, does not
3929   * own its memory block.
3930   */
3931  bool IsExternal() const;
3932
3933  /**
3934   * Make this SharedArrayBuffer external. The pointer to underlying memory
3935   * block and byte length are returned as |Contents| structure. After
3936   * SharedArrayBuffer had been etxrenalized, it does no longer owns the memory
3937   * block. The caller should take steps to free memory when it is no longer
3938   * needed.
3939   *
3940   * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3941   * by the allocator specified in
3942   * v8::Isolate::CreateParams::array_buffer_allocator.
3943   *
3944   */
3945  Contents Externalize();
3946
3947  /**
3948   * Get a pointer to the ArrayBuffer's underlying memory block without
3949   * externalizing it. If the ArrayBuffer is not externalized, this pointer
3950   * will become invalid as soon as the ArrayBuffer became garbage collected.
3951   *
3952   * The embedder should make sure to hold a strong reference to the
3953   * ArrayBuffer while accessing this pointer.
3954   *
3955   * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3956   * by the allocator specified in
3957   * v8::Isolate::CreateParams::array_buffer_allocator.
3958   */
3959  Contents GetContents();
3960
3961  V8_INLINE static SharedArrayBuffer* Cast(Value* obj);
3962
3963  static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
3964
3965 private:
3966  SharedArrayBuffer();
3967  static void CheckCast(Value* obj);
3968};
3969
3970
3971/**
3972 * An instance of the built-in Date constructor (ECMA-262, 15.9).
3973 */
3974class V8_EXPORT Date : public Object {
3975 public:
3976  static V8_DEPRECATE_SOON("Use maybe version.",
3977                           Local<Value> New(Isolate* isolate, double time));
3978  static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context,
3979                                                     double time);
3980
3981  /**
3982   * A specialization of Value::NumberValue that is more efficient
3983   * because we know the structure of this object.
3984   */
3985  double ValueOf() const;
3986
3987  V8_INLINE static Date* Cast(v8::Value* obj);
3988
3989  /**
3990   * Notification that the embedder has changed the time zone,
3991   * daylight savings time, or other date / time configuration
3992   * parameters.  V8 keeps a cache of various values used for
3993   * date / time computation.  This notification will reset
3994   * those cached values for the current context so that date /
3995   * time configuration changes would be reflected in the Date
3996   * object.
3997   *
3998   * This API should not be called more than needed as it will
3999   * negatively impact the performance of date operations.
4000   */
4001  static void DateTimeConfigurationChangeNotification(Isolate* isolate);
4002
4003 private:
4004  static void CheckCast(v8::Value* obj);
4005};
4006
4007
4008/**
4009 * A Number object (ECMA-262, 4.3.21).
4010 */
4011class V8_EXPORT NumberObject : public Object {
4012 public:
4013  static Local<Value> New(Isolate* isolate, double value);
4014
4015  double ValueOf() const;
4016
4017  V8_INLINE static NumberObject* Cast(v8::Value* obj);
4018
4019 private:
4020  static void CheckCast(v8::Value* obj);
4021};
4022
4023
4024/**
4025 * A Boolean object (ECMA-262, 4.3.15).
4026 */
4027class V8_EXPORT BooleanObject : public Object {
4028 public:
4029  static Local<Value> New(Isolate* isolate, bool value);
4030  V8_DEPRECATED("Pass an isolate", static Local<Value> New(bool value));
4031
4032  bool ValueOf() const;
4033
4034  V8_INLINE static BooleanObject* Cast(v8::Value* obj);
4035
4036 private:
4037  static void CheckCast(v8::Value* obj);
4038};
4039
4040
4041/**
4042 * A String object (ECMA-262, 4.3.18).
4043 */
4044class V8_EXPORT StringObject : public Object {
4045 public:
4046  static Local<Value> New(Local<String> value);
4047
4048  Local<String> ValueOf() const;
4049
4050  V8_INLINE static StringObject* Cast(v8::Value* obj);
4051
4052 private:
4053  static void CheckCast(v8::Value* obj);
4054};
4055
4056
4057/**
4058 * A Symbol object (ECMA-262 edition 6).
4059 *
4060 * This is an experimental feature. Use at your own risk.
4061 */
4062class V8_EXPORT SymbolObject : public Object {
4063 public:
4064  static Local<Value> New(Isolate* isolate, Local<Symbol> value);
4065
4066  Local<Symbol> ValueOf() const;
4067
4068  V8_INLINE static SymbolObject* Cast(v8::Value* obj);
4069
4070 private:
4071  static void CheckCast(v8::Value* obj);
4072};
4073
4074
4075/**
4076 * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
4077 */
4078class V8_EXPORT RegExp : public Object {
4079 public:
4080  /**
4081   * Regular expression flag bits. They can be or'ed to enable a set
4082   * of flags.
4083   */
4084  enum Flags {
4085    kNone = 0,
4086    kGlobal = 1,
4087    kIgnoreCase = 2,
4088    kMultiline = 4,
4089    kSticky = 8,
4090    kUnicode = 16
4091  };
4092
4093  /**
4094   * Creates a regular expression from the given pattern string and
4095   * the flags bit field. May throw a JavaScript exception as
4096   * described in ECMA-262, 15.10.4.1.
4097   *
4098   * For example,
4099   *   RegExp::New(v8::String::New("foo"),
4100   *               static_cast<RegExp::Flags>(kGlobal | kMultiline))
4101   * is equivalent to evaluating "/foo/gm".
4102   */
4103  static V8_DEPRECATE_SOON("Use maybe version",
4104                           Local<RegExp> New(Local<String> pattern,
4105                                             Flags flags));
4106  static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context,
4107                                                      Local<String> pattern,
4108                                                      Flags flags);
4109
4110  /**
4111   * Returns the value of the source property: a string representing
4112   * the regular expression.
4113   */
4114  Local<String> GetSource() const;
4115
4116  /**
4117   * Returns the flags bit field.
4118   */
4119  Flags GetFlags() const;
4120
4121  V8_INLINE static RegExp* Cast(v8::Value* obj);
4122
4123 private:
4124  static void CheckCast(v8::Value* obj);
4125};
4126
4127
4128/**
4129 * A JavaScript value that wraps a C++ void*. This type of value is mainly used
4130 * to associate C++ data structures with JavaScript objects.
4131 */
4132class V8_EXPORT External : public Value {
4133 public:
4134  static Local<External> New(Isolate* isolate, void* value);
4135  V8_INLINE static External* Cast(Value* obj);
4136  void* Value() const;
4137 private:
4138  static void CheckCast(v8::Value* obj);
4139};
4140
4141
4142#define V8_INTRINSICS_LIST(F) F(ArrayProto_values, array_values_iterator)
4143
4144enum Intrinsic {
4145#define V8_DECL_INTRINSIC(name, iname) k##name,
4146  V8_INTRINSICS_LIST(V8_DECL_INTRINSIC)
4147#undef V8_DECL_INTRINSIC
4148};
4149
4150
4151// --- Templates ---
4152
4153
4154/**
4155 * The superclass of object and function templates.
4156 */
4157class V8_EXPORT Template : public Data {
4158 public:
4159  /**
4160   * Adds a property to each instance created by this template.
4161   *
4162   * The property must be defined either as a primitive value, or a template.
4163   */
4164  void Set(Local<Name> name, Local<Data> value,
4165           PropertyAttribute attributes = None);
4166  V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);
4167
4168  void SetAccessorProperty(
4169     Local<Name> name,
4170     Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
4171     Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
4172     PropertyAttribute attribute = None,
4173     AccessControl settings = DEFAULT);
4174
4175  /**
4176   * Whenever the property with the given name is accessed on objects
4177   * created from this Template the getter and setter callbacks
4178   * are called instead of getting and setting the property directly
4179   * on the JavaScript object.
4180   *
4181   * \param name The name of the property for which an accessor is added.
4182   * \param getter The callback to invoke when getting the property.
4183   * \param setter The callback to invoke when setting the property.
4184   * \param data A piece of data that will be passed to the getter and setter
4185   *   callbacks whenever they are invoked.
4186   * \param settings Access control settings for the accessor. This is a bit
4187   *   field consisting of one of more of
4188   *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4189   *   The default is to not allow cross-context access.
4190   *   ALL_CAN_READ means that all cross-context reads are allowed.
4191   *   ALL_CAN_WRITE means that all cross-context writes are allowed.
4192   *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4193   *   cross-context access.
4194   * \param attribute The attributes of the property for which an accessor
4195   *   is added.
4196   * \param signature The signature describes valid receivers for the accessor
4197   *   and is used to perform implicit instance checks against them. If the
4198   *   receiver is incompatible (i.e. is not an instance of the constructor as
4199   *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4200   *   thrown and no callback is invoked.
4201   */
4202  void SetNativeDataProperty(
4203      Local<String> name, AccessorGetterCallback getter,
4204      AccessorSetterCallback setter = 0,
4205      // TODO(dcarney): gcc can't handle Local below
4206      Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4207      Local<AccessorSignature> signature = Local<AccessorSignature>(),
4208      AccessControl settings = DEFAULT);
4209  void SetNativeDataProperty(
4210      Local<Name> name, AccessorNameGetterCallback getter,
4211      AccessorNameSetterCallback setter = 0,
4212      // TODO(dcarney): gcc can't handle Local below
4213      Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4214      Local<AccessorSignature> signature = Local<AccessorSignature>(),
4215      AccessControl settings = DEFAULT);
4216
4217  /**
4218   * During template instantiation, sets the value with the intrinsic property
4219   * from the correct context.
4220   */
4221  void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
4222                                PropertyAttribute attribute = None);
4223
4224 private:
4225  Template();
4226
4227  friend class ObjectTemplate;
4228  friend class FunctionTemplate;
4229};
4230
4231
4232/**
4233 * NamedProperty[Getter|Setter] are used as interceptors on object.
4234 * See ObjectTemplate::SetNamedPropertyHandler.
4235 */
4236typedef void (*NamedPropertyGetterCallback)(
4237    Local<String> property,
4238    const PropertyCallbackInfo<Value>& info);
4239
4240
4241/**
4242 * Returns the value if the setter intercepts the request.
4243 * Otherwise, returns an empty handle.
4244 */
4245typedef void (*NamedPropertySetterCallback)(
4246    Local<String> property,
4247    Local<Value> value,
4248    const PropertyCallbackInfo<Value>& info);
4249
4250
4251/**
4252 * Returns a non-empty handle if the interceptor intercepts the request.
4253 * The result is an integer encoding property attributes (like v8::None,
4254 * v8::DontEnum, etc.)
4255 */
4256typedef void (*NamedPropertyQueryCallback)(
4257    Local<String> property,
4258    const PropertyCallbackInfo<Integer>& info);
4259
4260
4261/**
4262 * Returns a non-empty handle if the deleter intercepts the request.
4263 * The return value is true if the property could be deleted and false
4264 * otherwise.
4265 */
4266typedef void (*NamedPropertyDeleterCallback)(
4267    Local<String> property,
4268    const PropertyCallbackInfo<Boolean>& info);
4269
4270
4271/**
4272 * Returns an array containing the names of the properties the named
4273 * property getter intercepts.
4274 */
4275typedef void (*NamedPropertyEnumeratorCallback)(
4276    const PropertyCallbackInfo<Array>& info);
4277
4278
4279// TODO(dcarney): Deprecate and remove previous typedefs, and replace
4280// GenericNamedPropertyFooCallback with just NamedPropertyFooCallback.
4281/**
4282 * GenericNamedProperty[Getter|Setter] are used as interceptors on object.
4283 * See ObjectTemplate::SetNamedPropertyHandler.
4284 */
4285typedef void (*GenericNamedPropertyGetterCallback)(
4286    Local<Name> property, const PropertyCallbackInfo<Value>& info);
4287
4288
4289/**
4290 * Returns the value if the setter intercepts the request.
4291 * Otherwise, returns an empty handle.
4292 */
4293typedef void (*GenericNamedPropertySetterCallback)(
4294    Local<Name> property, Local<Value> value,
4295    const PropertyCallbackInfo<Value>& info);
4296
4297
4298/**
4299 * Returns a non-empty handle if the interceptor intercepts the request.
4300 * The result is an integer encoding property attributes (like v8::None,
4301 * v8::DontEnum, etc.)
4302 */
4303typedef void (*GenericNamedPropertyQueryCallback)(
4304    Local<Name> property, const PropertyCallbackInfo<Integer>& info);
4305
4306
4307/**
4308 * Returns a non-empty handle if the deleter intercepts the request.
4309 * The return value is true if the property could be deleted and false
4310 * otherwise.
4311 */
4312typedef void (*GenericNamedPropertyDeleterCallback)(
4313    Local<Name> property, const PropertyCallbackInfo<Boolean>& info);
4314
4315
4316/**
4317 * Returns an array containing the names of the properties the named
4318 * property getter intercepts.
4319 */
4320typedef void (*GenericNamedPropertyEnumeratorCallback)(
4321    const PropertyCallbackInfo<Array>& info);
4322
4323
4324/**
4325 * Returns the value of the property if the getter intercepts the
4326 * request.  Otherwise, returns an empty handle.
4327 */
4328typedef void (*IndexedPropertyGetterCallback)(
4329    uint32_t index,
4330    const PropertyCallbackInfo<Value>& info);
4331
4332
4333/**
4334 * Returns the value if the setter intercepts the request.
4335 * Otherwise, returns an empty handle.
4336 */
4337typedef void (*IndexedPropertySetterCallback)(
4338    uint32_t index,
4339    Local<Value> value,
4340    const PropertyCallbackInfo<Value>& info);
4341
4342
4343/**
4344 * Returns a non-empty handle if the interceptor intercepts the request.
4345 * The result is an integer encoding property attributes.
4346 */
4347typedef void (*IndexedPropertyQueryCallback)(
4348    uint32_t index,
4349    const PropertyCallbackInfo<Integer>& info);
4350
4351
4352/**
4353 * Returns a non-empty handle if the deleter intercepts the request.
4354 * The return value is true if the property could be deleted and false
4355 * otherwise.
4356 */
4357typedef void (*IndexedPropertyDeleterCallback)(
4358    uint32_t index,
4359    const PropertyCallbackInfo<Boolean>& info);
4360
4361
4362/**
4363 * Returns an array containing the indices of the properties the
4364 * indexed property getter intercepts.
4365 */
4366typedef void (*IndexedPropertyEnumeratorCallback)(
4367    const PropertyCallbackInfo<Array>& info);
4368
4369
4370/**
4371 * Access type specification.
4372 */
4373enum AccessType {
4374  ACCESS_GET,
4375  ACCESS_SET,
4376  ACCESS_HAS,
4377  ACCESS_DELETE,
4378  ACCESS_KEYS
4379};
4380
4381
4382/**
4383 * Returns true if the given context should be allowed to access the given
4384 * object.
4385 */
4386typedef bool (*AccessCheckCallback)(Local<Context> accessing_context,
4387                                    Local<Object> accessed_object,
4388                                    Local<Value> data);
4389
4390/**
4391 * A FunctionTemplate is used to create functions at runtime. There
4392 * can only be one function created from a FunctionTemplate in a
4393 * context.  The lifetime of the created function is equal to the
4394 * lifetime of the context.  So in case the embedder needs to create
4395 * temporary functions that can be collected using Scripts is
4396 * preferred.
4397 *
4398 * Any modification of a FunctionTemplate after first instantiation will trigger
4399 *a crash.
4400 *
4401 * A FunctionTemplate can have properties, these properties are added to the
4402 * function object when it is created.
4403 *
4404 * A FunctionTemplate has a corresponding instance template which is
4405 * used to create object instances when the function is used as a
4406 * constructor. Properties added to the instance template are added to
4407 * each object instance.
4408 *
4409 * A FunctionTemplate can have a prototype template. The prototype template
4410 * is used to create the prototype object of the function.
4411 *
4412 * The following example shows how to use a FunctionTemplate:
4413 *
4414 * \code
4415 *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
4416 *    t->Set("func_property", v8::Number::New(1));
4417 *
4418 *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
4419 *    proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
4420 *    proto_t->Set("proto_const", v8::Number::New(2));
4421 *
4422 *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
4423 *    instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
4424 *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
4425 *    instance_t->Set("instance_property", Number::New(3));
4426 *
4427 *    v8::Local<v8::Function> function = t->GetFunction();
4428 *    v8::Local<v8::Object> instance = function->NewInstance();
4429 * \endcode
4430 *
4431 * Let's use "function" as the JS variable name of the function object
4432 * and "instance" for the instance object created above.  The function
4433 * and the instance will have the following properties:
4434 *
4435 * \code
4436 *   func_property in function == true;
4437 *   function.func_property == 1;
4438 *
4439 *   function.prototype.proto_method() invokes 'InvokeCallback'
4440 *   function.prototype.proto_const == 2;
4441 *
4442 *   instance instanceof function == true;
4443 *   instance.instance_accessor calls 'InstanceAccessorCallback'
4444 *   instance.instance_property == 3;
4445 * \endcode
4446 *
4447 * A FunctionTemplate can inherit from another one by calling the
4448 * FunctionTemplate::Inherit method.  The following graph illustrates
4449 * the semantics of inheritance:
4450 *
4451 * \code
4452 *   FunctionTemplate Parent  -> Parent() . prototype -> { }
4453 *     ^                                                  ^
4454 *     | Inherit(Parent)                                  | .__proto__
4455 *     |                                                  |
4456 *   FunctionTemplate Child   -> Child()  . prototype -> { }
4457 * \endcode
4458 *
4459 * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
4460 * object of the Child() function has __proto__ pointing to the
4461 * Parent() function's prototype object. An instance of the Child
4462 * function has all properties on Parent's instance templates.
4463 *
4464 * Let Parent be the FunctionTemplate initialized in the previous
4465 * section and create a Child FunctionTemplate by:
4466 *
4467 * \code
4468 *   Local<FunctionTemplate> parent = t;
4469 *   Local<FunctionTemplate> child = FunctionTemplate::New();
4470 *   child->Inherit(parent);
4471 *
4472 *   Local<Function> child_function = child->GetFunction();
4473 *   Local<Object> child_instance = child_function->NewInstance();
4474 * \endcode
4475 *
4476 * The Child function and Child instance will have the following
4477 * properties:
4478 *
4479 * \code
4480 *   child_func.prototype.__proto__ == function.prototype;
4481 *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
4482 *   child_instance.instance_property == 3;
4483 * \endcode
4484 */
4485class V8_EXPORT FunctionTemplate : public Template {
4486 public:
4487  /** Creates a function template.*/
4488  static Local<FunctionTemplate> New(
4489      Isolate* isolate, FunctionCallback callback = 0,
4490      Local<Value> data = Local<Value>(),
4491      Local<Signature> signature = Local<Signature>(), int length = 0,
4492      ConstructorBehavior behavior = ConstructorBehavior::kAllow);
4493
4494  /** Get a template included in the snapshot by index. */
4495  static Local<FunctionTemplate> FromSnapshot(Isolate* isolate, size_t index);
4496
4497  /**
4498   * Creates a function template with a fast handler. If a fast handler is set,
4499   * the callback cannot be null.
4500   */
4501  static Local<FunctionTemplate> NewWithFastHandler(
4502      Isolate* isolate, FunctionCallback callback,
4503      experimental::FastAccessorBuilder* fast_handler = nullptr,
4504      Local<Value> data = Local<Value>(),
4505      Local<Signature> signature = Local<Signature>(), int length = 0);
4506
4507  /** Returns the unique function instance in the current execution context.*/
4508  V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction());
4509  V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction(
4510      Local<Context> context);
4511
4512  /**
4513   * Set the call-handler callback for a FunctionTemplate.  This
4514   * callback is called whenever the function created from this
4515   * FunctionTemplate is called.
4516   */
4517  void SetCallHandler(
4518      FunctionCallback callback, Local<Value> data = Local<Value>(),
4519      experimental::FastAccessorBuilder* fast_handler = nullptr);
4520
4521  /** Set the predefined length property for the FunctionTemplate. */
4522  void SetLength(int length);
4523
4524  /** Get the InstanceTemplate. */
4525  Local<ObjectTemplate> InstanceTemplate();
4526
4527  /** Causes the function template to inherit from a parent function template.*/
4528  void Inherit(Local<FunctionTemplate> parent);
4529
4530  /**
4531   * A PrototypeTemplate is the template used to create the prototype object
4532   * of the function created by this template.
4533   */
4534  Local<ObjectTemplate> PrototypeTemplate();
4535
4536  /**
4537   * Set the class name of the FunctionTemplate.  This is used for
4538   * printing objects created with the function created from the
4539   * FunctionTemplate as its constructor.
4540   */
4541  void SetClassName(Local<String> name);
4542
4543
4544  /**
4545   * When set to true, no access check will be performed on the receiver of a
4546   * function call.  Currently defaults to true, but this is subject to change.
4547   */
4548  void SetAcceptAnyReceiver(bool value);
4549
4550  /**
4551   * Determines whether the __proto__ accessor ignores instances of
4552   * the function template.  If instances of the function template are
4553   * ignored, __proto__ skips all instances and instead returns the
4554   * next object in the prototype chain.
