assembler-ia32.cc revision 014dc512cdd3e367bee49a713fdc5ed92584a3e5
1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
33// The original source code covered by the above license above has been modified
34// significantly by Google Inc.
35// Copyright 2012 the V8 project authors. All rights reserved.
36
37#include "src/ia32/assembler-ia32.h"
38
39#include <cstring>
40
41#if V8_TARGET_ARCH_IA32
42
43#if V8_LIBC_MSVCRT
44#include <intrin.h>  // _xgetbv()
45#endif
46#if V8_OS_MACOSX
47#include <sys/sysctl.h>
48#endif
49
50#include "src/base/bits.h"
51#include "src/base/cpu.h"
52#include "src/disassembler.h"
53#include "src/macro-assembler.h"
54#include "src/v8.h"
55
56namespace v8 {
57namespace internal {
58
59// -----------------------------------------------------------------------------
60// Implementation of CpuFeatures
61
62namespace {
63
64#if !V8_LIBC_MSVCRT
65
66V8_INLINE uint64_t _xgetbv(unsigned int xcr) {
67  unsigned eax, edx;
68  // Check xgetbv; this uses a .byte sequence instead of the instruction
69  // directly because older assemblers do not include support for xgetbv and
70  // there is no easy way to conditionally compile based on the assembler
71  // used.
72  __asm__ volatile(".byte 0x0f, 0x01, 0xd0" : "=a"(eax), "=d"(edx) : "c"(xcr));
73  return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32);
74}
75
76#define _XCR_XFEATURE_ENABLED_MASK 0
77
78#endif  // !V8_LIBC_MSVCRT
79
80
81bool OSHasAVXSupport() {
82#if V8_OS_MACOSX
83  // Mac OS X up to 10.9 has a bug where AVX transitions were indeed being
84  // caused by ISRs, so we detect that here and disable AVX in that case.
85  char buffer[128];
86  size_t buffer_size = arraysize(buffer);
87  int ctl_name[] = {CTL_KERN, KERN_OSRELEASE};
88  if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) {
89    V8_Fatal(__FILE__, __LINE__, "V8 failed to get kernel version");
90  }
91  // The buffer now contains a string of the form XX.YY.ZZ, where
92  // XX is the major kernel version component.
93  char* period_pos = strchr(buffer, '.');
94  DCHECK_NOT_NULL(period_pos);
95  *period_pos = '\0';
96  long kernel_version_major = strtol(buffer, nullptr, 10);  // NOLINT
97  if (kernel_version_major <= 13) return false;
98#endif  // V8_OS_MACOSX
99  // Check whether OS claims to support AVX.
100  uint64_t feature_mask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
101  return (feature_mask & 0x6) == 0x6;
102}
103
104}  // namespace
105
106
107void CpuFeatures::ProbeImpl(bool cross_compile) {
108  base::CPU cpu;
109  CHECK(cpu.has_sse2());  // SSE2 support is mandatory.
110  CHECK(cpu.has_cmov());  // CMOV support is mandatory.
111
112  // Only use statically determined features for cross compile (snapshot).
113  if (cross_compile) return;
114
115  if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1;
116  if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3;
117  if (cpu.has_avx() && FLAG_enable_avx && cpu.has_osxsave() &&
118      OSHasAVXSupport()) {
119    supported_ |= 1u << AVX;
120  }
121  if (cpu.has_fma3() && FLAG_enable_fma3 && cpu.has_osxsave() &&
122      OSHasAVXSupport()) {
123    supported_ |= 1u << FMA3;
124  }
125  if (cpu.has_bmi1() && FLAG_enable_bmi1) supported_ |= 1u << BMI1;
126  if (cpu.has_bmi2() && FLAG_enable_bmi2) supported_ |= 1u << BMI2;
127  if (cpu.has_lzcnt() && FLAG_enable_lzcnt) supported_ |= 1u << LZCNT;
128  if (cpu.has_popcnt() && FLAG_enable_popcnt) supported_ |= 1u << POPCNT;
129  if (strcmp(FLAG_mcpu, "auto") == 0) {
130    if (cpu.is_atom()) supported_ |= 1u << ATOM;
131  } else if (strcmp(FLAG_mcpu, "atom") == 0) {
132    supported_ |= 1u << ATOM;
133  }
134}
135
136
137void CpuFeatures::PrintTarget() { }
138void CpuFeatures::PrintFeatures() {
139  printf(
140      "SSE3=%d SSE4_1=%d AVX=%d FMA3=%d BMI1=%d BMI2=%d LZCNT=%d POPCNT=%d "
141      "ATOM=%d\n",
142      CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSE4_1),
143      CpuFeatures::IsSupported(AVX), CpuFeatures::IsSupported(FMA3),
144      CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2),
145      CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT),
146      CpuFeatures::IsSupported(ATOM));
147}
148
149
150// -----------------------------------------------------------------------------
151// Implementation of Displacement
152
153void Displacement::init(Label* L, Type type) {
154  DCHECK(!L->is_bound());
155  int next = 0;
156  if (L->is_linked()) {
157    next = L->pos();
158    DCHECK(next > 0);  // Displacements must be at positions > 0
159  }
160  // Ensure that we _never_ overflow the next field.
161  DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
162  data_ = NextField::encode(next) | TypeField::encode(type);
163}
164
165
166// -----------------------------------------------------------------------------
167// Implementation of RelocInfo
168
169
170const int RelocInfo::kApplyMask =
171    RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
172    1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
173    RelocInfo::kDebugBreakSlotMask;
174
175
176bool RelocInfo::IsCodedSpecially() {
177  // The deserializer needs to know whether a pointer is specially coded.  Being
178  // specially coded on IA32 means that it is a relative address, as used by
179  // branch instructions.  These are also the ones that need changing when a
180  // code object moves.
181  return (1 << rmode_) & kApplyMask;
182}
183
184
185bool RelocInfo::IsInConstantPool() {
186  return false;
187}
188
189
190// -----------------------------------------------------------------------------
191// Implementation of Operand
192
193Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
194  // [base + disp/r]
195  if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
196    // [base]
197    set_modrm(0, base);
198    if (base.is(esp)) set_sib(times_1, esp, base);
199  } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
200    // [base + disp8]
201    set_modrm(1, base);
202    if (base.is(esp)) set_sib(times_1, esp, base);
203    set_disp8(disp);
204  } else {
205    // [base + disp/r]
206    set_modrm(2, base);
207    if (base.is(esp)) set_sib(times_1, esp, base);
208    set_dispr(disp, rmode);
209  }
210}
211
212
213Operand::Operand(Register base,
214                 Register index,
215                 ScaleFactor scale,
216                 int32_t disp,
217                 RelocInfo::Mode rmode) {
218  DCHECK(!index.is(esp));  // illegal addressing mode
219  // [base + index*scale + disp/r]
220  if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
221    // [base + index*scale]
222    set_modrm(0, esp);
223    set_sib(scale, index, base);
224  } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
225    // [base + index*scale + disp8]
226    set_modrm(1, esp);
227    set_sib(scale, index, base);
228    set_disp8(disp);
229  } else {
230    // [base + index*scale + disp/r]
231    set_modrm(2, esp);
232    set_sib(scale, index, base);
233    set_dispr(disp, rmode);
234  }
235}
236
237
238Operand::Operand(Register index,
239                 ScaleFactor scale,
240                 int32_t disp,
241                 RelocInfo::Mode rmode) {
242  DCHECK(!index.is(esp));  // illegal addressing mode
243  // [index*scale + disp/r]
244  set_modrm(0, esp);
245  set_sib(scale, index, ebp);
246  set_dispr(disp, rmode);
247}
248
249
250bool Operand::is_reg(Register reg) const {
251  return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
252      && ((buf_[0] & 0x07) == reg.code());  // register codes match.
253}
254
255
256bool Operand::is_reg_only() const {
257  return (buf_[0] & 0xF8) == 0xC0;  // Addressing mode is register only.
258}
259
260
261Register Operand::reg() const {
262  DCHECK(is_reg_only());
263  return Register::from_code(buf_[0] & 0x07);
264}
265
266
267// -----------------------------------------------------------------------------
268// Implementation of Assembler.
269
270// Emit a single byte. Must always be inlined.
271#define EMIT(x)                                 \
272  *pc_++ = (x)
273
274
275#ifdef GENERATED_CODE_COVERAGE
276static void InitCoverageLog();
277#endif
278
279Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
280    : AssemblerBase(isolate, buffer, buffer_size),
281      positions_recorder_(this) {
282  // Clear the buffer in debug mode unless it was provided by the
283  // caller in which case we can't be sure it's okay to overwrite
284  // existing code in it; see CodePatcher::CodePatcher(...).
285#ifdef DEBUG
286  if (own_buffer_) {
287    memset(buffer_, 0xCC, buffer_size_);  // int3
288  }
289#endif
290
291  reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
292
293#ifdef GENERATED_CODE_COVERAGE
294  InitCoverageLog();
295#endif
296}
297
298
299void Assembler::GetCode(CodeDesc* desc) {
300  // Finalize code (at this point overflow() may be true, but the gap ensures
301  // that we are still not overlapping instructions and relocation info).
302  reloc_info_writer.Finish();
303  DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
304  // Set up code descriptor.
305  desc->buffer = buffer_;
306  desc->buffer_size = buffer_size_;
307  desc->instr_size = pc_offset();
308  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
309  desc->origin = this;
310  desc->constant_pool_size = 0;
311}
312
313
314void Assembler::Align(int m) {
315  DCHECK(base::bits::IsPowerOfTwo32(m));
316  int mask = m - 1;
317  int addr = pc_offset();
318  Nop((m - (addr & mask)) & mask);
319}
320
321
322bool Assembler::IsNop(Address addr) {
323  Address a = addr;
324  while (*a == 0x66) a++;
325  if (*a == 0x90) return true;
326  if (a[0] == 0xf && a[1] == 0x1f) return true;
327  return false;
328}
329
330
331void Assembler::Nop(int bytes) {
332  EnsureSpace ensure_space(this);
333
334  // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf
335  while (bytes > 0) {
336    switch (bytes) {
337      case 2:
338        EMIT(0x66);
339      case 1:
340        EMIT(0x90);
341        return;
342      case 3:
343        EMIT(0xf);
344        EMIT(0x1f);
345        EMIT(0);
346        return;
347      case 4:
348        EMIT(0xf);
349        EMIT(0x1f);
350        EMIT(0x40);
351        EMIT(0);
352        return;
353      case 6:
354        EMIT(0x66);
355      case 5:
356        EMIT(0xf);
357        EMIT(0x1f);
358        EMIT(0x44);
359        EMIT(0);
360        EMIT(0);
361        return;
362      case 7:
363        EMIT(0xf);
364        EMIT(0x1f);
365        EMIT(0x80);
366        EMIT(0);
367        EMIT(0);
368        EMIT(0);
369        EMIT(0);
370        return;
371      default:
372      case 11:
373        EMIT(0x66);
374        bytes--;
375      case 10:
376        EMIT(0x66);
377        bytes--;
378      case 9:
379        EMIT(0x66);
380        bytes--;
381      case 8:
382        EMIT(0xf);
383        EMIT(0x1f);
384        EMIT(0x84);
385        EMIT(0);
386        EMIT(0);
387        EMIT(0);
388        EMIT(0);
389        EMIT(0);
390        bytes -= 8;
