1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7
8#include "src/assembler.h"
9#include "src/globals.h"
10#include "src/mips/assembler-mips.h"
11
12namespace v8 {
13namespace internal {
14
15// Give alias names to registers for calling conventions.
16const Register kReturnRegister0 = {Register::kCode_v0};
17const Register kReturnRegister1 = {Register::kCode_v1};
18const Register kReturnRegister2 = {Register::kCode_a0};
19const Register kJSFunctionRegister = {Register::kCode_a1};
20const Register kContextRegister = {Register::kCpRegister};
21const Register kAllocateSizeRegister = {Register::kCode_a0};
22const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
23const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t4};
24const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t5};
25const Register kInterpreterDispatchTableRegister = {Register::kCode_t6};
26const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
27const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
28const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
29const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
30
31// Forward declaration.
32class JumpTarget;
33
34// Reserved Register Usage Summary.
35//
36// Registers t8, t9, and at are reserved for use by the MacroAssembler.
37//
38// The programmer should know that the MacroAssembler may clobber these three,
39// but won't touch other registers except in special cases.
40//
41// Per the MIPS ABI, register t9 must be used for indirect function call
42// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
43// trying to update gp register for position-independent-code. Whenever
44// MIPS generated code calls C code, it must be via t9 register.
45
46
47// Flags used for LeaveExitFrame function.
48enum LeaveExitFrameMode {
49  EMIT_RETURN = true,
50  NO_EMIT_RETURN = false
51};
52
53// Flags used for AllocateHeapNumber
54enum TaggingMode {
55  // Tag the result.
56  TAG_RESULT,
57  // Don't tag
58  DONT_TAG_RESULT
59};
60
61// Flags used for the ObjectToDoubleFPURegister function.
62enum ObjectToDoubleFlags {
63  // No special flags.
64  NO_OBJECT_TO_DOUBLE_FLAGS = 0,
65  // Object is known to be a non smi.
66  OBJECT_NOT_SMI = 1 << 0,
67  // Don't load NaNs or infinities, branch to the non number case instead.
68  AVOID_NANS_AND_INFINITIES = 1 << 1
69};
70
71// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
72enum BranchDelaySlot {
73  USE_DELAY_SLOT,
74  PROTECT
75};
76
77// Flags used for the li macro-assembler function.
78enum LiFlags {
79  // If the constant value can be represented in just 16 bits, then
80  // optimize the li to use a single instruction, rather than lui/ori pair.
81  OPTIMIZE_SIZE = 0,
82  // Always use 2 instructions (lui/ori pair), even if the constant could
83  // be loaded with just one, so that this value is patchable later.
84  CONSTANT_SIZE = 1
85};
86
87
88enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
89enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
90enum PointersToHereCheck {
91  kPointersToHereMaybeInteresting,
92  kPointersToHereAreAlwaysInteresting
93};
94enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
95
96Register GetRegisterThatIsNotOneOf(Register reg1,
97                                   Register reg2 = no_reg,
98                                   Register reg3 = no_reg,
99                                   Register reg4 = no_reg,
100                                   Register reg5 = no_reg,
101                                   Register reg6 = no_reg);
102
103bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
104                Register reg4 = no_reg, Register reg5 = no_reg,
105                Register reg6 = no_reg, Register reg7 = no_reg,
106                Register reg8 = no_reg, Register reg9 = no_reg,
107                Register reg10 = no_reg);
108
109
110// -----------------------------------------------------------------------------
111// Static helper functions.
112
113inline MemOperand ContextMemOperand(Register context, int index) {
114  return MemOperand(context, Context::SlotOffset(index));
115}
116
117
118inline MemOperand NativeContextMemOperand() {
119  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
120}
121
122
123// Generate a MemOperand for loading a field from an object.
124inline MemOperand FieldMemOperand(Register object, int offset) {
125  return MemOperand(object, offset - kHeapObjectTag);
126}
127
128
129// Generate a MemOperand for storing arguments 5..N on the stack
130// when calling CallCFunction().
131inline MemOperand CFunctionArgumentOperand(int index) {
132  DCHECK(index > kCArgSlotCount);
133  // Argument 5 takes the slot just past the four Arg-slots.
134  int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
135  return MemOperand(sp, offset);
136}
137
138
139// MacroAssembler implements a collection of frequently used macros.
140class MacroAssembler: public Assembler {
141 public:
142  MacroAssembler(Isolate* isolate, void* buffer, int size,
143                 CodeObjectRequired create_code_object);
144
145  // Arguments macros.
146#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
147#define COND_ARGS cond, r1, r2
148
149  // Cases when relocation is not needed.
150#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
151  void Name(target_type target, BranchDelaySlot bd = PROTECT); \
152  inline void Name(BranchDelaySlot bd, target_type target) { \
153    Name(target, bd); \
154  } \
155  void Name(target_type target, \
156            COND_TYPED_ARGS, \
157            BranchDelaySlot bd = PROTECT); \
158  inline void Name(BranchDelaySlot bd, \
159                   target_type target, \
160                   COND_TYPED_ARGS) { \
161    Name(target, COND_ARGS, bd); \
162  }
163
164#define DECLARE_BRANCH_PROTOTYPES(Name)   \
165  DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
166  DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
167
168  DECLARE_BRANCH_PROTOTYPES(Branch)
169  DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
170  DECLARE_BRANCH_PROTOTYPES(BranchShort)
171
172#undef DECLARE_BRANCH_PROTOTYPES
173#undef COND_TYPED_ARGS
174#undef COND_ARGS
175
176
177  // Jump, Call, and Ret pseudo instructions implementing inter-working.
178#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
179  const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
180
181  void Jump(Register target, COND_ARGS);
182  void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
183  void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
184  void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
185  static int CallSize(Register target, COND_ARGS);
186  void Call(Register target, COND_ARGS);
187  static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
188  void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
189  int CallSize(Handle<Code> code,
190               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
191               TypeFeedbackId ast_id = TypeFeedbackId::None(),
192               COND_ARGS);
193  void Call(Handle<Code> code,
194            RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
195            TypeFeedbackId ast_id = TypeFeedbackId::None(),
196            COND_ARGS);
197  void Ret(COND_ARGS);
198  inline void Ret(BranchDelaySlot bd, Condition cond = al,
199    Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
200    Ret(cond, rs, rt, bd);
201  }
202
203  bool IsNear(Label* L, Condition cond, int rs_reg);
204
205  void Branch(Label* L,
206              Condition cond,
207              Register rs,
208              Heap::RootListIndex index,
209              BranchDelaySlot bdslot = PROTECT);
210
211  // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
212  // functor/function with 'Label *func(size_t index)' declaration.