4555   *
4556   * Call with a value of true to make the __proto__ accessor ignore
4557   * instances of the function template.  Call with a value of false
4558   * to make the __proto__ accessor not ignore instances of the
4559   * function template.  By default, instances of a function template
4560   * are not ignored.
4561   */
4562  void SetHiddenPrototype(bool value);
4563
4564  /**
4565   * Sets the ReadOnly flag in the attributes of the 'prototype' property
4566   * of functions created from this FunctionTemplate to true.
4567   */
4568  void ReadOnlyPrototype();
4569
4570  /**
4571   * Removes the prototype property from functions created from this
4572   * FunctionTemplate.
4573   */
4574  void RemovePrototype();
4575
4576  /**
4577   * Returns true if the given object is an instance of this function
4578   * template.
4579   */
4580  bool HasInstance(Local<Value> object);
4581
4582 private:
4583  FunctionTemplate();
4584  friend class Context;
4585  friend class ObjectTemplate;
4586};
4587
4588
4589enum class PropertyHandlerFlags {
4590  kNone = 0,
4591  // See ALL_CAN_READ above.
4592  kAllCanRead = 1,
4593  // Will not call into interceptor for properties on the receiver or prototype
4594  // chain.  Currently only valid for named interceptors.
4595  kNonMasking = 1 << 1,
4596  // Will not call into interceptor for symbol lookup.  Only meaningful for
4597  // named interceptors.
4598  kOnlyInterceptStrings = 1 << 2,
4599};
4600
4601
4602struct NamedPropertyHandlerConfiguration {
4603  NamedPropertyHandlerConfiguration(
4604      /** Note: getter is required **/
4605      GenericNamedPropertyGetterCallback getter = 0,
4606      GenericNamedPropertySetterCallback setter = 0,
4607      GenericNamedPropertyQueryCallback query = 0,
4608      GenericNamedPropertyDeleterCallback deleter = 0,
4609      GenericNamedPropertyEnumeratorCallback enumerator = 0,
4610      Local<Value> data = Local<Value>(),
4611      PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
4612      : getter(getter),
4613        setter(setter),
4614        query(query),
4615        deleter(deleter),
4616        enumerator(enumerator),
4617        data(data),
4618        flags(flags) {}
4619
4620  GenericNamedPropertyGetterCallback getter;
4621  GenericNamedPropertySetterCallback setter;
4622  GenericNamedPropertyQueryCallback query;
4623  GenericNamedPropertyDeleterCallback deleter;
4624  GenericNamedPropertyEnumeratorCallback enumerator;
4625  Local<Value> data;
4626  PropertyHandlerFlags flags;
4627};
4628
4629
4630struct IndexedPropertyHandlerConfiguration {
4631  IndexedPropertyHandlerConfiguration(
4632      /** Note: getter is required **/
4633      IndexedPropertyGetterCallback getter = 0,
4634      IndexedPropertySetterCallback setter = 0,
4635      IndexedPropertyQueryCallback query = 0,
4636      IndexedPropertyDeleterCallback deleter = 0,
4637      IndexedPropertyEnumeratorCallback enumerator = 0,
4638      Local<Value> data = Local<Value>(),
4639      PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
4640      : getter(getter),
4641        setter(setter),
4642        query(query),
4643        deleter(deleter),
4644        enumerator(enumerator),
4645        data(data),
4646        flags(flags) {}
4647
4648  IndexedPropertyGetterCallback getter;
4649  IndexedPropertySetterCallback setter;
4650  IndexedPropertyQueryCallback query;
4651  IndexedPropertyDeleterCallback deleter;
4652  IndexedPropertyEnumeratorCallback enumerator;
4653  Local<Value> data;
4654  PropertyHandlerFlags flags;
4655};
4656
4657
4658/**
4659 * An ObjectTemplate is used to create objects at runtime.
4660 *
4661 * Properties added to an ObjectTemplate are added to each object
4662 * created from the ObjectTemplate.
4663 */
4664class V8_EXPORT ObjectTemplate : public Template {
4665 public:
4666  /** Creates an ObjectTemplate. */
4667  static Local<ObjectTemplate> New(
4668      Isolate* isolate,
4669      Local<FunctionTemplate> constructor = Local<FunctionTemplate>());
4670  static V8_DEPRECATED("Use isolate version", Local<ObjectTemplate> New());
4671
4672  /** Get a template included in the snapshot by index. */
4673  static Local<ObjectTemplate> FromSnapshot(Isolate* isolate, size_t index);
4674
4675  /** Creates a new instance of this template.*/
4676  V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance());
4677  V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context);
4678
4679  /**
4680   * Sets an accessor on the object template.
4681   *
4682   * Whenever the property with the given name is accessed on objects
4683   * created from this ObjectTemplate the getter and setter callbacks
4684   * are called instead of getting and setting the property directly
4685   * on the JavaScript object.
4686   *
4687   * \param name The name of the property for which an accessor is added.
4688   * \param getter The callback to invoke when getting the property.
4689   * \param setter The callback to invoke when setting the property.
4690   * \param data A piece of data that will be passed to the getter and setter
4691   *   callbacks whenever they are invoked.
4692   * \param settings Access control settings for the accessor. This is a bit
4693   *   field consisting of one of more of
4694   *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4695   *   The default is to not allow cross-context access.
4696   *   ALL_CAN_READ means that all cross-context reads are allowed.
4697   *   ALL_CAN_WRITE means that all cross-context writes are allowed.
4698   *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4699   *   cross-context access.
4700   * \param attribute The attributes of the property for which an accessor
4701   *   is added.
4702   * \param signature The signature describes valid receivers for the accessor
4703   *   and is used to perform implicit instance checks against them. If the
4704   *   receiver is incompatible (i.e. is not an instance of the constructor as
4705   *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4706   *   thrown and no callback is invoked.
4707   */
4708  void SetAccessor(
4709      Local<String> name, AccessorGetterCallback getter,
4710      AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(),
4711      AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
4712      Local<AccessorSignature> signature = Local<AccessorSignature>());
4713  void SetAccessor(
4714      Local<Name> name, AccessorNameGetterCallback getter,
4715      AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(),
4716      AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
4717      Local<AccessorSignature> signature = Local<AccessorSignature>());
4718
4719  /**
4720   * Sets a named property handler on the object template.
4721   *
4722   * Whenever a property whose name is a string is accessed on objects created
4723   * from this object template, the provided callback is invoked instead of
4724   * accessing the property directly on the JavaScript object.
4725   *
4726   * Note that new code should use the second version that can intercept
4727   * symbol-named properties as well as string-named properties.
4728   *
4729   * \param getter The callback to invoke when getting a property.
4730   * \param setter The callback to invoke when setting a property.
4731   * \param query The callback to invoke to check if a property is present,
4732   *   and if present, get its attributes.
4733   * \param deleter The callback to invoke when deleting a property.
4734   * \param enumerator The callback to invoke to enumerate all the named
4735   *   properties of an object.
4736   * \param data A piece of data that will be passed to the callbacks
4737   *   whenever they are invoked.
4738   */
4739  // TODO(dcarney): deprecate
4740  void SetNamedPropertyHandler(NamedPropertyGetterCallback getter,
4741                               NamedPropertySetterCallback setter = 0,
4742                               NamedPropertyQueryCallback query = 0,
4743                               NamedPropertyDeleterCallback deleter = 0,
4744                               NamedPropertyEnumeratorCallback enumerator = 0,
4745                               Local<Value> data = Local<Value>());
4746  void SetHandler(const NamedPropertyHandlerConfiguration& configuration);
4747
4748  /**
4749   * Sets an indexed property handler on the object template.
4750   *
4751   * Whenever an indexed property is accessed on objects created from
4752   * this object template, the provided callback is invoked instead of
4753   * accessing the property directly on the JavaScript object.
4754   *
4755   * \param getter The callback to invoke when getting a property.
4756   * \param setter The callback to invoke when setting a property.
4757   * \param query The callback to invoke to check if an object has a property.
4758   * \param deleter The callback to invoke when deleting a property.
4759   * \param enumerator The callback to invoke to enumerate all the indexed
4760   *   properties of an object.
4761   * \param data A piece of data that will be passed to the callbacks
4762   *   whenever they are invoked.
4763   */
4764  void SetHandler(const IndexedPropertyHandlerConfiguration& configuration);
4765  // TODO(dcarney): deprecate
4766  void SetIndexedPropertyHandler(
4767      IndexedPropertyGetterCallback getter,
4768      IndexedPropertySetterCallback setter = 0,
4769      IndexedPropertyQueryCallback query = 0,
4770      IndexedPropertyDeleterCallback deleter = 0,
4771      IndexedPropertyEnumeratorCallback enumerator = 0,
4772      Local<Value> data = Local<Value>()) {
4773    SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query,
4774                                                   deleter, enumerator, data));
4775  }
4776  /**
4777   * Sets the callback to be used when calling instances created from
4778   * this template as a function.  If no callback is set, instances
4779   * behave like normal JavaScript objects that cannot be called as a
4780   * function.
4781   */
4782  void SetCallAsFunctionHandler(FunctionCallback callback,
4783                                Local<Value> data = Local<Value>());
4784
4785  /**
4786   * Mark object instances of the template as undetectable.
4787   *
4788   * In many ways, undetectable objects behave as though they are not
4789   * there.  They behave like 'undefined' in conditionals and when
4790   * printed.  However, properties can be accessed and called as on
4791   * normal objects.
4792   */
4793  void MarkAsUndetectable();
4794
4795  /**
4796   * Sets access check callback on the object template and enables access
4797   * checks.
4798   *
4799   * When accessing properties on instances of this object template,
4800   * the access check callback will be called to determine whether or
4801   * not to allow cross-context access to the properties.
4802   */
4803  void SetAccessCheckCallback(AccessCheckCallback callback,
4804                              Local<Value> data = Local<Value>());
4805
4806  /**
4807   * Like SetAccessCheckCallback but invokes an interceptor on failed access
4808   * checks instead of looking up all-can-read properties. You can only use
4809   * either this method or SetAccessCheckCallback, but not both at the same
4810   * time.
4811   */
4812  void SetAccessCheckCallbackAndHandler(
4813      AccessCheckCallback callback,
4814      const NamedPropertyHandlerConfiguration& named_handler,
4815      const IndexedPropertyHandlerConfiguration& indexed_handler,
4816      Local<Value> data = Local<Value>());
4817
4818  /**
4819   * Gets the number of internal fields for objects generated from
4820   * this template.
4821   */
4822  int InternalFieldCount();
4823
4824  /**
4825   * Sets the number of internal fields for objects generated from
4826   * this template.
4827   */
4828  void SetInternalFieldCount(int value);
4829
4830 private:
4831  ObjectTemplate();
4832  static Local<ObjectTemplate> New(internal::Isolate* isolate,
4833                                   Local<FunctionTemplate> constructor);
4834  friend class FunctionTemplate;
4835};
4836
4837
4838/**
4839 * A Signature specifies which receiver is valid for a function.
4840 */
4841class V8_EXPORT Signature : public Data {
4842 public:
4843  static Local<Signature> New(
4844      Isolate* isolate,
4845      Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
4846
4847 private:
4848  Signature();
4849};
4850
4851
4852/**
4853 * An AccessorSignature specifies which receivers are valid parameters
4854 * to an accessor callback.
4855 */
4856class V8_EXPORT AccessorSignature : public Data {
4857 public:
4858  static Local<AccessorSignature> New(
4859      Isolate* isolate,
4860      Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
4861
4862 private:
4863  AccessorSignature();
4864};
4865
4866
4867// --- Extensions ---
4868
4869class V8_EXPORT ExternalOneByteStringResourceImpl
4870    : public String::ExternalOneByteStringResource {
4871 public:
4872  ExternalOneByteStringResourceImpl() : data_(0), length_(0) {}
4873  ExternalOneByteStringResourceImpl(const char* data, size_t length)
4874      : data_(data), length_(length) {}
4875  const char* data() const { return data_; }
4876  size_t length() const { return length_; }
4877
4878 private:
4879  const char* data_;
4880  size_t length_;
4881};
4882
4883/**
4884 * Ignore
4885 */
4886class V8_EXPORT Extension {  // NOLINT
4887 public:
4888  // Note that the strings passed into this constructor must live as long
4889  // as the Extension itself.
4890  Extension(const char* name,
4891            const char* source = 0,
4892            int dep_count = 0,
4893            const char** deps = 0,
4894            int source_length = -1);
4895  virtual ~Extension() { }
4896  virtual v8::Local<v8::FunctionTemplate> GetNativeFunctionTemplate(
4897      v8::Isolate* isolate, v8::Local<v8::String> name) {
4898    return v8::Local<v8::FunctionTemplate>();
4899  }
4900
4901  const char* name() const { return name_; }
4902  size_t source_length() const { return source_length_; }
4903  const String::ExternalOneByteStringResource* source() const {
4904    return &source_; }
4905  int dependency_count() { return dep_count_; }
4906  const char** dependencies() { return deps_; }
4907  void set_auto_enable(bool value) { auto_enable_ = value; }
4908  bool auto_enable() { return auto_enable_; }
4909
4910 private:
4911  const char* name_;
4912  size_t source_length_;  // expected to initialize before source_
4913  ExternalOneByteStringResourceImpl source_;
4914  int dep_count_;
4915  const char** deps_;
4916  bool auto_enable_;
4917
4918  // Disallow copying and assigning.
4919  Extension(const Extension&);
4920  void operator=(const Extension&);
4921};
4922
4923
4924void V8_EXPORT RegisterExtension(Extension* extension);
4925
4926
4927// --- Statics ---
4928
4929V8_INLINE Local<Primitive> Undefined(Isolate* isolate);
4930V8_INLINE Local<Primitive> Null(Isolate* isolate);
4931V8_INLINE Local<Boolean> True(Isolate* isolate);
4932V8_INLINE Local<Boolean> False(Isolate* isolate);
4933
4934/**
4935 * A set of constraints that specifies the limits of the runtime's memory use.
4936 * You must set the heap size before initializing the VM - the size cannot be
4937 * adjusted after the VM is initialized.
4938 *
4939 * If you are using threads then you should hold the V8::Locker lock while
4940 * setting the stack limit and you must set a non-default stack limit separately
4941 * for each thread.
4942 *
4943 * The arguments for set_max_semi_space_size, set_max_old_space_size,
4944 * set_max_executable_size, set_code_range_size specify limits in MB.
4945 */
4946class V8_EXPORT ResourceConstraints {
4947 public:
4948  ResourceConstraints();
4949
4950  /**
4951   * Configures the constraints with reasonable default values based on the
4952   * capabilities of the current device the VM is running on.
4953   *
4954   * \param physical_memory The total amount of physical memory on the current
4955   *   device, in bytes.
4956   * \param virtual_memory_limit The amount of virtual memory on the current
4957   *   device, in bytes, or zero, if there is no limit.
4958   */
4959  void ConfigureDefaults(uint64_t physical_memory,
4960                         uint64_t virtual_memory_limit);
4961
4962  int max_semi_space_size() const { return max_semi_space_size_; }
4963  void set_max_semi_space_size(int limit_in_mb) {
4964    max_semi_space_size_ = limit_in_mb;
4965  }
4966  int max_old_space_size() const { return max_old_space_size_; }
4967  void set_max_old_space_size(int limit_in_mb) {
4968    max_old_space_size_ = limit_in_mb;
4969  }
4970  int max_executable_size() const { return max_executable_size_; }
4971  void set_max_executable_size(int limit_in_mb) {
4972    max_executable_size_ = limit_in_mb;
4973  }
4974  uint32_t* stack_limit() const { return stack_limit_; }
4975  // Sets an address beyond which the VM's stack may not grow.
4976  void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
4977  size_t code_range_size() const { return code_range_size_; }
4978  void set_code_range_size(size_t limit_in_mb) {
4979    code_range_size_ = limit_in_mb;
4980  }
4981
4982 private:
4983  int max_semi_space_size_;
4984  int max_old_space_size_;
4985  int max_executable_size_;
4986  uint32_t* stack_limit_;
4987  size_t code_range_size_;
4988};
4989
4990
4991// --- Exceptions ---
4992
4993
4994typedef void (*FatalErrorCallback)(const char* location, const char* message);
4995
4996
4997typedef void (*MessageCallback)(Local<Message> message, Local<Value> error);
4998
4999// --- Tracing ---
5000
5001typedef void (*LogEventCallback)(const char* name, int event);
5002
5003/**
5004 * Create new error objects by calling the corresponding error object
5005 * constructor with the message.
5006 */
5007class V8_EXPORT Exception {
5008 public:
5009  static Local<Value> RangeError(Local<String> message);
5010  static Local<Value> ReferenceError(Local<String> message);
5011  static Local<Value> SyntaxError(Local<String> message);
5012  static Local<Value> TypeError(Local<String> message);
5013  static Local<Value> Error(Local<String> message);
5014
5015  /**
5016   * Creates an error message for the given exception.
5017   * Will try to reconstruct the original stack trace from the exception value,
5018   * or capture the current stack trace if not available.
5019   */
5020  static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception);
5021  V8_DEPRECATED("Use version with an Isolate*",
5022                static Local<Message> CreateMessage(Local<Value> exception));
5023
5024  /**
5025   * Returns the original stack trace that was captured at the creation time
5026   * of a given exception, or an empty handle if not available.
5027   */
5028  static Local<StackTrace> GetStackTrace(Local<Value> exception);
5029};
5030
5031
5032// --- Counters Callbacks ---
5033
5034typedef int* (*CounterLookupCallback)(const char* name);
5035
5036typedef void* (*CreateHistogramCallback)(const char* name,
5037                                         int min,
5038                                         int max,
5039                                         size_t buckets);
5040
5041typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
5042
5043// --- Memory Allocation Callback ---
5044enum ObjectSpace {
5045  kObjectSpaceNewSpace = 1 << 0,
5046  kObjectSpaceOldSpace = 1 << 1,
5047  kObjectSpaceCodeSpace = 1 << 2,
5048  kObjectSpaceMapSpace = 1 << 3,
5049  kObjectSpaceLoSpace = 1 << 4,
5050  kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldSpace |
5051                    kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
5052                    kObjectSpaceLoSpace
5053};
5054
5055  enum AllocationAction {
5056    kAllocationActionAllocate = 1 << 0,
5057    kAllocationActionFree = 1 << 1,
5058    kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
5059  };
5060
5061// --- Enter/Leave Script Callback ---
5062typedef void (*BeforeCallEnteredCallback)(Isolate*);
5063typedef void (*CallCompletedCallback)(Isolate*);
5064typedef void (*DeprecatedCallCompletedCallback)();
5065
5066// --- Promise Reject Callback ---
5067enum PromiseRejectEvent {
5068  kPromiseRejectWithNoHandler = 0,
5069  kPromiseHandlerAddedAfterReject = 1
5070};
5071
5072class PromiseRejectMessage {
5073 public:
5074  PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event,
5075                       Local<Value> value, Local<StackTrace> stack_trace)
5076      : promise_(promise),
5077        event_(event),
5078        value_(value),
5079        stack_trace_(stack_trace) {}
5080
5081  V8_INLINE Local<Promise> GetPromise() const { return promise_; }
5082  V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
5083  V8_INLINE Local<Value> GetValue() const { return value_; }
5084
5085  V8_DEPRECATED("Use v8::Exception::CreateMessage(GetValue())->GetStackTrace()",
5086                V8_INLINE Local<StackTrace> GetStackTrace() const) {
5087    return stack_trace_;
5088  }
5089
5090 private:
5091  Local<Promise> promise_;
5092  PromiseRejectEvent event_;
5093  Local<Value> value_;
5094  Local<StackTrace> stack_trace_;
5095};
5096
5097typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
5098
5099// --- Microtasks Callbacks ---
5100typedef void (*MicrotasksCompletedCallback)(Isolate*);
5101typedef void (*MicrotaskCallback)(void* data);
5102
5103
5104/**
5105 * Policy for running microtasks:
5106 *   - explicit: microtasks are invoked with Isolate::RunMicrotasks() method;
5107 *   - scoped: microtasks invocation is controlled by MicrotasksScope objects;
5108 *   - auto: microtasks are invoked when the script call depth decrements
5109 *           to zero.
5110 */
5111enum class MicrotasksPolicy { kExplicit, kScoped, kAuto };
5112
5113
5114/**
5115 * This scope is used to control microtasks when kScopeMicrotasksInvocation
5116 * is used on Isolate. In this mode every non-primitive call to V8 should be
5117 * done inside some MicrotasksScope.
5118 * Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks
5119 * exits.
5120 * kDoNotRunMicrotasks should be used to annotate calls not intended to trigger
5121 * microtasks.
5122 */
5123class V8_EXPORT MicrotasksScope {
5124 public:
5125  enum Type { kRunMicrotasks, kDoNotRunMicrotasks };
5126
5127  MicrotasksScope(Isolate* isolate, Type type);
5128  ~MicrotasksScope();
5129
5130  /**
5131   * Runs microtasks if no kRunMicrotasks scope is currently active.
5132   */
5133  static void PerformCheckpoint(Isolate* isolate);
5134
5135  /**
5136   * Returns current depth of nested kRunMicrotasks scopes.
5137   */
5138  static int GetCurrentDepth(Isolate* isolate);
5139
5140  /**
5141   * Returns true while microtasks are being executed.
