assembler-ia32.cc revision 402d937239b0e2fd11bf2f4fe972ad78aa9fd481
1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
33// The original source code covered by the above license above has been modified
34// significantly by Google Inc.
35// Copyright 2006-2008 the V8 project authors. All rights reserved.
36
37#include "v8.h"
38
39#include "disassembler.h"
40#include "macro-assembler.h"
41#include "serialize.h"
42
43namespace v8 {
44namespace internal {
45
46// -----------------------------------------------------------------------------
47// Implementation of CpuFeatures
48
49// Safe default is no features.
50uint64_t CpuFeatures::supported_ = 0;
51uint64_t CpuFeatures::enabled_ = 0;
52uint64_t CpuFeatures::found_by_runtime_probing_ = 0;
53
54
55// The Probe method needs executable memory, so it uses Heap::CreateCode.
56// Allocation failure is silent and leads to safe default.
57void CpuFeatures::Probe() {
58  ASSERT(Heap::HasBeenSetup());
59  ASSERT(supported_ == 0);
60  if (Serializer::enabled()) {
61    supported_ |= OS::CpuFeaturesImpliedByPlatform();
62    return;  // No features if we might serialize.
63  }
64
65  Assembler assm(NULL, 0);
66  Label cpuid, done;
67#define __ assm.
68  // Save old esp, since we are going to modify the stack.
69  __ push(ebp);
70  __ pushfd();
71  __ push(ecx);
72  __ push(ebx);
73  __ mov(ebp, Operand(esp));
74
75  // If we can modify bit 21 of the EFLAGS register, then CPUID is supported.
76  __ pushfd();
77  __ pop(eax);
78  __ mov(edx, Operand(eax));
79  __ xor_(eax, 0x200000);  // Flip bit 21.
80  __ push(eax);
81  __ popfd();
82  __ pushfd();
83  __ pop(eax);
84  __ xor_(eax, Operand(edx));  // Different if CPUID is supported.
85  __ j(not_zero, &cpuid);
86
87  // CPUID not supported. Clear the supported features in edx:eax.
88  __ xor_(eax, Operand(eax));
89  __ xor_(edx, Operand(edx));
90  __ jmp(&done);
91
92  // Invoke CPUID with 1 in eax to get feature information in
93  // ecx:edx. Temporarily enable CPUID support because we know it's
94  // safe here.
95  __ bind(&cpuid);
96  __ mov(eax, 1);
97  supported_ = (1 << CPUID);
98  { Scope fscope(CPUID);
99    __ cpuid();
100  }
101  supported_ = 0;
102
103  // Move the result from ecx:edx to edx:eax and make sure to mark the
104  // CPUID feature as supported.
105  __ mov(eax, Operand(edx));
106  __ or_(eax, 1 << CPUID);
107  __ mov(edx, Operand(ecx));
108
109  // Done.
110  __ bind(&done);
111  __ mov(esp, Operand(ebp));
112  __ pop(ebx);
113  __ pop(ecx);
114  __ popfd();
115  __ pop(ebp);
116  __ ret(0);
117#undef __
118
119  CodeDesc desc;
120  assm.GetCode(&desc);
121  Object* code = Heap::CreateCode(desc,
122                                  NULL,
123                                  Code::ComputeFlags(Code::STUB),
124                                  Handle<Code>::null());
125  if (!code->IsCode()) return;
126  LOG(CodeCreateEvent(Logger::BUILTIN_TAG,
127                      Code::cast(code), "CpuFeatures::Probe"));
128  typedef uint64_t (*F0)();
129  F0 probe = FUNCTION_CAST<F0>(Code::cast(code)->entry());
130  supported_ = probe();
131  found_by_runtime_probing_ = supported_;
132  uint64_t os_guarantees = OS::CpuFeaturesImpliedByPlatform();
133  supported_ |= os_guarantees;
134  found_by_runtime_probing_ &= ~os_guarantees;
135}
136
137
138// -----------------------------------------------------------------------------
139// Implementation of Displacement
140
141void Displacement::init(Label* L, Type type) {
142  ASSERT(!L->is_bound());
143  int next = 0;
144  if (L->is_linked()) {
145    next = L->pos();
146    ASSERT(next > 0);  // Displacements must be at positions > 0
147  }
148  // Ensure that we _never_ overflow the next field.
149  ASSERT(NextField::is_valid(Assembler::kMaximalBufferSize));
150  data_ = NextField::encode(next) | TypeField::encode(type);
151}
152
153
154// -----------------------------------------------------------------------------
155// Implementation of RelocInfo
156
157
158const int RelocInfo::kApplyMask =
159  RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
160    1 << RelocInfo::JS_RETURN | 1 << RelocInfo::INTERNAL_REFERENCE;
161
162
163void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
164  // Patch the code at the current address with the supplied instructions.
165  for (int i = 0; i < instruction_count; i++) {
166    *(pc_ + i) = *(instructions + i);
167  }
168
169  // Indicate that code has changed.
170  CPU::FlushICache(pc_, instruction_count);
171}
172
173
174// Patch the code at the current PC with a call to the target address.
175// Additional guard int3 instructions can be added if required.
176void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
177  // Call instruction takes up 5 bytes and int3 takes up one byte.
178  static const int kCallCodeSize = 5;
179  int code_size = kCallCodeSize + guard_bytes;
180
181  // Create a code patcher.
182  CodePatcher patcher(pc_, code_size);
183
184  // Add a label for checking the size of the code used for returning.
185#ifdef DEBUG
186  Label check_codesize;
187  patcher.masm()->bind(&check_codesize);
188#endif
189
190  // Patch the code.
191  patcher.masm()->call(target, RelocInfo::NONE);
192
193  // Check that the size of the code generated is as expected.
194  ASSERT_EQ(kCallCodeSize,
195            patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize));
196
197  // Add the requested number of int3 instructions after the call.
198  for (int i = 0; i < guard_bytes; i++) {
199    patcher.masm()->int3();
200  }
201}
202
203
204// -----------------------------------------------------------------------------
205// Implementation of Operand
206
207Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
208  // [base + disp/r]
209  if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) {
210    // [base]
211    set_modrm(0, base);
212    if (base.is(esp)) set_sib(times_1, esp, base);
213  } else if (is_int8(disp) && rmode == RelocInfo::NONE) {
214    // [base + disp8]
215    set_modrm(1, base);
216    if (base.is(esp)) set_sib(times_1, esp, base);
217    set_disp8(disp);
218  } else {
219    // [base + disp/r]
220    set_modrm(2, base);
221    if (base.is(esp)) set_sib(times_1, esp, base);
222    set_dispr(disp, rmode);
223  }
224}
225
226
227Operand::Operand(Register base,
228                 Register index,
229                 ScaleFactor scale,
230                 int32_t disp,
231                 RelocInfo::Mode rmode) {
232  ASSERT(!index.is(esp));  // illegal addressing mode
233  // [base + index*scale + disp/r]
234  if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) {
235    // [base + index*scale]
236    set_modrm(0, esp);
237    set_sib(scale, index, base);
238  } else if (is_int8(disp) && rmode == RelocInfo::NONE) {
239    // [base + index*scale + disp8]
240    set_modrm(1, esp);
241    set_sib(scale, index, base);
242    set_disp8(disp);
243  } else {
244    // [base + index*scale + disp/r]
245    set_modrm(2, esp);
246    set_sib(scale, index, base);
247    set_dispr(disp, rmode);
248  }
249}
250
251
252Operand::Operand(Register index,
253                 ScaleFactor scale,
254                 int32_t disp,
255                 RelocInfo::Mode rmode) {
256  ASSERT(!index.is(esp));  // illegal addressing mode
257  // [index*scale + disp/r]
258  set_modrm(0, esp);
259  set_sib(scale, index, ebp);
260  set_dispr(disp, rmode);
261}
262
263
264bool Operand::is_reg(Register reg) const {
265  return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
266      && ((buf_[0] & 0x07) == reg.code());  // register codes match.
267}
268
269// -----------------------------------------------------------------------------
270// Implementation of Assembler.
271
272// Emit a single byte. Must always be inlined.
273#define EMIT(x)                                 \
274  *pc_++ = (x)
275
276
277#ifdef GENERATED_CODE_COVERAGE
278static void InitCoverageLog();
279#endif
280
281// Spare buffer.
282byte* Assembler::spare_buffer_ = NULL;
283
284Assembler::Assembler(void* buffer, int buffer_size) {
285  if (buffer == NULL) {
286    // Do our own buffer management.
287    if (buffer_size <= kMinimalBufferSize) {
288      buffer_size = kMinimalBufferSize;
289
290      if (spare_buffer_ != NULL) {
291        buffer = spare_buffer_;
292        spare_buffer_ = NULL;
293      }
294    }
295    if (buffer == NULL) {
296      buffer_ = NewArray<byte>(buffer_size);
297    } else {
298      buffer_ = static_cast<byte*>(buffer);
299    }
300    buffer_size_ = buffer_size;
301    own_buffer_ = true;
302  } else {
303    // Use externally provided buffer instead.
304    ASSERT(buffer_size > 0);
305    buffer_ = static_cast<byte*>(buffer);
306    buffer_size_ = buffer_size;
307    own_buffer_ = false;
308  }
309
310  // Clear the buffer in debug mode unless it was provided by the
311  // caller in which case we can't be sure it's okay to overwrite
312  // existing code in it; see CodePatcher::CodePatcher(...).