391    }
392  }
393}
394
395
396void Assembler::CodeTargetAlign() {
397  Align(16);  // Preferred alignment of jump targets on ia32.
398}
399
400
401void Assembler::cpuid() {
402  EnsureSpace ensure_space(this);
403  EMIT(0x0F);
404  EMIT(0xA2);
405}
406
407
408void Assembler::pushad() {
409  EnsureSpace ensure_space(this);
410  EMIT(0x60);
411}
412
413
414void Assembler::popad() {
415  EnsureSpace ensure_space(this);
416  EMIT(0x61);
417}
418
419
420void Assembler::pushfd() {
421  EnsureSpace ensure_space(this);
422  EMIT(0x9C);
423}
424
425
426void Assembler::popfd() {
427  EnsureSpace ensure_space(this);
428  EMIT(0x9D);
429}
430
431
432void Assembler::push(const Immediate& x) {
433  EnsureSpace ensure_space(this);
434  if (x.is_int8()) {
435    EMIT(0x6a);
436    EMIT(x.x_);
437  } else {
438    EMIT(0x68);
439    emit(x);
440  }
441}
442
443
444void Assembler::push_imm32(int32_t imm32) {
445  EnsureSpace ensure_space(this);
446  EMIT(0x68);
447  emit(imm32);
448}
449
450
451void Assembler::push(Register src) {
452  EnsureSpace ensure_space(this);
453  EMIT(0x50 | src.code());
454}
455
456
457void Assembler::push(const Operand& src) {
458  EnsureSpace ensure_space(this);
459  EMIT(0xFF);
460  emit_operand(esi, src);
461}
462
463
464void Assembler::pop(Register dst) {
465  DCHECK(reloc_info_writer.last_pc() != NULL);
466  EnsureSpace ensure_space(this);
467  EMIT(0x58 | dst.code());
468}
469
470
471void Assembler::pop(const Operand& dst) {
472  EnsureSpace ensure_space(this);
473  EMIT(0x8F);
474  emit_operand(eax, dst);
475}
476
477
478void Assembler::enter(const Immediate& size) {
479  EnsureSpace ensure_space(this);
480  EMIT(0xC8);
481  emit_w(size);
482  EMIT(0);
483}
484
485
486void Assembler::leave() {
487  EnsureSpace ensure_space(this);
488  EMIT(0xC9);
489}
490
491
492void Assembler::mov_b(Register dst, const Operand& src) {
493  CHECK(dst.is_byte_register());
494  EnsureSpace ensure_space(this);
495  EMIT(0x8A);
496  emit_operand(dst, src);
497}
498
499
500void Assembler::mov_b(const Operand& dst, const Immediate& src) {
501  EnsureSpace ensure_space(this);
502  EMIT(0xC6);
503  emit_operand(eax, dst);
504  EMIT(static_cast<int8_t>(src.x_));
505}
506
507
508void Assembler::mov_b(const Operand& dst, Register src) {
509  CHECK(src.is_byte_register());
510  EnsureSpace ensure_space(this);
511  EMIT(0x88);
512  emit_operand(src, dst);
513}
514
515
516void Assembler::mov_w(Register dst, const Operand& src) {
517  EnsureSpace ensure_space(this);
518  EMIT(0x66);
519  EMIT(0x8B);
520  emit_operand(dst, src);
521}
522
523
524void Assembler::mov_w(const Operand& dst, Register src) {
525  EnsureSpace ensure_space(this);
526  EMIT(0x66);
527  EMIT(0x89);
528  emit_operand(src, dst);
529}
530
531
532void Assembler::mov_w(const Operand& dst, const Immediate& src) {
533  EnsureSpace ensure_space(this);
534  EMIT(0x66);
535  EMIT(0xC7);
536  emit_operand(eax, dst);
537  EMIT(static_cast<int8_t>(src.x_ & 0xff));
538  EMIT(static_cast<int8_t>(src.x_ >> 8));
539}
540
541
542void Assembler::mov(Register dst, int32_t imm32) {
543  EnsureSpace ensure_space(this);
544  EMIT(0xB8 | dst.code());
545  emit(imm32);
546}
547
548
549void Assembler::mov(Register dst, const Immediate& x) {
550  EnsureSpace ensure_space(this);
551  EMIT(0xB8 | dst.code());
552  emit(x);
553}
554
555
556void Assembler::mov(Register dst, Handle<Object> handle) {
557  EnsureSpace ensure_space(this);
558  EMIT(0xB8 | dst.code());
559  emit(handle);
560}
561
562
563void Assembler::mov(Register dst, const Operand& src) {
564  EnsureSpace ensure_space(this);
565  EMIT(0x8B);
566  emit_operand(dst, src);
567}
568
569
570void Assembler::mov(Register dst, Register src) {
571  EnsureSpace ensure_space(this);
572  EMIT(0x89);
573  EMIT(0xC0 | src.code() << 3 | dst.code());
574}
575
576
577void Assembler::mov(const Operand& dst, const Immediate& x) {
578  EnsureSpace ensure_space(this);
579  EMIT(0xC7);
580  emit_operand(eax, dst);
581  emit(x);
582}
583
584
585void Assembler::mov(const Operand& dst, Handle<Object> handle) {
586  EnsureSpace ensure_space(this);
587  EMIT(0xC7);
588  emit_operand(eax, dst);
589  emit(handle);
590}
591
592
593void Assembler::mov(const Operand& dst, Register src) {
594  EnsureSpace ensure_space(this);
595  EMIT(0x89);
596  emit_operand(src, dst);
597}
598
599
600void Assembler::movsx_b(Register dst, const Operand& src) {
601  EnsureSpace ensure_space(this);
602  EMIT(0x0F);
603  EMIT(0xBE);
604  emit_operand(dst, src);
605}
606
607
608void Assembler::movsx_w(Register dst, const Operand& src) {
609  EnsureSpace ensure_space(this);
610  EMIT(0x0F);
611  EMIT(0xBF);
612  emit_operand(dst, src);
613}
614
615
616void Assembler::movzx_b(Register dst, const Operand& src) {
617  EnsureSpace ensure_space(this);
618  EMIT(0x0F);
619  EMIT(0xB6);
620  emit_operand(dst, src);
621}
622
623
624void Assembler::movzx_w(Register dst, const Operand& src) {
625  EnsureSpace ensure_space(this);
626  EMIT(0x0F);
627  EMIT(0xB7);
628  emit_operand(dst, src);
629}
630
631
632void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
633  EnsureSpace ensure_space(this);
634  // Opcode: 0f 40 + cc /r.
635  EMIT(0x0F);
636  EMIT(0x40 + cc);
637  emit_operand(dst, src);
638}
639
640
641void Assembler::cld() {
642  EnsureSpace ensure_space(this);
643  EMIT(0xFC);
644}
645
646
647void Assembler::rep_movs() {
648  EnsureSpace ensure_space(this);
649  EMIT(0xF3);
650  EMIT(0xA5);
651}
652
653
654void Assembler::rep_stos() {
655  EnsureSpace ensure_space(this);
656  EMIT(0xF3);
657  EMIT(0xAB);
658}
659
660
661void Assembler::stos() {
662  EnsureSpace ensure_space(this);
663  EMIT(0xAB);
664}
665
666
667void Assembler::xchg(Register dst, Register src) {
668  EnsureSpace ensure_space(this);
669  if (src.is(eax) || dst.is(eax)) {  // Single-byte encoding.
670    EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
671  } else {
672    EMIT(0x87);
673    EMIT(0xC0 | src.code() << 3 | dst.code());
674  }
675}
676
677
678void Assembler::xchg(Register dst, const Operand& src) {
679  EnsureSpace ensure_space(this);
680  EMIT(0x87);
681  emit_operand(dst, src);
682}
683
684
685void Assembler::adc(Register dst, int32_t imm32) {
686  EnsureSpace ensure_space(this);
687  emit_arith(2, Operand(dst), Immediate(imm32));
688}
689
690
691void Assembler::adc(Register dst, const Operand& src) {
692  EnsureSpace ensure_space(this);
693  EMIT(0x13);
694  emit_operand(dst, src);
695}
696
697
698void Assembler::add(Register dst, const Operand& src) {
699  EnsureSpace ensure_space(this);
700  EMIT(0x03);
701  emit_operand(dst, src);
702}
703
704
705void Assembler::add(const Operand& dst, Register src) {
706  EnsureSpace ensure_space(this);
707  EMIT(0x01);
708  emit_operand(src, dst);
709}
710
711
712void Assembler::add(const Operand& dst, const Immediate& x) {
713  DCHECK(reloc_info_writer.last_pc() != NULL);
714  EnsureSpace ensure_space(this);
715  emit_arith(0, dst, x);
716}
717
718
719void Assembler::and_(Register dst, int32_t imm32) {
720  and_(dst, Immediate(imm32));
721}
722
723
724void Assembler::and_(Register dst, const Immediate& x) {
725  EnsureSpace ensure_space(this);
726  emit_arith(4, Operand(dst), x);
727}
728
729
730void Assembler::and_(Register dst, const Operand& src) {
731  EnsureSpace ensure_space(this);
732  EMIT(0x23);
733  emit_operand(dst, src);
734}
735
736
737void Assembler::and_(const Operand& dst, const Immediate& x) {
738  EnsureSpace ensure_space(this);
739  emit_arith(4, dst, x);
740}
741
742
743void Assembler::and_(const Operand& dst, Register src) {
744  EnsureSpace ensure_space(this);
745  EMIT(0x21);
746  emit_operand(src, dst);
747}
748
749
750void Assembler::cmpb(const Operand& op, int8_t imm8) {
751  EnsureSpace ensure_space(this);
752  if (op.is_reg(eax)) {
753    EMIT(0x3C);
754  } else {
755    EMIT(0x80);
756    emit_operand(edi, op);  // edi == 7
757  }
758  EMIT(imm8);
759}
760
761
762void Assembler::cmpb(const Operand& op, Register reg) {
763  CHECK(reg.is_byte_register());
764  EnsureSpace ensure_space(this);
765  EMIT(0x38);
766  emit_operand(reg, op);
767}
768
769
770void Assembler::cmpb(Register reg, const Operand& op) {
771  CHECK(reg.is_byte_register());
772  EnsureSpace ensure_space(this);
773  EMIT(0x3A);
774  emit_operand(reg, op);
775}
776
777
778void Assembler::cmpw(const Operand& op, Immediate imm16) {
779  DCHECK(imm16.is_int16());
780  EnsureSpace ensure_space(this);
781  EMIT(0x66);
782  EMIT(0x81);
783  emit_operand(edi, op);
784  emit_w(imm16);
785}
786
787
788void Assembler::cmp(Register reg, int32_t imm32) {
789  EnsureSpace ensure_space(this);
790  emit_arith(7, Operand(reg), Immediate(imm32));
791}
792
793
794void Assembler::cmp(Register reg, Handle<Object> handle) {
795  EnsureSpace ensure_space(this);
796  emit_arith(7, Operand(reg), Immediate(handle));
797}
798
799
800void Assembler::cmp(Register reg, const Operand& op) {
801  EnsureSpace ensure_space(this);
802  EMIT(0x3B);
803  emit_operand(reg, op);
804}
805
806
807void Assembler::cmp(const Operand& op, const Immediate& imm) {
808  EnsureSpace ensure_space(this);
809  emit_arith(7, op, imm);
810}
811
812
813void Assembler::cmp(const Operand& op, Handle<Object> handle) {
814  EnsureSpace ensure_space(this);
815  emit_arith(7, op, Immediate(handle));
816}
817
818
819void Assembler::cmpb_al(const Operand& op) {
820  EnsureSpace ensure_space(this);
821  EMIT(0x38);  // CMP r/m8, r8
822  emit_operand(eax, op);  // eax has same code as register al.