5142   */
5143  static bool IsRunningMicrotasks(Isolate* isolate);
5144
5145 private:
5146  internal::Isolate* const isolate_;
5147  bool run_;
5148
5149  // Prevent copying.
5150  MicrotasksScope(const MicrotasksScope&);
5151  MicrotasksScope& operator=(const MicrotasksScope&);
5152};
5153
5154
5155// --- Failed Access Check Callback ---
5156typedef void (*FailedAccessCheckCallback)(Local<Object> target,
5157                                          AccessType type,
5158                                          Local<Value> data);
5159
5160// --- AllowCodeGenerationFromStrings callbacks ---
5161
5162/**
5163 * Callback to check if code generation from strings is allowed. See
5164 * Context::AllowCodeGenerationFromStrings.
5165 */
5166typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
5167
5168// --- Garbage Collection Callbacks ---
5169
5170/**
5171 * Applications can register callback functions which will be called before and
5172 * after certain garbage collection operations.  Allocations are not allowed in
5173 * the callback functions, you therefore cannot manipulate objects (set or
5174 * delete properties for example) since it is possible such operations will
5175 * result in the allocation of objects.
5176 */
5177enum GCType {
5178  kGCTypeScavenge = 1 << 0,
5179  kGCTypeMarkSweepCompact = 1 << 1,
5180  kGCTypeIncrementalMarking = 1 << 2,
5181  kGCTypeProcessWeakCallbacks = 1 << 3,
5182  kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact |
5183               kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks
5184};
5185
5186/**
5187 * GCCallbackFlags is used to notify additional information about the GC
5188 * callback.
5189 *   - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for
5190 *     constructing retained object infos.
5191 *   - kGCCallbackFlagForced: The GC callback is for a forced GC for testing.
5192 *   - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback
5193 *     is called synchronously without getting posted to an idle task.
5194 *   - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called
5195 *     in a phase where V8 is trying to collect all available garbage
5196 *     (e.g., handling a low memory notification).
5197 */
5198enum GCCallbackFlags {
5199  kNoGCCallbackFlags = 0,
5200  kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
5201  kGCCallbackFlagForced = 1 << 2,
5202  kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3,
5203  kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4,
5204};
5205
5206typedef void (*GCCallback)(GCType type, GCCallbackFlags flags);
5207
5208typedef void (*InterruptCallback)(Isolate* isolate, void* data);
5209
5210
5211/**
5212 * Collection of V8 heap information.
5213 *
5214 * Instances of this class can be passed to v8::V8::HeapStatistics to
5215 * get heap statistics from V8.
5216 */
5217class V8_EXPORT HeapStatistics {
5218 public:
5219  HeapStatistics();
5220  size_t total_heap_size() { return total_heap_size_; }
5221  size_t total_heap_size_executable() { return total_heap_size_executable_; }
5222  size_t total_physical_size() { return total_physical_size_; }
5223  size_t total_available_size() { return total_available_size_; }
5224  size_t used_heap_size() { return used_heap_size_; }
5225  size_t heap_size_limit() { return heap_size_limit_; }
5226  size_t malloced_memory() { return malloced_memory_; }
5227  size_t does_zap_garbage() { return does_zap_garbage_; }
5228
5229 private:
5230  size_t total_heap_size_;
5231  size_t total_heap_size_executable_;
5232  size_t total_physical_size_;
5233  size_t total_available_size_;
5234  size_t used_heap_size_;
5235  size_t heap_size_limit_;
5236  size_t malloced_memory_;
5237  bool does_zap_garbage_;
5238
5239  friend class V8;
5240  friend class Isolate;
5241};
5242
5243
5244class V8_EXPORT HeapSpaceStatistics {
5245 public:
5246  HeapSpaceStatistics();
5247  const char* space_name() { return space_name_; }
5248  size_t space_size() { return space_size_; }
5249  size_t space_used_size() { return space_used_size_; }
5250  size_t space_available_size() { return space_available_size_; }
5251  size_t physical_space_size() { return physical_space_size_; }
5252
5253 private:
5254  const char* space_name_;
5255  size_t space_size_;
5256  size_t space_used_size_;
5257  size_t space_available_size_;
5258  size_t physical_space_size_;
5259
5260  friend class Isolate;
5261};
5262
5263
5264class V8_EXPORT HeapObjectStatistics {
5265 public:
5266  HeapObjectStatistics();
5267  const char* object_type() { return object_type_; }
5268  const char* object_sub_type() { return object_sub_type_; }
5269  size_t object_count() { return object_count_; }
5270  size_t object_size() { return object_size_; }
5271
5272 private:
5273  const char* object_type_;
5274  const char* object_sub_type_;
5275  size_t object_count_;
5276  size_t object_size_;
5277
5278  friend class Isolate;
5279};
5280
5281class V8_EXPORT HeapCodeStatistics {
5282 public:
5283  HeapCodeStatistics();
5284  size_t code_and_metadata_size() { return code_and_metadata_size_; }
5285  size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; }
5286
5287 private:
5288  size_t code_and_metadata_size_;
5289  size_t bytecode_and_metadata_size_;
5290
5291  friend class Isolate;
5292};
5293
5294class RetainedObjectInfo;
5295
5296
5297/**
5298 * FunctionEntryHook is the type of the profile entry hook called at entry to
5299 * any generated function when function-level profiling is enabled.
5300 *
5301 * \param function the address of the function that's being entered.
5302 * \param return_addr_location points to a location on stack where the machine
5303 *    return address resides. This can be used to identify the caller of
5304 *    \p function, and/or modified to divert execution when \p function exits.
5305 *
5306 * \note the entry hook must not cause garbage collection.
5307 */
5308typedef void (*FunctionEntryHook)(uintptr_t function,
5309                                  uintptr_t return_addr_location);
5310
5311/**
5312 * A JIT code event is issued each time code is added, moved or removed.
5313 *
5314 * \note removal events are not currently issued.
5315 */
5316struct JitCodeEvent {
5317  enum EventType {
5318    CODE_ADDED,
5319    CODE_MOVED,
5320    CODE_REMOVED,
5321    CODE_ADD_LINE_POS_INFO,
5322    CODE_START_LINE_INFO_RECORDING,
5323    CODE_END_LINE_INFO_RECORDING
5324  };
5325  // Definition of the code position type. The "POSITION" type means the place
5326  // in the source code which are of interest when making stack traces to
5327  // pin-point the source location of a stack frame as close as possible.
5328  // The "STATEMENT_POSITION" means the place at the beginning of each
5329  // statement, and is used to indicate possible break locations.
5330  enum PositionType { POSITION, STATEMENT_POSITION };
5331
5332  // Type of event.
5333  EventType type;
5334  // Start of the instructions.
5335  void* code_start;
5336  // Size of the instructions.
5337  size_t code_len;
5338  // Script info for CODE_ADDED event.
5339  Local<UnboundScript> script;
5340  // User-defined data for *_LINE_INFO_* event. It's used to hold the source
5341  // code line information which is returned from the
5342  // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
5343  // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
5344  void* user_data;
5345
5346  struct name_t {
5347    // Name of the object associated with the code, note that the string is not
5348    // zero-terminated.
5349    const char* str;
5350    // Number of chars in str.
5351    size_t len;
5352  };
5353
5354  struct line_info_t {
5355    // PC offset
5356    size_t offset;
5357    // Code postion
5358    size_t pos;
5359    // The position type.
5360    PositionType position_type;
5361  };
5362
5363  union {
5364    // Only valid for CODE_ADDED.
5365    struct name_t name;
5366
5367    // Only valid for CODE_ADD_LINE_POS_INFO
5368    struct line_info_t line_info;
5369
5370    // New location of instructions. Only valid for CODE_MOVED.
5371    void* new_code_start;
5372  };
5373};
5374
5375/**
5376 * Option flags passed to the SetRAILMode function.
5377 * See documentation https://developers.google.com/web/tools/chrome-devtools/
5378 * profile/evaluate-performance/rail
5379 */
5380enum RAILMode {
5381  // Default performance mode: V8 will optimize for both latency and
5382  // throughput in this mode.
5383  PERFORMANCE_DEFAULT,
5384  // Response performance mode: In this mode very low virtual machine latency
5385  // is provided. V8 will try to avoid JavaScript execution interruptions.
5386  // Throughput may be throttled.
5387  PERFORMANCE_RESPONSE,
5388  // Animation performance mode: In this mode low virtual machine latency is
5389  // provided. V8 will try to avoid as many JavaScript execution interruptions
5390  // as possible. Throughput may be throttled
5391  PERFORMANCE_ANIMATION,
5392  // Idle performance mode: The embedder is idle. V8 can complete deferred work
5393  // in this mode.
5394  PERFORMANCE_IDLE,
5395  // Load performance mode: In this mode high throughput is provided. V8 may
5396  // turn off latency optimizations.
5397  PERFORMANCE_LOAD
5398};
5399
5400/**
5401 * Option flags passed to the SetJitCodeEventHandler function.
5402 */
5403enum JitCodeEventOptions {
5404  kJitCodeEventDefault = 0,
5405  // Generate callbacks for already existent code.
5406  kJitCodeEventEnumExisting = 1
5407};
5408
5409
5410/**
5411 * Callback function passed to SetJitCodeEventHandler.
5412 *
5413 * \param event code add, move or removal event.
5414 */
5415typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
5416
5417
5418/**
5419 * Interface for iterating through all external resources in the heap.
5420 */
5421class V8_EXPORT ExternalResourceVisitor {  // NOLINT
5422 public:
5423  virtual ~ExternalResourceVisitor() {}
5424  virtual void VisitExternalString(Local<String> string) {}
5425};
5426
5427
5428/**
5429 * Interface for iterating through all the persistent handles in the heap.
5430 */
5431class V8_EXPORT PersistentHandleVisitor {  // NOLINT
5432 public:
5433  virtual ~PersistentHandleVisitor() {}
5434  virtual void VisitPersistentHandle(Persistent<Value>* value,
5435                                     uint16_t class_id) {}
5436};
5437
5438/**
5439 * Memory pressure level for the MemoryPressureNotification.
5440 * kNone hints V8 that there is no memory pressure.
5441 * kModerate hints V8 to speed up incremental garbage collection at the cost of
5442 * of higher latency due to garbage collection pauses.
5443 * kCritical hints V8 to free memory as soon as possible. Garbage collection
5444 * pauses at this level will be large.
5445 */
5446enum class MemoryPressureLevel { kNone, kModerate, kCritical };
5447
5448/**
5449 * Interface for tracing through the embedder heap. During the v8 garbage
5450 * collection, v8 collects hidden fields of all potential wrappers, and at the
5451 * end of its marking phase iterates the collection and asks the embedder to
5452 * trace through its heap and call PersistentBase::RegisterExternalReference on
5453 * each js object reachable from any of the given wrappers.
5454 *
5455 * Before the first call to the TraceWrappersFrom function TracePrologue will be
5456 * called. When the garbage collection cycle is finished, TraceEpilogue will be
5457 * called.
5458 */
5459class V8_EXPORT EmbedderHeapTracer {
5460 public:
5461  enum ForceCompletionAction { FORCE_COMPLETION, DO_NOT_FORCE_COMPLETION };
5462  struct AdvanceTracingActions {
5463    explicit AdvanceTracingActions(ForceCompletionAction force_completion_)
5464        : force_completion(force_completion_) {}
5465
5466    ForceCompletionAction force_completion;
5467  };
5468  /**
5469   * V8 will call this method with internal fields of found wrappers.
5470   * Embedder is expected to store them in it's marking deque and trace
5471   * reachable wrappers from them when asked by AdvanceTracing method.
5472   */
5473  virtual void RegisterV8References(
5474      const std::vector<std::pair<void*, void*> >& internal_fields) = 0;
5475  /**
5476   * V8 will call this method at the beginning of the gc cycle.
5477   */
5478  virtual void TracePrologue() = 0;
5479  /**
5480   * Embedder is expected to trace its heap starting from wrappers reported by
5481   * RegisterV8References method, and call
5482   * PersistentBase::RegisterExternalReference() on all reachable wrappers.
5483   * Embedder is expected to stop tracing by the given deadline.
5484   *
5485   * Returns true if there is still work to do.
5486   */
5487  virtual bool AdvanceTracing(double deadline_in_ms,
5488                              AdvanceTracingActions actions) = 0;
5489  /**
5490   * V8 will call this method at the end of the gc cycle. Allocation is *not*
5491   * allowed in the TraceEpilogue.
5492   */
5493  virtual void TraceEpilogue() = 0;
5494
5495  /**
5496   * Let embedder know v8 entered final marking pause (no more incremental steps
5497   * will follow).
5498   */
5499  virtual void EnterFinalPause() {}
5500
5501  /**
5502   * Throw away all intermediate data and reset to the initial state.
5503   */
5504  virtual void AbortTracing() {}
5505
5506 protected:
5507  virtual ~EmbedderHeapTracer() = default;
5508};
5509
5510/**
5511 * Isolate represents an isolated instance of the V8 engine.  V8 isolates have
5512 * completely separate states.  Objects from one isolate must not be used in
5513 * other isolates.  The embedder can create multiple isolates and use them in
5514 * parallel in multiple threads.  An isolate can be entered by at most one
5515 * thread at any given time.  The Locker/Unlocker API must be used to
5516 * synchronize.
5517 */
5518class V8_EXPORT Isolate {
5519 public:
5520  /**
5521   * Initial configuration parameters for a new Isolate.
5522   */
5523  struct CreateParams {
5524    CreateParams()
5525        : entry_hook(nullptr),
5526          code_event_handler(nullptr),
5527          snapshot_blob(nullptr),
5528          counter_lookup_callback(nullptr),
5529          create_histogram_callback(nullptr),
5530          add_histogram_sample_callback(nullptr),
5531          array_buffer_allocator(nullptr),
5532          external_references(nullptr) {}
5533
5534    /**
5535     * The optional entry_hook allows the host application to provide the
5536     * address of a function that's invoked on entry to every V8-generated
5537     * function.  Note that entry_hook is invoked at the very start of each
5538     * generated function. Furthermore, if an entry_hook is given, V8 will
5539     * not use a snapshot, including custom snapshots.
5540     */
5541    FunctionEntryHook entry_hook;
5542
5543    /**
5544     * Allows the host application to provide the address of a function that is
5545     * notified each time code is added, moved or removed.
5546     */
5547    JitCodeEventHandler code_event_handler;
5548
5549    /**
5550     * ResourceConstraints to use for the new Isolate.
5551     */
5552    ResourceConstraints constraints;
5553
5554    /**
5555     * Explicitly specify a startup snapshot blob. The embedder owns the blob.
5556     */
5557    StartupData* snapshot_blob;
5558
5559
5560    /**
5561     * Enables the host application to provide a mechanism for recording
5562     * statistics counters.
5563     */
5564    CounterLookupCallback counter_lookup_callback;
5565
5566    /**
5567     * Enables the host application to provide a mechanism for recording
5568     * histograms. The CreateHistogram function returns a
5569     * histogram which will later be passed to the AddHistogramSample
5570     * function.
5571     */
5572    CreateHistogramCallback create_histogram_callback;
5573    AddHistogramSampleCallback add_histogram_sample_callback;
5574
5575    /**
5576     * The ArrayBuffer::Allocator to use for allocating and freeing the backing
5577     * store of ArrayBuffers.
5578     */
5579    ArrayBuffer::Allocator* array_buffer_allocator;
5580
5581    /**
5582     * Specifies an optional nullptr-terminated array of raw addresses in the
5583     * embedder that V8 can match against during serialization and use for
5584     * deserialization. This array and its content must stay valid for the
5585     * entire lifetime of the isolate.
5586     */
5587    intptr_t* external_references;
5588  };
5589
5590
5591  /**
5592   * Stack-allocated class which sets the isolate for all operations
5593   * executed within a local scope.
5594   */
5595  class V8_EXPORT Scope {
5596   public:
5597    explicit Scope(Isolate* isolate) : isolate_(isolate) {
5598      isolate->Enter();
5599    }
5600
5601    ~Scope() { isolate_->Exit(); }
5602
5603   private:
5604    Isolate* const isolate_;
5605
5606    // Prevent copying of Scope objects.
5607    Scope(const Scope&);
5608    Scope& operator=(const Scope&);
5609  };
5610
5611
5612  /**
5613   * Assert that no Javascript code is invoked.
5614   */
5615  class V8_EXPORT DisallowJavascriptExecutionScope {
5616   public:
5617    enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
5618
5619    DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
5620    ~DisallowJavascriptExecutionScope();
5621
5622   private:
5623    bool on_failure_;
5624    void* internal_;
5625
5626    // Prevent copying of Scope objects.
5627    DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&);
5628    DisallowJavascriptExecutionScope& operator=(
5629        const DisallowJavascriptExecutionScope&);
5630  };
5631
5632
5633  /**
5634   * Introduce exception to DisallowJavascriptExecutionScope.
5635   */
5636  class V8_EXPORT AllowJavascriptExecutionScope {
5637   public:
5638    explicit AllowJavascriptExecutionScope(Isolate* isolate);
5639    ~AllowJavascriptExecutionScope();
5640
5641   private:
5642    void* internal_throws_;
5643    void* internal_assert_;
5644
5645    // Prevent copying of Scope objects.
5646    AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&);
5647    AllowJavascriptExecutionScope& operator=(
5648        const AllowJavascriptExecutionScope&);
5649  };
5650
5651  /**
5652   * Do not run microtasks while this scope is active, even if microtasks are
5653   * automatically executed otherwise.
5654   */
5655  class V8_EXPORT SuppressMicrotaskExecutionScope {
5656   public:
5657    explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
5658    ~SuppressMicrotaskExecutionScope();
5659
5660   private:
5661    internal::Isolate* isolate_;
5662
5663    // Prevent copying of Scope objects.
5664    SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&);
5665    SuppressMicrotaskExecutionScope& operator=(
5666        const SuppressMicrotaskExecutionScope&);
5667  };
5668
5669  /**
5670   * Types of garbage collections that can be requested via
5671   * RequestGarbageCollectionForTesting.
5672   */
5673  enum GarbageCollectionType {
5674    kFullGarbageCollection,
5675    kMinorGarbageCollection
5676  };
5677
5678  /**
5679   * Features reported via the SetUseCounterCallback callback. Do not change
5680   * assigned numbers of existing items; add new features to the end of this
5681   * list.
5682   */
5683  enum UseCounterFeature {
5684    kUseAsm = 0,
5685    kBreakIterator = 1,
5686    kLegacyConst = 2,
5687    kMarkDequeOverflow = 3,
5688    kStoreBufferOverflow = 4,
5689    kSlotsBufferOverflow = 5,
5690    kObjectObserve = 6,
5691    kForcedGC = 7,
5692    kSloppyMode = 8,
5693    kStrictMode = 9,
5694    kStrongMode = 10,
5695    kRegExpPrototypeStickyGetter = 11,
5696    kRegExpPrototypeToString = 12,
5697    kRegExpPrototypeUnicodeGetter = 13,
5698    kIntlV8Parse = 14,
5699    kIntlPattern = 15,
5700    kIntlResolved = 16,
5701    kPromiseChain = 17,
5702    kPromiseAccept = 18,
5703    kPromiseDefer = 19,
5704    kHtmlCommentInExternalScript = 20,
5705    kHtmlComment = 21,
5706    kSloppyModeBlockScopedFunctionRedefinition = 22,
5707    kForInInitializer = 23,
5708    kArrayProtectorDirtied = 24,
5709    kArraySpeciesModified = 25,
5710    kArrayPrototypeConstructorModified = 26,
5711    kArrayInstanceProtoModified = 27,
5712    kArrayInstanceConstructorModified = 28,
5713    kLegacyFunctionDeclaration = 29,
5714    kRegExpPrototypeSourceGetter = 30,
5715    kRegExpPrototypeOldFlagGetter = 31,
5716    kDecimalWithLeadingZeroInStrictMode = 32,
5717    kLegacyDateParser = 33,
5718    kDefineGetterOrSetterWouldThrow = 34,
5719
5720    // If you add new values here, you'll also need to update Chromium's:
5721    // UseCounter.h, V8PerIsolateData.cpp, histograms.xml
5722    kUseCounterFeatureCount  // This enum value must be last.
5723  };
5724
5725  typedef void (*UseCounterCallback)(Isolate* isolate,
5726                                     UseCounterFeature feature);
5727
5728
5729  /**
5730   * Creates a new isolate.  Does not change the currently entered
5731   * isolate.
5732   *
5733   * When an isolate is no longer used its resources should be freed
5734   * by calling Dispose().  Using the delete operator is not allowed.
5735   *
5736   * V8::Initialize() must have run prior to this.
5737   */
5738  static Isolate* New(const CreateParams& params);
5739
5740  /**
5741   * Returns the entered isolate for the current thread or NULL in
5742   * case there is no current isolate.
5743   *
5744   * This method must not be invoked before V8::Initialize() was invoked.
5745   */
5746  static Isolate* GetCurrent();
5747
5748  /**
5749   * Custom callback used by embedders to help V8 determine if it should abort
5750   * when it throws and no internal handler is predicted to catch the
5751   * exception. If --abort-on-uncaught-exception is used on the command line,
5752   * then V8 will abort if either:
5753   * - no custom callback is set.