313#ifdef DEBUG
314  if (own_buffer_) {
315    memset(buffer_, 0xCC, buffer_size);  // int3
316  }
317#endif
318
319  // Setup buffer pointers.
320  ASSERT(buffer_ != NULL);
321  pc_ = buffer_;
322  reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
323
324  last_pc_ = NULL;
325  current_statement_position_ = RelocInfo::kNoPosition;
326  current_position_ = RelocInfo::kNoPosition;
327  written_statement_position_ = current_statement_position_;
328  written_position_ = current_position_;
329#ifdef GENERATED_CODE_COVERAGE
330  InitCoverageLog();
331#endif
332}
333
334
335Assembler::~Assembler() {
336  if (own_buffer_) {
337    if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
338      spare_buffer_ = buffer_;
339    } else {
340      DeleteArray(buffer_);
341    }
342  }
343}
344
345
346void Assembler::GetCode(CodeDesc* desc) {
347  // Finalize code (at this point overflow() may be true, but the gap ensures
348  // that we are still not overlapping instructions and relocation info).
349  ASSERT(pc_ <= reloc_info_writer.pos());  // No overlap.
350  // Setup code descriptor.
351  desc->buffer = buffer_;
352  desc->buffer_size = buffer_size_;
353  desc->instr_size = pc_offset();
354  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
355  desc->origin = this;
356
357  Counters::reloc_info_size.Increment(desc->reloc_size);
358}
359
360
361void Assembler::Align(int m) {
362  ASSERT(IsPowerOf2(m));
363  while ((pc_offset() & (m - 1)) != 0) {
364    nop();
365  }
366}
367
368
369void Assembler::cpuid() {
370  ASSERT(CpuFeatures::IsEnabled(CPUID));
371  EnsureSpace ensure_space(this);
372  last_pc_ = pc_;
373  EMIT(0x0F);
374  EMIT(0xA2);
375}
376
377
378void Assembler::pushad() {
379  EnsureSpace ensure_space(this);
380  last_pc_ = pc_;
381  EMIT(0x60);
382}
383
384
385void Assembler::popad() {
386  EnsureSpace ensure_space(this);
387  last_pc_ = pc_;
388  EMIT(0x61);
389}
390
391
392void Assembler::pushfd() {
393  EnsureSpace ensure_space(this);
394  last_pc_ = pc_;
395  EMIT(0x9C);
396}
397
398
399void Assembler::popfd() {
400  EnsureSpace ensure_space(this);
401  last_pc_ = pc_;
402  EMIT(0x9D);
403}
404
405
406void Assembler::push(const Immediate& x) {
407  EnsureSpace ensure_space(this);
408  last_pc_ = pc_;
409  if (x.is_int8()) {
410    EMIT(0x6a);
411    EMIT(x.x_);
412  } else {
413    EMIT(0x68);
414    emit(x);
415  }
416}
417
418
419void Assembler::push(Register src) {
420  EnsureSpace ensure_space(this);
421  last_pc_ = pc_;
422  EMIT(0x50 | src.code());
423}
424
425
426void Assembler::push(const Operand& src) {
427  EnsureSpace ensure_space(this);
428  last_pc_ = pc_;
429  EMIT(0xFF);
430  emit_operand(esi, src);
431}
432
433
434void Assembler::pop(Register dst) {
435  ASSERT(reloc_info_writer.last_pc() != NULL);
436  if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) {
437    // (last_pc_ != NULL) is rolled into the above check.
438    // If a last_pc_ is set, we need to make sure that there has not been any
439    // relocation information generated between the last instruction and this
440    // pop instruction.
441    byte instr = last_pc_[0];
442    if ((instr & ~0x7) == 0x50) {
443      int push_reg_code = instr & 0x7;
444      if (push_reg_code == dst.code()) {
445        pc_ = last_pc_;
446        if (FLAG_print_push_pop_elimination) {
447          PrintF("%d push/pop (same reg) eliminated\n", pc_offset());
448        }
449      } else {
450        // Convert 'push src; pop dst' to 'mov dst, src'.
451        last_pc_[0] = 0x8b;
452        Register src = { push_reg_code };
453        EnsureSpace ensure_space(this);
454        emit_operand(dst, Operand(src));
455        if (FLAG_print_push_pop_elimination) {
456          PrintF("%d push/pop (reg->reg) eliminated\n", pc_offset());
457        }
458      }
459      last_pc_ = NULL;
460      return;
461    } else if (instr == 0xff) {  // push of an operand, convert to a move
462      byte op1 = last_pc_[1];
463      // Check if the operation is really a push.
464      if ((op1 & 0x38) == (6 << 3)) {
465        op1 = (op1 & ~0x38) | static_cast<byte>(dst.code() << 3);
466        last_pc_[0] = 0x8b;
467        last_pc_[1] = op1;
468        last_pc_ = NULL;
469        if (FLAG_print_push_pop_elimination) {
470          PrintF("%d push/pop (op->reg) eliminated\n", pc_offset());
471        }
472        return;
473      }
474    } else if ((instr == 0x89) &&
475               (last_pc_[1] == 0x04) &&
476               (last_pc_[2] == 0x24)) {
477      // 0x71283c   396  890424         mov [esp],eax
478      // 0x71283f   399  58             pop eax
479      if (dst.is(eax)) {
480        // change to
481        // 0x710fac   216  83c404         add esp,0x4
482        last_pc_[0] = 0x83;
483        last_pc_[1] = 0xc4;
484        last_pc_[2] = 0x04;
485        last_pc_ = NULL;
486        if (FLAG_print_push_pop_elimination) {
487          PrintF("%d push/pop (mov-pop) eliminated\n", pc_offset());
488        }
489        return;
490      }
491    } else if (instr == 0x6a && dst.is(eax)) {  // push of immediate 8 bit
492      byte imm8 = last_pc_[1];
493      if (imm8 == 0) {
494        // 6a00         push 0x0
495        // 58           pop eax
496        last_pc_[0] = 0x31;
497        last_pc_[1] = 0xc0;
498        // change to
499        // 31c0         xor eax,eax
500        last_pc_ = NULL;
501        if (FLAG_print_push_pop_elimination) {
502          PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset());
503        }
504        return;
505      } else {
506        // 6a00         push 0xXX
507        // 58           pop eax
508        last_pc_[0] = 0xb8;
509        EnsureSpace ensure_space(this);
510        if ((imm8 & 0x80) != 0) {
511          EMIT(0xff);
512          EMIT(0xff);
513          EMIT(0xff);
514          // change to
515          // b8XXffffff   mov eax,0xffffffXX
516        } else {
517          EMIT(0x00);
518          EMIT(0x00);
519          EMIT(0x00);
520          // change to
521          // b8XX000000   mov eax,0x000000XX
522        }
523        last_pc_ = NULL;
524        if (FLAG_print_push_pop_elimination) {
525          PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset());
526        }
527        return;
528      }
529    } else if (instr == 0x68 && dst.is(eax)) {  // push of immediate 32 bit
530      // 68XXXXXXXX   push 0xXXXXXXXX
531      // 58           pop eax
532      last_pc_[0] = 0xb8;
533      last_pc_ = NULL;
534      // change to
535      // b8XXXXXXXX   mov eax,0xXXXXXXXX
536      if (FLAG_print_push_pop_elimination) {
537        PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset());
538      }
539      return;
540    }
541
542    // Other potential patterns for peephole:
543    // 0x712716   102  890424         mov [esp], eax
544    // 0x712719   105  8b1424         mov edx, [esp]
545  }
546  EnsureSpace ensure_space(this);
547  last_pc_ = pc_;
548  EMIT(0x58 | dst.code());
549}
550
551
552void Assembler::pop(const Operand& dst) {
553  EnsureSpace ensure_space(this);
554  last_pc_ = pc_;
555  EMIT(0x8F);
556  emit_operand(eax, dst);
557}
558
559
560void Assembler::enter(const Immediate& size) {
561  EnsureSpace ensure_space(this);
562  last_pc_ = pc_;
563  EMIT(0xC8);
564  emit_w(size);
565  EMIT(0);
566}
567
568
569void Assembler::leave() {
570  EnsureSpace ensure_space(this);
571  last_pc_ = pc_;
572  EMIT(0xC9);
573}
574
575
576void Assembler::mov_b(Register dst, const Operand& src) {
577  ASSERT(dst.code() < 4);
578  EnsureSpace ensure_space(this);
579  last_pc_ = pc_;
580  EMIT(0x8A);
581  emit_operand(dst, src);
582}
583
584
585void Assembler::mov_b(const Operand& dst, int8_t imm8) {
586  EnsureSpace ensure_space(this);
587  last_pc_ = pc_;
588  EMIT(0xC6);
589  emit_operand(eax, dst);
590  EMIT(imm8);
591}
592
593
594void Assembler::mov_b(const Operand& dst, Register src) {
595  ASSERT(src.code() < 4);
596  EnsureSpace ensure_space(this);
597  last_pc_ = pc_;