823}
824
825
826void Assembler::cmpw_ax(const Operand& op) {
827  EnsureSpace ensure_space(this);
828  EMIT(0x66);
829  EMIT(0x39);  // CMP r/m16, r16
830  emit_operand(eax, op);  // eax has same code as register ax.
831}
832
833
834void Assembler::dec_b(Register dst) {
835  CHECK(dst.is_byte_register());
836  EnsureSpace ensure_space(this);
837  EMIT(0xFE);
838  EMIT(0xC8 | dst.code());
839}
840
841
842void Assembler::dec_b(const Operand& dst) {
843  EnsureSpace ensure_space(this);
844  EMIT(0xFE);
845  emit_operand(ecx, dst);
846}
847
848
849void Assembler::dec(Register dst) {
850  EnsureSpace ensure_space(this);
851  EMIT(0x48 | dst.code());
852}
853
854
855void Assembler::dec(const Operand& dst) {
856  EnsureSpace ensure_space(this);
857  EMIT(0xFF);
858  emit_operand(ecx, dst);
859}
860
861
862void Assembler::cdq() {
863  EnsureSpace ensure_space(this);
864  EMIT(0x99);
865}
866
867
868void Assembler::idiv(const Operand& src) {
869  EnsureSpace ensure_space(this);
870  EMIT(0xF7);
871  emit_operand(edi, src);
872}
873
874
875void Assembler::div(const Operand& src) {
876  EnsureSpace ensure_space(this);
877  EMIT(0xF7);
878  emit_operand(esi, src);
879}
880
881
882void Assembler::imul(Register reg) {
883  EnsureSpace ensure_space(this);
884  EMIT(0xF7);
885  EMIT(0xE8 | reg.code());
886}
887
888
889void Assembler::imul(Register dst, const Operand& src) {
890  EnsureSpace ensure_space(this);
891  EMIT(0x0F);
892  EMIT(0xAF);
893  emit_operand(dst, src);
894}
895
896
897void Assembler::imul(Register dst, Register src, int32_t imm32) {
898  imul(dst, Operand(src), imm32);
899}
900
901
902void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
903  EnsureSpace ensure_space(this);
904  if (is_int8(imm32)) {
905    EMIT(0x6B);
906    emit_operand(dst, src);
907    EMIT(imm32);
908  } else {
909    EMIT(0x69);
910    emit_operand(dst, src);
911    emit(imm32);
912  }
913}
914
915
916void Assembler::inc(Register dst) {
917  EnsureSpace ensure_space(this);
918  EMIT(0x40 | dst.code());
919}
920
921
922void Assembler::inc(const Operand& dst) {
923  EnsureSpace ensure_space(this);
924  EMIT(0xFF);
925  emit_operand(eax, dst);
926}
927
928
929void Assembler::lea(Register dst, const Operand& src) {
930  EnsureSpace ensure_space(this);
931  EMIT(0x8D);
932  emit_operand(dst, src);
933}
934
935
936void Assembler::mul(Register src) {
937  EnsureSpace ensure_space(this);
938  EMIT(0xF7);
939  EMIT(0xE0 | src.code());
940}
941
942
943void Assembler::neg(Register dst) {
944  EnsureSpace ensure_space(this);
945  EMIT(0xF7);
946  EMIT(0xD8 | dst.code());
947}
948
949
950void Assembler::neg(const Operand& dst) {
951  EnsureSpace ensure_space(this);
952  EMIT(0xF7);
953  emit_operand(ebx, dst);
954}
955
956
957void Assembler::not_(Register dst) {
958  EnsureSpace ensure_space(this);
959  EMIT(0xF7);
960  EMIT(0xD0 | dst.code());
961}
962
963
964void Assembler::not_(const Operand& dst) {
965  EnsureSpace ensure_space(this);
966  EMIT(0xF7);
967  emit_operand(edx, dst);
968}
969
970
971void Assembler::or_(Register dst, int32_t imm32) {
972  EnsureSpace ensure_space(this);
973  emit_arith(1, Operand(dst), Immediate(imm32));
974}
975
976
977void Assembler::or_(Register dst, const Operand& src) {
978  EnsureSpace ensure_space(this);
979  EMIT(0x0B);
980  emit_operand(dst, src);
981}
982
983
984void Assembler::or_(const Operand& dst, const Immediate& x) {
985  EnsureSpace ensure_space(this);
986  emit_arith(1, dst, x);
987}
988
989
990void Assembler::or_(const Operand& dst, Register src) {
991  EnsureSpace ensure_space(this);
992  EMIT(0x09);
993  emit_operand(src, dst);
994}
995
996
997void Assembler::rcl(Register dst, uint8_t imm8) {
998  EnsureSpace ensure_space(this);
999  DCHECK(is_uint5(imm8));  // illegal shift count
1000  if (imm8 == 1) {
1001    EMIT(0xD1);
1002    EMIT(0xD0 | dst.code());
1003  } else {
1004    EMIT(0xC1);
1005    EMIT(0xD0 | dst.code());
1006    EMIT(imm8);
1007  }
1008}
1009
1010
1011void Assembler::rcr(Register dst, uint8_t imm8) {
1012  EnsureSpace ensure_space(this);
1013  DCHECK(is_uint5(imm8));  // illegal shift count
1014  if (imm8 == 1) {
1015    EMIT(0xD1);
1016    EMIT(0xD8 | dst.code());
1017  } else {
1018    EMIT(0xC1);
1019    EMIT(0xD8 | dst.code());
1020    EMIT(imm8);
1021  }
1022}
1023
1024
1025void Assembler::ror(const Operand& dst, uint8_t imm8) {
1026  EnsureSpace ensure_space(this);
1027  DCHECK(is_uint5(imm8));  // illegal shift count
1028  if (imm8 == 1) {
1029    EMIT(0xD1);
1030    emit_operand(ecx, dst);
1031  } else {
1032    EMIT(0xC1);
1033    emit_operand(ecx, dst);
1034    EMIT(imm8);
1035  }
1036}
1037
1038
1039void Assembler::ror_cl(const Operand& dst) {
1040  EnsureSpace ensure_space(this);
1041  EMIT(0xD3);
1042  emit_operand(ecx, dst);
1043}
1044
1045
1046void Assembler::sar(const Operand& dst, uint8_t imm8) {
1047  EnsureSpace ensure_space(this);
1048  DCHECK(is_uint5(imm8));  // illegal shift count
1049  if (imm8 == 1) {
1050    EMIT(0xD1);
1051    emit_operand(edi, dst);
1052  } else {
1053    EMIT(0xC1);
1054    emit_operand(edi, dst);
1055    EMIT(imm8);
1056  }
1057}
1058
1059
1060void Assembler::sar_cl(const Operand& dst) {
1061  EnsureSpace ensure_space(this);
1062  EMIT(0xD3);
1063  emit_operand(edi, dst);
1064}
1065
1066
1067void Assembler::sbb(Register dst, const Operand& src) {
1068  EnsureSpace ensure_space(this);
1069  EMIT(0x1B);
1070  emit_operand(dst, src);
1071}
1072
1073
1074void Assembler::shld(Register dst, const Operand& src) {
1075  EnsureSpace ensure_space(this);
1076  EMIT(0x0F);
1077  EMIT(0xA5);
1078  emit_operand(dst, src);
1079}
1080
1081
1082void Assembler::shl(const Operand& dst, uint8_t imm8) {
1083  EnsureSpace ensure_space(this);
1084  DCHECK(is_uint5(imm8));  // illegal shift count
1085  if (imm8 == 1) {
1086    EMIT(0xD1);
1087    emit_operand(esp, dst);
1088  } else {
1089    EMIT(0xC1);
1090    emit_operand(esp, dst);
1091    EMIT(imm8);
1092  }
1093}
1094
1095
1096void Assembler::shl_cl(const Operand& dst) {
1097  EnsureSpace ensure_space(this);
1098  EMIT(0xD3);
1099  emit_operand(esp, dst);
1100}
1101
1102
1103void Assembler::shrd(Register dst, const Operand& src) {
1104  EnsureSpace ensure_space(this);
1105  EMIT(0x0F);
1106  EMIT(0xAD);
1107  emit_operand(dst, src);
1108}
1109
1110
1111void Assembler::shr(const Operand& dst, uint8_t imm8) {
1112  EnsureSpace ensure_space(this);
1113  DCHECK(is_uint5(imm8));  // illegal shift count
1114  if (imm8 == 1) {
1115    EMIT(0xD1);
1116    emit_operand(ebp, dst);
1117  } else {
1118    EMIT(0xC1);
1119    emit_operand(ebp, dst);
1120    EMIT(imm8);
1121  }
1122}
1123
1124
1125void Assembler::shr_cl(const Operand& dst) {
1126  EnsureSpace ensure_space(this);
1127  EMIT(0xD3);
1128  emit_operand(ebp, dst);
1129}
1130
1131
1132void Assembler::sub(const Operand& dst, const Immediate& x) {
1133  EnsureSpace ensure_space(this);
1134  emit_arith(5, dst, x);
1135}
1136
1137
1138void Assembler::sub(Register dst, const Operand& src) {
1139  EnsureSpace ensure_space(this);
1140  EMIT(0x2B);
1141  emit_operand(dst, src);
1142}
1143
1144
1145void Assembler::sub(const Operand& dst, Register src) {
1146  EnsureSpace ensure_space(this);
1147  EMIT(0x29);
1148  emit_operand(src, dst);
1149}
1150
1151
1152void Assembler::test(Register reg, const Immediate& imm) {
1153  if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1154    test_b(reg, imm.x_);
1155    return;
1156  }
1157
1158  EnsureSpace ensure_space(this);
1159  // This is not using emit_arith because test doesn't support
1160  // sign-extension of 8-bit operands.