213  template <typename Func>
214  void GenerateSwitchTable(Register index, size_t case_count,
215                           Func GetLabelFunction);
216#undef COND_ARGS
217
218  // Emit code to discard a non-negative number of pointer-sized elements
219  // from the stack, clobbering only the sp register.
220  void Drop(int count,
221            Condition cond = cc_always,
222            Register reg = no_reg,
223            const Operand& op = Operand(no_reg));
224
225  // Trivial case of DropAndRet that utilizes the delay slot and only emits
226  // 2 instructions.
227  void DropAndRet(int drop);
228
229  void DropAndRet(int drop,
230                  Condition cond,
231                  Register reg,
232                  const Operand& op);
233
234  // Swap two registers.  If the scratch register is omitted then a slightly
235  // less efficient form using xor instead of mov is emitted.
236  void Swap(Register reg1, Register reg2, Register scratch = no_reg);
237
238  void Call(Label* target);
239
240  inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
241  inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
242
243  inline void Move(Register dst, Register src) {
244    if (!dst.is(src)) {
245      mov(dst, src);
246    }
247  }
248
249  inline void Move_d(FPURegister dst, FPURegister src) {
250    if (!dst.is(src)) {
251      mov_d(dst, src);
252    }
253  }
254
255  inline void Move_s(FPURegister dst, FPURegister src) {
256    if (!dst.is(src)) {
257      mov_s(dst, src);
258    }
259  }
260
261  inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
262
263  inline void Move(Register dst_low, Register dst_high, FPURegister src) {
264    mfc1(dst_low, src);
265    Mfhc1(dst_high, src);
266  }
267
268  inline void FmoveHigh(Register dst_high, FPURegister src) {
269    Mfhc1(dst_high, src);
270  }
271
272  inline void FmoveHigh(FPURegister dst, Register src_high) {
273    Mthc1(src_high, dst);
274  }
275
276  inline void FmoveLow(Register dst_low, FPURegister src) {
277    mfc1(dst_low, src);
278  }
279
280  void FmoveLow(FPURegister dst, Register src_low);
281
282  inline void Move(FPURegister dst, Register src_low, Register src_high) {
283    mtc1(src_low, dst);
284    Mthc1(src_high, dst);
285  }
286
287  void Move(FPURegister dst, float imm);
288  void Move(FPURegister dst, double imm);
289
290  // Conditional move.
291  void Movz(Register rd, Register rs, Register rt);
292  void Movn(Register rd, Register rs, Register rt);
293  void Movt(Register rd, Register rs, uint16_t cc = 0);
294  void Movf(Register rd, Register rs, uint16_t cc = 0);
295
296  // Min, Max macros.
297  // On pre-r6 these functions may modify at and t8 registers.
298  void MinNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
299                     Label* nan = nullptr);
300  void MaxNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
301                     Label* nan = nullptr);
302  void MinNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
303                     Label* nan = nullptr);
304  void MaxNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
305                     Label* nan = nullptr);
306
307  void Clz(Register rd, Register rs);
308
309  // Jump unconditionally to given label.
310  // We NEED a nop in the branch delay slot, as it used by v8, for example in
311  // CodeGenerator::ProcessDeferred().
312  // Currently the branch delay slot is filled by the MacroAssembler.
313  // Use rather b(Label) for code generation.
314  void jmp(Label* L) {
315    Branch(L);
316  }
317
318  void Load(Register dst, const MemOperand& src, Representation r);
319  void Store(Register src, const MemOperand& dst, Representation r);
320
321  void PushRoot(Heap::RootListIndex index) {
322    LoadRoot(at, index);
323    Push(at);
324  }
325
326  // Compare the object in a register to a value and jump if they are equal.
327  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
328    LoadRoot(at, index);
329    Branch(if_equal, eq, with, Operand(at));
330  }
331
332  // Compare the object in a register to a value and jump if they are not equal.
333  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
334                     Label* if_not_equal) {
335    LoadRoot(at, index);
336    Branch(if_not_equal, ne, with, Operand(at));
337  }
338
339  // Load an object from the root table.
340  void LoadRoot(Register destination,
341                Heap::RootListIndex index);
342  void LoadRoot(Register destination,
343                Heap::RootListIndex index,
344                Condition cond, Register src1, const Operand& src2);
345
346  // Store an object to the root table.
347  void StoreRoot(Register source,
348                 Heap::RootListIndex index);
349  void StoreRoot(Register source,
350                 Heap::RootListIndex index,
351                 Condition cond, Register src1, const Operand& src2);
352
353  // ---------------------------------------------------------------------------
354  // GC Support
355
356  void IncrementalMarkingRecordWriteHelper(Register object,
357                                           Register value,
358                                           Register address);
359
360  enum RememberedSetFinalAction {
361    kReturnAtEnd,
362    kFallThroughAtEnd
363  };
364
365
366  // Record in the remembered set the fact that we have a pointer to new space
367  // at the address pointed to by the addr register.  Only works if addr is not
368  // in new space.
369  void RememberedSetHelper(Register object,  // Used for debug code.
370                           Register addr,
371                           Register scratch,
372                           SaveFPRegsMode save_fp,
373                           RememberedSetFinalAction and_then);
374
375  void CheckPageFlag(Register object,
376                     Register scratch,
377                     int mask,
378                     Condition cc,
379                     Label* condition_met);
380
381  // Check if object is in new space.  Jumps if the object is not in new space.
382  // The register scratch can be object itself, but it will be clobbered.
383  void JumpIfNotInNewSpace(Register object,
384                           Register scratch,
385                           Label* branch) {
386    InNewSpace(object, scratch, eq, branch);
387  }
388
389  // Check if object is in new space.  Jumps if the object is in new space.
390  // The register scratch can be object itself, but scratch will be clobbered.
391  void JumpIfInNewSpace(Register object,
392                        Register scratch,
393                        Label* branch) {
394    InNewSpace(object, scratch, ne, branch);
395  }
396
397  // Check if an object has a given incremental marking color.
398  void HasColor(Register object,
399                Register scratch0,
400                Register scratch1,
401                Label* has_color,
402                int first_bit,
403                int second_bit);
404
405  void JumpIfBlack(Register object,
406                   Register scratch0,
407                   Register scratch1,
408                   Label* on_black);
409
410  // Checks the color of an object.  If the object is white we jump to the
411  // incremental marker.
412  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
413                   Register scratch3, Label* value_is_white);
414
415  // Notify the garbage collector that we wrote a pointer into an object.
416  // |object| is the object being stored into, |value| is the object being
417  // stored.  value and scratch registers are clobbered by the operation.