598  EMIT(0x88);
599  emit_operand(src, dst);
600}
601
602
603void Assembler::mov_w(Register dst, const Operand& src) {
604  EnsureSpace ensure_space(this);
605  last_pc_ = pc_;
606  EMIT(0x66);
607  EMIT(0x8B);
608  emit_operand(dst, src);
609}
610
611
612void Assembler::mov_w(const Operand& dst, Register src) {
613  EnsureSpace ensure_space(this);
614  last_pc_ = pc_;
615  EMIT(0x66);
616  EMIT(0x89);
617  emit_operand(src, dst);
618}
619
620
621void Assembler::mov(Register dst, int32_t imm32) {
622  EnsureSpace ensure_space(this);
623  last_pc_ = pc_;
624  EMIT(0xB8 | dst.code());
625  emit(imm32);
626}
627
628
629void Assembler::mov(Register dst, const Immediate& x) {
630  EnsureSpace ensure_space(this);
631  last_pc_ = pc_;
632  EMIT(0xB8 | dst.code());
633  emit(x);
634}
635
636
637void Assembler::mov(Register dst, Handle<Object> handle) {
638  EnsureSpace ensure_space(this);
639  last_pc_ = pc_;
640  EMIT(0xB8 | dst.code());
641  emit(handle);
642}
643
644
645void Assembler::mov(Register dst, const Operand& src) {
646  EnsureSpace ensure_space(this);
647  last_pc_ = pc_;
648  EMIT(0x8B);
649  emit_operand(dst, src);
650}
651
652
653void Assembler::mov(Register dst, Register src) {
654  EnsureSpace ensure_space(this);
655  last_pc_ = pc_;
656  EMIT(0x89);
657  EMIT(0xC0 | src.code() << 3 | dst.code());
658}
659
660
661void Assembler::mov(const Operand& dst, const Immediate& x) {
662  EnsureSpace ensure_space(this);
663  last_pc_ = pc_;
664  EMIT(0xC7);
665  emit_operand(eax, dst);
666  emit(x);
667}
668
669
670void Assembler::mov(const Operand& dst, Handle<Object> handle) {
671  EnsureSpace ensure_space(this);
672  last_pc_ = pc_;
673  EMIT(0xC7);
674  emit_operand(eax, dst);
675  emit(handle);
676}
677
678
679void Assembler::mov(const Operand& dst, Register src) {
680  EnsureSpace ensure_space(this);
681  last_pc_ = pc_;
682  EMIT(0x89);
683  emit_operand(src, dst);
684}
685
686
687void Assembler::movsx_b(Register dst, const Operand& src) {
688  EnsureSpace ensure_space(this);
689  last_pc_ = pc_;
690  EMIT(0x0F);
691  EMIT(0xBE);
692  emit_operand(dst, src);
693}
694
695
696void Assembler::movsx_w(Register dst, const Operand& src) {
697  EnsureSpace ensure_space(this);
698  last_pc_ = pc_;
699  EMIT(0x0F);
700  EMIT(0xBF);
701  emit_operand(dst, src);
702}
703
704
705void Assembler::movzx_b(Register dst, const Operand& src) {
706  EnsureSpace ensure_space(this);
707  last_pc_ = pc_;
708  EMIT(0x0F);
709  EMIT(0xB6);
710  emit_operand(dst, src);
711}
712
713
714void Assembler::movzx_w(Register dst, const Operand& src) {
715  EnsureSpace ensure_space(this);
716  last_pc_ = pc_;
717  EMIT(0x0F);
718  EMIT(0xB7);
719  emit_operand(dst, src);
720}
721
722
723void Assembler::cmov(Condition cc, Register dst, int32_t imm32) {
724  ASSERT(CpuFeatures::IsEnabled(CMOV));
725  EnsureSpace ensure_space(this);
726  last_pc_ = pc_;
727  UNIMPLEMENTED();
728  USE(cc);
729  USE(dst);
730  USE(imm32);
731}
732
733
734void Assembler::cmov(Condition cc, Register dst, Handle<Object> handle) {
735  ASSERT(CpuFeatures::IsEnabled(CMOV));
736  EnsureSpace ensure_space(this);
737  last_pc_ = pc_;
738  UNIMPLEMENTED();
739  USE(cc);
740  USE(dst);
741  USE(handle);
742}
743
744
745void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
746  ASSERT(CpuFeatures::IsEnabled(CMOV));
747  EnsureSpace ensure_space(this);
748  last_pc_ = pc_;
749  // Opcode: 0f 40 + cc /r.
750  EMIT(0x0F);
751  EMIT(0x40 + cc);
752  emit_operand(dst, src);
753}
754
755
756void Assembler::rep_movs() {
757  EnsureSpace ensure_space(this);
758  last_pc_ = pc_;
759  EMIT(0xF3);
760  EMIT(0xA5);
761}
762
763
764void Assembler::xchg(Register dst, Register src) {
765  EnsureSpace ensure_space(this);
766  last_pc_ = pc_;
767  if (src.is(eax) || dst.is(eax)) {  // Single-byte encoding.
768    EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
769  } else {
770    EMIT(0x87);
771    EMIT(0xC0 | src.code() << 3 | dst.code());
772  }
773}
774
775
776void Assembler::adc(Register dst, int32_t imm32) {
777  EnsureSpace ensure_space(this);
778  last_pc_ = pc_;
779  emit_arith(2, Operand(dst), Immediate(imm32));
780}
781
782
783void Assembler::adc(Register dst, const Operand& src) {
784  EnsureSpace ensure_space(this);
785  last_pc_ = pc_;
786  EMIT(0x13);
787  emit_operand(dst, src);
788}
789
790
791void Assembler::add(Register dst, const Operand& src) {
792  EnsureSpace ensure_space(this);
793  last_pc_ = pc_;
794  EMIT(0x03);
795  emit_operand(dst, src);
796}
797
798
799void Assembler::add(const Operand& dst, const Immediate& x) {
800  ASSERT(reloc_info_writer.last_pc() != NULL);
801  if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) {
802    byte instr = last_pc_[0];
803    if ((instr & 0xf8) == 0x50) {
804      // Last instruction was a push. Check whether this is a pop without a
805      // result.
806      if ((dst.is_reg(esp)) &&
807          (x.x_ == kPointerSize) && (x.rmode_ == RelocInfo::NONE)) {
808        pc_ = last_pc_;
809        last_pc_ = NULL;
810        if (FLAG_print_push_pop_elimination) {
811          PrintF("%d push/pop(noreg) eliminated\n", pc_offset());
812        }
813        return;
814      }
815    }
816  }
817  EnsureSpace ensure_space(this);
818  last_pc_ = pc_;
819  emit_arith(0, dst, x);
820}
821
822
823void Assembler::and_(Register dst, int32_t imm32) {
824  EnsureSpace ensure_space(this);
825  last_pc_ = pc_;
826  emit_arith(4, Operand(dst), Immediate(imm32));
827}
828
829
830void Assembler::and_(Register dst, const Operand& src) {
831  EnsureSpace ensure_space(this);
832  last_pc_ = pc_;
833  EMIT(0x23);
834  emit_operand(dst, src);
835}
836
837
838void Assembler::and_(const Operand& dst, const Immediate& x) {
839  EnsureSpace ensure_space(this);
840  last_pc_ = pc_;
841  emit_arith(4, dst, x);
842}
843
844
845void Assembler::and_(const Operand& dst, Register src) {
846  EnsureSpace ensure_space(this);
847  last_pc_ = pc_;
848  EMIT(0x21);
849  emit_operand(src, dst);
850}
851
852
853void Assembler::cmpb(const Operand& op, int8_t imm8) {
854  EnsureSpace ensure_space(this);
855  last_pc_ = pc_;
856  EMIT(0x80);
857  emit_operand(edi, op);  // edi == 7
858  EMIT(imm8);
859}
860
861
862void Assembler::cmpb(const Operand& dst, Register src) {
863  ASSERT(src.is_byte_register());
864  EnsureSpace ensure_space(this);
865  last_pc_ = pc_;
866  EMIT(0x38);
867  emit_operand(src, dst);
868}
869
870
871void Assembler::cmpb(Register dst, const Operand& src) {
872  ASSERT(dst.is_byte_register());
873  EnsureSpace ensure_space(this);
874  last_pc_ = pc_;
875  EMIT(0x3A);
876  emit_operand(dst, src);
877}
878
879
880void Assembler::cmpw(const Operand& op, Immediate imm16) {
881  ASSERT(imm16.is_int16());
882  EnsureSpace ensure_space(this);
883  last_pc_ = pc_;
884  EMIT(0x66);
885  EMIT(0x81);
886  emit_operand(edi, op);
887  emit_w(imm16);
888}
889
890
891void Assembler::cmp(Register reg, int32_t imm32) {
892  EnsureSpace ensure_space(this);
893  last_pc_ = pc_;
894  emit_arith(7, Operand(reg), Immediate(imm32));
895}
896
897
898void Assembler::cmp(Register reg, Handle<Object> handle) {
899  EnsureSpace ensure_space(this);
900  last_pc_ = pc_;
901  emit_arith(7, Operand(reg), Immediate(handle));
902}
903
904
905void Assembler::cmp(Register reg, const Operand& op) {
906  EnsureSpace ensure_space(this);
907  last_pc_ = pc_;
908  EMIT(0x3B);
909  emit_operand(reg, op);
910}
911
912
913void Assembler::cmp(const Operand& op, const Immediate& imm) {
914  EnsureSpace ensure_space(this);
915  last_pc_ = pc_;
916  emit_arith(7, op, imm);
917}
918
919
920void Assembler::cmp(const Operand& op, Handle<Object> handle) {
921  EnsureSpace ensure_space(this);
922  last_pc_ = pc_;
923  emit_arith(7, op, Immediate(handle));
924}
925
926
927void Assembler::cmpb_al(const Operand& op) {
928  EnsureSpace ensure_space(this);
929  last_pc_ = pc_;
930  EMIT(0x38);  // CMP r/m8, r8
931  emit_operand(eax, op);  // eax has same code as register al.