5754   * - the custom callback set returns true.
5755   * Otherwise, the custom callback will not be called and V8 will not abort.
5756   */
5757  typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*);
5758  void SetAbortOnUncaughtExceptionCallback(
5759      AbortOnUncaughtExceptionCallback callback);
5760
5761  /**
5762   * Optional notification that the system is running low on memory.
5763   * V8 uses these notifications to guide heuristics.
5764   * It is allowed to call this function from another thread while
5765   * the isolate is executing long running JavaScript code.
5766   */
5767  void MemoryPressureNotification(MemoryPressureLevel level);
5768
5769  /**
5770   * Methods below this point require holding a lock (using Locker) in
5771   * a multi-threaded environment.
5772   */
5773
5774  /**
5775   * Sets this isolate as the entered one for the current thread.
5776   * Saves the previously entered one (if any), so that it can be
5777   * restored when exiting.  Re-entering an isolate is allowed.
5778   */
5779  void Enter();
5780
5781  /**
5782   * Exits this isolate by restoring the previously entered one in the
5783   * current thread.  The isolate may still stay the same, if it was
5784   * entered more than once.
5785   *
5786   * Requires: this == Isolate::GetCurrent().
5787   */
5788  void Exit();
5789
5790  /**
5791   * Disposes the isolate.  The isolate must not be entered by any
5792   * thread to be disposable.
5793   */
5794  void Dispose();
5795
5796  /**
5797   * Discards all V8 thread-specific data for the Isolate. Should be used
5798   * if a thread is terminating and it has used an Isolate that will outlive
5799   * the thread -- all thread-specific data for an Isolate is discarded when
5800   * an Isolate is disposed so this call is pointless if an Isolate is about
5801   * to be Disposed.
5802   */
5803  void DiscardThreadSpecificMetadata();
5804
5805  /**
5806   * Associate embedder-specific data with the isolate. |slot| has to be
5807   * between 0 and GetNumberOfDataSlots() - 1.
5808   */
5809  V8_INLINE void SetData(uint32_t slot, void* data);
5810
5811  /**
5812   * Retrieve embedder-specific data from the isolate.
5813   * Returns NULL if SetData has never been called for the given |slot|.
5814   */
5815  V8_INLINE void* GetData(uint32_t slot);
5816
5817  /**
5818   * Returns the maximum number of available embedder data slots. Valid slots
5819   * are in the range of 0 - GetNumberOfDataSlots() - 1.
5820   */
5821  V8_INLINE static uint32_t GetNumberOfDataSlots();
5822
5823  /**
5824   * Get statistics about the heap memory usage.
5825   */
5826  void GetHeapStatistics(HeapStatistics* heap_statistics);
5827
5828  /**
5829   * Returns the number of spaces in the heap.
5830   */
5831  size_t NumberOfHeapSpaces();
5832
5833  /**
5834   * Get the memory usage of a space in the heap.
5835   *
5836   * \param space_statistics The HeapSpaceStatistics object to fill in
5837   *   statistics.
5838   * \param index The index of the space to get statistics from, which ranges
5839   *   from 0 to NumberOfHeapSpaces() - 1.
5840   * \returns true on success.
5841   */
5842  bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
5843                              size_t index);
5844
5845  /**
5846   * Returns the number of types of objects tracked in the heap at GC.
5847   */
5848  size_t NumberOfTrackedHeapObjectTypes();
5849
5850  /**
5851   * Get statistics about objects in the heap.
5852   *
5853   * \param object_statistics The HeapObjectStatistics object to fill in
5854   *   statistics of objects of given type, which were live in the previous GC.
5855   * \param type_index The index of the type of object to fill details about,
5856   *   which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1.
5857   * \returns true on success.
5858   */
5859  bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics,
5860                                       size_t type_index);
5861
5862  /**
5863   * Get statistics about code and its metadata in the heap.
5864   *
5865   * \param object_statistics The HeapCodeStatistics object to fill in
5866   *   statistics of code, bytecode and their metadata.
5867   * \returns true on success.
5868   */
5869  bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics);
5870
5871  /**
5872   * Get a call stack sample from the isolate.
5873   * \param state Execution state.
5874   * \param frames Caller allocated buffer to store stack frames.
5875   * \param frames_limit Maximum number of frames to capture. The buffer must
5876   *                     be large enough to hold the number of frames.
5877   * \param sample_info The sample info is filled up by the function
5878   *                    provides number of actual captured stack frames and
5879   *                    the current VM state.
5880   * \note GetStackSample should only be called when the JS thread is paused or
5881   *       interrupted. Otherwise the behavior is undefined.
5882   */
5883  void GetStackSample(const RegisterState& state, void** frames,
5884                      size_t frames_limit, SampleInfo* sample_info);
5885
5886  /**
5887   * Adjusts the amount of registered external memory. Used to give V8 an
5888   * indication of the amount of externally allocated memory that is kept alive
5889   * by JavaScript objects. V8 uses this to decide when to perform global
5890   * garbage collections. Registering externally allocated memory will trigger
5891   * global garbage collections more often than it would otherwise in an attempt
5892   * to garbage collect the JavaScript objects that keep the externally
5893   * allocated memory alive.
5894   *
5895   * \param change_in_bytes the change in externally allocated memory that is
5896   *   kept alive by JavaScript objects.
5897   * \returns the adjusted value.
5898   */
5899  V8_INLINE int64_t
5900      AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
5901
5902  /**
5903   * Returns the number of phantom handles without callbacks that were reset
5904   * by the garbage collector since the last call to this function.
5905   */
5906  size_t NumberOfPhantomHandleResetsSinceLastCall();
5907
5908  /**
5909   * Returns heap profiler for this isolate. Will return NULL until the isolate
5910   * is initialized.
5911   */
5912  HeapProfiler* GetHeapProfiler();
5913
5914  /**
5915   * Returns CPU profiler for this isolate. Will return NULL unless the isolate
5916   * is initialized. It is the embedder's responsibility to stop all CPU
5917   * profiling activities if it has started any.
5918   */
5919  CpuProfiler* GetCpuProfiler();
5920
5921  /** Returns true if this isolate has a current context. */
5922  bool InContext();
5923
5924  /**
5925   * Returns the context of the currently running JavaScript, or the context
5926   * on the top of the stack if no JavaScript is running.
5927   */
5928  Local<Context> GetCurrentContext();
5929
5930  /**
5931   * Returns the context of the calling JavaScript code.  That is the
5932   * context of the top-most JavaScript frame.  If there are no
5933   * JavaScript frames an empty handle is returned.
5934   */
5935  V8_DEPRECATE_SOON(
5936      "Calling context concept is not compatible with tail calls, and will be "
5937      "removed.",
5938      Local<Context> GetCallingContext());
5939
5940  /** Returns the last context entered through V8's C++ API. */
5941  Local<Context> GetEnteredContext();
5942
5943  /**
5944   * Schedules an exception to be thrown when returning to JavaScript.  When an
5945   * exception has been scheduled it is illegal to invoke any JavaScript
5946   * operation; the caller must return immediately and only after the exception
5947   * has been handled does it become legal to invoke JavaScript operations.
5948   */
5949  Local<Value> ThrowException(Local<Value> exception);
5950
5951  /**
5952   * Allows the host application to group objects together. If one
5953   * object in the group is alive, all objects in the group are alive.
5954   * After each garbage collection, object groups are removed. It is
5955   * intended to be used in the before-garbage-collection callback
5956   * function, for instance to simulate DOM tree connections among JS
5957   * wrapper objects. Object groups for all dependent handles need to
5958   * be provided for kGCTypeMarkSweepCompact collections, for all other
5959   * garbage collection types it is sufficient to provide object groups
5960   * for partially dependent handles only.
5961   */
5962  template<typename T> void SetObjectGroupId(const Persistent<T>& object,
5963                                             UniqueId id);
5964
5965  /**
5966   * Allows the host application to declare implicit references from an object
5967   * group to an object. If the objects of the object group are alive, the child
5968   * object is alive too. After each garbage collection, all implicit references
5969   * are removed. It is intended to be used in the before-garbage-collection
5970   * callback function.
5971   */
5972  template<typename T> void SetReferenceFromGroup(UniqueId id,
5973                                                  const Persistent<T>& child);
5974
5975  /**
5976   * Allows the host application to declare implicit references from an object
5977   * to another object. If the parent object is alive, the child object is alive
5978   * too. After each garbage collection, all implicit references are removed. It
5979   * is intended to be used in the before-garbage-collection callback function.
5980   */
5981  template<typename T, typename S>
5982  void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
5983
5984  typedef void (*GCCallback)(Isolate* isolate, GCType type,
5985                             GCCallbackFlags flags);
5986
5987  /**
5988   * Enables the host application to receive a notification before a
5989   * garbage collection. Allocations are allowed in the callback function,
5990   * but the callback is not re-entrant: if the allocation inside it will
5991   * trigger the garbage collection, the callback won't be called again.
5992   * It is possible to specify the GCType filter for your callback. But it is
5993   * not possible to register the same callback function two times with
5994   * different GCType filters.
5995   */
5996  void AddGCPrologueCallback(GCCallback callback,
5997                             GCType gc_type_filter = kGCTypeAll);
5998
5999  /**
6000   * This function removes callback which was installed by
6001   * AddGCPrologueCallback function.
6002   */
6003  void RemoveGCPrologueCallback(GCCallback callback);
6004
6005  /**
6006   * Sets the embedder heap tracer for the isolate.
6007   */
6008  void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
6009
6010  /**
6011   * Enables the host application to receive a notification after a
6012   * garbage collection. Allocations are allowed in the callback function,
6013   * but the callback is not re-entrant: if the allocation inside it will
6014   * trigger the garbage collection, the callback won't be called again.
6015   * It is possible to specify the GCType filter for your callback. But it is
6016   * not possible to register the same callback function two times with
6017   * different GCType filters.
6018   */
6019  void AddGCEpilogueCallback(GCCallback callback,
6020                             GCType gc_type_filter = kGCTypeAll);
6021
6022  /**
6023   * This function removes callback which was installed by
6024   * AddGCEpilogueCallback function.
6025   */
6026  void RemoveGCEpilogueCallback(GCCallback callback);
6027
6028  /**
6029   * Forcefully terminate the current thread of JavaScript execution
6030   * in the given isolate.
6031   *
6032   * This method can be used by any thread even if that thread has not
6033   * acquired the V8 lock with a Locker object.
6034   */
6035  void TerminateExecution();
6036
6037  /**
6038   * Is V8 terminating JavaScript execution.
6039   *
6040   * Returns true if JavaScript execution is currently terminating
6041   * because of a call to TerminateExecution.  In that case there are
6042   * still JavaScript frames on the stack and the termination
6043   * exception is still active.
6044   */
6045  bool IsExecutionTerminating();
6046
6047  /**
6048   * Resume execution capability in the given isolate, whose execution
6049   * was previously forcefully terminated using TerminateExecution().
6050   *
6051   * When execution is forcefully terminated using TerminateExecution(),
6052   * the isolate can not resume execution until all JavaScript frames
6053   * have propagated the uncatchable exception which is generated.  This
6054   * method allows the program embedding the engine to handle the
6055   * termination event and resume execution capability, even if
6056   * JavaScript frames remain on the stack.
6057   *
6058   * This method can be used by any thread even if that thread has not
6059   * acquired the V8 lock with a Locker object.
6060   */
6061  void CancelTerminateExecution();
6062
6063  /**
6064   * Request V8 to interrupt long running JavaScript code and invoke
6065   * the given |callback| passing the given |data| to it. After |callback|
6066   * returns control will be returned to the JavaScript code.
6067   * There may be a number of interrupt requests in flight.
6068   * Can be called from another thread without acquiring a |Locker|.
6069   * Registered |callback| must not reenter interrupted Isolate.
6070   */
6071  void RequestInterrupt(InterruptCallback callback, void* data);
6072
6073  /**
6074   * Request garbage collection in this Isolate. It is only valid to call this
6075   * function if --expose_gc was specified.
6076   *
6077   * This should only be used for testing purposes and not to enforce a garbage
6078   * collection schedule. It has strong negative impact on the garbage
6079   * collection performance. Use IdleNotificationDeadline() or
6080   * LowMemoryNotification() instead to influence the garbage collection
6081   * schedule.
6082   */
6083  void RequestGarbageCollectionForTesting(GarbageCollectionType type);
6084
6085  /**
6086   * Set the callback to invoke for logging event.
6087   */
6088  void SetEventLogger(LogEventCallback that);
6089
6090  /**
6091   * Adds a callback to notify the host application right before a script
6092   * is about to run. If a script re-enters the runtime during executing, the
6093   * BeforeCallEnteredCallback is invoked for each re-entrance.
6094   * Executing scripts inside the callback will re-trigger the callback.
6095   */
6096  void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6097
6098  /**
6099   * Removes callback that was installed by AddBeforeCallEnteredCallback.
6100   */
6101  void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6102
6103  /**
6104   * Adds a callback to notify the host application when a script finished
6105   * running.  If a script re-enters the runtime during executing, the
6106   * CallCompletedCallback is only invoked when the outer-most script
6107   * execution ends.  Executing scripts inside the callback do not trigger
6108   * further callbacks.
6109   */
6110  void AddCallCompletedCallback(CallCompletedCallback callback);
6111  V8_DEPRECATE_SOON(
6112      "Use callback with parameter",
6113      void AddCallCompletedCallback(DeprecatedCallCompletedCallback callback));
6114
6115  /**
6116   * Removes callback that was installed by AddCallCompletedCallback.
6117   */
6118  void RemoveCallCompletedCallback(CallCompletedCallback callback);
6119  V8_DEPRECATE_SOON(
6120      "Use callback with parameter",
6121      void RemoveCallCompletedCallback(
6122          DeprecatedCallCompletedCallback callback));
6123
6124  /**
6125   * Set callback to notify about promise reject with no handler, or
6126   * revocation of such a previous notification once the handler is added.
6127   */
6128  void SetPromiseRejectCallback(PromiseRejectCallback callback);
6129
6130  /**
6131   * Experimental: Runs the Microtask Work Queue until empty
6132   * Any exceptions thrown by microtask callbacks are swallowed.
6133   */
6134  void RunMicrotasks();
6135
6136  /**
6137   * Experimental: Enqueues the callback to the Microtask Work Queue
6138   */
6139  void EnqueueMicrotask(Local<Function> microtask);
6140
6141  /**
6142   * Experimental: Enqueues the callback to the Microtask Work Queue
6143   */
6144  void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
6145
6146  /**
6147   * Experimental: Controls how Microtasks are invoked. See MicrotasksPolicy
6148   * for details.
6149   */
6150  void SetMicrotasksPolicy(MicrotasksPolicy policy);
6151  V8_DEPRECATE_SOON("Use SetMicrotasksPolicy",
6152                    void SetAutorunMicrotasks(bool autorun));
6153
6154  /**
6155   * Experimental: Returns the policy controlling how Microtasks are invoked.
6156   */
6157  MicrotasksPolicy GetMicrotasksPolicy() const;
6158  V8_DEPRECATE_SOON("Use GetMicrotasksPolicy",
6159                    bool WillAutorunMicrotasks() const);
6160
6161  /**
6162   * Experimental: adds a callback to notify the host application after
6163   * microtasks were run. The callback is triggered by explicit RunMicrotasks
6164   * call or automatic microtasks execution (see SetAutorunMicrotasks).
6165   *
6166   * Callback will trigger even if microtasks were attempted to run,
6167   * but the microtasks queue was empty and no single microtask was actually
6168   * executed.
6169   *
6170   * Executing scriptsinside the callback will not re-trigger microtasks and
6171   * the callback.
6172   */
6173  void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
6174
6175  /**
6176   * Removes callback that was installed by AddMicrotasksCompletedCallback.
6177   */
6178  void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
6179
6180  /**
6181   * Sets a callback for counting the number of times a feature of V8 is used.
6182   */
6183  void SetUseCounterCallback(UseCounterCallback callback);
6184
6185  /**
6186   * Enables the host application to provide a mechanism for recording
6187   * statistics counters.
6188   */
6189  void SetCounterFunction(CounterLookupCallback);
6190
6191  /**
6192   * Enables the host application to provide a mechanism for recording
6193   * histograms. The CreateHistogram function returns a
6194   * histogram which will later be passed to the AddHistogramSample
6195   * function.
6196   */
6197  void SetCreateHistogramFunction(CreateHistogramCallback);
6198  void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
6199
6200  /**
6201   * Optional notification that the embedder is idle.
6202   * V8 uses the notification to perform garbage collection.
6203   * This call can be used repeatedly if the embedder remains idle.
6204   * Returns true if the embedder should stop calling IdleNotificationDeadline
6205   * until real work has been done.  This indicates that V8 has done
6206   * as much cleanup as it will be able to do.
6207   *
6208   * The deadline_in_seconds argument specifies the deadline V8 has to finish
6209   * garbage collection work. deadline_in_seconds is compared with
6210   * MonotonicallyIncreasingTime() and should be based on the same timebase as
6211   * that function. There is no guarantee that the actual work will be done
6212   * within the time limit.
6213   */
6214  bool IdleNotificationDeadline(double deadline_in_seconds);
6215
6216  V8_DEPRECATED("use IdleNotificationDeadline()",
6217                bool IdleNotification(int idle_time_in_ms));
6218
6219  /**
6220   * Optional notification that the system is running low on memory.
6221   * V8 uses these notifications to attempt to free memory.
6222   */
6223  void LowMemoryNotification();
6224
6225  /**
6226   * Optional notification that a context has been disposed. V8 uses
6227   * these notifications to guide the GC heuristic. Returns the number
6228   * of context disposals - including this one - since the last time
6229   * V8 had a chance to clean up.
6230   *
6231   * The optional parameter |dependant_context| specifies whether the disposed
6232   * context was depending on state from other contexts or not.
6233   */
6234  int ContextDisposedNotification(bool dependant_context = true);
6235
6236  /**
6237   * Optional notification that the isolate switched to the foreground.
6238   * V8 uses these notifications to guide heuristics.
6239   */
6240  void IsolateInForegroundNotification();
6241
6242  /**
6243   * Optional notification that the isolate switched to the background.
6244   * V8 uses these notifications to guide heuristics.
6245   */
6246  void IsolateInBackgroundNotification();
6247
6248  /**
6249   * Optional notification to tell V8 the current performance requirements
6250   * of the embedder based on RAIL.
6251   * V8 uses these notifications to guide heuristics.
6252   * This is an unfinished experimental feature. Semantics and implementation
6253   * may change frequently.
6254   */
6255  void SetRAILMode(RAILMode rail_mode);
6256
6257  /**
6258   * Allows the host application to provide the address of a function that is
6259   * notified each time code is added, moved or removed.
6260   *
6261   * \param options options for the JIT code event handler.
6262   * \param event_handler the JIT code event handler, which will be invoked
6263   *     each time code is added, moved or removed.
6264   * \note \p event_handler won't get notified of existent code.
6265   * \note since code removal notifications are not currently issued, the
6266   *     \p event_handler may get notifications of code that overlaps earlier
6267   *     code notifications. This happens when code areas are reused, and the
6268   *     earlier overlapping code areas should therefore be discarded.
6269   * \note the events passed to \p event_handler and the strings they point to
6270   *     are not guaranteed to live past each call. The \p event_handler must
6271   *     copy strings and other parameters it needs to keep around.
6272   * \note the set of events declared in JitCodeEvent::EventType is expected to
6273   *     grow over time, and the JitCodeEvent structure is expected to accrue
6274   *     new members. The \p event_handler function must ignore event codes
6275   *     it does not recognize to maintain future compatibility.
6276   * \note Use Isolate::CreateParams to get events for code executed during
6277   *     Isolate setup.
6278   */
6279  void SetJitCodeEventHandler(JitCodeEventOptions options,
6280                              JitCodeEventHandler event_handler);
6281
6282  /**
6283   * Modifies the stack limit for this Isolate.
6284   *
6285   * \param stack_limit An address beyond which the Vm's stack may not grow.
6286   *
6287   * \note  If you are using threads then you should hold the V8::Locker lock
6288   *     while setting the stack limit and you must set a non-default stack
6289   *     limit separately for each thread.
6290   */
6291  void SetStackLimit(uintptr_t stack_limit);
6292
6293  /**
6294   * Returns a memory range that can potentially contain jitted code.
6295   *
6296   * On Win64, embedders are advised to install function table callbacks for
6297   * these ranges, as default SEH won't be able to unwind through jitted code.
6298   *
6299   * The first page of the code range is reserved for the embedder and is
6300   * committed, writable, and executable.
6301   *
6302   * Might be empty on other platforms.
6303   *
6304   * https://code.google.com/p/v8/issues/detail?id=3598
6305   */
6306  void GetCodeRange(void** start, size_t* length_in_bytes);
6307
6308  /** Set the callback to invoke in case of fatal errors. */
6309  void SetFatalErrorHandler(FatalErrorCallback that);
6310
6311  /**
6312   * Set the callback to invoke to check if code generation from
6313   * strings should be allowed.
6314   */
6315  void SetAllowCodeGenerationFromStringsCallback(
6316      AllowCodeGenerationFromStringsCallback callback);
6317
6318  /**
6319  * Check if V8 is dead and therefore unusable.  This is the case after
6320  * fatal errors such as out-of-memory situations.