418  // The offset is the offset from the start of the object, not the offset from
419  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
420  void RecordWriteField(
421      Register object,
422      int offset,
423      Register value,
424      Register scratch,
425      RAStatus ra_status,
426      SaveFPRegsMode save_fp,
427      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
428      SmiCheck smi_check = INLINE_SMI_CHECK,
429      PointersToHereCheck pointers_to_here_check_for_value =
430          kPointersToHereMaybeInteresting);
431
432  // As above, but the offset has the tag presubtracted.  For use with
433  // MemOperand(reg, off).
434  inline void RecordWriteContextSlot(
435      Register context,
436      int offset,
437      Register value,
438      Register scratch,
439      RAStatus ra_status,
440      SaveFPRegsMode save_fp,
441      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
442      SmiCheck smi_check = INLINE_SMI_CHECK,
443      PointersToHereCheck pointers_to_here_check_for_value =
444          kPointersToHereMaybeInteresting) {
445    RecordWriteField(context,
446                     offset + kHeapObjectTag,
447                     value,
448                     scratch,
449                     ra_status,
450                     save_fp,
451                     remembered_set_action,
452                     smi_check,
453                     pointers_to_here_check_for_value);
454  }
455
456  // Notify the garbage collector that we wrote a code entry into a
457  // JSFunction. Only scratch is clobbered by the operation.
458  void RecordWriteCodeEntryField(Register js_function, Register code_entry,
459                                 Register scratch);
460
461  void RecordWriteForMap(
462      Register object,
463      Register map,
464      Register dst,
465      RAStatus ra_status,
466      SaveFPRegsMode save_fp);
467
468  // For a given |object| notify the garbage collector that the slot |address|
469  // has been written.  |value| is the object being stored. The value and
470  // address registers are clobbered by the operation.
471  void RecordWrite(
472      Register object,
473      Register address,
474      Register value,
475      RAStatus ra_status,
476      SaveFPRegsMode save_fp,
477      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
478      SmiCheck smi_check = INLINE_SMI_CHECK,
479      PointersToHereCheck pointers_to_here_check_for_value =
480          kPointersToHereMaybeInteresting);
481
482
483  // ---------------------------------------------------------------------------
484  // Inline caching support.
485
486  // Generate code for checking access rights - used for security checks
487  // on access to global objects across environments. The holder register
488  // is left untouched, whereas both scratch registers are clobbered.
489  void CheckAccessGlobalProxy(Register holder_reg,
490                              Register scratch,
491                              Label* miss);
492
493  void GetNumberHash(Register reg0, Register scratch);
494
495  void LoadFromNumberDictionary(Label* miss,
496                                Register elements,
497                                Register key,
498                                Register result,
499                                Register reg0,
500                                Register reg1,
501                                Register reg2);
502
503
504  inline void MarkCode(NopMarkerTypes type) {
505    nop(type);
506  }
507
508  // Check if the given instruction is a 'type' marker.
509  // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
510  // nop(type)). These instructions are generated to mark special location in
511  // the code, like some special IC code.
512  static inline bool IsMarkedCode(Instr instr, int type) {
513    DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
514    return IsNop(instr, type);
515  }
516
517
518  static inline int GetCodeMarker(Instr instr) {
519    uint32_t opcode = ((instr & kOpcodeMask));
520    uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
521    uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
522    uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
523
524    // Return <n> if we have a sll zero_reg, zero_reg, n
525    // else return -1.
526    bool sllzz = (opcode == SLL &&
527                  rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
528                  rs == static_cast<uint32_t>(ToNumber(zero_reg)));
529    int type =
530        (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
531    DCHECK((type == -1) ||
532           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
533    return type;
534  }
535
536
537
538  // ---------------------------------------------------------------------------
539  // Allocation support.
540
541  // Allocate an object in new space or old space. The object_size is
542  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
543  // is passed. If the space is exhausted control continues at the gc_required
544  // label. The allocated object is returned in result. If the flag
545  // tag_allocated_object is true the result is tagged as as a heap object.
546  // All registers are clobbered also when control continues at the gc_required
547  // label.
548  void Allocate(int object_size,
549                Register result,
550                Register scratch1,
551                Register scratch2,
552                Label* gc_required,
553                AllocationFlags flags);
554
555  void Allocate(Register object_size, Register result, Register result_new,
556                Register scratch, Label* gc_required, AllocationFlags flags);
557
558  // FastAllocate is right now only used for folded allocations. It just
559  // increments the top pointer without checking against limit. This can only
560  // be done if it was proved earlier that the allocation will succeed.
561  void FastAllocate(int object_size, Register result, Register scratch1,
562                    Register scratch2, AllocationFlags flags);
563
564  void FastAllocate(Register object_size, Register result, Register result_new,
565                    Register scratch, AllocationFlags flags);
566
567  void AllocateTwoByteString(Register result,
568                             Register length,
569                             Register scratch1,
570                             Register scratch2,
571                             Register scratch3,
572                             Label* gc_required);
573  void AllocateOneByteString(Register result, Register length,
574                             Register scratch1, Register scratch2,
575                             Register scratch3, Label* gc_required);
576  void AllocateTwoByteConsString(Register result,
577                                 Register length,
578                                 Register scratch1,
579                                 Register scratch2,
580                                 Label* gc_required);
581  void AllocateOneByteConsString(Register result, Register length,
582                                 Register scratch1, Register scratch2,
583                                 Label* gc_required);
584  void AllocateTwoByteSlicedString(Register result,
585                                   Register length,
586                                   Register scratch1,
587                                   Register scratch2,
588                                   Label* gc_required);
589  void AllocateOneByteSlicedString(Register result, Register length,
590                                   Register scratch1, Register scratch2,
591                                   Label* gc_required);
592
593  // Allocates a heap number or jumps to the gc_required label if the young
594  // space is full and a scavenge is needed. All registers are clobbered also
595  // when control continues at the gc_required label.
596  void AllocateHeapNumber(Register result,
597                          Register scratch1,
598                          Register scratch2,
599                          Register heap_number_map,
600                          Label* gc_required,
601                          MutableMode mode = IMMUTABLE);
602  void AllocateHeapNumberWithValue(Register result,
603                                   FPURegister value,
604                                   Register scratch1,
605                                   Register scratch2,
606                                   Label* gc_required);
607
608  // Allocate and initialize a JSValue wrapper with the specified {constructor}
609  // and {value}.
610  void AllocateJSValue(Register result, Register constructor, Register value,
611                       Register scratch1, Register scratch2,
612                       Label* gc_required);
613
614  // ---------------------------------------------------------------------------
615  // Instruction macros.