932}
933
934
935void Assembler::cmpw_ax(const Operand& op) {
936  EnsureSpace ensure_space(this);
937  last_pc_ = pc_;
938  EMIT(0x66);
939  EMIT(0x39);  // CMP r/m16, r16
940  emit_operand(eax, op);  // eax has same code as register ax.
941}
942
943
944void Assembler::dec_b(Register dst) {
945  EnsureSpace ensure_space(this);
946  last_pc_ = pc_;
947  EMIT(0xFE);
948  EMIT(0xC8 | dst.code());
949}
950
951
952void Assembler::dec(Register dst) {
953  EnsureSpace ensure_space(this);
954  last_pc_ = pc_;
955  EMIT(0x48 | dst.code());
956}
957
958
959void Assembler::dec(const Operand& dst) {
960  EnsureSpace ensure_space(this);
961  last_pc_ = pc_;
962  EMIT(0xFF);
963  emit_operand(ecx, dst);
964}
965
966
967void Assembler::cdq() {
968  EnsureSpace ensure_space(this);
969  last_pc_ = pc_;
970  EMIT(0x99);
971}
972
973
974void Assembler::idiv(Register src) {
975  EnsureSpace ensure_space(this);
976  last_pc_ = pc_;
977  EMIT(0xF7);
978  EMIT(0xF8 | src.code());
979}
980
981
982void Assembler::imul(Register reg) {
983  EnsureSpace ensure_space(this);
984  last_pc_ = pc_;
985  EMIT(0xF7);
986  EMIT(0xE8 | reg.code());
987}
988
989
990void Assembler::imul(Register dst, const Operand& src) {
991  EnsureSpace ensure_space(this);
992  last_pc_ = pc_;
993  EMIT(0x0F);
994  EMIT(0xAF);
995  emit_operand(dst, src);
996}
997
998
999void Assembler::imul(Register dst, Register src, int32_t imm32) {
1000  EnsureSpace ensure_space(this);
1001  last_pc_ = pc_;
1002  if (is_int8(imm32)) {
1003    EMIT(0x6B);
1004    EMIT(0xC0 | dst.code() << 3 | src.code());
1005    EMIT(imm32);
1006  } else {
1007    EMIT(0x69);
1008    EMIT(0xC0 | dst.code() << 3 | src.code());
1009    emit(imm32);
1010  }
1011}
1012
1013
1014void Assembler::inc(Register dst) {
1015  EnsureSpace ensure_space(this);
1016  last_pc_ = pc_;
1017  EMIT(0x40 | dst.code());
1018}
1019
1020
1021void Assembler::inc(const Operand& dst) {
1022  EnsureSpace ensure_space(this);
1023  last_pc_ = pc_;
1024  EMIT(0xFF);
1025  emit_operand(eax, dst);
1026}
1027
1028
1029void Assembler::lea(Register dst, const Operand& src) {
1030  EnsureSpace ensure_space(this);
1031  last_pc_ = pc_;
1032  EMIT(0x8D);
1033  emit_operand(dst, src);
1034}
1035
1036
1037void Assembler::mul(Register src) {
1038  EnsureSpace ensure_space(this);
1039  last_pc_ = pc_;
1040  EMIT(0xF7);
1041  EMIT(0xE0 | src.code());
1042}
1043
1044
1045void Assembler::neg(Register dst) {
1046  EnsureSpace ensure_space(this);
1047  last_pc_ = pc_;
1048  EMIT(0xF7);
1049  EMIT(0xD8 | dst.code());
1050}
1051
1052
1053void Assembler::not_(Register dst) {
1054  EnsureSpace ensure_space(this);
1055  last_pc_ = pc_;
1056  EMIT(0xF7);
1057  EMIT(0xD0 | dst.code());
1058}
1059
1060
1061void Assembler::or_(Register dst, int32_t imm32) {
1062  EnsureSpace ensure_space(this);
1063  last_pc_ = pc_;
1064  emit_arith(1, Operand(dst), Immediate(imm32));
1065}
1066
1067
1068void Assembler::or_(Register dst, const Operand& src) {
1069  EnsureSpace ensure_space(this);
1070  last_pc_ = pc_;
1071  EMIT(0x0B);
1072  emit_operand(dst, src);
1073}
1074
1075
1076void Assembler::or_(const Operand& dst, const Immediate& x) {
1077  EnsureSpace ensure_space(this);
1078  last_pc_ = pc_;
1079  emit_arith(1, dst, x);
1080}
1081
1082
1083void Assembler::or_(const Operand& dst, Register src) {
1084  EnsureSpace ensure_space(this);
1085  last_pc_ = pc_;
1086  EMIT(0x09);
1087  emit_operand(src, dst);
1088}
1089
1090
1091void Assembler::rcl(Register dst, uint8_t imm8) {
1092  EnsureSpace ensure_space(this);
1093  last_pc_ = pc_;
1094  ASSERT(is_uint5(imm8));  // illegal shift count
1095  if (imm8 == 1) {
1096    EMIT(0xD1);
1097    EMIT(0xD0 | dst.code());
1098  } else {
1099    EMIT(0xC1);
1100    EMIT(0xD0 | dst.code());
1101    EMIT(imm8);
1102  }
1103}
1104
1105
1106void Assembler::sar(Register dst, uint8_t imm8) {
1107  EnsureSpace ensure_space(this);
1108  last_pc_ = pc_;
1109  ASSERT(is_uint5(imm8));  // illegal shift count
1110  if (imm8 == 1) {
1111    EMIT(0xD1);
1112    EMIT(0xF8 | dst.code());
1113  } else {
1114    EMIT(0xC1);
1115    EMIT(0xF8 | dst.code());
1116    EMIT(imm8);
1117  }
1118}
1119
1120
1121void Assembler::sar_cl(Register dst) {
1122  EnsureSpace ensure_space(this);
1123  last_pc_ = pc_;
1124  EMIT(0xD3);
1125  EMIT(0xF8 | dst.code());
1126}
1127
1128
1129void Assembler::sbb(Register dst, const Operand& src) {
1130  EnsureSpace ensure_space(this);
1131  last_pc_ = pc_;
1132  EMIT(0x1B);
1133  emit_operand(dst, src);
1134}
1135
1136
1137void Assembler::shld(Register dst, const Operand& src) {
1138  EnsureSpace ensure_space(this);
1139  last_pc_ = pc_;
1140  EMIT(0x0F);
1141  EMIT(0xA5);
1142  emit_operand(dst, src);
1143}
1144
1145
1146void Assembler::shl(Register dst, uint8_t imm8) {
1147  EnsureSpace ensure_space(this);
1148  last_pc_ = pc_;
1149  ASSERT(is_uint5(imm8));  // illegal shift count
1150  if (imm8 == 1) {
1151    EMIT(0xD1);
1152    EMIT(0xE0 | dst.code());
1153  } else {
1154    EMIT(0xC1);
1155    EMIT(0xE0 | dst.code());
1156    EMIT(imm8);
1157  }
1158}
1159
1160
1161void Assembler::shl_cl(Register dst) {
1162  EnsureSpace ensure_space(this);
1163  last_pc_ = pc_;
1164  EMIT(0xD3);
1165  EMIT(0xE0 | dst.code());
1166}
1167
1168
1169void Assembler::shrd(Register dst, const Operand& src) {
1170  EnsureSpace ensure_space(this);
1171  last_pc_ = pc_;
1172  EMIT(0x0F);
1173  EMIT(0xAD);
1174  emit_operand(dst, src);
1175}
1176
1177
1178void Assembler::shr(Register dst, uint8_t imm8) {
1179  EnsureSpace ensure_space(this);
1180  last_pc_ = pc_;
1181  ASSERT(is_uint5(imm8));  // illegal shift count
1182  if (imm8 == 1) {
1183    EMIT(0xD1);
1184    EMIT(0xE8 | dst.code());
1185  } else {
1186    EMIT(0xC1);
1187    EMIT(0xE8 | dst.code());
1188    EMIT(imm8);
1189  }
1190}
1191
1192
1193void Assembler::shr_cl(Register dst) {
1194  EnsureSpace ensure_space(this);
1195  last_pc_ = pc_;
1196  EMIT(0xD3);
1197  EMIT(0xE8 | dst.code());
1198}
1199
1200
1201void Assembler::subb(const Operand& op, int8_t imm8) {
1202  EnsureSpace ensure_space(this);
1203  last_pc_ = pc_;
1204  if (op.is_reg(eax)) {
1205    EMIT(0x2c);
1206  } else {
1207    EMIT(0x80);
1208    emit_operand(ebp, op);  // ebp == 5
1209  }
1210  EMIT(imm8);
1211}
1212
1213
1214void Assembler::sub(const Operand& dst, const Immediate& x) {
1215  EnsureSpace ensure_space(this);
1216  last_pc_ = pc_;
1217  emit_arith(5, dst, x);
1218}
1219
1220
1221void Assembler::sub(Register dst, const Operand& src) {
1222  EnsureSpace ensure_space(this);
1223  last_pc_ = pc_;
1224  EMIT(0x2B);
1225  emit_operand(dst, src);
1226}
1227
1228
1229void Assembler::subb(Register dst, const Operand& src) {
1230  ASSERT(dst.code() < 4);
1231  EnsureSpace ensure_space(this);
1232  last_pc_ = pc_;
1233  EMIT(0x2A);
1234  emit_operand(dst, src);
1235}
1236
1237
1238void Assembler::sub(const Operand& dst, Register src) {
1239  EnsureSpace ensure_space(this);
1240  last_pc_ = pc_;
1241  EMIT(0x29);
1242  emit_operand(src, dst);
1243}
1244
1245
1246void Assembler::test(Register reg, const Immediate& imm) {
1247  EnsureSpace ensure_space(this);
1248  last_pc_ = pc_;
1249  // Only use test against byte for registers that have a byte
1250  // variant: eax, ebx, ecx, and edx.