1161  if (reg.is(eax)) {
1162    EMIT(0xA9);
1163  } else {
1164    EMIT(0xF7);
1165    EMIT(0xC0 | reg.code());
1166  }
1167  emit(imm);
1168}
1169
1170
1171void Assembler::test(Register reg, const Operand& op) {
1172  EnsureSpace ensure_space(this);
1173  EMIT(0x85);
1174  emit_operand(reg, op);
1175}
1176
1177
1178void Assembler::test_b(Register reg, const Operand& op) {
1179  CHECK(reg.is_byte_register());
1180  EnsureSpace ensure_space(this);
1181  EMIT(0x84);
1182  emit_operand(reg, op);
1183}
1184
1185
1186void Assembler::test(const Operand& op, const Immediate& imm) {
1187  if (op.is_reg_only()) {
1188    test(op.reg(), imm);
1189    return;
1190  }
1191  if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1192    return test_b(op, imm.x_);
1193  }
1194  EnsureSpace ensure_space(this);
1195  EMIT(0xF7);
1196  emit_operand(eax, op);
1197  emit(imm);
1198}
1199
1200
1201void Assembler::test_b(Register reg, uint8_t imm8) {
1202  EnsureSpace ensure_space(this);
1203  // Only use test against byte for registers that have a byte
1204  // variant: eax, ebx, ecx, and edx.
1205  if (reg.is(eax)) {
1206    EMIT(0xA8);
1207    EMIT(imm8);
1208  } else if (reg.is_byte_register()) {
1209    emit_arith_b(0xF6, 0xC0, reg, imm8);
1210  } else {
1211    EMIT(0xF7);
1212    EMIT(0xC0 | reg.code());
1213    emit(imm8);
1214  }
1215}
1216
1217
1218void Assembler::test_b(const Operand& op, uint8_t imm8) {
1219  if (op.is_reg_only()) {
1220    test_b(op.reg(), imm8);
1221    return;
1222  }
1223  EnsureSpace ensure_space(this);
1224  EMIT(0xF6);
1225  emit_operand(eax, op);
1226  EMIT(imm8);
1227}
1228
1229
1230void Assembler::xor_(Register dst, int32_t imm32) {
1231  EnsureSpace ensure_space(this);
1232  emit_arith(6, Operand(dst), Immediate(imm32));
1233}
1234
1235
1236void Assembler::xor_(Register dst, const Operand& src) {
1237  EnsureSpace ensure_space(this);
1238  EMIT(0x33);
1239  emit_operand(dst, src);
1240}
1241
1242
1243void Assembler::xor_(const Operand& dst, Register src) {
1244  EnsureSpace ensure_space(this);
1245  EMIT(0x31);
1246  emit_operand(src, dst);
1247}
1248
1249
1250void Assembler::xor_(const Operand& dst, const Immediate& x) {
1251  EnsureSpace ensure_space(this);
1252  emit_arith(6, dst, x);
1253}
1254
1255
1256void Assembler::bt(const Operand& dst, Register src) {
1257  EnsureSpace ensure_space(this);
1258  EMIT(0x0F);
1259  EMIT(0xA3);
1260  emit_operand(src, dst);
1261}
1262
1263
1264void Assembler::bts(const Operand& dst, Register src) {
1265  EnsureSpace ensure_space(this);
1266  EMIT(0x0F);
1267  EMIT(0xAB);
1268  emit_operand(src, dst);
1269}
1270
1271
1272void Assembler::bsr(Register dst, const Operand& src) {
1273  EnsureSpace ensure_space(this);
1274  EMIT(0x0F);
1275  EMIT(0xBD);
1276  emit_operand(dst, src);
1277}
1278
1279
1280void Assembler::bsf(Register dst, const Operand& src) {
1281  EnsureSpace ensure_space(this);
1282  EMIT(0x0F);
1283  EMIT(0xBC);
1284  emit_operand(dst, src);
1285}
1286
1287
1288void Assembler::hlt() {
1289  EnsureSpace ensure_space(this);
1290  EMIT(0xF4);
1291}
1292
1293
1294void Assembler::int3() {
1295  EnsureSpace ensure_space(this);
1296  EMIT(0xCC);
1297}
1298
1299
1300void Assembler::nop() {
1301  EnsureSpace ensure_space(this);
1302  EMIT(0x90);
1303}
1304
1305
1306void Assembler::ret(int imm16) {
1307  EnsureSpace ensure_space(this);
1308  DCHECK(is_uint16(imm16));
1309  if (imm16 == 0) {
1310    EMIT(0xC3);
1311  } else {
1312    EMIT(0xC2);
1313    EMIT(imm16 & 0xFF);
1314    EMIT((imm16 >> 8) & 0xFF);
1315  }
1316}
1317
1318
1319void Assembler::ud2() {
1320  EnsureSpace ensure_space(this);
1321  EMIT(0x0F);
1322  EMIT(0x0B);
1323}
1324
1325
1326// Labels refer to positions in the (to be) generated code.
1327// There are bound, linked, and unused labels.
1328//
1329// Bound labels refer to known positions in the already
1330// generated code. pos() is the position the label refers to.
1331//
1332// Linked labels refer to unknown positions in the code
1333// to be generated; pos() is the position of the 32bit
1334// Displacement of the last instruction using the label.
1335
1336
1337void Assembler::print(Label* L) {
1338  if (L->is_unused()) {
1339    PrintF("unused label\n");
1340  } else if (L->is_bound()) {
1341    PrintF("bound label to %d\n", L->pos());
1342  } else if (L->is_linked()) {
1343    Label l = *L;
1344    PrintF("unbound label");
1345    while (l.is_linked()) {
1346      Displacement disp = disp_at(&l);
1347      PrintF("@ %d ", l.pos());
1348      disp.print();
1349      PrintF("\n");
1350      disp.next(&l);
1351    }
1352  } else {
1353    PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1354  }
1355}
1356
1357
1358void Assembler::bind_to(Label* L, int pos) {
1359  EnsureSpace ensure_space(this);
1360  DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
1361  while (L->is_linked()) {
1362    Displacement disp = disp_at(L);
1363    int fixup_pos = L->pos();
1364    if (disp.type() == Displacement::CODE_ABSOLUTE) {
1365      long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
1366      internal_reference_positions_.push_back(fixup_pos);
1367    } else if (disp.type() == Displacement::CODE_RELATIVE) {
1368      // Relative to Code* heap object pointer.
1369      long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1370    } else {
1371      if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1372        DCHECK(byte_at(fixup_pos - 1) == 0xE9);  // jmp expected
1373      }
1374      // Relative address, relative to point after address.
1375      int imm32 = pos - (fixup_pos + sizeof(int32_t));
1376      long_at_put(fixup_pos, imm32);
1377    }
1378    disp.next(L);
1379  }
1380  while (L->is_near_linked()) {
1381    int fixup_pos = L->near_link_pos();
1382    int offset_to_next =
1383        static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1384    DCHECK(offset_to_next <= 0);
1385    // Relative address, relative to point after address.
1386    int disp = pos - fixup_pos - sizeof(int8_t);
1387    CHECK(0 <= disp && disp <= 127);
1388    set_byte_at(fixup_pos, disp);
1389    if (offset_to_next < 0) {
1390      L->link_to(fixup_pos + offset_to_next, Label::kNear);
1391    } else {
1392      L->UnuseNear();
1393    }
1394  }
1395  L->bind_to(pos);
1396}
1397
1398
1399void Assembler::bind(Label* L) {
1400  EnsureSpace ensure_space(this);
1401  DCHECK(!L->is_bound());  // label can only be bound once
1402  bind_to(L, pc_offset());
1403}
1404
1405
1406void Assembler::call(Label* L) {
1407  positions_recorder()->WriteRecordedPositions();
1408  EnsureSpace ensure_space(this);
1409  if (L->is_bound()) {
1410    const int long_size = 5;
1411    int offs = L->pos() - pc_offset();
1412    DCHECK(offs <= 0);
1413    // 1110 1000 #32-bit disp.
1414    EMIT(0xE8);
1415    emit(offs - long_size);
1416  } else {
1417    // 1110 1000 #32-bit disp.
1418    EMIT(0xE8);
1419    emit_disp(L, Displacement::OTHER);
1420  }
1421}
1422
1423
1424void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1425  positions_recorder()->WriteRecordedPositions();
1426  EnsureSpace ensure_space(this);
1427  DCHECK(!RelocInfo::IsCodeTarget(rmode));
1428  EMIT(0xE8);
1429  if (RelocInfo::IsRuntimeEntry(rmode)) {
1430    emit(reinterpret_cast<uint32_t>(entry), rmode);
1431  } else {
1432    emit(entry - (pc_ + sizeof(int32_t)), rmode);
1433  }
1434}
1435
1436
1437int Assembler::CallSize(const Operand& adr) {
1438  // Call size is 1 (opcode) + adr.len_ (operand).
1439  return 1 + adr.len_;
1440}
1441
1442
1443void Assembler::call(const Operand& adr) {
1444  positions_recorder()->WriteRecordedPositions();
1445  EnsureSpace ensure_space(this);
1446  EMIT(0xFF);
1447  emit_operand(edx, adr);
1448}
1449
1450
1451int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
1452  return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
1453}
1454
1455
1456void Assembler::call(Handle<Code> code,
1457                     RelocInfo::Mode rmode,
1458                     TypeFeedbackId ast_id) {
1459  positions_recorder()->WriteRecordedPositions();
1460  EnsureSpace ensure_space(this);
1461  DCHECK(RelocInfo::IsCodeTarget(rmode)
1462      || rmode == RelocInfo::CODE_AGE_SEQUENCE);
1463  EMIT(0xE8);
1464  emit(code, rmode, ast_id);
1465}
1466
1467
1468void Assembler::jmp(Label* L, Label::Distance distance) {
1469  EnsureSpace ensure_space(this);
1470  if (L->is_bound()) {
1471    const int short_size = 2;
1472    const int long_size  = 5;
1473    int offs = L->pos() - pc_offset();
1474    DCHECK(offs <= 0);
1475    if (is_int8(offs - short_size)) {
1476      // 1110 1011 #8-bit disp.
1477      EMIT(0xEB);
1478      EMIT((offs - short_size) & 0xFF);
1479    } else {
1480      // 1110 1001 #32-bit disp.
1481      EMIT(0xE9);
1482      emit(offs - long_size);
1483    }
1484  } else if (distance == Label::kNear) {
1485    EMIT(0xEB);
1486    emit_near_disp(L);
1487  } else {
1488    // 1110 1001 #32-bit disp.
1489    EMIT(0xE9);
1490    emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1491  }
1492}
1493
1494
1495void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1496  EnsureSpace ensure_space(this);
1497  DCHECK(!RelocInfo::IsCodeTarget(rmode));
1498  EMIT(0xE9);
1499  if (RelocInfo::IsRuntimeEntry(rmode)) {
1500    emit(reinterpret_cast<uint32_t>(entry), rmode);
1501  } else {
1502    emit(entry - (pc_ + sizeof(int32_t)), rmode);
1503  }
1504}
1505
1506
1507void Assembler::jmp(const Operand& adr) {
1508  EnsureSpace ensure_space(this);
1509  EMIT(0xFF);
1510  emit_operand(esp, adr);
1511}
1512
1513
1514void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1515  EnsureSpace ensure_space(this);
1516  DCHECK(RelocInfo::IsCodeTarget(rmode));
1517  EMIT(0xE9);
1518  emit(code, rmode);
1519}
1520
1521
1522void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1523  EnsureSpace ensure_space(this);
1524  DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1525  if (L->is_bound()) {
1526    const int short_size = 2;
1527    const int long_size  = 6;
1528    int offs = L->pos() - pc_offset();
1529    DCHECK(offs <= 0);
1530    if (is_int8(offs - short_size)) {
1531      // 0111 tttn #8-bit disp
1532      EMIT(0x70 | cc);
1533      EMIT((offs - short_size) & 0xFF);
1534    } else {
1535      // 0000 1111 1000 tttn #32-bit disp
1536      EMIT(0x0F);
1537      EMIT(0x80 | cc);
1538      emit(offs - long_size);
1539    }
1540  } else if (distance == Label::kNear) {
1541    EMIT(0x70 | cc);
1542    emit_near_disp(L);
1543  } else {
1544    // 0000 1111 1000 tttn #32-bit disp
1545    // Note: could eliminate cond. jumps to this jump if condition
1546    //       is the same however, seems to be rather unlikely case.