616
617#define DEFINE_INSTRUCTION(instr)                                              \
618  void instr(Register rd, Register rs, const Operand& rt);                     \
619  void instr(Register rd, Register rs, Register rt) {                          \
620    instr(rd, rs, Operand(rt));                                                \
621  }                                                                            \
622  void instr(Register rs, Register rt, int32_t j) {                            \
623    instr(rs, rt, Operand(j));                                                 \
624  }
625
626#define DEFINE_INSTRUCTION2(instr)                                             \
627  void instr(Register rs, const Operand& rt);                                  \
628  void instr(Register rs, Register rt) {                                       \
629    instr(rs, Operand(rt));                                                    \
630  }                                                                            \
631  void instr(Register rs, int32_t j) {                                         \
632    instr(rs, Operand(j));                                                     \
633  }
634
635#define DEFINE_INSTRUCTION3(instr)                                             \
636  void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt);  \
637  void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) {       \
638    instr(rd_hi, rd_lo, rs, Operand(rt));                                      \
639  }                                                                            \
640  void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) {         \
641    instr(rd_hi, rd_lo, rs, Operand(j));                                       \
642  }
643
644  DEFINE_INSTRUCTION(Addu);
645  DEFINE_INSTRUCTION(Subu);
646  DEFINE_INSTRUCTION(Mul);
647  DEFINE_INSTRUCTION(Div);
648  DEFINE_INSTRUCTION(Divu);
649  DEFINE_INSTRUCTION(Mod);
650  DEFINE_INSTRUCTION(Modu);
651  DEFINE_INSTRUCTION(Mulh);
652  DEFINE_INSTRUCTION2(Mult);
653  DEFINE_INSTRUCTION(Mulhu);
654  DEFINE_INSTRUCTION2(Multu);
655  DEFINE_INSTRUCTION2(Div);
656  DEFINE_INSTRUCTION2(Divu);
657
658  DEFINE_INSTRUCTION3(Div);
659  DEFINE_INSTRUCTION3(Mul);
660  DEFINE_INSTRUCTION3(Mulu);
661
662  DEFINE_INSTRUCTION(And);
663  DEFINE_INSTRUCTION(Or);
664  DEFINE_INSTRUCTION(Xor);
665  DEFINE_INSTRUCTION(Nor);
666  DEFINE_INSTRUCTION2(Neg);
667
668  DEFINE_INSTRUCTION(Slt);
669  DEFINE_INSTRUCTION(Sltu);
670
671  // MIPS32 R2 instruction macro.
672  DEFINE_INSTRUCTION(Ror);
673
674#undef DEFINE_INSTRUCTION
675#undef DEFINE_INSTRUCTION2
676#undef DEFINE_INSTRUCTION3
677
678  // Load Scaled Address instructions. Parameter sa (shift argument) must be
679  // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
680  // may be clobbered.
681  void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
682           Register scratch = at);
683
684  void Pref(int32_t hint, const MemOperand& rs);
685
686
687  // ---------------------------------------------------------------------------
688  // Pseudo-instructions.
689
690  // Change endianness
691  void ByteSwapSigned(Register reg, int operand_size);
692  void ByteSwapUnsigned(Register reg, int operand_size);
693
694  void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
695
696  void Ulh(Register rd, const MemOperand& rs);
697  void Ulhu(Register rd, const MemOperand& rs);
698  void Ush(Register rd, const MemOperand& rs, Register scratch);
699
700  void Ulw(Register rd, const MemOperand& rs);
701  void Usw(Register rd, const MemOperand& rs);
702
703  void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
704  void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
705
706  void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
707  void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
708
709  // Load int32 in the rd register.
710  void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
711  inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
712    li(rd, Operand(j), mode);
713  }
714  void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
715
716  // Push multiple registers on the stack.
717  // Registers are saved in numerical order, with higher numbered registers
718  // saved in higher memory addresses.
719  void MultiPush(RegList regs);
720  void MultiPushReversed(RegList regs);
721
722  void MultiPushFPU(RegList regs);
723  void MultiPushReversedFPU(RegList regs);
724
725  void push(Register src) {
726    Addu(sp, sp, Operand(-kPointerSize));
727    sw(src, MemOperand(sp, 0));
728  }
729  void Push(Register src) { push(src); }
730
731  // Push a handle.
732  void Push(Handle<Object> handle);
733  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
734
735  // Push two registers. Pushes leftmost register first (to highest address).
736  void Push(Register src1, Register src2) {
737    Subu(sp, sp, Operand(2 * kPointerSize));
738    sw(src1, MemOperand(sp, 1 * kPointerSize));
739    sw(src2, MemOperand(sp, 0 * kPointerSize));
740  }
741
742  // Push three registers. Pushes leftmost register first (to highest address).
743  void Push(Register src1, Register src2, Register src3) {
744    Subu(sp, sp, Operand(3 * kPointerSize));
745    sw(src1, MemOperand(sp, 2 * kPointerSize));
746    sw(src2, MemOperand(sp, 1 * kPointerSize));
747    sw(src3, MemOperand(sp, 0 * kPointerSize));
748  }
749
750  // Push four registers. Pushes leftmost register first (to highest address).
751  void Push(Register src1, Register src2, Register src3, Register src4) {
752    Subu(sp, sp, Operand(4 * kPointerSize));
753    sw(src1, MemOperand(sp, 3 * kPointerSize));
754    sw(src2, MemOperand(sp, 2 * kPointerSize));
755    sw(src3, MemOperand(sp, 1 * kPointerSize));
756    sw(src4, MemOperand(sp, 0 * kPointerSize));
757  }
758
759  // Push five registers. Pushes leftmost register first (to highest address).
760  void Push(Register src1, Register src2, Register src3, Register src4,
761            Register src5) {
762    Subu(sp, sp, Operand(5 * kPointerSize));
763    sw(src1, MemOperand(sp, 4 * kPointerSize));
764    sw(src2, MemOperand(sp, 3 * kPointerSize));
765    sw(src3, MemOperand(sp, 2 * kPointerSize));
766    sw(src4, MemOperand(sp, 1 * kPointerSize));
767    sw(src5, MemOperand(sp, 0 * kPointerSize));
768  }
769
770  void Push(Register src, Condition cond, Register tst1, Register tst2) {
771    // Since we don't have conditional execution we use a Branch.
772    Branch(3, cond, tst1, Operand(tst2));
773    Subu(sp, sp, Operand(kPointerSize));
774    sw(src, MemOperand(sp, 0));
775  }
776
777  // Pops multiple values from the stack and load them in the
778  // registers specified in regs. Pop order is the opposite as in MultiPush.