1251  if (imm.rmode_ == RelocInfo::NONE && is_uint8(imm.x_) && reg.code() < 4) {
1252    uint8_t imm8 = imm.x_;
1253    if (reg.is(eax)) {
1254      EMIT(0xA8);
1255      EMIT(imm8);
1256    } else {
1257      emit_arith_b(0xF6, 0xC0, reg, imm8);
1258    }
1259  } else {
1260    // This is not using emit_arith because test doesn't support
1261    // sign-extension of 8-bit operands.
1262    if (reg.is(eax)) {
1263      EMIT(0xA9);
1264    } else {
1265      EMIT(0xF7);
1266      EMIT(0xC0 | reg.code());
1267    }
1268    emit(imm);
1269  }
1270}
1271
1272
1273void Assembler::test(Register reg, const Operand& op) {
1274  EnsureSpace ensure_space(this);
1275  last_pc_ = pc_;
1276  EMIT(0x85);
1277  emit_operand(reg, op);
1278}
1279
1280
1281void Assembler::test_b(Register reg, const Operand& op) {
1282  EnsureSpace ensure_space(this);
1283  last_pc_ = pc_;
1284  EMIT(0x84);
1285  emit_operand(reg, op);
1286}
1287
1288
1289void Assembler::test(const Operand& op, const Immediate& imm) {
1290  EnsureSpace ensure_space(this);
1291  last_pc_ = pc_;
1292  EMIT(0xF7);
1293  emit_operand(eax, op);
1294  emit(imm);
1295}
1296
1297
1298void Assembler::xor_(Register dst, int32_t imm32) {
1299  EnsureSpace ensure_space(this);
1300  last_pc_ = pc_;
1301  emit_arith(6, Operand(dst), Immediate(imm32));
1302}
1303
1304
1305void Assembler::xor_(Register dst, const Operand& src) {
1306  EnsureSpace ensure_space(this);
1307  last_pc_ = pc_;
1308  EMIT(0x33);
1309  emit_operand(dst, src);
1310}
1311
1312
1313void Assembler::xor_(const Operand& src, Register dst) {
1314  EnsureSpace ensure_space(this);
1315  last_pc_ = pc_;
1316  EMIT(0x31);
1317  emit_operand(dst, src);
1318}
1319
1320
1321void Assembler::xor_(const Operand& dst, const Immediate& x) {
1322  EnsureSpace ensure_space(this);
1323  last_pc_ = pc_;
1324  emit_arith(6, dst, x);
1325}
1326
1327
1328void Assembler::bt(const Operand& dst, Register src) {
1329  EnsureSpace ensure_space(this);
1330  last_pc_ = pc_;
1331  EMIT(0x0F);
1332  EMIT(0xA3);
1333  emit_operand(src, dst);
1334}
1335
1336
1337void Assembler::bts(const Operand& dst, Register src) {
1338  EnsureSpace ensure_space(this);
1339  last_pc_ = pc_;
1340  EMIT(0x0F);
1341  EMIT(0xAB);
1342  emit_operand(src, dst);
1343}
1344
1345
1346void Assembler::hlt() {
1347  EnsureSpace ensure_space(this);
1348  last_pc_ = pc_;
1349  EMIT(0xF4);
1350}
1351
1352
1353void Assembler::int3() {
1354  EnsureSpace ensure_space(this);
1355  last_pc_ = pc_;
1356  EMIT(0xCC);
1357}
1358
1359
1360void Assembler::nop() {
1361  EnsureSpace ensure_space(this);
1362  last_pc_ = pc_;
1363  EMIT(0x90);
1364}
1365
1366
1367void Assembler::rdtsc() {
1368  ASSERT(CpuFeatures::IsEnabled(RDTSC));
1369  EnsureSpace ensure_space(this);
1370  last_pc_ = pc_;
1371  EMIT(0x0F);
1372  EMIT(0x31);
1373}
1374
1375
1376void Assembler::ret(int imm16) {
1377  EnsureSpace ensure_space(this);
1378  last_pc_ = pc_;
1379  ASSERT(is_uint16(imm16));
1380  if (imm16 == 0) {
1381    EMIT(0xC3);
1382  } else {
1383    EMIT(0xC2);
1384    EMIT(imm16 & 0xFF);
1385    EMIT((imm16 >> 8) & 0xFF);
1386  }
1387}
1388
1389
1390// Labels refer to positions in the (to be) generated code.
1391// There are bound, linked, and unused labels.
1392//
1393// Bound labels refer to known positions in the already
1394// generated code. pos() is the position the label refers to.
1395//
1396// Linked labels refer to unknown positions in the code
1397// to be generated; pos() is the position of the 32bit
1398// Displacement of the last instruction using the label.
1399
1400
1401void Assembler::print(Label* L) {
1402  if (L->is_unused()) {
1403    PrintF("unused label\n");
1404  } else if (L->is_bound()) {
1405    PrintF("bound label to %d\n", L->pos());
1406  } else if (L->is_linked()) {
1407    Label l = *L;
1408    PrintF("unbound label");
1409    while (l.is_linked()) {
1410      Displacement disp = disp_at(&l);
1411      PrintF("@ %d ", l.pos());
1412      disp.print();
1413      PrintF("\n");
1414      disp.next(&l);
1415    }
1416  } else {
1417    PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1418  }
1419}
1420
1421
1422void Assembler::bind_to(Label* L, int pos) {
1423  EnsureSpace ensure_space(this);
1424  last_pc_ = NULL;
1425  ASSERT(0 <= pos && pos <= pc_offset());  // must have a valid binding position
1426  while (L->is_linked()) {
1427    Displacement disp = disp_at(L);
1428    int fixup_pos = L->pos();
1429    if (disp.type() == Displacement::CODE_RELATIVE) {
1430      // Relative to Code* heap object pointer.
1431      long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1432    } else {
1433      if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1434        ASSERT(byte_at(fixup_pos - 1) == 0xE9);  // jmp expected
1435      }
1436      // Relative address, relative to point after address.
1437      int imm32 = pos - (fixup_pos + sizeof(int32_t));
1438      long_at_put(fixup_pos, imm32);
1439    }
1440    disp.next(L);
1441  }
1442  L->bind_to(pos);
1443}
1444
1445
1446void Assembler::link_to(Label* L, Label* appendix) {
1447  EnsureSpace ensure_space(this);
1448  last_pc_ = NULL;
1449  if (appendix->is_linked()) {
1450    if (L->is_linked()) {
1451      // Append appendix to L's list.
1452      Label p;
1453      Label q = *L;
1454      do {
1455        p = q;
1456        Displacement disp = disp_at(&q);
1457        disp.next(&q);
1458      } while (q.is_linked());
1459      Displacement disp = disp_at(&p);
1460      disp.link_to(appendix);
1461      disp_at_put(&p, disp);
1462      p.Unuse();  // to avoid assertion failure in ~Label
1463    } else {
1464      // L is empty, simply use appendix.
1465      *L = *appendix;
1466    }
1467  }
1468  appendix->Unuse();  // appendix should not be used anymore
1469}
1470
1471
1472void Assembler::bind(Label* L) {
1473  EnsureSpace ensure_space(this);
1474  last_pc_ = NULL;
1475  ASSERT(!L->is_bound());  // label can only be bound once
1476  bind_to(L, pc_offset());
1477}
1478
1479
1480void Assembler::call(Label* L) {
1481  EnsureSpace ensure_space(this);
1482  last_pc_ = pc_;
1483  if (L->is_bound()) {
1484    const int long_size = 5;
1485    int offs = L->pos() - pc_offset();
1486    ASSERT(offs <= 0);
1487    // 1110 1000 #32-bit disp.
1488    EMIT(0xE8);
1489    emit(offs - long_size);
1490  } else {
1491    // 1110 1000 #32-bit disp.
1492    EMIT(0xE8);
1493    emit_disp(L, Displacement::OTHER);
1494  }
1495}
1496
1497
1498void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1499  EnsureSpace ensure_space(this);
1500  last_pc_ = pc_;
1501  ASSERT(!RelocInfo::IsCodeTarget(rmode));
1502  EMIT(0xE8);
1503  emit(entry - (pc_ + sizeof(int32_t)), rmode);
1504}
1505
1506
1507void Assembler::call(const Operand& adr) {
1508  EnsureSpace ensure_space(this);
1509  last_pc_ = pc_;
1510  EMIT(0xFF);
1511  emit_operand(edx, adr);
1512}
1513
1514
1515void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode) {
1516  WriteRecordedPositions();
1517  EnsureSpace ensure_space(this);
1518  last_pc_ = pc_;
1519  ASSERT(RelocInfo::IsCodeTarget(rmode));
1520  EMIT(0xE8);
1521  emit(reinterpret_cast<intptr_t>(code.location()), rmode);
1522}
1523
1524
1525void Assembler::jmp(Label* L) {
1526  EnsureSpace ensure_space(this);
1527  last_pc_ = pc_;
1528  if (L->is_bound()) {
1529    const int short_size = 2;
1530    const int long_size  = 5;
1531    int offs = L->pos() - pc_offset();
1532    ASSERT(offs <= 0);
1533    if (is_int8(offs - short_size)) {
1534      // 1110 1011 #8-bit disp.