6321  */
6322  bool IsDead();
6323
6324  /**
6325   * Adds a message listener.
6326   *
6327   * The same message listener can be added more than once and in that
6328   * case it will be called more than once for each message.
6329   *
6330   * If data is specified, it will be passed to the callback when it is called.
6331   * Otherwise, the exception object will be passed to the callback instead.
6332   */
6333  bool AddMessageListener(MessageCallback that,
6334                          Local<Value> data = Local<Value>());
6335
6336  /**
6337   * Remove all message listeners from the specified callback function.
6338   */
6339  void RemoveMessageListeners(MessageCallback that);
6340
6341  /** Callback function for reporting failed access checks.*/
6342  void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
6343
6344  /**
6345   * Tells V8 to capture current stack trace when uncaught exception occurs
6346   * and report it to the message listeners. The option is off by default.
6347   */
6348  void SetCaptureStackTraceForUncaughtExceptions(
6349      bool capture, int frame_limit = 10,
6350      StackTrace::StackTraceOptions options = StackTrace::kOverview);
6351
6352  /**
6353   * Iterates through all external resources referenced from current isolate
6354   * heap.  GC is not invoked prior to iterating, therefore there is no
6355   * guarantee that visited objects are still alive.
6356   */
6357  void VisitExternalResources(ExternalResourceVisitor* visitor);
6358
6359  /**
6360   * Iterates through all the persistent handles in the current isolate's heap
6361   * that have class_ids.
6362   */
6363  void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
6364
6365  /**
6366   * Iterates through all the persistent handles in the current isolate's heap
6367   * that have class_ids and are candidates to be marked as partially dependent
6368   * handles. This will visit handles to young objects created since the last
6369   * garbage collection but is free to visit an arbitrary superset of these
6370   * objects.
6371   */
6372  void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor);
6373
6374  /**
6375   * Iterates through all the persistent handles in the current isolate's heap
6376   * that have class_ids and are weak to be marked as inactive if there is no
6377   * pending activity for the handle.
6378   */
6379  void VisitWeakHandles(PersistentHandleVisitor* visitor);
6380
6381  /**
6382   * Check if this isolate is in use.
6383   * True if at least one thread Enter'ed this isolate.
6384   */
6385  bool IsInUse();
6386
6387 private:
6388  template <class K, class V, class Traits>
6389  friend class PersistentValueMapBase;
6390
6391  Isolate();
6392  Isolate(const Isolate&);
6393  ~Isolate();
6394  Isolate& operator=(const Isolate&);
6395  void* operator new(size_t size);
6396  void operator delete(void*, size_t);
6397
6398  void SetObjectGroupId(internal::Object** object, UniqueId id);
6399  void SetReferenceFromGroup(UniqueId id, internal::Object** object);
6400  void SetReference(internal::Object** parent, internal::Object** child);
6401  void ReportExternalAllocationLimitReached();
6402};
6403
6404class V8_EXPORT StartupData {
6405 public:
6406  const char* data;
6407  int raw_size;
6408};
6409
6410
6411/**
6412 * EntropySource is used as a callback function when v8 needs a source
6413 * of entropy.
6414 */
6415typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
6416
6417
6418/**
6419 * ReturnAddressLocationResolver is used as a callback function when v8 is
6420 * resolving the location of a return address on the stack. Profilers that
6421 * change the return address on the stack can use this to resolve the stack
6422 * location to whereever the profiler stashed the original return address.
6423 *
6424 * \param return_addr_location points to a location on stack where a machine
6425 *    return address resides.
6426 * \returns either return_addr_location, or else a pointer to the profiler's
6427 *    copy of the original return address.
6428 *
6429 * \note the resolver function must not cause garbage collection.
6430 */
6431typedef uintptr_t (*ReturnAddressLocationResolver)(
6432    uintptr_t return_addr_location);
6433
6434
6435/**
6436 * Container class for static utility functions.
6437 */
6438class V8_EXPORT V8 {
6439 public:
6440  /** Set the callback to invoke in case of fatal errors. */
6441  V8_INLINE static V8_DEPRECATED(
6442      "Use isolate version",
6443      void SetFatalErrorHandler(FatalErrorCallback that));
6444
6445  /**
6446   * Set the callback to invoke to check if code generation from
6447   * strings should be allowed.
6448   */
6449  V8_INLINE static V8_DEPRECATED(
6450      "Use isolate version", void SetAllowCodeGenerationFromStringsCallback(
6451                                 AllowCodeGenerationFromStringsCallback that));
6452
6453  /**
6454  * Check if V8 is dead and therefore unusable.  This is the case after
6455  * fatal errors such as out-of-memory situations.
6456  */
6457  V8_INLINE static V8_DEPRECATED("Use isolate version", bool IsDead());
6458
6459  /**
6460   * Hand startup data to V8, in case the embedder has chosen to build
6461   * V8 with external startup data.
6462   *
6463   * Note:
6464   * - By default the startup data is linked into the V8 library, in which
6465   *   case this function is not meaningful.
6466   * - If this needs to be called, it needs to be called before V8
6467   *   tries to make use of its built-ins.
6468   * - To avoid unnecessary copies of data, V8 will point directly into the
6469   *   given data blob, so pretty please keep it around until V8 exit.
6470   * - Compression of the startup blob might be useful, but needs to
6471   *   handled entirely on the embedders' side.
6472   * - The call will abort if the data is invalid.
6473   */
6474  static void SetNativesDataBlob(StartupData* startup_blob);
6475  static void SetSnapshotDataBlob(StartupData* startup_blob);
6476
6477  /**
6478   * Bootstrap an isolate and a context from scratch to create a startup
6479   * snapshot. Include the side-effects of running the optional script.
6480   * Returns { NULL, 0 } on failure.
6481   * The caller acquires ownership of the data array in the return value.
6482   */
6483  static StartupData CreateSnapshotDataBlob(const char* embedded_source = NULL);
6484
6485  /**
6486   * Bootstrap an isolate and a context from the cold startup blob, run the
6487   * warm-up script to trigger code compilation. The side effects are then
6488   * discarded. The resulting startup snapshot will include compiled code.
6489   * Returns { NULL, 0 } on failure.
6490   * The caller acquires ownership of the data array in the return value.
6491   * The argument startup blob is untouched.
6492   */
6493  static StartupData WarmUpSnapshotDataBlob(StartupData cold_startup_blob,
6494                                            const char* warmup_source);
6495
6496  /**
6497   * Adds a message listener.
6498   *
6499   * The same message listener can be added more than once and in that
6500   * case it will be called more than once for each message.
6501   *
6502   * If data is specified, it will be passed to the callback when it is called.
6503   * Otherwise, the exception object will be passed to the callback instead.
6504   */
6505  V8_INLINE static V8_DEPRECATED(
6506      "Use isolate version",
6507      bool AddMessageListener(MessageCallback that,
6508                              Local<Value> data = Local<Value>()));
6509
6510  /**
6511   * Remove all message listeners from the specified callback function.
6512   */
6513  V8_INLINE static V8_DEPRECATED(
6514      "Use isolate version", void RemoveMessageListeners(MessageCallback that));
6515
6516  /**
6517   * Tells V8 to capture current stack trace when uncaught exception occurs
6518   * and report it to the message listeners. The option is off by default.
6519   */
6520  V8_INLINE static V8_DEPRECATED(
6521      "Use isolate version",
6522      void SetCaptureStackTraceForUncaughtExceptions(
6523          bool capture, int frame_limit = 10,
6524          StackTrace::StackTraceOptions options = StackTrace::kOverview));
6525
6526  /**
6527   * Sets V8 flags from a string.
6528   */
6529  static void SetFlagsFromString(const char* str, int length);
6530
6531  /**
6532   * Sets V8 flags from the command line.
6533   */
6534  static void SetFlagsFromCommandLine(int* argc,
6535                                      char** argv,
6536                                      bool remove_flags);
6537
6538  /** Get the version string. */
6539  static const char* GetVersion();
6540
6541  /** Callback function for reporting failed access checks.*/
6542  V8_INLINE static V8_DEPRECATED(
6543      "Use isolate version",
6544      void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback));
6545
6546  /**
6547   * Enables the host application to receive a notification before a
6548   * garbage collection.  Allocations are not allowed in the
6549   * callback function, you therefore cannot manipulate objects (set
6550   * or delete properties for example) since it is possible such
6551   * operations will result in the allocation of objects. It is possible
6552   * to specify the GCType filter for your callback. But it is not possible to
6553   * register the same callback function two times with different
6554   * GCType filters.
6555   */
6556  static V8_DEPRECATED(
6557      "Use isolate version",
6558      void AddGCPrologueCallback(GCCallback callback,
6559                                 GCType gc_type_filter = kGCTypeAll));
6560
6561  /**
6562   * This function removes callback which was installed by
6563   * AddGCPrologueCallback function.
6564   */
6565  V8_INLINE static V8_DEPRECATED(
6566      "Use isolate version",
6567      void RemoveGCPrologueCallback(GCCallback callback));
6568
6569  /**
6570   * Enables the host application to receive a notification after a
6571   * garbage collection.  Allocations are not allowed in the
6572   * callback function, you therefore cannot manipulate objects (set
6573   * or delete properties for example) since it is possible such
6574   * operations will result in the allocation of objects. It is possible
6575   * to specify the GCType filter for your callback. But it is not possible to
6576   * register the same callback function two times with different
6577   * GCType filters.
6578   */
6579  static V8_DEPRECATED(
6580      "Use isolate version",
6581      void AddGCEpilogueCallback(GCCallback callback,
6582                                 GCType gc_type_filter = kGCTypeAll));
6583
6584  /**
6585   * This function removes callback which was installed by
6586   * AddGCEpilogueCallback function.
6587   */
6588  V8_INLINE static V8_DEPRECATED(
6589      "Use isolate version",
6590      void RemoveGCEpilogueCallback(GCCallback callback));
6591
6592  /**
6593   * Initializes V8. This function needs to be called before the first Isolate
6594   * is created. It always returns true.
6595   */
6596  static bool Initialize();
6597
6598  /**
6599   * Allows the host application to provide a callback which can be used
6600   * as a source of entropy for random number generators.
6601   */
6602  static void SetEntropySource(EntropySource source);
6603
6604  /**
6605   * Allows the host application to provide a callback that allows v8 to
6606   * cooperate with a profiler that rewrites return addresses on stack.
6607   */
6608  static void SetReturnAddressLocationResolver(
6609      ReturnAddressLocationResolver return_address_resolver);
6610
6611  /**
6612   * Forcefully terminate the current thread of JavaScript execution
6613   * in the given isolate.
6614   *
6615   * This method can be used by any thread even if that thread has not
6616   * acquired the V8 lock with a Locker object.
6617   *
6618   * \param isolate The isolate in which to terminate the current JS execution.
6619   */
6620  V8_INLINE static V8_DEPRECATED("Use isolate version",
6621                                 void TerminateExecution(Isolate* isolate));
6622
6623  /**
6624   * Is V8 terminating JavaScript execution.
6625   *
6626   * Returns true if JavaScript execution is currently terminating
6627   * because of a call to TerminateExecution.  In that case there are
6628   * still JavaScript frames on the stack and the termination
6629   * exception is still active.
6630   *
6631   * \param isolate The isolate in which to check.
6632   */
6633  V8_INLINE static V8_DEPRECATED(
6634      "Use isolate version",
6635      bool IsExecutionTerminating(Isolate* isolate = NULL));
6636
6637  /**
6638   * Resume execution capability in the given isolate, whose execution
6639   * was previously forcefully terminated using TerminateExecution().
6640   *
6641   * When execution is forcefully terminated using TerminateExecution(),
6642   * the isolate can not resume execution until all JavaScript frames
6643   * have propagated the uncatchable exception which is generated.  This
6644   * method allows the program embedding the engine to handle the
6645   * termination event and resume execution capability, even if
6646   * JavaScript frames remain on the stack.
6647   *
6648   * This method can be used by any thread even if that thread has not
6649   * acquired the V8 lock with a Locker object.
6650   *
6651   * \param isolate The isolate in which to resume execution capability.
6652   */
6653  V8_INLINE static V8_DEPRECATED(
6654      "Use isolate version", void CancelTerminateExecution(Isolate* isolate));
6655
6656  /**
6657   * Releases any resources used by v8 and stops any utility threads
6658   * that may be running.  Note that disposing v8 is permanent, it
6659   * cannot be reinitialized.
6660   *
6661   * It should generally not be necessary to dispose v8 before exiting
6662   * a process, this should happen automatically.  It is only necessary
6663   * to use if the process needs the resources taken up by v8.
6664   */
6665  static bool Dispose();
6666
6667  /**
6668   * Iterates through all external resources referenced from current isolate
6669   * heap.  GC is not invoked prior to iterating, therefore there is no
6670   * guarantee that visited objects are still alive.
6671   */
6672  V8_INLINE static V8_DEPRECATED(
6673      "Use isolate version",
6674      void VisitExternalResources(ExternalResourceVisitor* visitor));
6675
6676  /**
6677   * Iterates through all the persistent handles in the current isolate's heap
6678   * that have class_ids.
6679   */
6680  V8_INLINE static V8_DEPRECATED(
6681      "Use isolate version",
6682      void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor));
6683
6684  /**
6685   * Iterates through all the persistent handles in isolate's heap that have
6686   * class_ids.
6687   */
6688  V8_INLINE static V8_DEPRECATED(
6689      "Use isolate version",
6690      void VisitHandlesWithClassIds(Isolate* isolate,
6691                                    PersistentHandleVisitor* visitor));
6692
6693  /**
6694   * Iterates through all the persistent handles in the current isolate's heap
6695   * that have class_ids and are candidates to be marked as partially dependent
6696   * handles. This will visit handles to young objects created since the last
6697   * garbage collection but is free to visit an arbitrary superset of these
6698   * objects.
6699   */
6700  V8_INLINE static V8_DEPRECATED(
6701      "Use isolate version",
6702      void VisitHandlesForPartialDependence(Isolate* isolate,
6703                                            PersistentHandleVisitor* visitor));
6704
6705  /**
6706   * Initialize the ICU library bundled with V8. The embedder should only
6707   * invoke this method when using the bundled ICU. Returns true on success.
6708   *
6709   * If V8 was compiled with the ICU data in an external file, the location
6710   * of the data file has to be provided.
6711   */
6712  V8_DEPRECATE_SOON(
6713      "Use version with default location.",
6714      static bool InitializeICU(const char* icu_data_file = nullptr));
6715
6716  /**
6717   * Initialize the ICU library bundled with V8. The embedder should only
6718   * invoke this method when using the bundled ICU. If V8 was compiled with
6719   * the ICU data in an external file and when the default location of that
6720   * file should be used, a path to the executable must be provided.
6721   * Returns true on success.
6722   *
6723   * The default is a file called icudtl.dat side-by-side with the executable.
6724   *
6725   * Optionally, the location of the data file can be provided to override the
6726   * default.
6727   */
6728  static bool InitializeICUDefaultLocation(const char* exec_path,
6729                                           const char* icu_data_file = nullptr);
6730
6731  /**
6732   * Initialize the external startup data. The embedder only needs to
6733   * invoke this method when external startup data was enabled in a build.
6734   *
6735   * If V8 was compiled with the startup data in an external file, then
6736   * V8 needs to be given those external files during startup. There are
6737   * three ways to do this:
6738   * - InitializeExternalStartupData(const char*)
6739   *   This will look in the given directory for files "natives_blob.bin"
6740   *   and "snapshot_blob.bin" - which is what the default build calls them.
6741   * - InitializeExternalStartupData(const char*, const char*)
6742   *   As above, but will directly use the two given file names.
6743   * - Call SetNativesDataBlob, SetNativesDataBlob.
6744   *   This will read the blobs from the given data structures and will
6745   *   not perform any file IO.
6746   */
6747  static void InitializeExternalStartupData(const char* directory_path);
6748  static void InitializeExternalStartupData(const char* natives_blob,
6749                                            const char* snapshot_blob);
6750  /**
6751   * Sets the v8::Platform to use. This should be invoked before V8 is
6752   * initialized.
6753   */
6754  static void InitializePlatform(Platform* platform);
6755
6756  /**
6757   * Clears all references to the v8::Platform. This should be invoked after
6758   * V8 was disposed.
6759   */
6760  static void ShutdownPlatform();
6761
6762 private:
6763  V8();
6764
6765  static internal::Object** GlobalizeReference(internal::Isolate* isolate,
6766                                               internal::Object** handle);
6767  static internal::Object** CopyPersistent(internal::Object** handle);
6768  static void DisposeGlobal(internal::Object** global_handle);
6769  static void MakeWeak(internal::Object** location, void* data,
6770                       WeakCallbackInfo<void>::Callback weak_callback,
6771                       WeakCallbackType type);
6772  static void MakeWeak(internal::Object** location, void* data,
6773                       // Must be 0 or -1.
6774                       int internal_field_index1,
6775                       // Must be 1 or -1.
6776                       int internal_field_index2,
6777                       WeakCallbackInfo<void>::Callback weak_callback);
6778  static void MakeWeak(internal::Object*** location_addr);
6779  static void* ClearWeak(internal::Object** location);
6780  static void Eternalize(Isolate* isolate,
6781                         Value* handle,
6782                         int* index);
6783  static Local<Value> GetEternal(Isolate* isolate, int index);
6784
6785  static void RegisterExternallyReferencedObject(internal::Object** object,
6786                                                 internal::Isolate* isolate);
6787  template <class K, class V, class T>
6788  friend class PersistentValueMapBase;
6789
6790  static void FromJustIsNothing();
6791  static void ToLocalEmpty();
6792  static void InternalFieldOutOfBounds(int index);
6793  template <class T> friend class Local;
6794  template <class T>
6795  friend class MaybeLocal;
6796  template <class T>
6797  friend class Maybe;
6798  template <class T>
6799  friend class WeakCallbackInfo;
6800  template <class T> friend class Eternal;
6801  template <class T> friend class PersistentBase;
6802  template <class T, class M> friend class Persistent;
6803  friend class Context;
6804};
6805
6806/**
6807 * Helper class to create a snapshot data blob.
6808 */
6809class SnapshotCreator {
6810 public:
6811  enum class FunctionCodeHandling { kClear, kKeep };
6812
6813  /**
6814   * Create and enter an isolate, and set it up for serialization.
6815   * The isolate is either created from scratch or from an existing snapshot.
6816   * The caller keeps ownership of the argument snapshot.
6817   * \param existing_blob existing snapshot from which to create this one.
6818   * \param external_references a null-terminated array of external references
6819   *        that must be equivalent to CreateParams::external_references.
6820   */
6821  SnapshotCreator(intptr_t* external_references = nullptr,
6822                  StartupData* existing_blob = nullptr);
6823
6824  ~SnapshotCreator();
6825
6826  /**
6827   * \returns the isolate prepared by the snapshot creator.
6828   */
6829  Isolate* GetIsolate();
6830
6831  /**
6832   * Add a context to be included in the snapshot blob.
6833   * \returns the index of the context in the snapshot blob.
6834   */
6835  size_t AddContext(Local<Context> context);
6836
6837  /**
6838   * Add a template to be included in the snapshot blob.
6839   * \returns the index of the template in the snapshot blob.
6840   */
6841  size_t AddTemplate(Local<Template> template_obj);
6842
6843  /**
6844   * Created a snapshot data blob.
6845   * This must not be called from within a handle scope.
6846   * \param function_code_handling whether to include compiled function code
6847   *        in the snapshot.
6848   * \returns { nullptr, 0 } on failure, and a startup snapshot on success. The
6849   *        caller acquires ownership of the data array in the return value.
6850   */
6851  StartupData CreateBlob(FunctionCodeHandling function_code_handling);
6852
6853 private:
6854  void* data_;
6855
6856  // Disallow copying and assigning.
6857  SnapshotCreator(const SnapshotCreator&);
6858  void operator=(const SnapshotCreator&);
6859};
6860
6861/**
6862 * A simple Maybe type, representing an object which may or may not have a
6863 * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html.
6864 *
6865 * If an API method returns a Maybe<>, the API method can potentially fail
6866 * either because an exception is thrown, or because an exception is pending,
6867 * e.g. because a previous API call threw an exception that hasn't been caught
6868 * yet, or because a TerminateExecution exception was thrown. In that case, a
6869 * "Nothing" value is returned.
6870 */
6871template <class T>
6872class Maybe {
6873 public:
6874  V8_INLINE bool IsNothing() const { return !has_value; }
6875  V8_INLINE bool IsJust() const { return has_value; }
6876
6877  // Will crash if the Maybe<> is nothing.