779  void MultiPop(RegList regs);
780  void MultiPopReversed(RegList regs);
781
782  void MultiPopFPU(RegList regs);
783  void MultiPopReversedFPU(RegList regs);
784
785  void pop(Register dst) {
786    lw(dst, MemOperand(sp, 0));
787    Addu(sp, sp, Operand(kPointerSize));
788  }
789  void Pop(Register dst) { pop(dst); }
790
791  // Pop two registers. Pops rightmost register first (from lower address).
792  void Pop(Register src1, Register src2) {
793    DCHECK(!src1.is(src2));
794    lw(src2, MemOperand(sp, 0 * kPointerSize));
795    lw(src1, MemOperand(sp, 1 * kPointerSize));
796    Addu(sp, sp, 2 * kPointerSize);
797  }
798
799  // Pop three registers. Pops rightmost register first (from lower address).
800  void Pop(Register src1, Register src2, Register src3) {
801    lw(src3, MemOperand(sp, 0 * kPointerSize));
802    lw(src2, MemOperand(sp, 1 * kPointerSize));
803    lw(src1, MemOperand(sp, 2 * kPointerSize));
804    Addu(sp, sp, 3 * kPointerSize);
805  }
806
807  void Pop(uint32_t count = 1) {
808    Addu(sp, sp, Operand(count * kPointerSize));
809  }
810
811  // Push a fixed frame, consisting of ra, fp.
812  void PushCommonFrame(Register marker_reg = no_reg);
813
814  // Push a standard frame, consisting of ra, fp, context and JS function.
815  void PushStandardFrame(Register function_reg);
816
817  void PopCommonFrame(Register marker_reg = no_reg);
818
819  // Push and pop the registers that can hold pointers, as defined by the
820  // RegList constant kSafepointSavedRegisters.
821  void PushSafepointRegisters();
822  void PopSafepointRegisters();
823  // Store value in register src in the safepoint stack slot for
824  // register dst.
825  void StoreToSafepointRegisterSlot(Register src, Register dst);
826  // Load the value of the src register from its safepoint stack slot
827  // into register dst.
828  void LoadFromSafepointRegisterSlot(Register dst, Register src);
829
830  // MIPS32 R2 instruction macro.
831  void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
832  void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
833
834  // Int64Lowering instructions
835  void AddPair(Register dst_low, Register dst_high, Register left_low,
836               Register left_high, Register right_low, Register right_high);
837
838  void SubPair(Register dst_low, Register dst_high, Register left_low,
839               Register left_high, Register right_low, Register right_high);
840
841  void ShlPair(Register dst_low, Register dst_high, Register src_low,
842               Register src_high, Register shift);
843
844  void ShlPair(Register dst_low, Register dst_high, Register src_low,
845               Register src_high, uint32_t shift);
846
847  void ShrPair(Register dst_low, Register dst_high, Register src_low,
848               Register src_high, Register shift);
849
850  void ShrPair(Register dst_low, Register dst_high, Register src_low,
851               Register src_high, uint32_t shift);
852
853  void SarPair(Register dst_low, Register dst_high, Register src_low,
854               Register src_high, Register shift);
855
856  void SarPair(Register dst_low, Register dst_high, Register src_low,
857               Register src_high, uint32_t shift);
858
859  // ---------------------------------------------------------------------------
860  // FPU macros. These do not handle special cases like NaN or +- inf.
861
862  // Convert unsigned word to double.
863  void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
864
865  // Convert single to unsigned word.
866  void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
867  void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
868
869  // Convert double to unsigned word.
870  void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
871  void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
872
873  void Trunc_w_d(FPURegister fd, FPURegister fs);
874  void Round_w_d(FPURegister fd, FPURegister fs);
875  void Floor_w_d(FPURegister fd, FPURegister fs);
876  void Ceil_w_d(FPURegister fd, FPURegister fs);
877
878  // Preserve value of a NaN operand
879  void SubNanPreservePayloadAndSign_s(FPURegister fd, FPURegister fs,
880                                      FPURegister ft);
881  void SubNanPreservePayloadAndSign_d(FPURegister fd, FPURegister fs,
882                                      FPURegister ft);
883
884  // FP32 mode: Move the general purpose register into
885  // the high part of the double-register pair.
886  // FP64 mode: Move the general-purpose register into
887  // the higher 32 bits of the 64-bit coprocessor register,
888  // while leaving the low bits unchanged.
889  void Mthc1(Register rt, FPURegister fs);
890
891  // FP32 mode: move the high part of the double-register pair into
892  // general purpose register.
893  // FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into
894  // general-purpose register.
895  void Mfhc1(Register rt, FPURegister fs);
896
897  // Wrapper functions for the different cmp/branch types.
898  inline void BranchF32(Label* target, Label* nan, Condition cc,
899                        FPURegister cmp1, FPURegister cmp2,
900                        BranchDelaySlot bd = PROTECT) {
901    BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
902  }
903
904  inline void BranchF64(Label* target, Label* nan, Condition cc,
905                        FPURegister cmp1, FPURegister cmp2,
906                        BranchDelaySlot bd = PROTECT) {
907    BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
908  }
909
910  // Alternate (inline) version for better readability with USE_DELAY_SLOT.
911  inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
912                        Condition cc, FPURegister cmp1, FPURegister cmp2) {
913    BranchF64(target, nan, cc, cmp1, cmp2, bd);
914  }
915
916  inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
917                        Condition cc, FPURegister cmp1, FPURegister cmp2) {
918    BranchF32(target, nan, cc, cmp1, cmp2, bd);
919  }
920
921  // Alias functions for backward compatibility.
922  inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
923                      FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
924    BranchF64(target, nan, cc, cmp1, cmp2, bd);
925  }
926
927  inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
928                      Condition cc, FPURegister cmp1, FPURegister cmp2) {
929    BranchF64(bd, target, nan, cc, cmp1, cmp2);
930  }
931
932  // Truncates a double using a specific rounding mode, and writes the value
933  // to the result register.
934  // The except_flag will contain any exceptions caused by the instruction.
935  // If check_inexact is kDontCheckForInexactConversion, then the inexact
936  // exception is masked.
937  void EmitFPUTruncate(FPURoundingMode rounding_mode,
938                       Register result,
939                       DoubleRegister double_input,
940                       Register scratch,
941                       DoubleRegister double_scratch,
942                       Register except_flag,
943                       CheckForInexactConversion check_inexact
944                           = kDontCheckForInexactConversion);
945
946  // Performs a truncating conversion of a floating point number as used by
947  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
948  // succeeds, otherwise falls through if result is saturated. On return
949  // 'result' either holds answer, or is clobbered on fall through.
950  //
951  // Only public for the test code in test-code-stubs-arm.cc.