1535      EMIT(0xEB);
1536      EMIT((offs - short_size) & 0xFF);
1537    } else {
1538      // 1110 1001 #32-bit disp.
1539      EMIT(0xE9);
1540      emit(offs - long_size);
1541    }
1542  } else {
1543    // 1110 1001 #32-bit disp.
1544    EMIT(0xE9);
1545    emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1546  }
1547}
1548
1549
1550void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1551  EnsureSpace ensure_space(this);
1552  last_pc_ = pc_;
1553  ASSERT(!RelocInfo::IsCodeTarget(rmode));
1554  EMIT(0xE9);
1555  emit(entry - (pc_ + sizeof(int32_t)), rmode);
1556}
1557
1558
1559void Assembler::jmp(const Operand& adr) {
1560  EnsureSpace ensure_space(this);
1561  last_pc_ = pc_;
1562  EMIT(0xFF);
1563  emit_operand(esp, adr);
1564}
1565
1566
1567void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1568  EnsureSpace ensure_space(this);
1569  last_pc_ = pc_;
1570  ASSERT(RelocInfo::IsCodeTarget(rmode));
1571  EMIT(0xE9);
1572  emit(reinterpret_cast<intptr_t>(code.location()), rmode);
1573}
1574
1575
1576
1577void Assembler::j(Condition cc, Label* L, Hint hint) {
1578  EnsureSpace ensure_space(this);
1579  last_pc_ = pc_;
1580  ASSERT(0 <= cc && cc < 16);
1581  if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint);
1582  if (L->is_bound()) {
1583    const int short_size = 2;
1584    const int long_size  = 6;
1585    int offs = L->pos() - pc_offset();
1586    ASSERT(offs <= 0);
1587    if (is_int8(offs - short_size)) {
1588      // 0111 tttn #8-bit disp
1589      EMIT(0x70 | cc);
1590      EMIT((offs - short_size) & 0xFF);
1591    } else {
1592      // 0000 1111 1000 tttn #32-bit disp
1593      EMIT(0x0F);
1594      EMIT(0x80 | cc);
1595      emit(offs - long_size);
1596    }
1597  } else {
1598    // 0000 1111 1000 tttn #32-bit disp
1599    // Note: could eliminate cond. jumps to this jump if condition
1600    //       is the same however, seems to be rather unlikely case.
1601    EMIT(0x0F);
1602    EMIT(0x80 | cc);
1603    emit_disp(L, Displacement::OTHER);
1604  }
1605}
1606
1607
1608void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint) {
1609  EnsureSpace ensure_space(this);
1610  last_pc_ = pc_;
1611  ASSERT((0 <= cc) && (cc < 16));
1612  if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint);
1613  // 0000 1111 1000 tttn #32-bit disp.
1614  EMIT(0x0F);
1615  EMIT(0x80 | cc);
1616  emit(entry - (pc_ + sizeof(int32_t)), rmode);
1617}
1618
1619
1620void Assembler::j(Condition cc, Handle<Code> code, Hint hint) {
1621  EnsureSpace ensure_space(this);
1622  last_pc_ = pc_;
1623  if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint);
1624  // 0000 1111 1000 tttn #32-bit disp
1625  EMIT(0x0F);
1626  EMIT(0x80 | cc);
1627  emit(reinterpret_cast<intptr_t>(code.location()), RelocInfo::CODE_TARGET);
1628}
1629
1630
1631// FPU instructions.
1632
1633void Assembler::fld(int i) {
1634  EnsureSpace ensure_space(this);
1635  last_pc_ = pc_;
1636  emit_farith(0xD9, 0xC0, i);
1637}
1638
1639
1640void Assembler::fstp(int i) {
1641  EnsureSpace ensure_space(this);
1642  last_pc_ = pc_;
1643  emit_farith(0xDD, 0xD8, i);
1644}
1645
1646
1647void Assembler::fld1() {
1648  EnsureSpace ensure_space(this);
1649  last_pc_ = pc_;
1650  EMIT(0xD9);
1651  EMIT(0xE8);
1652}
1653
1654
1655void Assembler::fldpi() {
1656  EnsureSpace ensure_space(this);
1657  last_pc_ = pc_;
1658  EMIT(0xD9);
1659  EMIT(0xEB);
1660}
1661
1662
1663void Assembler::fldz() {
1664  EnsureSpace ensure_space(this);
1665  last_pc_ = pc_;
1666  EMIT(0xD9);
1667  EMIT(0xEE);
1668}
1669
1670
1671void Assembler::fld_s(const Operand& adr) {
1672  EnsureSpace ensure_space(this);
1673  last_pc_ = pc_;
1674  EMIT(0xD9);
1675  emit_operand(eax, adr);
1676}
1677
1678
1679void Assembler::fld_d(const Operand& adr) {
1680  EnsureSpace ensure_space(this);
1681  last_pc_ = pc_;
1682  EMIT(0xDD);
1683  emit_operand(eax, adr);
1684}
1685
1686
1687void Assembler::fstp_s(const Operand& adr) {
1688  EnsureSpace ensure_space(this);
1689  last_pc_ = pc_;
1690  EMIT(0xD9);
1691  emit_operand(ebx, adr);
1692}
1693
1694
1695void Assembler::fstp_d(const Operand& adr) {
1696  EnsureSpace ensure_space(this);
1697  last_pc_ = pc_;
1698  EMIT(0xDD);
1699  emit_operand(ebx, adr);
1700}
1701
1702
1703void Assembler::fst_d(const Operand& adr) {
1704  EnsureSpace ensure_space(this);
1705  last_pc_ = pc_;
1706  EMIT(0xDD);
1707  emit_operand(edx, adr);
1708}
1709
1710
1711void Assembler::fild_s(const Operand& adr) {
1712  EnsureSpace ensure_space(this);
1713  last_pc_ = pc_;
1714  EMIT(0xDB);
1715  emit_operand(eax, adr);
1716}
1717
1718
1719void Assembler::fild_d(const Operand& adr) {
1720  EnsureSpace ensure_space(this);
1721  last_pc_ = pc_;
1722  EMIT(0xDF);
1723  emit_operand(ebp, adr);
1724}
1725
1726
1727void Assembler::fistp_s(const Operand& adr) {
1728  EnsureSpace ensure_space(this);
1729  last_pc_ = pc_;
1730  EMIT(0xDB);
1731  emit_operand(ebx, adr);
1732}
1733
1734
1735void Assembler::fisttp_s(const Operand& adr) {
1736  ASSERT(CpuFeatures::IsEnabled(SSE3));
1737  EnsureSpace ensure_space(this);
1738  last_pc_ = pc_;
1739  EMIT(0xDB);
1740  emit_operand(ecx, adr);
1741}
1742
1743
1744void Assembler::fisttp_d(const Operand& adr) {
1745  ASSERT(CpuFeatures::IsEnabled(SSE3));
1746  EnsureSpace ensure_space(this);
1747  last_pc_ = pc_;
1748  EMIT(0xDD);
1749  emit_operand(ecx, adr);
1750}
1751
1752
1753void Assembler::fist_s(const Operand& adr) {
1754  EnsureSpace ensure_space(this);
1755  last_pc_ = pc_;
1756  EMIT(0xDB);
1757  emit_operand(edx, adr);
1758}
1759
1760
1761void Assembler::fistp_d(const Operand& adr) {
1762  EnsureSpace ensure_space(this);
1763  last_pc_ = pc_;
1764  EMIT(0xDF);
1765  emit_operand(edi, adr);
1766}
1767
1768
1769void Assembler::fabs() {
1770  EnsureSpace ensure_space(this);
1771  last_pc_ = pc_;
1772  EMIT(0xD9);
1773  EMIT(0xE1);
1774}
1775
1776
1777void Assembler::fchs() {
1778  EnsureSpace ensure_space(this);
1779  last_pc_ = pc_;
1780  EMIT(0xD9);
1781  EMIT(0xE0);
1782}
1783
1784
1785void Assembler::fcos() {
1786  EnsureSpace ensure_space(this);
1787  last_pc_ = pc_;
1788  EMIT(0xD9);
1789  EMIT(0xFF);
1790}
1791
1792
1793void Assembler::fsin() {
1794  EnsureSpace ensure_space(this);
1795  last_pc_ = pc_;
1796  EMIT(0xD9);
1797  EMIT(0xFE);
1798}
1799
1800
1801void Assembler::fadd(int i) {
1802  EnsureSpace ensure_space(this);
1803  last_pc_ = pc_;
1804  emit_farith(0xDC, 0xC0, i);
1805}
1806
1807
1808void Assembler::fsub(int i) {
1809  EnsureSpace ensure_space(this);
1810  last_pc_ = pc_;
1811  emit_farith(0xDC, 0xE8, i);
1812}
1813
1814
1815void Assembler::fisub_s(const Operand& adr) {
1816  EnsureSpace ensure_space(this);
1817  last_pc_ = pc_;
1818  EMIT(0xDA);
1819  emit_operand(esp, adr);
1820}
1821
1822
1823void Assembler::fmul(int i) {
1824  EnsureSpace ensure_space(this);
1825  last_pc_ = pc_;
1826  emit_farith(0xDC, 0xC8, i);
1827}
1828
1829
1830void Assembler::fdiv(int i) {
1831  EnsureSpace ensure_space(this);
1832  last_pc_ = pc_;
1833  emit_farith(0xDC, 0xF8, i);
1834}
1835
1836
1837void Assembler::faddp(int i) {
1838  EnsureSpace ensure_space(this);
1839  last_pc_ = pc_;
1840  emit_farith(0xDE, 0xC0, i);
1841}
1842
1843
1844void Assembler::fsubp(int i) {
1845  EnsureSpace ensure_space(this);
1846  last_pc_ = pc_;
1847  emit_farith(0xDE, 0xE8, i);
1848}
1849
1850
1851void Assembler::fsubrp(int i) {
1852  EnsureSpace ensure_space(this);
1853  last_pc_ = pc_;
1854  emit_farith(0xDE, 0xE0, i);
1855}
1856
1857
1858void Assembler::fmulp(int i) {
1859  EnsureSpace ensure_space(this);
1860  last_pc_ = pc_;
1861  emit_farith(0xDE, 0xC8, i);
1862}
1863
1864
1865void Assembler::fdivp(int i) {
1866  EnsureSpace ensure_space(this);
1867  last_pc_ = pc_;
1868  emit_farith(0xDE, 0xF8, i);
1869}
1870
1871
1872void Assembler::fprem() {
1873  EnsureSpace ensure_space(this);
1874  last_pc_ = pc_;
1875  EMIT(0xD9);
1876  EMIT(0xF8);
1877}
1878
1879
1880void Assembler::fprem1() {
1881  EnsureSpace ensure_space(this);