6878  V8_INLINE T FromJust() const {
6879    if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing();
6880    return value;
6881  }
6882
6883  V8_INLINE T FromMaybe(const T& default_value) const {
6884    return has_value ? value : default_value;
6885  }
6886
6887  V8_INLINE bool operator==(const Maybe& other) const {
6888    return (IsJust() == other.IsJust()) &&
6889           (!IsJust() || FromJust() == other.FromJust());
6890  }
6891
6892  V8_INLINE bool operator!=(const Maybe& other) const {
6893    return !operator==(other);
6894  }
6895
6896 private:
6897  Maybe() : has_value(false) {}
6898  explicit Maybe(const T& t) : has_value(true), value(t) {}
6899
6900  bool has_value;
6901  T value;
6902
6903  template <class U>
6904  friend Maybe<U> Nothing();
6905  template <class U>
6906  friend Maybe<U> Just(const U& u);
6907};
6908
6909
6910template <class T>
6911inline Maybe<T> Nothing() {
6912  return Maybe<T>();
6913}
6914
6915
6916template <class T>
6917inline Maybe<T> Just(const T& t) {
6918  return Maybe<T>(t);
6919}
6920
6921
6922/**
6923 * An external exception handler.
6924 */
6925class V8_EXPORT TryCatch {
6926 public:
6927  /**
6928   * Creates a new try/catch block and registers it with v8.  Note that
6929   * all TryCatch blocks should be stack allocated because the memory
6930   * location itself is compared against JavaScript try/catch blocks.
6931   */
6932  V8_DEPRECATED("Use isolate version", TryCatch());
6933
6934  /**
6935   * Creates a new try/catch block and registers it with v8.  Note that
6936   * all TryCatch blocks should be stack allocated because the memory
6937   * location itself is compared against JavaScript try/catch blocks.
6938   */
6939  TryCatch(Isolate* isolate);
6940
6941  /**
6942   * Unregisters and deletes this try/catch block.
6943   */
6944  ~TryCatch();
6945
6946  /**
6947   * Returns true if an exception has been caught by this try/catch block.
6948   */
6949  bool HasCaught() const;
6950
6951  /**
6952   * For certain types of exceptions, it makes no sense to continue execution.
6953   *
6954   * If CanContinue returns false, the correct action is to perform any C++
6955   * cleanup needed and then return.  If CanContinue returns false and
6956   * HasTerminated returns true, it is possible to call
6957   * CancelTerminateExecution in order to continue calling into the engine.
6958   */
6959  bool CanContinue() const;
6960
6961  /**
6962   * Returns true if an exception has been caught due to script execution
6963   * being terminated.
6964   *
6965   * There is no JavaScript representation of an execution termination
6966   * exception.  Such exceptions are thrown when the TerminateExecution
6967   * methods are called to terminate a long-running script.
6968   *
6969   * If such an exception has been thrown, HasTerminated will return true,
6970   * indicating that it is possible to call CancelTerminateExecution in order
6971   * to continue calling into the engine.
6972   */
6973  bool HasTerminated() const;
6974
6975  /**
6976   * Throws the exception caught by this TryCatch in a way that avoids
6977   * it being caught again by this same TryCatch.  As with ThrowException
6978   * it is illegal to execute any JavaScript operations after calling
6979   * ReThrow; the caller must return immediately to where the exception
6980   * is caught.
6981   */
6982  Local<Value> ReThrow();
6983
6984  /**
6985   * Returns the exception caught by this try/catch block.  If no exception has
6986   * been caught an empty handle is returned.
6987   *
6988   * The returned handle is valid until this TryCatch block has been destroyed.
6989   */
6990  Local<Value> Exception() const;
6991
6992  /**
6993   * Returns the .stack property of the thrown object.  If no .stack
6994   * property is present an empty handle is returned.
6995   */
6996  V8_DEPRECATE_SOON("Use maybe version.", Local<Value> StackTrace() const);
6997  V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace(
6998      Local<Context> context) const;
6999
7000  /**
7001   * Returns the message associated with this exception.  If there is
7002   * no message associated an empty handle is returned.
7003   *
7004   * The returned handle is valid until this TryCatch block has been
7005   * destroyed.
7006   */
7007  Local<v8::Message> Message() const;
7008
7009  /**
7010   * Clears any exceptions that may have been caught by this try/catch block.
7011   * After this method has been called, HasCaught() will return false. Cancels
7012   * the scheduled exception if it is caught and ReThrow() is not called before.
7013   *
7014   * It is not necessary to clear a try/catch block before using it again; if
7015   * another exception is thrown the previously caught exception will just be
7016   * overwritten.  However, it is often a good idea since it makes it easier
7017   * to determine which operation threw a given exception.
7018   */
7019  void Reset();
7020
7021  /**
7022   * Set verbosity of the external exception handler.
7023   *
7024   * By default, exceptions that are caught by an external exception
7025   * handler are not reported.  Call SetVerbose with true on an
7026   * external exception handler to have exceptions caught by the
7027   * handler reported as if they were not caught.
7028   */
7029  void SetVerbose(bool value);
7030
7031  /**
7032   * Set whether or not this TryCatch should capture a Message object
7033   * which holds source information about where the exception
7034   * occurred.  True by default.
7035   */
7036  void SetCaptureMessage(bool value);
7037
7038  /**
7039   * There are cases when the raw address of C++ TryCatch object cannot be
7040   * used for comparisons with addresses into the JS stack. The cases are:
7041   * 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
7042   * 2) Address sanitizer allocates local C++ object in the heap when
7043   *    UseAfterReturn mode is enabled.
7044   * This method returns address that can be used for comparisons with
7045   * addresses into the JS stack. When neither simulator nor ASAN's
7046   * UseAfterReturn is enabled, then the address returned will be the address
7047   * of the C++ try catch handler itself.
7048   */
7049  static void* JSStackComparableAddress(v8::TryCatch* handler) {
7050    if (handler == NULL) return NULL;
7051    return handler->js_stack_comparable_address_;
7052  }
7053
7054 private:
7055  void ResetInternal();
7056
7057  // Make it hard to create heap-allocated TryCatch blocks.
7058  TryCatch(const TryCatch&);
7059  void operator=(const TryCatch&);
7060  void* operator new(size_t size);
7061  void operator delete(void*, size_t);
7062
7063  v8::internal::Isolate* isolate_;
7064  v8::TryCatch* next_;
7065  void* exception_;
7066  void* message_obj_;
7067  void* js_stack_comparable_address_;
7068  bool is_verbose_ : 1;
7069  bool can_continue_ : 1;
7070  bool capture_message_ : 1;
7071  bool rethrow_ : 1;
7072  bool has_terminated_ : 1;
7073
7074  friend class v8::internal::Isolate;
7075};
7076
7077
7078// --- Context ---
7079
7080
7081/**
7082 * A container for extension names.
7083 */
7084class V8_EXPORT ExtensionConfiguration {
7085 public:
7086  ExtensionConfiguration() : name_count_(0), names_(NULL) { }
7087  ExtensionConfiguration(int name_count, const char* names[])
7088      : name_count_(name_count), names_(names) { }
7089
7090  const char** begin() const { return &names_[0]; }
7091  const char** end()  const { return &names_[name_count_]; }
7092
7093 private:
7094  const int name_count_;
7095  const char** names_;
7096};
7097
7098
7099/**
7100 * A sandboxed execution context with its own set of built-in objects
7101 * and functions.
7102 */
7103class V8_EXPORT Context {
7104 public:
7105  /**
7106   * Returns the global proxy object.
7107   *
7108   * Global proxy object is a thin wrapper whose prototype points to actual
7109   * context's global object with the properties like Object, etc. This is done
7110   * that way for security reasons (for more details see
7111   * https://wiki.mozilla.org/Gecko:SplitWindow).
7112   *
7113   * Please note that changes to global proxy object prototype most probably
7114   * would break VM---v8 expects only global object as a prototype of global
7115   * proxy object.
7116   */
7117  Local<Object> Global();
7118
7119  /**
7120   * Detaches the global object from its context before
7121   * the global object can be reused to create a new context.
7122   */
7123  void DetachGlobal();
7124
7125  /**
7126   * Creates a new context and returns a handle to the newly allocated
7127   * context.
7128   *
7129   * \param isolate The isolate in which to create the context.
7130   *
7131   * \param extensions An optional extension configuration containing
7132   * the extensions to be installed in the newly created context.
7133   *
7134   * \param global_template An optional object template from which the
7135   * global object for the newly created context will be created.
7136   *
7137   * \param global_object An optional global object to be reused for
7138   * the newly created context. This global object must have been
7139   * created by a previous call to Context::New with the same global
7140   * template. The state of the global object will be completely reset
7141   * and only object identify will remain.
7142   */
7143  static Local<Context> New(
7144      Isolate* isolate, ExtensionConfiguration* extensions = NULL,
7145      Local<ObjectTemplate> global_template = Local<ObjectTemplate>(),
7146      Local<Value> global_object = Local<Value>(),
7147      size_t context_snapshot_index = 0);
7148
7149  /**
7150   * Sets the security token for the context.  To access an object in
7151   * another context, the security tokens must match.
7152   */
7153  void SetSecurityToken(Local<Value> token);
7154
7155  /** Restores the security token to the default value. */
7156  void UseDefaultSecurityToken();
7157
7158  /** Returns the security token of this context.*/
7159  Local<Value> GetSecurityToken();
7160
7161  /**
7162   * Enter this context.  After entering a context, all code compiled
7163   * and run is compiled and run in this context.  If another context
7164   * is already entered, this old context is saved so it can be
7165   * restored when the new context is exited.
7166   */
7167  void Enter();
7168
7169  /**
7170   * Exit this context.  Exiting the current context restores the
7171   * context that was in place when entering the current context.
7172   */
7173  void Exit();
7174
7175  /** Returns an isolate associated with a current context. */
7176  v8::Isolate* GetIsolate();
7177
7178  /**
7179   * The field at kDebugIdIndex is reserved for V8 debugger implementation.
7180   * The value is propagated to the scripts compiled in given Context and
7181   * can be used for filtering scripts.
7182   */
7183  enum EmbedderDataFields { kDebugIdIndex = 0 };
7184
7185  /**
7186   * Gets the embedder data with the given index, which must have been set by a
7187   * previous call to SetEmbedderData with the same index. Note that index 0
7188   * currently has a special meaning for Chrome's debugger.
7189   */
7190  V8_INLINE Local<Value> GetEmbedderData(int index);
7191
7192  /**
7193   * Gets the binding object used by V8 extras. Extra natives get a reference
7194   * to this object and can use it to "export" functionality by adding
7195   * properties. Extra natives can also "import" functionality by accessing
7196   * properties added by the embedder using the V8 API.
7197   */
7198  Local<Object> GetExtrasBindingObject();
7199
7200  /**
7201   * Sets the embedder data with the given index, growing the data as
7202   * needed. Note that index 0 currently has a special meaning for Chrome's
7203   * debugger.
7204   */
7205  void SetEmbedderData(int index, Local<Value> value);
7206
7207  /**
7208   * Gets a 2-byte-aligned native pointer from the embedder data with the given
7209   * index, which must have bees set by a previous call to
7210   * SetAlignedPointerInEmbedderData with the same index. Note that index 0
7211   * currently has a special meaning for Chrome's debugger.
7212   */
7213  V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
7214
7215  /**
7216   * Sets a 2-byte-aligned native pointer in the embedder data with the given
7217   * index, growing the data as needed. Note that index 0 currently has a
7218   * special meaning for Chrome's debugger.
7219   */
7220  void SetAlignedPointerInEmbedderData(int index, void* value);
7221
7222  /**
7223   * Control whether code generation from strings is allowed. Calling
7224   * this method with false will disable 'eval' and the 'Function'
7225   * constructor for code running in this context. If 'eval' or the
7226   * 'Function' constructor are used an exception will be thrown.
7227   *
7228   * If code generation from strings is not allowed the
7229   * V8::AllowCodeGenerationFromStrings callback will be invoked if
7230   * set before blocking the call to 'eval' or the 'Function'
7231   * constructor. If that callback returns true, the call will be
7232   * allowed, otherwise an exception will be thrown. If no callback is
7233   * set an exception will be thrown.
7234   */
7235  void AllowCodeGenerationFromStrings(bool allow);
7236
7237  /**
7238   * Returns true if code generation from strings is allowed for the context.
7239   * For more details see AllowCodeGenerationFromStrings(bool) documentation.
7240   */
7241  bool IsCodeGenerationFromStringsAllowed();
7242
7243  /**
7244   * Sets the error description for the exception that is thrown when
7245   * code generation from strings is not allowed and 'eval' or the 'Function'
7246   * constructor are called.
7247   */
7248  void SetErrorMessageForCodeGenerationFromStrings(Local<String> message);
7249
7250  /**
7251   * Estimate the memory in bytes retained by this context.
7252   */
7253  size_t EstimatedSize();
7254
7255  /**
7256   * Stack-allocated class which sets the execution context for all
7257   * operations executed within a local scope.
7258   */
7259  class Scope {
7260   public:
7261    explicit V8_INLINE Scope(Local<Context> context) : context_(context) {
7262      context_->Enter();
7263    }
7264    V8_INLINE ~Scope() { context_->Exit(); }
7265
7266   private:
7267    Local<Context> context_;
7268  };
7269
7270 private:
7271  friend class Value;
7272  friend class Script;
7273  friend class Object;
7274  friend class Function;
7275
7276  Local<Value> SlowGetEmbedderData(int index);
7277  void* SlowGetAlignedPointerFromEmbedderData(int index);
7278};
7279
7280
7281/**
7282 * Multiple threads in V8 are allowed, but only one thread at a time is allowed
7283 * to use any given V8 isolate, see the comments in the Isolate class. The
7284 * definition of 'using a V8 isolate' includes accessing handles or holding onto
7285 * object pointers obtained from V8 handles while in the particular V8 isolate.
7286 * It is up to the user of V8 to ensure, perhaps with locking, that this
7287 * constraint is not violated. In addition to any other synchronization
7288 * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
7289 * used to signal thead switches to V8.
7290 *
7291 * v8::Locker is a scoped lock object. While it's active, i.e. between its
7292 * construction and destruction, the current thread is allowed to use the locked
7293 * isolate. V8 guarantees that an isolate can be locked by at most one thread at
7294 * any time. In other words, the scope of a v8::Locker is a critical section.
7295 *
7296 * Sample usage:
7297* \code
7298 * ...
7299 * {
7300 *   v8::Locker locker(isolate);
7301 *   v8::Isolate::Scope isolate_scope(isolate);
7302 *   ...
7303 *   // Code using V8 and isolate goes here.
7304 *   ...
7305 * } // Destructor called here
7306 * \endcode
7307 *
7308 * If you wish to stop using V8 in a thread A you can do this either by
7309 * destroying the v8::Locker object as above or by constructing a v8::Unlocker
7310 * object:
7311 *
7312 * \code
7313 * {
7314 *   isolate->Exit();
7315 *   v8::Unlocker unlocker(isolate);
7316 *   ...
7317 *   // Code not using V8 goes here while V8 can run in another thread.
7318 *   ...
7319 * } // Destructor called here.
7320 * isolate->Enter();
7321 * \endcode
7322 *
7323 * The Unlocker object is intended for use in a long-running callback from V8,
7324 * where you want to release the V8 lock for other threads to use.
7325 *
7326 * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
7327 * given thread. This can be useful if you have code that can be called either
7328 * from code that holds the lock or from code that does not. The Unlocker is
7329 * not recursive so you can not have several Unlockers on the stack at once, and
7330 * you can not use an Unlocker in a thread that is not inside a Locker's scope.
7331 *
7332 * An unlocker will unlock several lockers if it has to and reinstate the
7333 * correct depth of locking on its destruction, e.g.:
7334 *
7335 * \code
7336 * // V8 not locked.
7337 * {
7338 *   v8::Locker locker(isolate);
7339 *   Isolate::Scope isolate_scope(isolate);
7340 *   // V8 locked.
7341 *   {
7342 *     v8::Locker another_locker(isolate);
7343 *     // V8 still locked (2 levels).
7344 *     {
7345 *       isolate->Exit();
7346 *       v8::Unlocker unlocker(isolate);
7347 *       // V8 not locked.
7348 *     }
7349 *     isolate->Enter();
7350 *     // V8 locked again (2 levels).
7351 *   }
7352 *   // V8 still locked (1 level).
7353 * }
7354 * // V8 Now no longer locked.
7355 * \endcode
7356 */
7357class V8_EXPORT Unlocker {
7358 public:
7359  /**
7360   * Initialize Unlocker for a given Isolate.
7361   */
7362  V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
7363
7364  ~Unlocker();
7365 private:
7366  void Initialize(Isolate* isolate);
7367
7368  internal::Isolate* isolate_;
7369};
7370
7371
7372class V8_EXPORT Locker {
7373 public:
7374  /**
7375   * Initialize Locker for a given Isolate.
7376   */
7377  V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
7378
7379  ~Locker();
7380
7381  /**
7382   * Returns whether or not the locker for a given isolate, is locked by the
7383   * current thread.
7384   */
7385  static bool IsLocked(Isolate* isolate);
7386
7387  /**
7388   * Returns whether v8::Locker is being used by this V8 instance.
7389   */
7390  static bool IsActive();
7391
7392 private:
7393  void Initialize(Isolate* isolate);
7394
7395  bool has_lock_;
7396  bool top_level_;
7397  internal::Isolate* isolate_;
7398
7399  // Disallow copying and assigning.
7400  Locker(const Locker&);
7401  void operator=(const Locker&);
7402};
7403
7404
7405// --- Implementation ---
7406
7407
7408namespace internal {
7409
7410const int kApiPointerSize = sizeof(void*);  // NOLINT
7411const int kApiIntSize = sizeof(int);  // NOLINT
7412const int kApiInt64Size = sizeof(int64_t);  // NOLINT
7413
7414// Tag information for HeapObject.
7415const int kHeapObjectTag = 1;
7416const int kHeapObjectTagSize = 2;
7417const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
7418
7419// Tag information for Smi.
7420const int kSmiTag = 0;
7421const int kSmiTagSize = 1;
7422const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
7423
7424template <size_t ptr_size> struct SmiTagging;
7425
7426template<int kSmiShiftSize>
7427V8_INLINE internal::Object* IntToSmi(int value) {
7428  int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
7429  uintptr_t tagged_value =
7430      (static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag;
7431  return reinterpret_cast<internal::Object*>(tagged_value);
7432}
7433
7434// Smi constants for 32-bit systems.
7435template <> struct SmiTagging<4> {
7436  enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
7437  static int SmiShiftSize() { return kSmiShiftSize; }
7438  static int SmiValueSize() { return kSmiValueSize; }
7439  V8_INLINE static int SmiToInt(const internal::Object* value) {
7440    int shift_bits = kSmiTagSize + kSmiShiftSize;
7441    // Throw away top 32 bits and shift down (requires >> to be sign extending).
7442    return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
7443  }
7444  V8_INLINE static internal::Object* IntToSmi(int value) {
7445    return internal::IntToSmi<kSmiShiftSize>(value);
7446  }
7447  V8_INLINE static bool IsValidSmi(intptr_t value) {
7448    // To be representable as an tagged small integer, the two
7449    // most-significant bits of 'value' must be either 00 or 11 due to
7450    // sign-extension. To check this we add 01 to the two
7451    // most-significant bits, and check if the most-significant bit is 0
7452    //
7453    // CAUTION: The original code below:
7454    // bool result = ((value + 0x40000000) & 0x80000000) == 0;
7455    // may lead to incorrect results according to the C language spec, and
7456    // in fact doesn't work correctly with gcc4.1.1 in some cases: The
7457    // compiler may produce undefined results in case of signed integer
7458    // overflow. The computation must be done w/ unsigned ints.
7459    return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
7460  }
7461};
7462
7463// Smi constants for 64-bit systems.
7464template <> struct SmiTagging<8> {
7465  enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
7466  static int SmiShiftSize() { return kSmiShiftSize; }
7467  static int SmiValueSize() { return kSmiValueSize; }
7468  V8_INLINE static int SmiToInt(const internal::Object* value) {
7469    int shift_bits = kSmiTagSize + kSmiShiftSize;
7470    // Shift down and throw away top 32 bits.
7471    return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
7472  }
7473  V8_INLINE static internal::Object* IntToSmi(int value) {
7474    return internal::IntToSmi<kSmiShiftSize>(value);
7475  }
7476  V8_INLINE static bool IsValidSmi(intptr_t value) {
7477    // To be representable as a long smi, the value must be a 32-bit integer.
7478    return (value == static_cast<int32_t>(value));
7479  }
7480};
7481
7482typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
7483const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
7484const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
7485V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
7486V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
7487
7488/**
7489 * This class exports constants and functionality from within v8 that
7490 * is necessary to implement inline functions in the v8 api.  Don't
7491 * depend on functions and constants defined here.
7492 */
7493class Internals {
7494 public:
7495  // These values match non-compiler-dependent values defined within
7496  // the implementation of v8.