1547    EMIT(0x0F);
1548    EMIT(0x80 | cc);
1549    emit_disp(L, Displacement::OTHER);
1550  }
1551}
1552
1553
1554void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1555  EnsureSpace ensure_space(this);
1556  DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1557  // 0000 1111 1000 tttn #32-bit disp.
1558  EMIT(0x0F);
1559  EMIT(0x80 | cc);
1560  if (RelocInfo::IsRuntimeEntry(rmode)) {
1561    emit(reinterpret_cast<uint32_t>(entry), rmode);
1562  } else {
1563    emit(entry - (pc_ + sizeof(int32_t)), rmode);
1564  }
1565}
1566
1567
1568void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
1569  EnsureSpace ensure_space(this);
1570  // 0000 1111 1000 tttn #32-bit disp
1571  EMIT(0x0F);
1572  EMIT(0x80 | cc);
1573  emit(code, rmode);
1574}
1575
1576
1577// FPU instructions.
1578
1579void Assembler::fld(int i) {
1580  EnsureSpace ensure_space(this);
1581  emit_farith(0xD9, 0xC0, i);
1582}
1583
1584
1585void Assembler::fstp(int i) {
1586  EnsureSpace ensure_space(this);
1587  emit_farith(0xDD, 0xD8, i);
1588}
1589
1590
1591void Assembler::fld1() {
1592  EnsureSpace ensure_space(this);
1593  EMIT(0xD9);
1594  EMIT(0xE8);
1595}
1596
1597
1598void Assembler::fldpi() {
1599  EnsureSpace ensure_space(this);
1600  EMIT(0xD9);
1601  EMIT(0xEB);
1602}
1603
1604
1605void Assembler::fldz() {
1606  EnsureSpace ensure_space(this);
1607  EMIT(0xD9);
1608  EMIT(0xEE);
1609}
1610
1611
1612void Assembler::fldln2() {
1613  EnsureSpace ensure_space(this);
1614  EMIT(0xD9);
1615  EMIT(0xED);
1616}
1617
1618
1619void Assembler::fld_s(const Operand& adr) {
1620  EnsureSpace ensure_space(this);
1621  EMIT(0xD9);
1622  emit_operand(eax, adr);
1623}
1624
1625
1626void Assembler::fld_d(const Operand& adr) {
1627  EnsureSpace ensure_space(this);
1628  EMIT(0xDD);
1629  emit_operand(eax, adr);
1630}
1631
1632
1633void Assembler::fstp_s(const Operand& adr) {
1634  EnsureSpace ensure_space(this);
1635  EMIT(0xD9);
1636  emit_operand(ebx, adr);
1637}
1638
1639
1640void Assembler::fst_s(const Operand& adr) {
1641  EnsureSpace ensure_space(this);
1642  EMIT(0xD9);
1643  emit_operand(edx, adr);
1644}
1645
1646
1647void Assembler::fstp_d(const Operand& adr) {
1648  EnsureSpace ensure_space(this);
1649  EMIT(0xDD);
1650  emit_operand(ebx, adr);
1651}
1652
1653
1654void Assembler::fst_d(const Operand& adr) {
1655  EnsureSpace ensure_space(this);
1656  EMIT(0xDD);
1657  emit_operand(edx, adr);
1658}
1659
1660
1661void Assembler::fild_s(const Operand& adr) {
1662  EnsureSpace ensure_space(this);
1663  EMIT(0xDB);
1664  emit_operand(eax, adr);
1665}
1666
1667
1668void Assembler::fild_d(const Operand& adr) {
1669  EnsureSpace ensure_space(this);
1670  EMIT(0xDF);
1671  emit_operand(ebp, adr);
1672}
1673
1674
1675void Assembler::fistp_s(const Operand& adr) {
1676  EnsureSpace ensure_space(this);
1677  EMIT(0xDB);
1678  emit_operand(ebx, adr);
1679}
1680
1681
1682void Assembler::fisttp_s(const Operand& adr) {
1683  DCHECK(IsEnabled(SSE3));
1684  EnsureSpace ensure_space(this);
1685  EMIT(0xDB);
1686  emit_operand(ecx, adr);
1687}
1688
1689
1690void Assembler::fisttp_d(const Operand& adr) {
1691  DCHECK(IsEnabled(SSE3));
1692  EnsureSpace ensure_space(this);
1693  EMIT(0xDD);
1694  emit_operand(ecx, adr);
1695}
1696
1697
1698void Assembler::fist_s(const Operand& adr) {
1699  EnsureSpace ensure_space(this);
1700  EMIT(0xDB);
1701  emit_operand(edx, adr);
1702}
1703
1704
1705void Assembler::fistp_d(const Operand& adr) {
1706  EnsureSpace ensure_space(this);
1707  EMIT(0xDF);
1708  emit_operand(edi, adr);
1709}
1710
1711
1712void Assembler::fabs() {
1713  EnsureSpace ensure_space(this);
1714  EMIT(0xD9);
1715  EMIT(0xE1);
1716}
1717
1718
1719void Assembler::fchs() {
1720  EnsureSpace ensure_space(this);
1721  EMIT(0xD9);
1722  EMIT(0xE0);
1723}
1724
1725
1726void Assembler::fcos() {
1727  EnsureSpace ensure_space(this);
1728  EMIT(0xD9);
1729  EMIT(0xFF);
1730}
1731
1732
1733void Assembler::fsin() {
1734  EnsureSpace ensure_space(this);
1735  EMIT(0xD9);
1736  EMIT(0xFE);
1737}
1738
1739
1740void Assembler::fptan() {
1741  EnsureSpace ensure_space(this);
1742  EMIT(0xD9);
1743  EMIT(0xF2);
1744}
1745
1746
1747void Assembler::fyl2x() {
1748  EnsureSpace ensure_space(this);
1749  EMIT(0xD9);
1750  EMIT(0xF1);
1751}
1752
1753
1754void Assembler::f2xm1() {
1755  EnsureSpace ensure_space(this);
1756  EMIT(0xD9);
1757  EMIT(0xF0);
1758}
1759
1760
1761void Assembler::fscale() {
1762  EnsureSpace ensure_space(this);
1763  EMIT(0xD9);
1764  EMIT(0xFD);
1765}
1766
1767
1768void Assembler::fninit() {
1769  EnsureSpace ensure_space(this);
1770  EMIT(0xDB);
1771  EMIT(0xE3);
1772}
1773
1774
1775void Assembler::fadd(int i) {
1776  EnsureSpace ensure_space(this);
1777  emit_farith(0xDC, 0xC0, i);
1778}
1779
1780
1781void Assembler::fadd_i(int i) {
1782  EnsureSpace ensure_space(this);
1783  emit_farith(0xD8, 0xC0, i);
1784}
1785
1786
1787void Assembler::fsub(int i) {
1788  EnsureSpace ensure_space(this);
1789  emit_farith(0xDC, 0xE8, i);
1790}
1791
1792
1793void Assembler::fsub_i(int i) {
1794  EnsureSpace ensure_space(this);
1795  emit_farith(0xD8, 0xE0, i);
1796}
1797
1798
1799void Assembler::fisub_s(const Operand& adr) {
1800  EnsureSpace ensure_space(this);
1801  EMIT(0xDA);
1802  emit_operand(esp, adr);
1803}
1804
1805
1806void Assembler::fmul_i(int i) {
1807  EnsureSpace ensure_space(this);
1808  emit_farith(0xD8, 0xC8, i);
1809}
1810
1811
1812void Assembler::fmul(int i) {
1813  EnsureSpace ensure_space(this);
1814  emit_farith(0xDC, 0xC8, i);
1815}
1816
1817
1818void Assembler::fdiv(int i) {
1819  EnsureSpace ensure_space(this);
1820  emit_farith(0xDC, 0xF8, i);
1821}
1822
1823
1824void Assembler::fdiv_i(int i) {
1825  EnsureSpace ensure_space(this);
1826  emit_farith(0xD8, 0xF0, i);
1827}
1828
1829
1830void Assembler::faddp(int i) {
1831  EnsureSpace ensure_space(this);
1832  emit_farith(0xDE, 0xC0, i);
1833}
1834
1835
1836void Assembler::fsubp(int i) {
1837  EnsureSpace ensure_space(this);
1838  emit_farith(0xDE, 0xE8, i);
1839}
1840
1841
1842void Assembler::fsubrp(int i) {
1843  EnsureSpace ensure_space(this);
1844  emit_farith(0xDE, 0xE0, i);
1845}
1846
1847
1848void Assembler::fmulp(int i) {
1849  EnsureSpace ensure_space(this);
1850  emit_farith(0xDE, 0xC8, i);
1851}
1852
1853
1854void Assembler::fdivp(int i) {
1855  EnsureSpace ensure_space(this);
1856  emit_farith(0xDE, 0xF8, i);
1857}
1858
1859
1860void Assembler::fprem() {
1861  EnsureSpace ensure_space(this);
1862  EMIT(0xD9);
1863  EMIT(0xF8);
1864}
1865
1866
1867void Assembler::fprem1() {
1868  EnsureSpace ensure_space(this);
1869  EMIT(0xD9);
1870  EMIT(0xF5);
1871}
1872
1873
1874void Assembler::fxch(int i) {
1875  EnsureSpace ensure_space(this);
1876  emit_farith(0xD9, 0xC8, i);
1877}
1878
1879
1880void Assembler::fincstp() {
1881  EnsureSpace ensure_space(this);
1882  EMIT(0xD9);
1883  EMIT(0xF7);
1884}
1885
1886
1887void Assembler::ffree(int i) {
1888  EnsureSpace ensure_space(this);
1889  emit_farith(0xDD, 0xC0, i);
1890}
1891
1892
1893void Assembler::ftst() {
1894  EnsureSpace ensure_space(this);
1895  EMIT(0xD9);
1896  EMIT(0xE4);
1897}
1898
1899
1900void Assembler::fucomp(int i) {
1901  EnsureSpace ensure_space(this);
1902  emit_farith(0xDD, 0xE8, i);
1903}
1904
1905
1906void Assembler::fucompp() {
1907  EnsureSpace ensure_space(this);
1908  EMIT(0xDA);
1909  EMIT(0xE9);
1910}
1911
1912
1913void Assembler::fucomi(int i) {
1914  EnsureSpace ensure_space(this);
1915  EMIT(0xDB);
1916  EMIT(0xE8 + i);
1917}
1918
1919
1920void Assembler::fucomip() {
1921  EnsureSpace ensure_space(this);
1922  EMIT(0xDF);
1923  EMIT(0xE9);
1924}
1925
1926
1927void Assembler::fcompp() {
1928  EnsureSpace ensure_space(this);
1929  EMIT(0xDE);
1930  EMIT(0xD9);
1931}
1932
1933
1934void Assembler::fnstsw_ax() {
1935  EnsureSpace ensure_space(this);
1936  EMIT(0xDF);
1937  EMIT(0xE0);
1938}
1939
1940
1941void Assembler::fwait() {
1942  EnsureSpace ensure_space(this);
1943  EMIT(0x9B);
1944}
1945
1946
1947void Assembler::frndint() {
1948  EnsureSpace ensure_space(this);
1949  EMIT(0xD9);
1950  EMIT(0xFC);
1951}
1952
1953
1954void Assembler::fnclex() {
1955  EnsureSpace ensure_space(this);
1956  EMIT(0xDB);
1957  EMIT(0xE2);
1958}
1959
1960
1961void Assembler::sahf() {
1962  EnsureSpace ensure_space(this);
1963  EMIT(0x9E);
1964}
1965
1966
1967void Assembler::setcc(Condition cc, Register reg) {