1882  last_pc_ = pc_;
1883  EMIT(0xD9);
1884  EMIT(0xF5);
1885}
1886
1887
1888void Assembler::fxch(int i) {
1889  EnsureSpace ensure_space(this);
1890  last_pc_ = pc_;
1891  emit_farith(0xD9, 0xC8, i);
1892}
1893
1894
1895void Assembler::fincstp() {
1896  EnsureSpace ensure_space(this);
1897  last_pc_ = pc_;
1898  EMIT(0xD9);
1899  EMIT(0xF7);
1900}
1901
1902
1903void Assembler::ffree(int i) {
1904  EnsureSpace ensure_space(this);
1905  last_pc_ = pc_;
1906  emit_farith(0xDD, 0xC0, i);
1907}
1908
1909
1910void Assembler::ftst() {
1911  EnsureSpace ensure_space(this);
1912  last_pc_ = pc_;
1913  EMIT(0xD9);
1914  EMIT(0xE4);
1915}
1916
1917
1918void Assembler::fucomp(int i) {
1919  EnsureSpace ensure_space(this);
1920  last_pc_ = pc_;
1921  emit_farith(0xDD, 0xE8, i);
1922}
1923
1924
1925void Assembler::fucompp() {
1926  EnsureSpace ensure_space(this);
1927  last_pc_ = pc_;
1928  EMIT(0xDA);
1929  EMIT(0xE9);
1930}
1931
1932
1933void Assembler::fucomi(int i) {
1934  EnsureSpace ensure_space(this);
1935  last_pc_ = pc_;
1936  EMIT(0xDB);
1937  EMIT(0xE8 + i);
1938}
1939
1940
1941void Assembler::fucomip() {
1942  EnsureSpace ensure_space(this);
1943  last_pc_ = pc_;
1944  EMIT(0xDF);
1945  EMIT(0xE9);
1946}
1947
1948
1949void Assembler::fcompp() {
1950  EnsureSpace ensure_space(this);
1951  last_pc_ = pc_;
1952  EMIT(0xDE);
1953  EMIT(0xD9);
1954}
1955
1956
1957void Assembler::fnstsw_ax() {
1958  EnsureSpace ensure_space(this);
1959  last_pc_ = pc_;
1960  EMIT(0xDF);
1961  EMIT(0xE0);
1962}
1963
1964
1965void Assembler::fwait() {
1966  EnsureSpace ensure_space(this);
1967  last_pc_ = pc_;
1968  EMIT(0x9B);
1969}
1970
1971
1972void Assembler::frndint() {
1973  EnsureSpace ensure_space(this);
1974  last_pc_ = pc_;
1975  EMIT(0xD9);
1976  EMIT(0xFC);
1977}
1978
1979
1980void Assembler::fnclex() {
1981  EnsureSpace ensure_space(this);
1982  last_pc_ = pc_;
1983  EMIT(0xDB);
1984  EMIT(0xE2);
1985}
1986
1987
1988void Assembler::sahf() {
1989  EnsureSpace ensure_space(this);
1990  last_pc_ = pc_;
1991  EMIT(0x9E);
1992}
1993
1994
1995void Assembler::setcc(Condition cc, Register reg) {
1996  ASSERT(reg.is_byte_register());
1997  EnsureSpace ensure_space(this);
1998  last_pc_ = pc_;
1999  EMIT(0x0F);
2000  EMIT(0x90 | cc);
2001  EMIT(0xC0 | reg.code());
2002}
2003
2004
2005void Assembler::cvttss2si(Register dst, const Operand& src) {
2006  ASSERT(CpuFeatures::IsEnabled(SSE2));
2007  EnsureSpace ensure_space(this);
2008  last_pc_ = pc_;
2009  EMIT(0xF3);
2010  EMIT(0x0F);
2011  EMIT(0x2C);
2012  emit_operand(dst, src);
2013}
2014
2015
2016void Assembler::cvttsd2si(Register dst, const Operand& src) {
2017  ASSERT(CpuFeatures::IsEnabled(SSE2));
2018  EnsureSpace ensure_space(this);
2019  last_pc_ = pc_;
2020  EMIT(0xF2);
2021  EMIT(0x0F);
2022  EMIT(0x2C);
2023  emit_operand(dst, src);
2024}
2025
2026
2027void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
2028  ASSERT(CpuFeatures::IsEnabled(SSE2));
2029  EnsureSpace ensure_space(this);
2030  last_pc_ = pc_;
2031  EMIT(0xF2);
2032  EMIT(0x0F);
2033  EMIT(0x2A);
2034  emit_sse_operand(dst, src);
2035}
2036
2037
2038void Assembler::addsd(XMMRegister dst, XMMRegister src) {
2039  ASSERT(CpuFeatures::IsEnabled(SSE2));
2040  EnsureSpace ensure_space(this);
2041  last_pc_ = pc_;
2042  EMIT(0xF2);
2043  EMIT(0x0F);
2044  EMIT(0x58);
2045  emit_sse_operand(dst, src);
2046}
2047
2048
2049void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2050  ASSERT(CpuFeatures::IsEnabled(SSE2));
2051  EnsureSpace ensure_space(this);
2052  last_pc_ = pc_;
2053  EMIT(0xF2);
2054  EMIT(0x0F);
2055  EMIT(0x59);
2056  emit_sse_operand(dst, src);
2057}
2058
2059
2060void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2061  ASSERT(CpuFeatures::IsEnabled(SSE2));
2062  EnsureSpace ensure_space(this);
2063  last_pc_ = pc_;
2064  EMIT(0xF2);
2065  EMIT(0x0F);
2066  EMIT(0x5C);
2067  emit_sse_operand(dst, src);
2068}
2069
2070
2071void Assembler::divsd(XMMRegister dst, XMMRegister src) {
2072  ASSERT(CpuFeatures::IsEnabled(SSE2));
2073  EnsureSpace ensure_space(this);
2074  last_pc_ = pc_;
2075  EMIT(0xF2);
2076  EMIT(0x0F);
2077  EMIT(0x5E);
2078  emit_sse_operand(dst, src);
2079}
2080
2081
2082void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2083  ASSERT(CpuFeatures::IsEnabled(SSE2));
2084  EnsureSpace ensure_space(this);
2085  last_pc_ = pc_;
2086  EMIT(0x66);
2087  EMIT(0x0F);
2088  EMIT(0x57);
2089  emit_sse_operand(dst, src);
2090}
2091
2092
2093void Assembler::comisd(XMMRegister dst, XMMRegister src) {
2094  ASSERT(CpuFeatures::IsEnabled(SSE2));
2095  EnsureSpace ensure_space(this);
2096  last_pc_ = pc_;
2097  EMIT(0x66);
2098  EMIT(0x0F);
2099  EMIT(0x2F);
2100  emit_sse_operand(dst, src);
2101}
2102
2103
2104void Assembler::movdqa(const Operand& dst, XMMRegister src ) {
2105  ASSERT(CpuFeatures::IsEnabled(SSE2));
2106  EnsureSpace ensure_space(this);
2107  last_pc_ = pc_;
2108  EMIT(0x66);
2109  EMIT(0x0F);
2110  EMIT(0x7F);
2111  emit_sse_operand(src, dst);
2112}
2113
2114
2115void Assembler::movdqa(XMMRegister dst, const Operand& src) {
2116  ASSERT(CpuFeatures::IsEnabled(SSE2));
2117  EnsureSpace ensure_space(this);
2118  last_pc_ = pc_;
2119  EMIT(0x66);
2120  EMIT(0x0F);
2121  EMIT(0x6F);
2122  emit_sse_operand(dst, src);
2123}
2124
2125
2126void Assembler::movdqu(const Operand& dst, XMMRegister src ) {
2127  ASSERT(CpuFeatures::IsEnabled(SSE2));
2128  EnsureSpace ensure_space(this);
2129  last_pc_ = pc_;
2130  EMIT(0xF3);
2131  EMIT(0x0F);
2132  EMIT(0x7F);
2133  emit_sse_operand(src, dst);
2134}
2135
2136
2137void Assembler::movdqu(XMMRegister dst, const Operand& src) {
2138  ASSERT(CpuFeatures::IsEnabled(SSE2));
2139  EnsureSpace ensure_space(this);
2140  last_pc_ = pc_;
2141  EMIT(0xF3);
2142  EMIT(0x0F);
2143  EMIT(0x6F);
2144  emit_sse_operand(dst, src);
2145}
2146
2147
2148void Assembler::movdbl(XMMRegister dst, const Operand& src) {
2149  EnsureSpace ensure_space(this);
2150  last_pc_ = pc_;
2151  movsd(dst, src);
2152}
2153
2154
2155void Assembler::movdbl(const Operand& dst, XMMRegister src) {
2156  EnsureSpace ensure_space(this);
2157  last_pc_ = pc_;
2158  movsd(dst, src);
2159}
2160
2161
2162void Assembler::movsd(const Operand& dst, XMMRegister src ) {
2163  ASSERT(CpuFeatures::IsEnabled(SSE2));
2164  EnsureSpace ensure_space(this);
2165  last_pc_ = pc_;
2166  EMIT(0xF2);  // double
2167  EMIT(0x0F);
2168  EMIT(0x11);  // store
2169  emit_sse_operand(src, dst);
2170}
2171
2172
2173void Assembler::movsd(XMMRegister dst, const Operand& src) {
2174  ASSERT(CpuFeatures::IsEnabled(SSE2));
2175  EnsureSpace ensure_space(this);
2176  last_pc_ = pc_;
2177  EMIT(0xF2);  // double
2178  EMIT(0x0F);
2179  EMIT(0x10);  // load
2180  emit_sse_operand(dst, src);
2181}
2182
2183
2184void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
2185  Register ireg = { reg.code() };
2186  emit_operand(ireg, adr);
2187}
2188
2189
2190void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
2191  EMIT(0xC0 | dst.code() << 3 | src.code());
2192}
2193
2194
2195void Assembler::Print() {
2196  Disassembler::Decode(stdout, buffer_, pc_);
2197}
2198
2199
2200void Assembler::RecordJSReturn() {
2201  WriteRecordedPositions();
2202  EnsureSpace ensure_space(this);
2203  RecordRelocInfo(RelocInfo::JS_RETURN);
2204}
2205
2206
2207void Assembler::RecordComment(const char* msg) {
2208  if (FLAG_debug_code) {
2209    EnsureSpace ensure_space(this);
2210    RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
2211  }
2212}
2213
2214
2215void Assembler::RecordPosition(int pos) {
2216  ASSERT(pos != RelocInfo::kNoPosition);
2217  ASSERT(pos >= 0);
2218  current_position_ = pos;
2219}
2220
2221
2222void Assembler::RecordStatementPosition(int pos) {
2223  ASSERT(pos != RelocInfo::kNoPosition);
2224  ASSERT(pos >= 0);
2225  current_statement_position_ = pos;
2226}
2227
2228
2229void Assembler::WriteRecordedPositions() {
2230  // Write the statement position if it is different from what was written last
2231  // time.