952  void TryInlineTruncateDoubleToI(Register result,
953                                  DoubleRegister input,
954                                  Label* done);
955
956  // Performs a truncating conversion of a floating point number as used by
957  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
958  // Exits with 'result' holding the answer.
959  void TruncateDoubleToI(Register result, DoubleRegister double_input);
960
961  // Performs a truncating conversion of a heap number as used by
962  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
963  // must be different registers. Exits with 'result' holding the answer.
964  void TruncateHeapNumberToI(Register result, Register object);
965
966  // Converts the smi or heap number in object to an int32 using the rules
967  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
968  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
969  // different registers.
970  void TruncateNumberToI(Register object,
971                         Register result,
972                         Register heap_number_map,
973                         Register scratch,
974                         Label* not_int32);
975
976  // Loads the number from object into dst register.
977  // If |object| is neither smi nor heap number, |not_number| is jumped to
978  // with |object| still intact.
979  void LoadNumber(Register object,
980                  FPURegister dst,
981                  Register heap_number_map,
982                  Register scratch,
983                  Label* not_number);
984
985  // Loads the number from object into double_dst in the double format.
986  // Control will jump to not_int32 if the value cannot be exactly represented
987  // by a 32-bit integer.
988  // Floating point value in the 32-bit integer range that are not exact integer
989  // won't be loaded.
990  void LoadNumberAsInt32Double(Register object,
991                               DoubleRegister double_dst,
992                               Register heap_number_map,
993                               Register scratch1,
994                               Register scratch2,
995                               FPURegister double_scratch,
996                               Label* not_int32);
997
998  // Loads the number from object into dst as a 32-bit integer.
999  // Control will jump to not_int32 if the object cannot be exactly represented
1000  // by a 32-bit integer.
1001  // Floating point value in the 32-bit integer range that are not exact integer
1002  // won't be converted.
1003  void LoadNumberAsInt32(Register object,
1004                         Register dst,
1005                         Register heap_number_map,
1006                         Register scratch1,
1007                         Register scratch2,
1008                         FPURegister double_scratch0,
1009                         FPURegister double_scratch1,
1010                         Label* not_int32);
1011
1012  // Enter exit frame.
1013  // argc - argument count to be dropped by LeaveExitFrame.
1014  // save_doubles - saves FPU registers on stack, currently disabled.
1015  // stack_space - extra stack space.
1016  void EnterExitFrame(bool save_doubles,
1017                      int stack_space = 0);
1018
1019  // Leave the current exit frame.
1020  void LeaveExitFrame(bool save_doubles, Register arg_count,
1021                      bool restore_context, bool do_return = NO_EMIT_RETURN,
1022                      bool argument_count_is_length = false);
1023
1024  // Get the actual activation frame alignment for target environment.
1025  static int ActivationFrameAlignment();
1026
1027  // Make sure the stack is aligned. Only emits code in debug mode.
1028  void AssertStackIsAligned();
1029
1030  void LoadContext(Register dst, int context_chain_length);
1031
1032  // Load the global object from the current context.
1033  void LoadGlobalObject(Register dst) {
1034    LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1035  }
1036
1037  // Load the global proxy from the current context.
1038  void LoadGlobalProxy(Register dst) {
1039    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1040  }
1041
1042  // Conditionally load the cached Array transitioned map of type
1043  // transitioned_kind from the native context if the map in register
1044  // map_in_out is the cached Array map in the native context of
1045  // expected_kind.
1046  void LoadTransitionedArrayMapConditional(
1047      ElementsKind expected_kind,
1048      ElementsKind transitioned_kind,
1049      Register map_in_out,
1050      Register scratch,
1051      Label* no_map_match);
1052
1053  void LoadNativeContextSlot(int index, Register dst);
1054
1055  // Load the initial map from the global function. The registers
1056  // function and map can be the same, function is then overwritten.
1057  void LoadGlobalFunctionInitialMap(Register function,
1058                                    Register map,
1059                                    Register scratch);
1060
1061  void InitializeRootRegister() {
1062    ExternalReference roots_array_start =
1063        ExternalReference::roots_array_start(isolate());
1064    li(kRootRegister, Operand(roots_array_start));
1065  }
1066
1067  // -------------------------------------------------------------------------
1068  // JavaScript invokes.
1069
1070  // Removes current frame and its arguments from the stack preserving
1071  // the arguments and a return address pushed to the stack for the next call.
1072  // Both |callee_args_count| and |caller_args_count_reg| do not include
1073  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1074  // is trashed.
1075  void PrepareForTailCall(const ParameterCount& callee_args_count,
1076                          Register caller_args_count_reg, Register scratch0,
1077                          Register scratch1);
1078
1079  // Invoke the JavaScript function code by either calling or jumping.
1080  void InvokeFunctionCode(Register function, Register new_target,
1081                          const ParameterCount& expected,
1082                          const ParameterCount& actual, InvokeFlag flag,
1083                          const CallWrapper& call_wrapper);
1084
1085  void FloodFunctionIfStepping(Register fun, Register new_target,
1086                               const ParameterCount& expected,
1087                               const ParameterCount& actual);
1088
1089  // Invoke the JavaScript function in the given register. Changes the
1090  // current context to the context in the function before invoking.
1091  void InvokeFunction(Register function,
1092                      Register new_target,
1093                      const ParameterCount& actual,
1094                      InvokeFlag flag,
1095                      const CallWrapper& call_wrapper);
1096
1097  void InvokeFunction(Register function,
1098                      const ParameterCount& expected,
1099                      const ParameterCount& actual,
1100                      InvokeFlag flag,
1101                      const CallWrapper& call_wrapper);
1102
1103  void InvokeFunction(Handle<JSFunction> function,
1104                      const ParameterCount& expected,
1105                      const ParameterCount& actual,
1106                      InvokeFlag flag,
1107                      const CallWrapper& call_wrapper);
1108
1109  void IsObjectJSStringType(Register object,
1110                            Register scratch,
1111                            Label* fail);
1112
1113  void IsObjectNameType(Register object,
1114                        Register scratch,
1115                        Label* fail);
1116
1117  // -------------------------------------------------------------------------
1118  // Debugger Support.
1119
1120  void DebugBreak();
1121
1122  // -------------------------------------------------------------------------
1123  // Exception handling.
1124
1125  // Push a new stack handler and link into stack handler chain.
1126  void PushStackHandler();
1127
1128  // Unlink the stack handler on top of the stack from the stack handler chain.
1129  // Must preserve the result register.
1130  void PopStackHandler();
1131
1132  // Copies a number of bytes from src to dst. All registers are clobbered. On
1133  // exit src and dst will point to the place just after where the last byte was
1134  // read or written and length will be zero.