1968  DCHECK(reg.is_byte_register());
1969  EnsureSpace ensure_space(this);
1970  EMIT(0x0F);
1971  EMIT(0x90 | cc);
1972  EMIT(0xC0 | reg.code());
1973}
1974
1975
1976void Assembler::cvttss2si(Register dst, const Operand& src) {
1977  EnsureSpace ensure_space(this);
1978  EMIT(0xF3);
1979  EMIT(0x0F);
1980  EMIT(0x2C);
1981  emit_operand(dst, src);
1982}
1983
1984
1985void Assembler::cvttsd2si(Register dst, const Operand& src) {
1986  EnsureSpace ensure_space(this);
1987  EMIT(0xF2);
1988  EMIT(0x0F);
1989  EMIT(0x2C);
1990  emit_operand(dst, src);
1991}
1992
1993
1994void Assembler::cvtsd2si(Register dst, XMMRegister src) {
1995  EnsureSpace ensure_space(this);
1996  EMIT(0xF2);
1997  EMIT(0x0F);
1998  EMIT(0x2D);
1999  emit_sse_operand(dst, src);
2000}
2001
2002
2003void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
2004  EnsureSpace ensure_space(this);
2005  EMIT(0xF2);
2006  EMIT(0x0F);
2007  EMIT(0x2A);
2008  emit_sse_operand(dst, src);
2009}
2010
2011
2012void Assembler::cvtss2sd(XMMRegister dst, const Operand& src) {
2013  EnsureSpace ensure_space(this);
2014  EMIT(0xF3);
2015  EMIT(0x0F);
2016  EMIT(0x5A);
2017  emit_sse_operand(dst, src);
2018}
2019
2020
2021void Assembler::cvtsd2ss(XMMRegister dst, const Operand& src) {
2022  EnsureSpace ensure_space(this);
2023  EMIT(0xF2);
2024  EMIT(0x0F);
2025  EMIT(0x5A);
2026  emit_sse_operand(dst, src);
2027}
2028
2029
2030void Assembler::addsd(XMMRegister dst, const Operand& src) {
2031  EnsureSpace ensure_space(this);
2032  EMIT(0xF2);
2033  EMIT(0x0F);
2034  EMIT(0x58);
2035  emit_sse_operand(dst, src);
2036}
2037
2038
2039void Assembler::mulsd(XMMRegister dst, const Operand& src) {
2040  EnsureSpace ensure_space(this);
2041  EMIT(0xF2);
2042  EMIT(0x0F);
2043  EMIT(0x59);
2044  emit_sse_operand(dst, src);
2045}
2046
2047
2048void Assembler::subsd(XMMRegister dst, const Operand& src) {
2049  EnsureSpace ensure_space(this);
2050  EMIT(0xF2);
2051  EMIT(0x0F);
2052  EMIT(0x5C);
2053  emit_sse_operand(dst, src);
2054}
2055
2056
2057void Assembler::divsd(XMMRegister dst, const Operand& src) {
2058  EnsureSpace ensure_space(this);
2059  EMIT(0xF2);
2060  EMIT(0x0F);
2061  EMIT(0x5E);
2062  emit_sse_operand(dst, src);
2063}
2064
2065
2066void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2067  EnsureSpace ensure_space(this);
2068  EMIT(0x66);
2069  EMIT(0x0F);
2070  EMIT(0x57);
2071  emit_sse_operand(dst, src);
2072}
2073
2074
2075void Assembler::andps(XMMRegister dst, const Operand& src) {
2076  EnsureSpace ensure_space(this);
2077  EMIT(0x0F);
2078  EMIT(0x54);
2079  emit_sse_operand(dst, src);
2080}
2081
2082
2083void Assembler::orps(XMMRegister dst, const Operand& src) {
2084  EnsureSpace ensure_space(this);
2085  EMIT(0x0F);
2086  EMIT(0x56);
2087  emit_sse_operand(dst, src);
2088}
2089
2090
2091void Assembler::xorps(XMMRegister dst, const Operand& src) {
2092  EnsureSpace ensure_space(this);
2093  EMIT(0x0F);
2094  EMIT(0x57);
2095  emit_sse_operand(dst, src);
2096}
2097
2098
2099void Assembler::addps(XMMRegister dst, const Operand& src) {
2100  EnsureSpace ensure_space(this);
2101  EMIT(0x0F);
2102  EMIT(0x58);
2103  emit_sse_operand(dst, src);
2104}
2105
2106
2107void Assembler::subps(XMMRegister dst, const Operand& src) {
2108  EnsureSpace ensure_space(this);
2109  EMIT(0x0F);
2110  EMIT(0x5C);
2111  emit_sse_operand(dst, src);
2112}
2113
2114
2115void Assembler::mulps(XMMRegister dst, const Operand& src) {
2116  EnsureSpace ensure_space(this);
2117  EMIT(0x0F);
2118  EMIT(0x59);
2119  emit_sse_operand(dst, src);
2120}
2121
2122
2123void Assembler::divps(XMMRegister dst, const Operand& src) {
2124  EnsureSpace ensure_space(this);
2125  EMIT(0x0F);
2126  EMIT(0x5E);
2127  emit_sse_operand(dst, src);
2128}
2129
2130
2131void Assembler::sqrtsd(XMMRegister dst, const Operand& src) {
2132  EnsureSpace ensure_space(this);
2133  EMIT(0xF2);
2134  EMIT(0x0F);
2135  EMIT(0x51);
2136  emit_sse_operand(dst, src);
2137}
2138
2139
2140void Assembler::andpd(XMMRegister dst, XMMRegister src) {
2141  EnsureSpace ensure_space(this);
2142  EMIT(0x66);
2143  EMIT(0x0F);
2144  EMIT(0x54);
2145  emit_sse_operand(dst, src);
2146}
2147
2148
2149void Assembler::orpd(XMMRegister dst, XMMRegister src) {
2150  EnsureSpace ensure_space(this);
2151  EMIT(0x66);
2152  EMIT(0x0F);
2153  EMIT(0x56);
2154  emit_sse_operand(dst, src);
2155}
2156
2157
2158void Assembler::ucomisd(XMMRegister dst, const Operand& src) {
2159  EnsureSpace ensure_space(this);
2160  EMIT(0x66);
2161  EMIT(0x0F);
2162  EMIT(0x2E);
2163  emit_sse_operand(dst, src);
2164}
2165
2166
2167void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2168  DCHECK(IsEnabled(SSE4_1));
2169  EnsureSpace ensure_space(this);
2170  EMIT(0x66);
2171  EMIT(0x0F);
2172  EMIT(0x3A);
2173  EMIT(0x0A);
2174  emit_sse_operand(dst, src);
2175  // Mask precision exeption.
2176  EMIT(static_cast<byte>(mode) | 0x8);
2177}
2178
2179
2180void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2181  DCHECK(IsEnabled(SSE4_1));
2182  EnsureSpace ensure_space(this);
2183  EMIT(0x66);
2184  EMIT(0x0F);
2185  EMIT(0x3A);
2186  EMIT(0x0B);
2187  emit_sse_operand(dst, src);
2188  // Mask precision exeption.
2189  EMIT(static_cast<byte>(mode) | 0x8);
2190}
2191
2192
2193void Assembler::movmskpd(Register dst, XMMRegister src) {
2194  EnsureSpace ensure_space(this);
2195  EMIT(0x66);
2196  EMIT(0x0F);
2197  EMIT(0x50);
2198  emit_sse_operand(dst, src);
2199}
2200
2201
2202void Assembler::movmskps(Register dst, XMMRegister src) {
2203  EnsureSpace ensure_space(this);
2204  EMIT(0x0F);
2205  EMIT(0x50);
2206  emit_sse_operand(dst, src);
2207}
2208
2209
2210void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
2211  EnsureSpace ensure_space(this);
2212  EMIT(0x66);
2213  EMIT(0x0F);
2214  EMIT(0x76);
2215  emit_sse_operand(dst, src);
2216}
2217
2218
2219void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2220  EnsureSpace ensure_space(this);
2221  EMIT(0x66);
2222  EMIT(0x0F);
2223  EMIT(0x62);
2224  emit_sse_operand(dst, src);
2225}
2226
2227
2228void Assembler::punpckhdq(XMMRegister dst, XMMRegister src) {
2229  EnsureSpace ensure_space(this);
2230  EMIT(0x66);
2231  EMIT(0x0F);
2232  EMIT(0x6A);
2233  emit_sse_operand(dst, src);
2234}
2235
2236
2237void Assembler::maxsd(XMMRegister dst, const Operand& src) {
2238  EnsureSpace ensure_space(this);
2239  EMIT(0xF2);
2240  EMIT(0x0F);
2241  EMIT(0x5F);
2242  emit_sse_operand(dst, src);
2243}
2244
2245
2246void Assembler::minsd(XMMRegister dst, const Operand& src) {
2247  EnsureSpace ensure_space(this);
2248  EMIT(0xF2);
2249  EMIT(0x0F);
2250  EMIT(0x5D);
2251  emit_sse_operand(dst, src);
2252}
2253
2254
2255void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
2256  EnsureSpace ensure_space(this);
2257  EMIT(0xF2);
2258  EMIT(0x0F);
2259  EMIT(0xC2);
2260  emit_sse_operand(dst, src);
2261  EMIT(1);  // LT == 1
2262}
2263
2264
2265void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2266  EnsureSpace ensure_space(this);
2267  EMIT(0x0F);
2268  EMIT(0x28);
2269  emit_sse_operand(dst, src);
2270}
2271
2272
2273void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
2274  DCHECK(is_uint8(imm8));
2275  EnsureSpace ensure_space(this);
2276  EMIT(0x0F);
2277  EMIT(0xC6);
2278  emit_sse_operand(dst, src);
2279  EMIT(imm8);
2280}
2281
2282
2283void Assembler::movdqa(const Operand& dst, XMMRegister src) {
2284  EnsureSpace ensure_space(this);
2285  EMIT(0x66);
2286  EMIT(0x0F);
2287  EMIT(0x7F);
2288  emit_sse_operand(src, dst);
2289}
2290
2291
2292void Assembler::movdqa(XMMRegister dst, const Operand& src) {
2293  EnsureSpace ensure_space(this);
2294  EMIT(0x66);
2295  EMIT(0x0F);
2296  EMIT(0x6F);
2297  emit_sse_operand(dst, src);
2298}
2299
2300
2301void Assembler::movdqu(const Operand& dst, XMMRegister src ) {
2302  EnsureSpace ensure_space(this);
2303  EMIT(0xF3);
2304  EMIT(0x0F);
2305  EMIT(0x7F);
2306  emit_sse_operand(src, dst);
2307}
2308
2309
2310void Assembler::movdqu(XMMRegister dst, const Operand& src) {
2311  EnsureSpace ensure_space(this);
2312  EMIT(0xF3);
2313  EMIT(0x0F);
2314  EMIT(0x6F);
2315  emit_sse_operand(dst, src);
2316}
2317
2318
2319void Assembler::prefetch(const Operand& src, int level) {
2320  DCHECK(is_uint2(level));
2321  EnsureSpace ensure_space(this);
2322  EMIT(0x0F);
2323  EMIT(0x18);
2324  // Emit hint number in Reg position of RegR/M.