7497  static const int kHeapObjectMapOffset = 0;
7498  static const int kMapInstanceTypeAndBitFieldOffset =
7499      1 * kApiPointerSize + kApiIntSize;
7500  static const int kStringResourceOffset = 3 * kApiPointerSize;
7501
7502  static const int kOddballKindOffset = 5 * kApiPointerSize + sizeof(double);
7503  static const int kForeignAddressOffset = kApiPointerSize;
7504  static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
7505  static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
7506  static const int kContextHeaderSize = 2 * kApiPointerSize;
7507  static const int kContextEmbedderDataIndex = 5;
7508  static const int kFullStringRepresentationMask = 0x07;
7509  static const int kStringEncodingMask = 0x4;
7510  static const int kExternalTwoByteRepresentationTag = 0x02;
7511  static const int kExternalOneByteRepresentationTag = 0x06;
7512
7513  static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
7514  static const int kExternalMemoryOffset = 4 * kApiPointerSize;
7515  static const int kExternalMemoryLimitOffset =
7516      kExternalMemoryOffset + kApiInt64Size;
7517  static const int kIsolateRootsOffset = kExternalMemoryLimitOffset +
7518                                         kApiInt64Size + kApiInt64Size +
7519                                         kApiPointerSize + kApiPointerSize;
7520  static const int kUndefinedValueRootIndex = 4;
7521  static const int kTheHoleValueRootIndex = 5;
7522  static const int kNullValueRootIndex = 6;
7523  static const int kTrueValueRootIndex = 7;
7524  static const int kFalseValueRootIndex = 8;
7525  static const int kEmptyStringRootIndex = 9;
7526
7527  static const int kNodeClassIdOffset = 1 * kApiPointerSize;
7528  static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
7529  static const int kNodeStateMask = 0x7;
7530  static const int kNodeStateIsWeakValue = 2;
7531  static const int kNodeStateIsPendingValue = 3;
7532  static const int kNodeStateIsNearDeathValue = 4;
7533  static const int kNodeIsIndependentShift = 3;
7534  static const int kNodeIsPartiallyDependentShift = 4;
7535  static const int kNodeIsActiveShift = 4;
7536
7537  static const int kJSObjectType = 0xb7;
7538  static const int kJSApiObjectType = 0xb6;
7539  static const int kFirstNonstringType = 0x80;
7540  static const int kOddballType = 0x83;
7541  static const int kForeignType = 0x87;
7542
7543  static const int kUndefinedOddballKind = 5;
7544  static const int kNullOddballKind = 3;
7545
7546  static const uint32_t kNumIsolateDataSlots = 4;
7547
7548  V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
7549  V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
7550#ifdef V8_ENABLE_CHECKS
7551    CheckInitializedImpl(isolate);
7552#endif
7553  }
7554
7555  V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) {
7556    return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
7557            kHeapObjectTag);
7558  }
7559
7560  V8_INLINE static int SmiValue(const internal::Object* value) {
7561    return PlatformSmiTagging::SmiToInt(value);
7562  }
7563
7564  V8_INLINE static internal::Object* IntToSmi(int value) {
7565    return PlatformSmiTagging::IntToSmi(value);
7566  }
7567
7568  V8_INLINE static bool IsValidSmi(intptr_t value) {
7569    return PlatformSmiTagging::IsValidSmi(value);
7570  }
7571
7572  V8_INLINE static int GetInstanceType(const internal::Object* obj) {
7573    typedef internal::Object O;
7574    O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
7575    // Map::InstanceType is defined so that it will always be loaded into
7576    // the LS 8 bits of one 16-bit word, regardless of endianess.
7577    return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff;
7578  }
7579
7580  V8_INLINE static int GetOddballKind(const internal::Object* obj) {
7581    typedef internal::Object O;
7582    return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
7583  }
7584
7585  V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
7586    int representation = (instance_type & kFullStringRepresentationMask);
7587    return representation == kExternalTwoByteRepresentationTag;
7588  }
7589
7590  V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
7591      uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7592      return *addr & static_cast<uint8_t>(1U << shift);
7593  }
7594
7595  V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
7596                                       bool value, int shift) {
7597      uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7598      uint8_t mask = static_cast<uint8_t>(1U << shift);
7599      *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
7600  }
7601
7602  V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
7603    uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7604    return *addr & kNodeStateMask;
7605  }
7606
7607  V8_INLINE static void UpdateNodeState(internal::Object** obj,
7608                                        uint8_t value) {
7609    uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7610    *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
7611  }
7612
7613  V8_INLINE static void SetEmbedderData(v8::Isolate* isolate,
7614                                        uint32_t slot,
7615                                        void* data) {
7616    uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
7617                    kIsolateEmbedderDataOffset + slot * kApiPointerSize;
7618    *reinterpret_cast<void**>(addr) = data;
7619  }
7620
7621  V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
7622                                         uint32_t slot) {
7623    const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) +
7624        kIsolateEmbedderDataOffset + slot * kApiPointerSize;
7625    return *reinterpret_cast<void* const*>(addr);
7626  }
7627
7628  V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
7629                                              int index) {
7630    uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
7631    return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
7632  }
7633
7634  template <typename T>
7635  V8_INLINE static T ReadField(const internal::Object* ptr, int offset) {
7636    const uint8_t* addr =
7637        reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag;
7638    return *reinterpret_cast<const T*>(addr);
7639  }
7640
7641  template <typename T>
7642  V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
7643    typedef internal::Object O;
7644    typedef internal::Internals I;
7645    O* ctx = *reinterpret_cast<O* const*>(context);
7646    int embedder_data_offset = I::kContextHeaderSize +
7647        (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
7648    O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
7649    int value_offset =
7650        I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
7651    return I::ReadField<T>(embedder_data, value_offset);
7652  }
7653};
7654
7655}  // namespace internal
7656
7657
7658template <class T>
7659Local<T> Local<T>::New(Isolate* isolate, Local<T> that) {
7660  return New(isolate, that.val_);
7661}
7662
7663template <class T>
7664Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
7665  return New(isolate, that.val_);
7666}
7667
7668
7669template <class T>
7670Local<T> Local<T>::New(Isolate* isolate, T* that) {
7671  if (that == NULL) return Local<T>();
7672  T* that_ptr = that;
7673  internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
7674  return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
7675      reinterpret_cast<internal::Isolate*>(isolate), *p)));
7676}
7677
7678
7679template<class T>
7680template<class S>
7681void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
7682  TYPE_CHECK(T, S);
7683  V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
7684}
7685
7686
7687template<class T>
7688Local<T> Eternal<T>::Get(Isolate* isolate) {
7689  return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
7690}
7691
7692
7693template <class T>
7694Local<T> MaybeLocal<T>::ToLocalChecked() {
7695  if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty();
7696  return Local<T>(val_);
7697}
7698
7699
7700template <class T>
7701void* WeakCallbackInfo<T>::GetInternalField(int index) const {
7702#ifdef V8_ENABLE_CHECKS
7703  if (index < 0 || index >= kInternalFieldsInWeakCallback) {
7704    V8::InternalFieldOutOfBounds(index);
7705  }
7706#endif
7707  return internal_fields_[index];
7708}
7709
7710
7711template <class T>
7712T* PersistentBase<T>::New(Isolate* isolate, T* that) {
7713  if (that == NULL) return NULL;
7714  internal::Object** p = reinterpret_cast<internal::Object**>(that);
7715  return reinterpret_cast<T*>(
7716      V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
7717                             p));
7718}
7719
7720
7721template <class T, class M>
7722template <class S, class M2>
7723void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
7724  TYPE_CHECK(T, S);
7725  this->Reset();
7726  if (that.IsEmpty()) return;
7727  internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
7728  this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
7729  M::Copy(that, this);
7730}
7731
7732
7733template <class T>
7734bool PersistentBase<T>::IsIndependent() const {
7735  typedef internal::Internals I;
7736  if (this->IsEmpty()) return false;
7737  return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
7738                        I::kNodeIsIndependentShift);
7739}
7740
7741
7742template <class T>
7743bool PersistentBase<T>::IsNearDeath() const {
7744  typedef internal::Internals I;
7745  if (this->IsEmpty()) return false;
7746  uint8_t node_state =
7747      I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
7748  return node_state == I::kNodeStateIsNearDeathValue ||
7749      node_state == I::kNodeStateIsPendingValue;
7750}
7751
7752
7753template <class T>
7754bool PersistentBase<T>::IsWeak() const {
7755  typedef internal::Internals I;
7756  if (this->IsEmpty()) return false;
7757  return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
7758      I::kNodeStateIsWeakValue;
7759}
7760
7761
7762template <class T>
7763void PersistentBase<T>::Reset() {
7764  if (this->IsEmpty()) return;
7765  V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
7766  val_ = 0;
7767}
7768
7769
7770template <class T>
7771template <class S>
7772void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) {
7773  TYPE_CHECK(T, S);
7774  Reset();
7775  if (other.IsEmpty()) return;
7776  this->val_ = New(isolate, other.val_);
7777}
7778
7779
7780template <class T>
7781template <class S>
7782void PersistentBase<T>::Reset(Isolate* isolate,
7783                              const PersistentBase<S>& other) {
7784  TYPE_CHECK(T, S);
7785  Reset();
7786  if (other.IsEmpty()) return;
7787  this->val_ = New(isolate, other.val_);
7788}
7789
7790
7791template <class T>
7792template <typename P>
7793V8_INLINE void PersistentBase<T>::SetWeak(
7794    P* parameter, typename WeakCallbackInfo<P>::Callback callback,
7795    WeakCallbackType type) {
7796  typedef typename WeakCallbackInfo<void>::Callback Callback;
7797  V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
7798               reinterpret_cast<Callback>(callback), type);
7799}
7800
7801template <class T>
7802void PersistentBase<T>::SetWeak() {
7803  V8::MakeWeak(reinterpret_cast<internal::Object***>(&this->val_));
7804}
7805
7806template <class T>
7807template <typename P>
7808P* PersistentBase<T>::ClearWeak() {
7809  return reinterpret_cast<P*>(
7810    V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
7811}
7812
7813template <class T>
7814void PersistentBase<T>::RegisterExternalReference(Isolate* isolate) const {
7815  if (IsEmpty()) return;
7816  V8::RegisterExternallyReferencedObject(
7817      reinterpret_cast<internal::Object**>(this->val_),
7818      reinterpret_cast<internal::Isolate*>(isolate));
7819}
7820
7821template <class T>
7822void PersistentBase<T>::MarkIndependent() {
7823  typedef internal::Internals I;
7824  if (this->IsEmpty()) return;
7825  I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
7826                    true,
7827                    I::kNodeIsIndependentShift);
7828}
7829
7830
7831template <class T>
7832void PersistentBase<T>::MarkPartiallyDependent() {
7833  typedef internal::Internals I;
7834  if (this->IsEmpty()) return;
7835  I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
7836                    true,
7837                    I::kNodeIsPartiallyDependentShift);
7838}
7839
7840
7841template <class T>
7842void PersistentBase<T>::MarkActive() {
7843  typedef internal::Internals I;
7844  if (this->IsEmpty()) return;
7845  I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true,
7846                    I::kNodeIsActiveShift);
7847}
7848
7849
7850template <class T>
7851void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
7852  typedef internal::Internals I;
7853  if (this->IsEmpty()) return;
7854  internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
7855  uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
7856  *reinterpret_cast<uint16_t*>(addr) = class_id;
7857}
7858
7859
7860template <class T>
7861uint16_t PersistentBase<T>::WrapperClassId() const {
7862  typedef internal::Internals I;
7863  if (this->IsEmpty()) return 0;
7864  internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
7865  uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
7866  return *reinterpret_cast<uint16_t*>(addr);
7867}
7868
7869
7870template<typename T>
7871ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
7872
7873template<typename T>
7874template<typename S>
7875void ReturnValue<T>::Set(const Persistent<S>& handle) {
7876  TYPE_CHECK(T, S);
7877  if (V8_UNLIKELY(handle.IsEmpty())) {
7878    *value_ = GetDefaultValue();
7879  } else {
7880    *value_ = *reinterpret_cast<internal::Object**>(*handle);
7881  }
7882}
7883
7884template <typename T>
7885template <typename S>
7886void ReturnValue<T>::Set(const Global<S>& handle) {
7887  TYPE_CHECK(T, S);
7888  if (V8_UNLIKELY(handle.IsEmpty())) {
7889    *value_ = GetDefaultValue();
7890  } else {
7891    *value_ = *reinterpret_cast<internal::Object**>(*handle);
7892  }
7893}
7894
7895template <typename T>
7896template <typename S>
7897void ReturnValue<T>::Set(const Local<S> handle) {
7898  TYPE_CHECK(T, S);
7899  if (V8_UNLIKELY(handle.IsEmpty())) {
7900    *value_ = GetDefaultValue();
7901  } else {
7902    *value_ = *reinterpret_cast<internal::Object**>(*handle);
7903  }
7904}
7905
7906template<typename T>
7907void ReturnValue<T>::Set(double i) {
7908  TYPE_CHECK(T, Number);
7909  Set(Number::New(GetIsolate(), i));
7910}
7911
7912template<typename T>
7913void ReturnValue<T>::Set(int32_t i) {
7914  TYPE_CHECK(T, Integer);
7915  typedef internal::Internals I;
7916  if (V8_LIKELY(I::IsValidSmi(i))) {
7917    *value_ = I::IntToSmi(i);
7918    return;
7919  }
7920  Set(Integer::New(GetIsolate(), i));
7921}
7922
7923template<typename T>
7924void ReturnValue<T>::Set(uint32_t i) {
7925  TYPE_CHECK(T, Integer);
7926  // Can't simply use INT32_MAX here for whatever reason.
7927  bool fits_into_int32_t = (i & (1U << 31)) == 0;
7928  if (V8_LIKELY(fits_into_int32_t)) {
7929    Set(static_cast<int32_t>(i));
7930    return;
7931  }
7932  Set(Integer::NewFromUnsigned(GetIsolate(), i));
7933}
7934
7935template<typename T>
7936void ReturnValue<T>::Set(bool value) {
7937  TYPE_CHECK(T, Boolean);
7938  typedef internal::Internals I;
7939  int root_index;
7940  if (value) {
7941    root_index = I::kTrueValueRootIndex;
7942  } else {
7943    root_index = I::kFalseValueRootIndex;
7944  }
7945  *value_ = *I::GetRoot(GetIsolate(), root_index);
7946}
7947
7948template<typename T>
7949void ReturnValue<T>::SetNull() {
7950  TYPE_CHECK(T, Primitive);
7951  typedef internal::Internals I;
7952  *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
7953}
7954
7955template<typename T>
7956void ReturnValue<T>::SetUndefined() {
7957  TYPE_CHECK(T, Primitive);
7958  typedef internal::Internals I;
7959  *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
7960}
7961
7962template<typename T>
7963void ReturnValue<T>::SetEmptyString() {
7964  TYPE_CHECK(T, String);
7965  typedef internal::Internals I;
7966  *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
7967}
7968
7969template <typename T>
7970Isolate* ReturnValue<T>::GetIsolate() const {
7971  // Isolate is always the pointer below the default value on the stack.
7972  return *reinterpret_cast<Isolate**>(&value_[-2]);
7973}
7974
7975template <typename T>
7976Local<Value> ReturnValue<T>::Get() const {
7977  typedef internal::Internals I;
7978  if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex))
7979    return Local<Value>(*Undefined(GetIsolate()));
7980  return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_));
7981}
7982
7983template <typename T>
7984template <typename S>
7985void ReturnValue<T>::Set(S* whatever) {
7986  // Uncompilable to prevent inadvertent misuse.
7987  TYPE_CHECK(S*, Primitive);
7988}
7989
7990template<typename T>
7991internal::Object* ReturnValue<T>::GetDefaultValue() {
7992  // Default value is always the pointer below value_ on the stack.
7993  return value_[-1];
7994}
7995
7996template <typename T>
7997FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
7998                                              internal::Object** values,
7999                                              int length)
8000    : implicit_args_(implicit_args), values_(values), length_(length) {}
8001
8002template<typename T>
8003Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
8004  if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
8005  return Local<Value>(reinterpret_cast<Value*>(values_ - i));
8006}
8007
8008
8009template<typename T>
8010Local<Function> FunctionCallbackInfo<T>::Callee() const {
8011  return Local<Function>(reinterpret_cast<Function*>(
8012      &implicit_args_[kCalleeIndex]));
8013}
8014
8015
8016template<typename T>
8017Local<Object> FunctionCallbackInfo<T>::This() const {
8018  return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
8019}
8020
8021
8022template<typename T>
8023Local<Object> FunctionCallbackInfo<T>::Holder() const {
8024  return Local<Object>(reinterpret_cast<Object*>(
8025      &implicit_args_[kHolderIndex]));
8026}
8027
8028template <typename T>
8029Local<Value> FunctionCallbackInfo<T>::NewTarget() const {
8030  return Local<Value>(
8031      reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex]));
8032}
8033
8034template <typename T>
8035Local<Value> FunctionCallbackInfo<T>::Data() const {
8036  return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
8037}
8038
8039
8040template<typename T>
8041Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
8042  return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
8043}
8044
8045
8046template<typename T>
8047ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
8048  return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
8049}
8050
8051
8052template<typename T>
8053bool FunctionCallbackInfo<T>::IsConstructCall() const {
8054  return !NewTarget()->IsUndefined();
8055}
8056
8057
8058template<typename T>
8059int FunctionCallbackInfo<T>::Length() const {
8060  return length_;
8061}
8062
8063ScriptOrigin::ScriptOrigin(Local<Value> resource_name,
8064                           Local<Integer> resource_line_offset,
8065                           Local<Integer> resource_column_offset,
8066                           Local<Boolean> resource_is_shared_cross_origin,
8067                           Local<Integer> script_id,
8068                           Local<Boolean> resource_is_embedder_debug_script,
8069                           Local<Value> source_map_url,
8070                           Local<Boolean> resource_is_opaque)
8071    : resource_name_(resource_name),
8072      resource_line_offset_(resource_line_offset),
8073      resource_column_offset_(resource_column_offset),
8074      options_(!resource_is_embedder_debug_script.IsEmpty() &&
8075                   resource_is_embedder_debug_script->IsTrue(),
8076               !resource_is_shared_cross_origin.IsEmpty() &&
8077                   resource_is_shared_cross_origin->IsTrue(),
8078               !resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue()),
8079      script_id_(script_id),
8080      source_map_url_(source_map_url) {}
8081
8082Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; }
8083
8084
8085Local<Integer> ScriptOrigin::ResourceLineOffset() const {
8086  return resource_line_offset_;
8087}
8088
8089
8090Local<Integer> ScriptOrigin::ResourceColumnOffset() const {
8091  return resource_column_offset_;
8092}
8093
8094
8095Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; }
8096
8097
8098Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; }
8099
8100
8101ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
8102                               CachedData* data)
8103    : source_string(string),
8104      resource_name(origin.ResourceName()),
8105      resource_line_offset(origin.ResourceLineOffset()),
8106      resource_column_offset(origin.ResourceColumnOffset()),
8107      resource_options(origin.Options()),
8108      source_map_url(origin.SourceMapUrl()),
8109      cached_data(data) {}
8110
8111
8112ScriptCompiler::Source::Source(Local<String> string,
8113                               CachedData* data)
8114    : source_string(string), cached_data(data) {}
8115
8116
8117ScriptCompiler::Source::~Source() {
8118  delete cached_data;
8119}
8120
8121
8122const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
8123    const {
8124  return cached_data;
8125}
8126
8127
8128Local<Boolean> Boolean::New(Isolate* isolate, bool value) {
8129  return value ? True(isolate) : False(isolate);
8130}
8131
8132
8133void Template::Set(Isolate* isolate, const char* name, v8::Local<Data> value) {
8134  Set(v8::String::NewFromUtf8(isolate, name, NewStringType::kNormal)
8135          .ToLocalChecked(),
8136      value);
8137}
8138
8139
8140Local<Value> Object::GetInternalField(int index) {
8141#ifndef V8_ENABLE_CHECKS
8142  typedef internal::Object O;
8143  typedef internal::HeapObject HO;
8144  typedef internal::Internals I;
8145  O* obj = *reinterpret_cast<O**>(this);
8146  // Fast path: If the object is a plain JSObject, which is the common case, we
8147  // know where to find the internal fields and can return the value directly.
8148  auto instance_type = I::GetInstanceType(obj);
8149  if (instance_type == I::kJSObjectType ||
8150      instance_type == I::kJSApiObjectType) {
8151    int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
8152    O* value = I::ReadField<O*>(obj, offset);
8153    O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
8154    return Local<Value>(reinterpret_cast<Value*>(result));
8155  }
8156#endif
8157  return SlowGetInternalField(index);
8158}
8159
8160
8161void* Object::GetAlignedPointerFromInternalField(int index) {
8162#ifndef V8_ENABLE_CHECKS
8163  typedef internal::Object O;
8164  typedef internal::Internals I;
8165  O* obj = *reinterpret_cast<O**>(this);
8166  // Fast path: If the object is a plain JSObject, which is the common case, we
8167  // know where to find the internal fields and can return the value directly.