1135  void CopyBytes(Register src,
1136                 Register dst,
1137                 Register length,
1138                 Register scratch);
1139
1140  // Initialize fields with filler values.  Fields starting at |current_address|
1141  // not including |end_address| are overwritten with the value in |filler|.  At
1142  // the end the loop, |current_address| takes the value of |end_address|.
1143  void InitializeFieldsWithFiller(Register current_address,
1144                                  Register end_address, Register filler);
1145
1146  // -------------------------------------------------------------------------
1147  // Support functions.
1148
1149  // Machine code version of Map::GetConstructor().
1150  // |temp| holds |result|'s map when done, and |temp2| its instance type.
1151  void GetMapConstructor(Register result, Register map, Register temp,
1152                         Register temp2);
1153
1154  // Try to get function prototype of a function and puts the value in
1155  // the result register. Checks that the function really is a
1156  // function and jumps to the miss label if the fast checks fail. The
1157  // function register will be untouched; the other registers may be
1158  // clobbered.
1159  void TryGetFunctionPrototype(Register function, Register result,
1160                               Register scratch, Label* miss);
1161
1162  void GetObjectType(Register function,
1163                     Register map,
1164                     Register type_reg);
1165
1166  void GetInstanceType(Register object_map, Register object_instance_type) {
1167    lbu(object_instance_type,
1168        FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1169  }
1170
1171  // Check if a map for a JSObject indicates that the object has fast elements.
1172  // Jump to the specified label if it does not.
1173  void CheckFastElements(Register map,
1174                         Register scratch,
1175                         Label* fail);
1176
1177  // Check if a map for a JSObject indicates that the object can have both smi
1178  // and HeapObject elements.  Jump to the specified label if it does not.
1179  void CheckFastObjectElements(Register map,
1180                               Register scratch,
1181                               Label* fail);
1182
1183  // Check if a map for a JSObject indicates that the object has fast smi only
1184  // elements.  Jump to the specified label if it does not.
1185  void CheckFastSmiElements(Register map,
1186                            Register scratch,
1187                            Label* fail);
1188
1189  // Check to see if maybe_number can be stored as a double in
1190  // FastDoubleElements. If it can, store it at the index specified by key in
1191  // the FastDoubleElements array elements. Otherwise jump to fail.
1192  void StoreNumberToDoubleElements(Register value_reg,
1193                                   Register key_reg,
1194                                   Register elements_reg,
1195                                   Register scratch1,
1196                                   Register scratch2,
1197                                   Register scratch3,
1198                                   Label* fail,
1199                                   int elements_offset = 0);
1200
1201  // Compare an object's map with the specified map and its transitioned
1202  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1203  // "branch_to" if the result of the comparison is "cond". If multiple map
1204  // compares are required, the compare sequences branches to early_success.
1205  void CompareMapAndBranch(Register obj,
1206                           Register scratch,
1207                           Handle<Map> map,
1208                           Label* early_success,
1209                           Condition cond,
1210                           Label* branch_to);
1211
1212  // As above, but the map of the object is already loaded into the register
1213  // which is preserved by the code generated.
1214  void CompareMapAndBranch(Register obj_map,
1215                           Handle<Map> map,
1216                           Label* early_success,
1217                           Condition cond,
1218                           Label* branch_to);
1219
1220  // Check if the map of an object is equal to a specified map and branch to
1221  // label if not. Skip the smi check if not required (object is known to be a
1222  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1223  // against maps that are ElementsKind transition maps of the specificed map.
1224  void CheckMap(Register obj,
1225                Register scratch,
1226                Handle<Map> map,
1227                Label* fail,
1228                SmiCheckType smi_check_type);
1229
1230
1231  void CheckMap(Register obj,
1232                Register scratch,
1233                Heap::RootListIndex index,
1234                Label* fail,
1235                SmiCheckType smi_check_type);
1236
1237  // Check if the map of an object is equal to a specified weak map and branch
1238  // to a specified target if equal. Skip the smi check if not required
1239  // (object is known to be a heap object)
1240  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1241                       Handle<WeakCell> cell, Handle<Code> success,
1242                       SmiCheckType smi_check_type);
1243
1244  // If the value is a NaN, canonicalize the value else, do nothing.
1245  void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1246
1247  // Get value of the weak cell.
1248  void GetWeakValue(Register value, Handle<WeakCell> cell);
1249
1250  // Load the value of the weak cell in the value register. Branch to the
1251  // given miss label is the weak cell was cleared.
1252  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1253
1254  // Load and check the instance type of an object for being a string.
1255  // Loads the type into the second argument register.
1256  // Returns a condition that will be enabled if the object was a string.
1257  Condition IsObjectStringType(Register obj,
1258                               Register type,
1259                               Register result) {
1260    lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1261    lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1262    And(type, type, Operand(kIsNotStringMask));
1263    DCHECK_EQ(0u, kStringTag);
1264    return eq;
1265  }
1266
1267
1268  // Picks out an array index from the hash field.
1269  // Register use:
1270  //   hash - holds the index's hash. Clobbered.
1271  //   index - holds the overwritten index on exit.
1272  void IndexFromHash(Register hash, Register index);
1273
1274  // Get the number of least significant bits from a register.
1275  void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1276  void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1277
1278  // Load the value of a number object into a FPU double register. If the
1279  // object is not a number a jump to the label not_number is performed
1280  // and the FPU double register is unchanged.
1281  void ObjectToDoubleFPURegister(
1282      Register object,
1283      FPURegister value,
1284      Register scratch1,
1285      Register scratch2,
1286      Register heap_number_map,
1287      Label* not_number,
1288      ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1289
1290  // Load the value of a smi object into a FPU double register. The register
1291  // scratch1 can be the same register as smi in which case smi will hold the
1292  // untagged value afterwards.
1293  void SmiToDoubleFPURegister(Register smi,
1294                              FPURegister value,
1295                              Register scratch1);
1296
1297  // -------------------------------------------------------------------------
1298  // Overflow handling functions.
1299  // Usage: first call the appropriate arithmetic function, then call one of the
1300  // jump functions with the overflow_dst register as the second parameter.