2325  XMMRegister code = XMMRegister::from_code(level);
2326  emit_sse_operand(code, src);
2327}
2328
2329
2330void Assembler::movsd(const Operand& dst, XMMRegister src ) {
2331  EnsureSpace ensure_space(this);
2332  EMIT(0xF2);  // double
2333  EMIT(0x0F);
2334  EMIT(0x11);  // store
2335  emit_sse_operand(src, dst);
2336}
2337
2338
2339void Assembler::movsd(XMMRegister dst, const Operand& src) {
2340  EnsureSpace ensure_space(this);
2341  EMIT(0xF2);  // double
2342  EMIT(0x0F);
2343  EMIT(0x10);  // load
2344  emit_sse_operand(dst, src);
2345}
2346
2347
2348void Assembler::movss(const Operand& dst, XMMRegister src ) {
2349  EnsureSpace ensure_space(this);
2350  EMIT(0xF3);  // float
2351  EMIT(0x0F);
2352  EMIT(0x11);  // store
2353  emit_sse_operand(src, dst);
2354}
2355
2356
2357void Assembler::movss(XMMRegister dst, const Operand& src) {
2358  EnsureSpace ensure_space(this);
2359  EMIT(0xF3);  // float
2360  EMIT(0x0F);
2361  EMIT(0x10);  // load
2362  emit_sse_operand(dst, src);
2363}
2364
2365
2366void Assembler::movd(XMMRegister dst, const Operand& src) {
2367  EnsureSpace ensure_space(this);
2368  EMIT(0x66);
2369  EMIT(0x0F);
2370  EMIT(0x6E);
2371  emit_sse_operand(dst, src);
2372}
2373
2374
2375void Assembler::movd(const Operand& dst, XMMRegister src) {
2376  EnsureSpace ensure_space(this);
2377  EMIT(0x66);
2378  EMIT(0x0F);
2379  EMIT(0x7E);
2380  emit_sse_operand(src, dst);
2381}
2382
2383
2384void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
2385  DCHECK(IsEnabled(SSE4_1));
2386  DCHECK(is_uint8(imm8));
2387  EnsureSpace ensure_space(this);
2388  EMIT(0x66);
2389  EMIT(0x0F);
2390  EMIT(0x3A);
2391  EMIT(0x17);
2392  emit_sse_operand(src, dst);
2393  EMIT(imm8);
2394}
2395
2396
2397void Assembler::pand(XMMRegister dst, XMMRegister src) {
2398  EnsureSpace ensure_space(this);
2399  EMIT(0x66);
2400  EMIT(0x0F);
2401  EMIT(0xDB);
2402  emit_sse_operand(dst, src);
2403}
2404
2405
2406void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2407  EnsureSpace ensure_space(this);
2408  EMIT(0x66);
2409  EMIT(0x0F);
2410  EMIT(0xEF);
2411  emit_sse_operand(dst, src);
2412}
2413
2414
2415void Assembler::por(XMMRegister dst, XMMRegister src) {
2416  EnsureSpace ensure_space(this);
2417  EMIT(0x66);
2418  EMIT(0x0F);
2419  EMIT(0xEB);
2420  emit_sse_operand(dst, src);
2421}
2422
2423
2424void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2425  DCHECK(IsEnabled(SSE4_1));
2426  EnsureSpace ensure_space(this);
2427  EMIT(0x66);
2428  EMIT(0x0F);
2429  EMIT(0x38);
2430  EMIT(0x17);
2431  emit_sse_operand(dst, src);
2432}
2433
2434
2435void Assembler::pslld(XMMRegister reg, int8_t shift) {
2436  EnsureSpace ensure_space(this);
2437  EMIT(0x66);
2438  EMIT(0x0F);
2439  EMIT(0x72);
2440  emit_sse_operand(esi, reg);  // esi == 6
2441  EMIT(shift);
2442}
2443
2444
2445void Assembler::psrld(XMMRegister reg, int8_t shift) {
2446  EnsureSpace ensure_space(this);
2447  EMIT(0x66);
2448  EMIT(0x0F);
2449  EMIT(0x72);
2450  emit_sse_operand(edx, reg);  // edx == 2
2451  EMIT(shift);
2452}
2453
2454
2455void Assembler::psllq(XMMRegister reg, int8_t shift) {
2456  EnsureSpace ensure_space(this);
2457  EMIT(0x66);
2458  EMIT(0x0F);
2459  EMIT(0x73);
2460  emit_sse_operand(esi, reg);  // esi == 6
2461  EMIT(shift);
2462}
2463
2464
2465void Assembler::psllq(XMMRegister dst, XMMRegister src) {
2466  EnsureSpace ensure_space(this);
2467  EMIT(0x66);
2468  EMIT(0x0F);
2469  EMIT(0xF3);
2470  emit_sse_operand(dst, src);
2471}
2472
2473
2474void Assembler::psrlq(XMMRegister reg, int8_t shift) {
2475  EnsureSpace ensure_space(this);
2476  EMIT(0x66);
2477  EMIT(0x0F);
2478  EMIT(0x73);
2479  emit_sse_operand(edx, reg);  // edx == 2
2480  EMIT(shift);
2481}
2482
2483
2484void Assembler::psrlq(XMMRegister dst, XMMRegister src) {
2485  EnsureSpace ensure_space(this);
2486  EMIT(0x66);
2487  EMIT(0x0F);
2488  EMIT(0xD3);
2489  emit_sse_operand(dst, src);
2490}
2491
2492
2493void Assembler::pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
2494  EnsureSpace ensure_space(this);
2495  EMIT(0x66);
2496  EMIT(0x0F);
2497  EMIT(0x70);
2498  emit_sse_operand(dst, src);
2499  EMIT(shuffle);
2500}
2501
2502
2503void Assembler::pextrd(const Operand& dst, XMMRegister src, int8_t offset) {
2504  DCHECK(IsEnabled(SSE4_1));
2505  EnsureSpace ensure_space(this);
2506  EMIT(0x66);
2507  EMIT(0x0F);
2508  EMIT(0x3A);
2509  EMIT(0x16);
2510  emit_sse_operand(src, dst);
2511  EMIT(offset);
2512}
2513
2514
2515void Assembler::pinsrd(XMMRegister dst, const Operand& src, int8_t offset) {
2516  DCHECK(IsEnabled(SSE4_1));
2517  EnsureSpace ensure_space(this);
2518  EMIT(0x66);
2519  EMIT(0x0F);
2520  EMIT(0x3A);
2521  EMIT(0x22);
2522  emit_sse_operand(dst, src);
2523  EMIT(offset);
2524}
2525
2526
2527void Assembler::addss(XMMRegister dst, const Operand& src) {
2528  EnsureSpace ensure_space(this);
2529  EMIT(0xF3);
2530  EMIT(0x0F);
2531  EMIT(0x58);
2532  emit_sse_operand(dst, src);
2533}
2534
2535
2536void Assembler::subss(XMMRegister dst, const Operand& src) {
2537  EnsureSpace ensure_space(this);
2538  EMIT(0xF3);
2539  EMIT(0x0F);
2540  EMIT(0x5C);
2541  emit_sse_operand(dst, src);
2542}
2543
2544
2545void Assembler::mulss(XMMRegister dst, const Operand& src) {
2546  EnsureSpace ensure_space(this);
2547  EMIT(0xF3);
2548  EMIT(0x0F);
2549  EMIT(0x59);
2550  emit_sse_operand(dst, src);
2551}
2552
2553
2554void Assembler::divss(XMMRegister dst, const Operand& src) {
2555  EnsureSpace ensure_space(this);
2556  EMIT(0xF3);
2557  EMIT(0x0F);
2558  EMIT(0x5E);
2559  emit_sse_operand(dst, src);
2560}
2561
2562
2563void Assembler::sqrtss(XMMRegister dst, const Operand& src) {
2564  EnsureSpace ensure_space(this);
2565  EMIT(0xF3);
2566  EMIT(0x0F);
2567  EMIT(0x51);
2568  emit_sse_operand(dst, src);
2569}
2570
2571
2572void Assembler::ucomiss(XMMRegister dst, const Operand& src) {
2573  EnsureSpace ensure_space(this);
2574  EMIT(0x0f);
2575  EMIT(0x2e);
2576  emit_sse_operand(dst, src);
2577}
2578
2579
2580void Assembler::maxss(XMMRegister dst, const Operand& src) {
2581  EnsureSpace ensure_space(this);
2582  EMIT(0xF3);
2583  EMIT(0x0F);
2584  EMIT(0x5F);
2585  emit_sse_operand(dst, src);
2586}
2587
2588
2589void Assembler::minss(XMMRegister dst, const Operand& src) {
2590  EnsureSpace ensure_space(this);
2591  EMIT(0xF3);
2592  EMIT(0x0F);
2593  EMIT(0x5D);
2594  emit_sse_operand(dst, src);
2595}
2596
2597
2598// AVX instructions
2599void Assembler::vfmasd(byte op, XMMRegister dst, XMMRegister src1,
2600                       const Operand& src2) {
2601  DCHECK(IsEnabled(FMA3));
2602  EnsureSpace ensure_space(this);
2603  emit_vex_prefix(src1, kLIG, k66, k0F38, kW1);
2604  EMIT(op);
2605  emit_sse_operand(dst, src2);
2606}
2607
2608
2609void Assembler::vfmass(byte op, XMMRegister dst, XMMRegister src1,
2610                       const Operand& src2) {
2611  DCHECK(IsEnabled(FMA3));
2612  EnsureSpace ensure_space(this);
2613  emit_vex_prefix(src1, kLIG, k66, k0F38, kW0);
2614  EMIT(op);
2615  emit_sse_operand(dst, src2);
2616}
2617
2618
2619void Assembler::vsd(byte op, XMMRegister dst, XMMRegister src1,
2620                    const Operand& src2) {
2621  DCHECK(IsEnabled(AVX));
2622  EnsureSpace ensure_space(this);
2623  emit_vex_prefix(src1, kLIG, kF2, k0F, kWIG);
2624  EMIT(op);
2625  emit_sse_operand(dst, src2);
2626}
2627
2628
2629void Assembler::vss(byte op, XMMRegister dst, XMMRegister src1,
2630                    const Operand& src2) {
2631  DCHECK(IsEnabled(AVX));
2632  EnsureSpace ensure_space(this);
2633  emit_vex_prefix(src1, kLIG, kF3, k0F, kWIG);
2634  EMIT(op);
2635  emit_sse_operand(dst, src2);
2636}
2637
2638
2639void Assembler::vps(byte op, XMMRegister dst, XMMRegister src1,
2640                    const Operand& src2) {
2641  DCHECK(IsEnabled(AVX));
2642  EnsureSpace ensure_space(this);
2643  emit_vex_prefix(src1, kL128, kNone, k0F, kWIG);
2644  EMIT(op);
2645  emit_sse_operand(dst, src2);
2646}
2647
2648
2649void Assembler::vpd(byte op, XMMRegister dst, XMMRegister src1,
2650                    const Operand& src2) {
2651  DCHECK(IsEnabled(AVX));
2652  EnsureSpace ensure_space(this);
2653  emit_vex_prefix(src1, kL128, k66, k0F, kWIG);
2654  EMIT(op);
2655  emit_sse_operand(dst, src2);
2656}
2657
2658
2659void Assembler::bmi1(byte op, Register reg, Register vreg, const Operand& rm) {
2660  DCHECK(IsEnabled(BMI1));
2661  EnsureSpace ensure_space(this);
2662  emit_vex_prefix(vreg, kLZ, kNone, k0F38, kW0);
2663  EMIT(op);