8168  auto instance_type = I::GetInstanceType(obj);
8169  if (V8_LIKELY(instance_type == I::kJSObjectType ||
8170                instance_type == I::kJSApiObjectType)) {
8171    int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
8172    return I::ReadField<void*>(obj, offset);
8173  }
8174#endif
8175  return SlowGetAlignedPointerFromInternalField(index);
8176}
8177
8178
8179String* String::Cast(v8::Value* value) {
8180#ifdef V8_ENABLE_CHECKS
8181  CheckCast(value);
8182#endif
8183  return static_cast<String*>(value);
8184}
8185
8186
8187Local<String> String::Empty(Isolate* isolate) {
8188  typedef internal::Object* S;
8189  typedef internal::Internals I;
8190  I::CheckInitialized(isolate);
8191  S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
8192  return Local<String>(reinterpret_cast<String*>(slot));
8193}
8194
8195
8196String::ExternalStringResource* String::GetExternalStringResource() const {
8197  typedef internal::Object O;
8198  typedef internal::Internals I;
8199  O* obj = *reinterpret_cast<O* const*>(this);
8200  String::ExternalStringResource* result;
8201  if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
8202    void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
8203    result = reinterpret_cast<String::ExternalStringResource*>(value);
8204  } else {
8205    result = NULL;
8206  }
8207#ifdef V8_ENABLE_CHECKS
8208  VerifyExternalStringResource(result);
8209#endif
8210  return result;
8211}
8212
8213
8214String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
8215    String::Encoding* encoding_out) const {
8216  typedef internal::Object O;
8217  typedef internal::Internals I;
8218  O* obj = *reinterpret_cast<O* const*>(this);
8219  int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
8220  *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
8221  ExternalStringResourceBase* resource = NULL;
8222  if (type == I::kExternalOneByteRepresentationTag ||
8223      type == I::kExternalTwoByteRepresentationTag) {
8224    void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
8225    resource = static_cast<ExternalStringResourceBase*>(value);
8226  }
8227#ifdef V8_ENABLE_CHECKS
8228    VerifyExternalStringResourceBase(resource, *encoding_out);
8229#endif
8230  return resource;
8231}
8232
8233
8234bool Value::IsUndefined() const {
8235#ifdef V8_ENABLE_CHECKS
8236  return FullIsUndefined();
8237#else
8238  return QuickIsUndefined();
8239#endif
8240}
8241
8242bool Value::QuickIsUndefined() const {
8243  typedef internal::Object O;
8244  typedef internal::Internals I;
8245  O* obj = *reinterpret_cast<O* const*>(this);
8246  if (!I::HasHeapObjectTag(obj)) return false;
8247  if (I::GetInstanceType(obj) != I::kOddballType) return false;
8248  return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
8249}
8250
8251
8252bool Value::IsNull() const {
8253#ifdef V8_ENABLE_CHECKS
8254  return FullIsNull();
8255#else
8256  return QuickIsNull();
8257#endif
8258}
8259
8260bool Value::QuickIsNull() const {
8261  typedef internal::Object O;
8262  typedef internal::Internals I;
8263  O* obj = *reinterpret_cast<O* const*>(this);
8264  if (!I::HasHeapObjectTag(obj)) return false;
8265  if (I::GetInstanceType(obj) != I::kOddballType) return false;
8266  return (I::GetOddballKind(obj) == I::kNullOddballKind);
8267}
8268
8269
8270bool Value::IsString() const {
8271#ifdef V8_ENABLE_CHECKS
8272  return FullIsString();
8273#else
8274  return QuickIsString();
8275#endif
8276}
8277
8278bool Value::QuickIsString() const {
8279  typedef internal::Object O;
8280  typedef internal::Internals I;
8281  O* obj = *reinterpret_cast<O* const*>(this);
8282  if (!I::HasHeapObjectTag(obj)) return false;
8283  return (I::GetInstanceType(obj) < I::kFirstNonstringType);
8284}
8285
8286
8287template <class T> Value* Value::Cast(T* value) {
8288  return static_cast<Value*>(value);
8289}
8290
8291
8292Local<Boolean> Value::ToBoolean() const {
8293  return ToBoolean(Isolate::GetCurrent()->GetCurrentContext())
8294      .FromMaybe(Local<Boolean>());
8295}
8296
8297
8298Local<Number> Value::ToNumber() const {
8299  return ToNumber(Isolate::GetCurrent()->GetCurrentContext())
8300      .FromMaybe(Local<Number>());
8301}
8302
8303
8304Local<String> Value::ToString() const {
8305  return ToString(Isolate::GetCurrent()->GetCurrentContext())
8306      .FromMaybe(Local<String>());
8307}
8308
8309
8310Local<String> Value::ToDetailString() const {
8311  return ToDetailString(Isolate::GetCurrent()->GetCurrentContext())
8312      .FromMaybe(Local<String>());
8313}
8314
8315
8316Local<Object> Value::ToObject() const {
8317  return ToObject(Isolate::GetCurrent()->GetCurrentContext())
8318      .FromMaybe(Local<Object>());
8319}
8320
8321
8322Local<Integer> Value::ToInteger() const {
8323  return ToInteger(Isolate::GetCurrent()->GetCurrentContext())
8324      .FromMaybe(Local<Integer>());
8325}
8326
8327
8328Local<Uint32> Value::ToUint32() const {
8329  return ToUint32(Isolate::GetCurrent()->GetCurrentContext())
8330      .FromMaybe(Local<Uint32>());
8331}
8332
8333
8334Local<Int32> Value::ToInt32() const {
8335  return ToInt32(Isolate::GetCurrent()->GetCurrentContext())
8336      .FromMaybe(Local<Int32>());
8337}
8338
8339
8340Boolean* Boolean::Cast(v8::Value* value) {
8341#ifdef V8_ENABLE_CHECKS
8342  CheckCast(value);
8343#endif
8344  return static_cast<Boolean*>(value);
8345}
8346
8347
8348Name* Name::Cast(v8::Value* value) {
8349#ifdef V8_ENABLE_CHECKS
8350  CheckCast(value);
8351#endif
8352  return static_cast<Name*>(value);
8353}
8354
8355
8356Symbol* Symbol::Cast(v8::Value* value) {
8357#ifdef V8_ENABLE_CHECKS
8358  CheckCast(value);
8359#endif
8360  return static_cast<Symbol*>(value);
8361}
8362
8363
8364Number* Number::Cast(v8::Value* value) {
8365#ifdef V8_ENABLE_CHECKS
8366  CheckCast(value);
8367#endif
8368  return static_cast<Number*>(value);
8369}
8370
8371
8372Integer* Integer::Cast(v8::Value* value) {
8373#ifdef V8_ENABLE_CHECKS
8374  CheckCast(value);
8375#endif
8376  return static_cast<Integer*>(value);
8377}
8378
8379
8380Int32* Int32::Cast(v8::Value* value) {
8381#ifdef V8_ENABLE_CHECKS
8382  CheckCast(value);
8383#endif
8384  return static_cast<Int32*>(value);
8385}
8386
8387
8388Uint32* Uint32::Cast(v8::Value* value) {
8389#ifdef V8_ENABLE_CHECKS
8390  CheckCast(value);
8391#endif
8392  return static_cast<Uint32*>(value);
8393}
8394
8395
8396Date* Date::Cast(v8::Value* value) {
8397#ifdef V8_ENABLE_CHECKS
8398  CheckCast(value);
8399#endif
8400  return static_cast<Date*>(value);
8401}
8402
8403
8404StringObject* StringObject::Cast(v8::Value* value) {
8405#ifdef V8_ENABLE_CHECKS
8406  CheckCast(value);
8407#endif
8408  return static_cast<StringObject*>(value);
8409}
8410
8411
8412SymbolObject* SymbolObject::Cast(v8::Value* value) {
8413#ifdef V8_ENABLE_CHECKS
8414  CheckCast(value);
8415#endif
8416  return static_cast<SymbolObject*>(value);
8417}
8418
8419
8420NumberObject* NumberObject::Cast(v8::Value* value) {
8421#ifdef V8_ENABLE_CHECKS
8422  CheckCast(value);
8423#endif
8424  return static_cast<NumberObject*>(value);
8425}
8426
8427
8428BooleanObject* BooleanObject::Cast(v8::Value* value) {
8429#ifdef V8_ENABLE_CHECKS
8430  CheckCast(value);
8431#endif
8432  return static_cast<BooleanObject*>(value);
8433}
8434
8435
8436RegExp* RegExp::Cast(v8::Value* value) {
8437#ifdef V8_ENABLE_CHECKS
8438  CheckCast(value);
8439#endif
8440  return static_cast<RegExp*>(value);
8441}
8442
8443
8444Object* Object::Cast(v8::Value* value) {
8445#ifdef V8_ENABLE_CHECKS
8446  CheckCast(value);
8447#endif
8448  return static_cast<Object*>(value);
8449}
8450
8451
8452Array* Array::Cast(v8::Value* value) {
8453#ifdef V8_ENABLE_CHECKS
8454  CheckCast(value);
8455#endif
8456  return static_cast<Array*>(value);
8457}
8458
8459
8460Map* Map::Cast(v8::Value* value) {
8461#ifdef V8_ENABLE_CHECKS
8462  CheckCast(value);
8463#endif
8464  return static_cast<Map*>(value);
8465}
8466
8467
8468Set* Set::Cast(v8::Value* value) {
8469#ifdef V8_ENABLE_CHECKS
8470  CheckCast(value);
8471#endif
8472  return static_cast<Set*>(value);
8473}
8474
8475
8476Promise* Promise::Cast(v8::Value* value) {
8477#ifdef V8_ENABLE_CHECKS
8478  CheckCast(value);
8479#endif
8480  return static_cast<Promise*>(value);
8481}
8482
8483
8484Proxy* Proxy::Cast(v8::Value* value) {
8485#ifdef V8_ENABLE_CHECKS
8486  CheckCast(value);
8487#endif
8488  return static_cast<Proxy*>(value);
8489}
8490
8491
8492Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
8493#ifdef V8_ENABLE_CHECKS
8494  CheckCast(value);
8495#endif
8496  return static_cast<Promise::Resolver*>(value);
8497}
8498
8499
8500ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
8501#ifdef V8_ENABLE_CHECKS
8502  CheckCast(value);
8503#endif
8504  return static_cast<ArrayBuffer*>(value);
8505}
8506
8507
8508ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
8509#ifdef V8_ENABLE_CHECKS
8510  CheckCast(value);
8511#endif
8512  return static_cast<ArrayBufferView*>(value);
8513}
8514
8515
8516TypedArray* TypedArray::Cast(v8::Value* value) {
8517#ifdef V8_ENABLE_CHECKS
8518  CheckCast(value);
8519#endif
8520  return static_cast<TypedArray*>(value);
8521}
8522
8523
8524Uint8Array* Uint8Array::Cast(v8::Value* value) {
8525#ifdef V8_ENABLE_CHECKS
8526  CheckCast(value);
8527#endif
8528  return static_cast<Uint8Array*>(value);
8529}
8530
8531
8532Int8Array* Int8Array::Cast(v8::Value* value) {
8533#ifdef V8_ENABLE_CHECKS
8534  CheckCast(value);
8535#endif
8536  return static_cast<Int8Array*>(value);
8537}
8538
8539
8540Uint16Array* Uint16Array::Cast(v8::Value* value) {
8541#ifdef V8_ENABLE_CHECKS
8542  CheckCast(value);
8543#endif
8544  return static_cast<Uint16Array*>(value);
8545}
8546
8547
8548Int16Array* Int16Array::Cast(v8::Value* value) {
8549#ifdef V8_ENABLE_CHECKS
8550  CheckCast(value);
8551#endif
8552  return static_cast<Int16Array*>(value);
8553}
8554
8555
8556Uint32Array* Uint32Array::Cast(v8::Value* value) {
8557#ifdef V8_ENABLE_CHECKS
8558  CheckCast(value);
8559#endif
8560  return static_cast<Uint32Array*>(value);
8561}
8562
8563
8564Int32Array* Int32Array::Cast(v8::Value* value) {
8565#ifdef V8_ENABLE_CHECKS
8566  CheckCast(value);
8567#endif
8568  return static_cast<Int32Array*>(value);
8569}
8570
8571
8572Float32Array* Float32Array::Cast(v8::Value* value) {
8573#ifdef V8_ENABLE_CHECKS
8574  CheckCast(value);
8575#endif
8576  return static_cast<Float32Array*>(value);
8577}
8578
8579
8580Float64Array* Float64Array::Cast(v8::Value* value) {
8581#ifdef V8_ENABLE_CHECKS
8582  CheckCast(value);
8583#endif
8584  return static_cast<Float64Array*>(value);
8585}
8586
8587
8588Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
8589#ifdef V8_ENABLE_CHECKS
8590  CheckCast(value);
8591#endif
8592  return static_cast<Uint8ClampedArray*>(value);
8593}
8594
8595
8596DataView* DataView::Cast(v8::Value* value) {
8597#ifdef V8_ENABLE_CHECKS
8598  CheckCast(value);
8599#endif
8600  return static_cast<DataView*>(value);
8601}
8602
8603
8604SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) {
8605#ifdef V8_ENABLE_CHECKS
8606  CheckCast(value);
8607#endif
8608  return static_cast<SharedArrayBuffer*>(value);
8609}
8610
8611
8612Function* Function::Cast(v8::Value* value) {
8613#ifdef V8_ENABLE_CHECKS
8614  CheckCast(value);
8615#endif
8616  return static_cast<Function*>(value);
8617}
8618
8619
8620External* External::Cast(v8::Value* value) {
8621#ifdef V8_ENABLE_CHECKS
8622  CheckCast(value);
8623#endif
8624  return static_cast<External*>(value);
8625}
8626
8627
8628template<typename T>
8629Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
8630  return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
8631}
8632
8633
8634template<typename T>
8635Local<Value> PropertyCallbackInfo<T>::Data() const {
8636  return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
8637}
8638
8639
8640template<typename T>
8641Local<Object> PropertyCallbackInfo<T>::This() const {
8642  return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
8643}
8644
8645
8646template<typename T>
8647Local<Object> PropertyCallbackInfo<T>::Holder() const {
8648  return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
8649}
8650
8651
8652template<typename T>
8653ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
8654  return ReturnValue<T>(&args_[kReturnValueIndex]);
8655}
8656
8657template <typename T>
8658bool PropertyCallbackInfo<T>::ShouldThrowOnError() const {
8659  typedef internal::Internals I;
8660  return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(0);
8661}
8662
8663
8664Local<Primitive> Undefined(Isolate* isolate) {
8665  typedef internal::Object* S;
8666  typedef internal::Internals I;
8667  I::CheckInitialized(isolate);
8668  S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
8669  return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
8670}
8671
8672
8673Local<Primitive> Null(Isolate* isolate) {
8674  typedef internal::Object* S;
8675  typedef internal::Internals I;
8676  I::CheckInitialized(isolate);
8677  S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
8678  return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
8679}
8680
8681
8682Local<Boolean> True(Isolate* isolate) {
8683  typedef internal::Object* S;
8684  typedef internal::Internals I;
8685  I::CheckInitialized(isolate);
8686  S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
8687  return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
8688}
8689
8690
8691Local<Boolean> False(Isolate* isolate) {
8692  typedef internal::Object* S;
8693  typedef internal::Internals I;
8694  I::CheckInitialized(isolate);
8695  S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
8696  return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
8697}
8698
8699
8700void Isolate::SetData(uint32_t slot, void* data) {
8701  typedef internal::Internals I;
8702  I::SetEmbedderData(this, slot, data);
8703}
8704
8705
8706void* Isolate::GetData(uint32_t slot) {
8707  typedef internal::Internals I;
8708  return I::GetEmbedderData(this, slot);
8709}
8710
8711
8712uint32_t Isolate::GetNumberOfDataSlots() {
8713  typedef internal::Internals I;
8714  return I::kNumIsolateDataSlots;
8715}
8716
8717
8718int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
8719    int64_t change_in_bytes) {
8720  typedef internal::Internals I;
8721  int64_t* external_memory = reinterpret_cast<int64_t*>(
8722      reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryOffset);
8723  const int64_t external_memory_limit = *reinterpret_cast<int64_t*>(
8724      reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryLimitOffset);
8725  const int64_t amount = *external_memory + change_in_bytes;
8726  *external_memory = amount;
8727  if (change_in_bytes > 0 && amount > external_memory_limit) {
8728    ReportExternalAllocationLimitReached();
8729  }
8730  return *external_memory;
8731}
8732
8733
8734template<typename T>
8735void Isolate::SetObjectGroupId(const Persistent<T>& object,
8736                               UniqueId id) {
8737  TYPE_CHECK(Value, T);
8738  SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
8739}
8740
8741
8742template<typename T>
8743void Isolate::SetReferenceFromGroup(UniqueId id,
8744                                    const Persistent<T>& object) {
8745  TYPE_CHECK(Value, T);
8746  SetReferenceFromGroup(id,
8747                        reinterpret_cast<v8::internal::Object**>(object.val_));
8748}
8749
8750
8751template<typename T, typename S>
8752void Isolate::SetReference(const Persistent<T>& parent,
8753                           const Persistent<S>& child) {
8754  TYPE_CHECK(Object, T);
8755  TYPE_CHECK(Value, S);
8756  SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
8757               reinterpret_cast<v8::internal::Object**>(child.val_));
8758}
8759
8760
8761Local<Value> Context::GetEmbedderData(int index) {
8762#ifndef V8_ENABLE_CHECKS
8763  typedef internal::Object O;
8764  typedef internal::HeapObject HO;
8765  typedef internal::Internals I;
8766  HO* context = *reinterpret_cast<HO**>(this);
8767  O** result =
8768      HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
8769  return Local<Value>(reinterpret_cast<Value*>(result));
8770#else
8771  return SlowGetEmbedderData(index);
8772#endif
8773}
8774
8775
8776void* Context::GetAlignedPointerFromEmbedderData(int index) {
8777#ifndef V8_ENABLE_CHECKS
8778  typedef internal::Internals I;
8779  return I::ReadEmbedderData<void*>(this, index);
8780#else
8781  return SlowGetAlignedPointerFromEmbedderData(index);
8782#endif
8783}
8784
8785
8786void V8::SetAllowCodeGenerationFromStringsCallback(
8787    AllowCodeGenerationFromStringsCallback callback) {
8788  Isolate* isolate = Isolate::GetCurrent();
8789  isolate->SetAllowCodeGenerationFromStringsCallback(callback);
8790}
8791
8792
8793bool V8::IsDead() {
8794  Isolate* isolate = Isolate::GetCurrent();
8795  return isolate->IsDead();
8796}
8797
8798
8799bool V8::AddMessageListener(MessageCallback that, Local<Value> data) {
8800  Isolate* isolate = Isolate::GetCurrent();
8801  return isolate->AddMessageListener(that, data);
8802}
8803
8804
8805void V8::RemoveMessageListeners(MessageCallback that) {
8806  Isolate* isolate = Isolate::GetCurrent();
8807  isolate->RemoveMessageListeners(that);
8808}
8809
8810
8811void V8::SetFailedAccessCheckCallbackFunction(
8812    FailedAccessCheckCallback callback) {
8813  Isolate* isolate = Isolate::GetCurrent();
8814  isolate->SetFailedAccessCheckCallbackFunction(callback);
8815}
8816
8817
8818void V8::SetCaptureStackTraceForUncaughtExceptions(
8819    bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
8820  Isolate* isolate = Isolate::GetCurrent();
8821  isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
8822                                                     options);
8823}
8824
8825
8826void V8::SetFatalErrorHandler(FatalErrorCallback callback) {
8827  Isolate* isolate = Isolate::GetCurrent();
8828  isolate->SetFatalErrorHandler(callback);
8829}
8830
8831
8832void V8::RemoveGCPrologueCallback(GCCallback callback) {
8833  Isolate* isolate = Isolate::GetCurrent();
8834  isolate->RemoveGCPrologueCallback(
8835      reinterpret_cast<v8::Isolate::GCCallback>(callback));
8836}
8837
8838
8839void V8::RemoveGCEpilogueCallback(GCCallback callback) {
8840  Isolate* isolate = Isolate::GetCurrent();
8841  isolate->RemoveGCEpilogueCallback(
8842      reinterpret_cast<v8::Isolate::GCCallback>(callback));
8843}
8844
8845void V8::TerminateExecution(Isolate* isolate) { isolate->TerminateExecution(); }
8846
8847
8848bool V8::IsExecutionTerminating(Isolate* isolate) {
8849  if (isolate == NULL) {
8850    isolate = Isolate::GetCurrent();
8851  }
8852  return isolate->IsExecutionTerminating();
8853}
8854
8855
8856void V8::CancelTerminateExecution(Isolate* isolate) {
8857  isolate->CancelTerminateExecution();
8858}
8859
8860
8861void V8::VisitExternalResources(ExternalResourceVisitor* visitor) {
8862  Isolate* isolate = Isolate::GetCurrent();
8863  isolate->VisitExternalResources(visitor);
8864}
8865
8866
8867void V8::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
8868  Isolate* isolate = Isolate::GetCurrent();
8869  isolate->VisitHandlesWithClassIds(visitor);
8870}
8871
8872
8873void V8::VisitHandlesWithClassIds(Isolate* isolate,
8874                                  PersistentHandleVisitor* visitor) {
8875  isolate->VisitHandlesWithClassIds(visitor);
8876}
8877
8878
8879void V8::VisitHandlesForPartialDependence(Isolate* isolate,
8880                                          PersistentHandleVisitor* visitor) {
8881  isolate->VisitHandlesForPartialDependence(visitor);
8882}
8883
8884/**
8885 * \example shell.cc
8886 * A simple shell that takes a list of expressions on the
8887 * command-line and executes them.
8888 */
8889
8890
8891/**
8892 * \example process.cc
8893 */
8894
8895
8896}  // namespace v8
8897
8898
8899#undef TYPE_CHECK
8900
8901
8902#endif  // INCLUDE_V8_H_
8903