2232  if (current_statement_position_ != written_statement_position_) {
2233    EnsureSpace ensure_space(this);
2234    RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
2235    written_statement_position_ = current_statement_position_;
2236  }
2237
2238  // Write the position if it is different from what was written last time and
2239  // also different from the written statement position.
2240  if (current_position_ != written_position_ &&
2241      current_position_ != written_statement_position_) {
2242    EnsureSpace ensure_space(this);
2243    RecordRelocInfo(RelocInfo::POSITION, current_position_);
2244    written_position_ = current_position_;
2245  }
2246}
2247
2248
2249void Assembler::GrowBuffer() {
2250  ASSERT(overflow());
2251  if (!own_buffer_) FATAL("external code buffer is too small");
2252
2253  // Compute new buffer size.
2254  CodeDesc desc;  // the new buffer
2255  if (buffer_size_ < 4*KB) {
2256    desc.buffer_size = 4*KB;
2257  } else {
2258    desc.buffer_size = 2*buffer_size_;
2259  }
2260  // Some internal data structures overflow for very large buffers,
2261  // they must ensure that kMaximalBufferSize is not too large.
2262  if ((desc.buffer_size > kMaximalBufferSize) ||
2263      (desc.buffer_size > Heap::MaxOldGenerationSize())) {
2264    V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
2265  }
2266
2267  // Setup new buffer.
2268  desc.buffer = NewArray<byte>(desc.buffer_size);
2269  desc.instr_size = pc_offset();
2270  desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
2271
2272  // Clear the buffer in debug mode. Use 'int3' instructions to make
2273  // sure to get into problems if we ever run uninitialized code.
2274#ifdef DEBUG
2275  memset(desc.buffer, 0xCC, desc.buffer_size);
2276#endif
2277
2278  // Copy the data.
2279  int pc_delta = desc.buffer - buffer_;
2280  int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2281  memmove(desc.buffer, buffer_, desc.instr_size);
2282  memmove(rc_delta + reloc_info_writer.pos(),
2283          reloc_info_writer.pos(), desc.reloc_size);
2284
2285  // Switch buffers.
2286  if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
2287    spare_buffer_ = buffer_;
2288  } else {
2289    DeleteArray(buffer_);
2290  }
2291  buffer_ = desc.buffer;
2292  buffer_size_ = desc.buffer_size;
2293  pc_ += pc_delta;
2294  if (last_pc_ != NULL) {
2295    last_pc_ += pc_delta;
2296  }
2297  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2298                               reloc_info_writer.last_pc() + pc_delta);
2299
2300  // Relocate runtime entries.
2301  for (RelocIterator it(desc); !it.done(); it.next()) {
2302    RelocInfo::Mode rmode = it.rinfo()->rmode();
2303    if (rmode == RelocInfo::RUNTIME_ENTRY) {
2304      int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc());
2305      *p -= pc_delta;  // relocate entry
2306    } else if (rmode == RelocInfo::INTERNAL_REFERENCE) {
2307      int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc());
2308      if (*p != 0) {  // 0 means uninitialized.
2309        *p += pc_delta;
2310      }
2311    }
2312  }
2313
2314  ASSERT(!overflow());
2315}
2316
2317
2318void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
2319  ASSERT(is_uint8(op1) && is_uint8(op2));  // wrong opcode
2320  ASSERT(is_uint8(imm8));
2321  ASSERT((op1 & 0x01) == 0);  // should be 8bit operation
2322  EMIT(op1);
2323  EMIT(op2 | dst.code());
2324  EMIT(imm8);
2325}
2326
2327
2328void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
2329  ASSERT((0 <= sel) && (sel <= 7));
2330  Register ireg = { sel };
2331  if (x.is_int8()) {
2332    EMIT(0x83);  // using a sign-extended 8-bit immediate.
2333    emit_operand(ireg, dst);
2334    EMIT(x.x_ & 0xFF);
2335  } else if (dst.is_reg(eax)) {
2336    EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
2337    emit(x);
2338  } else {
2339    EMIT(0x81);  // using a literal 32-bit immediate.
2340    emit_operand(ireg, dst);
2341    emit(x);
2342  }
2343}
2344
2345
2346void Assembler::emit_operand(Register reg, const Operand& adr) {
2347  const unsigned length = adr.len_;
2348  ASSERT(length > 0);
2349
2350  // Emit updated ModRM byte containing the given register.
2351  pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2352
2353  // Emit the rest of the encoded operand.
2354  for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
2355  pc_ += length;
2356
2357  // Emit relocation information if necessary.
2358  if (length >= sizeof(int32_t) && adr.rmode_ != RelocInfo::NONE) {
2359    pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
2360    RecordRelocInfo(adr.rmode_);
2361    pc_ += sizeof(int32_t);
2362  }
2363}
2364
2365
2366void Assembler::emit_farith(int b1, int b2, int i) {
2367  ASSERT(is_uint8(b1) && is_uint8(b2));  // wrong opcode
2368  ASSERT(0 <= i &&  i < 8);  // illegal stack offset
2369  EMIT(b1);
2370  EMIT(b2 + i);
2371}
2372
2373
2374void Assembler::dd(uint32_t data, RelocInfo::Mode reloc_info) {
2375  EnsureSpace ensure_space(this);
2376  emit(data, reloc_info);
2377}
2378
2379
2380void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2381  ASSERT(rmode != RelocInfo::NONE);
2382  // Don't record external references unless the heap will be serialized.
2383  if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
2384#ifdef DEBUG
2385    if (!Serializer::enabled()) {
2386      Serializer::TooLateToEnableNow();
2387    }
2388#endif
2389    if (!Serializer::enabled() && !FLAG_debug_code) {
2390      return;
2391    }
2392  }
2393  RelocInfo rinfo(pc_, rmode, data);
2394  reloc_info_writer.Write(&rinfo);
2395}
2396
2397
2398#ifdef GENERATED_CODE_COVERAGE
2399static FILE* coverage_log = NULL;
2400
2401
2402static void InitCoverageLog() {
2403  char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
2404  if (file_name != NULL) {
2405    coverage_log = fopen(file_name, "aw+");
2406  }
2407}
2408
2409
2410void LogGeneratedCodeCoverage(const char* file_line) {
2411  const char* return_address = (&file_line)[-1];
2412  char* push_insn = const_cast<char*>(return_address - 12);
2413  push_insn[0] = 0xeb;  // Relative branch insn.
2414  push_insn[1] = 13;    // Skip over coverage insns.
2415  if (coverage_log != NULL) {
2416    fprintf(coverage_log, "%s\n", file_line);
2417    fflush(coverage_log);
2418  }
2419}
2420
2421#endif
2422
2423} }  // namespace v8::internal
2424