2664  emit_operand(reg, rm);
2665}
2666
2667
2668void Assembler::tzcnt(Register dst, const Operand& src) {
2669  DCHECK(IsEnabled(BMI1));
2670  EnsureSpace ensure_space(this);
2671  EMIT(0xF3);
2672  EMIT(0x0F);
2673  EMIT(0xBC);
2674  emit_operand(dst, src);
2675}
2676
2677
2678void Assembler::lzcnt(Register dst, const Operand& src) {
2679  DCHECK(IsEnabled(LZCNT));
2680  EnsureSpace ensure_space(this);
2681  EMIT(0xF3);
2682  EMIT(0x0F);
2683  EMIT(0xBD);
2684  emit_operand(dst, src);
2685}
2686
2687
2688void Assembler::popcnt(Register dst, const Operand& src) {
2689  DCHECK(IsEnabled(POPCNT));
2690  EnsureSpace ensure_space(this);
2691  EMIT(0xF3);
2692  EMIT(0x0F);
2693  EMIT(0xB8);
2694  emit_operand(dst, src);
2695}
2696
2697
2698void Assembler::bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
2699                     const Operand& rm) {
2700  DCHECK(IsEnabled(BMI2));
2701  EnsureSpace ensure_space(this);
2702  emit_vex_prefix(vreg, kLZ, pp, k0F38, kW0);
2703  EMIT(op);
2704  emit_operand(reg, rm);
2705}
2706
2707
2708void Assembler::rorx(Register dst, const Operand& src, byte imm8) {
2709  DCHECK(IsEnabled(BMI2));
2710  DCHECK(is_uint8(imm8));
2711  Register vreg = {0};  // VEX.vvvv unused
2712  EnsureSpace ensure_space(this);
2713  emit_vex_prefix(vreg, kLZ, kF2, k0F3A, kW0);
2714  EMIT(0xF0);
2715  emit_operand(dst, src);
2716  EMIT(imm8);
2717}
2718
2719
2720void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
2721  Register ireg = { reg.code() };
2722  emit_operand(ireg, adr);
2723}
2724
2725
2726void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
2727  EMIT(0xC0 | dst.code() << 3 | src.code());
2728}
2729
2730
2731void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
2732  EMIT(0xC0 | dst.code() << 3 | src.code());
2733}
2734
2735
2736void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
2737  EMIT(0xC0 | (dst.code() << 3) | src.code());
2738}
2739
2740
2741void Assembler::emit_vex_prefix(XMMRegister vreg, VectorLength l, SIMDPrefix pp,
2742                                LeadingOpcode mm, VexW w) {
2743  if (mm != k0F || w != kW0) {
2744    EMIT(0xc4);
2745    // Change RXB from "110" to "111" to align with gdb disassembler.
2746    EMIT(0xe0 | mm);
2747    EMIT(w | ((~vreg.code() & 0xf) << 3) | l | pp);
2748  } else {
2749    EMIT(0xc5);
2750    EMIT(((~vreg.code()) << 3) | l | pp);
2751  }
2752}
2753
2754
2755void Assembler::emit_vex_prefix(Register vreg, VectorLength l, SIMDPrefix pp,
2756                                LeadingOpcode mm, VexW w) {
2757  XMMRegister ivreg = {vreg.code()};
2758  emit_vex_prefix(ivreg, l, pp, mm, w);
2759}
2760
2761
2762void Assembler::GrowBuffer() {
2763  DCHECK(buffer_overflow());
2764  if (!own_buffer_) FATAL("external code buffer is too small");
2765
2766  // Compute new buffer size.
2767  CodeDesc desc;  // the new buffer
2768  desc.buffer_size = 2 * buffer_size_;
2769
2770  // Some internal data structures overflow for very large buffers,
2771  // they must ensure that kMaximalBufferSize is not too large.
2772  if ((desc.buffer_size > kMaximalBufferSize) ||
2773      (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
2774    V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
2775  }
2776
2777  // Set up new buffer.
2778  desc.buffer = NewArray<byte>(desc.buffer_size);
2779  desc.origin = this;
2780  desc.instr_size = pc_offset();
2781  desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
2782
2783  // Clear the buffer in debug mode. Use 'int3' instructions to make
2784  // sure to get into problems if we ever run uninitialized code.
2785#ifdef DEBUG
2786  memset(desc.buffer, 0xCC, desc.buffer_size);
2787#endif
2788
2789  // Copy the data.
2790  int pc_delta = desc.buffer - buffer_;
2791  int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2792  MemMove(desc.buffer, buffer_, desc.instr_size);
2793  MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
2794          desc.reloc_size);
2795
2796  // Switch buffers.
2797  DeleteArray(buffer_);
2798  buffer_ = desc.buffer;
2799  buffer_size_ = desc.buffer_size;
2800  pc_ += pc_delta;
2801  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2802                               reloc_info_writer.last_pc() + pc_delta);
2803
2804  // Relocate internal references.
2805  for (auto pos : internal_reference_positions_) {
2806    int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
2807    *p += pc_delta;
2808  }
2809
2810  DCHECK(!buffer_overflow());
2811}
2812
2813
2814void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
2815  DCHECK(is_uint8(op1) && is_uint8(op2));  // wrong opcode
2816  DCHECK(is_uint8(imm8));
2817  DCHECK((op1 & 0x01) == 0);  // should be 8bit operation
2818  EMIT(op1);
2819  EMIT(op2 | dst.code());
2820  EMIT(imm8);
2821}
2822
2823
2824void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
2825  DCHECK((0 <= sel) && (sel <= 7));
2826  Register ireg = { sel };
2827  if (x.is_int8()) {
2828    EMIT(0x83);  // using a sign-extended 8-bit immediate.
2829    emit_operand(ireg, dst);
2830    EMIT(x.x_ & 0xFF);
2831  } else if (dst.is_reg(eax)) {
2832    EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
2833    emit(x);
2834  } else {
2835    EMIT(0x81);  // using a literal 32-bit immediate.
2836    emit_operand(ireg, dst);
2837    emit(x);
2838  }
2839}
2840
2841
2842void Assembler::emit_operand(Register reg, const Operand& adr) {
2843  const unsigned length = adr.len_;
2844  DCHECK(length > 0);
2845
2846  // Emit updated ModRM byte containing the given register.
2847  pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2848
2849  // Emit the rest of the encoded operand.
2850  for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
2851  pc_ += length;
2852
2853  // Emit relocation information if necessary.
2854  if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
2855    pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
2856    RecordRelocInfo(adr.rmode_);
2857    if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) {  // Fixup for labels
2858      emit_label(*reinterpret_cast<Label**>(pc_));
2859    } else {
2860      pc_ += sizeof(int32_t);
2861    }
2862  }
2863}
2864
2865
2866void Assembler::emit_label(Label* label) {
2867  if (label->is_bound()) {
2868    internal_reference_positions_.push_back(pc_offset());
2869    emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
2870  } else {
2871    emit_disp(label, Displacement::CODE_ABSOLUTE);
2872  }
2873}
2874
2875
2876void Assembler::emit_farith(int b1, int b2, int i) {
2877  DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
2878  DCHECK(0 <= i &&  i < 8);  // illegal stack offset
2879  EMIT(b1);
2880  EMIT(b2 + i);
2881}
2882
2883
2884void Assembler::db(uint8_t data) {
2885  EnsureSpace ensure_space(this);
2886  EMIT(data);
2887}
2888
2889
2890void Assembler::dd(uint32_t data) {
2891  EnsureSpace ensure_space(this);
2892  emit(data);
2893}
2894
2895
2896void Assembler::dq(uint64_t data) {
2897  EnsureSpace ensure_space(this);
2898  emit_q(data);
2899}
2900
2901
2902void Assembler::dd(Label* label) {
2903  EnsureSpace ensure_space(this);
2904  RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2905  emit_label(label);
2906}
2907
2908
2909void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2910  DCHECK(!RelocInfo::IsNone(rmode));
2911  // Don't record external references unless the heap will be serialized.
2912  if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2913      !serializer_enabled() && !emit_debug_code()) {
2914    return;
2915  }
2916  RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
2917  reloc_info_writer.Write(&rinfo);
2918}
2919
2920
2921#ifdef GENERATED_CODE_COVERAGE
2922static FILE* coverage_log = NULL;
2923
2924
2925static void InitCoverageLog() {
2926  char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
2927  if (file_name != NULL) {
2928    coverage_log = fopen(file_name, "aw+");
2929  }
2930}
2931
2932
2933void LogGeneratedCodeCoverage(const char* file_line) {
2934  const char* return_address = (&file_line)[-1];
2935  char* push_insn = const_cast<char*>(return_address - 12);
2936  push_insn[0] = 0xeb;  // Relative branch insn.
2937  push_insn[1] = 13;    // Skip over coverage insns.
2938  if (coverage_log != NULL) {
2939    fprintf(coverage_log, "%s\n", file_line);
2940    fflush(coverage_log);
2941  }
2942}
2943
2944#endif
2945
2946}  // namespace internal
2947}  // namespace v8
2948
2949#endif  // V8_TARGET_ARCH_IA32
2950