1301
1302  inline void AddBranchOvf(Register dst, Register left, const Operand& right,
1303                           Label* overflow_label, Register scratch = at) {
1304    AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1305  }
1306
1307  inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
1308                             Label* no_overflow_label, Register scratch = at) {
1309    AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1310  }
1311
1312  void AddBranchOvf(Register dst, Register left, const Operand& right,
1313                    Label* overflow_label, Label* no_overflow_label,
1314                    Register scratch = at);
1315
1316  void AddBranchOvf(Register dst, Register left, Register right,
1317                    Label* overflow_label, Label* no_overflow_label,
1318                    Register scratch = at);
1319
1320
1321  inline void SubBranchOvf(Register dst, Register left, const Operand& right,
1322                           Label* overflow_label, Register scratch = at) {
1323    SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1324  }
1325
1326  inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
1327                             Label* no_overflow_label, Register scratch = at) {
1328    SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1329  }
1330
1331  void SubBranchOvf(Register dst, Register left, const Operand& right,
1332                    Label* overflow_label, Label* no_overflow_label,
1333                    Register scratch = at);
1334
1335  void SubBranchOvf(Register dst, Register left, Register right,
1336                    Label* overflow_label, Label* no_overflow_label,
1337                    Register scratch = at);
1338
1339  // -------------------------------------------------------------------------
1340  // Runtime calls.
1341
1342  // See comments at the beginning of CEntryStub::Generate.
1343  inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1344
1345  inline void PrepareCEntryFunction(const ExternalReference& ref) {
1346    li(a1, Operand(ref));
1347  }
1348
1349#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1350const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1351
1352  // Call a code stub.
1353  void CallStub(CodeStub* stub,
1354                TypeFeedbackId ast_id = TypeFeedbackId::None(),
1355                COND_ARGS);
1356
1357  // Tail call a code stub (jump).
1358  void TailCallStub(CodeStub* stub, COND_ARGS);
1359
1360#undef COND_ARGS
1361
1362  void CallJSExitStub(CodeStub* stub);
1363
1364  // Call a runtime routine.
1365  void CallRuntime(const Runtime::Function* f, int num_arguments,
1366                   SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1367                   BranchDelaySlot bd = PROTECT);
1368  void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1369    const Runtime::Function* function = Runtime::FunctionForId(id);
1370    CallRuntime(function, function->nargs, kSaveFPRegs);
1371  }
1372
1373  // Convenience function: Same as above, but takes the fid instead.
1374  void CallRuntime(Runtime::FunctionId fid,
1375                   SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1376                   BranchDelaySlot bd = PROTECT) {
1377    const Runtime::Function* function = Runtime::FunctionForId(fid);
1378    CallRuntime(function, function->nargs, save_doubles, bd);
1379  }
1380
1381  // Convenience function: Same as above, but takes the fid instead.
1382  void CallRuntime(Runtime::FunctionId id, int num_arguments,
1383                   SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1384                   BranchDelaySlot bd = PROTECT) {
1385    CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles, bd);
1386  }
1387
1388  // Convenience function: call an external reference.
1389  void CallExternalReference(const ExternalReference& ext,
1390                             int num_arguments,
1391                             BranchDelaySlot bd = PROTECT);
1392
1393
1394  // Convenience function: tail call a runtime routine (jump).
1395  void TailCallRuntime(Runtime::FunctionId fid);
1396
1397  int CalculateStackPassedWords(int num_reg_arguments,
1398                                int num_double_arguments);
1399
1400  // Before calling a C-function from generated code, align arguments on stack
1401  // and add space for the four mips argument slots.
1402  // After aligning the frame, non-register arguments must be stored on the
1403  // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1404  // The argument count assumes all arguments are word sized.
1405  // Some compilers/platforms require the stack to be aligned when calling
1406  // C++ code.
1407  // Needs a scratch register to do some arithmetic. This register will be
1408  // trashed.
1409  void PrepareCallCFunction(int num_reg_arguments,
1410                            int num_double_registers,
1411                            Register scratch);
1412  void PrepareCallCFunction(int num_reg_arguments,
1413                            Register scratch);
1414
1415  // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1416  // Arguments 5..n are stored to stack using following:
1417  //  sw(t0, CFunctionArgumentOperand(5));
1418
1419  // Calls a C function and cleans up the space for arguments allocated
1420  // by PrepareCallCFunction. The called function is not allowed to trigger a
1421  // garbage collection, since that might move the code and invalidate the
1422  // return address (unless this is somehow accounted for by the called
1423  // function).
1424  void CallCFunction(ExternalReference function, int num_arguments);
1425  void CallCFunction(Register function, int num_arguments);
1426  void CallCFunction(ExternalReference function,
1427                     int num_reg_arguments,
1428                     int num_double_arguments);
1429  void CallCFunction(Register function,
1430                     int num_reg_arguments,
1431                     int num_double_arguments);
1432  void MovFromFloatResult(DoubleRegister dst);
1433  void MovFromFloatParameter(DoubleRegister dst);
1434
1435  // There are two ways of passing double arguments on MIPS, depending on
1436  // whether soft or hard floating point ABI is used. These functions
1437  // abstract parameter passing for the three different ways we call
1438  // C functions from generated code.
1439  void MovToFloatParameter(DoubleRegister src);
1440  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1441  void MovToFloatResult(DoubleRegister src);
1442
1443  // Jump to the builtin routine.
1444  void JumpToExternalReference(const ExternalReference& builtin,
1445                               BranchDelaySlot bd = PROTECT);
1446
1447  struct Unresolved {
1448    int pc;
1449    uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
1450    const char* name;
1451  };
1452
1453  Handle<Object> CodeObject() {
1454    DCHECK(!code_object_.is_null());
1455    return code_object_;
1456  }
1457
1458  // Emit code for a truncating division by a constant. The dividend register is
1459  // unchanged and at gets clobbered. Dividend and result must be different.
1460  void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1461
1462  // -------------------------------------------------------------------------
1463  // StatsCounter support.
1464
1465  void SetCounter(StatsCounter* counter, int value,
1466                  Register scratch1, Register scratch2);
1467  void IncrementCounter(StatsCounter* counter, int value,
1468                        Register scratch1, Register scratch2);
1469  void DecrementCounter(StatsCounter* counter, int value,
1470                        Register scratch1, Register scratch2);
1471
1472
1473  // -------------------------------------------------------------------------
1474  // Debugging.
1475
1476  // Calls Abort(msg) if the condition cc is not satisfied.
1477  // Use --debug_code to enable.
1478  void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1479  void AssertFastElements(Register elements);
1480
1481  // Like Assert(), but always enabled.
1482  void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1483
1484  // Print a message to stdout and abort execution.
1485  void Abort(BailoutReason msg);
1486
1487  // Verify restrictions about code generated in stubs.
1488  void set_generating_stub(bool value) { generating_stub_ = value; }
1489  bool generating_stub() { return generating_stub_; }
1490  void set_has_frame(bool value) { has_frame_ = value; }
1491  bool has_frame() { return has_frame_; }
1492  inline bool AllowThisStubCall(CodeStub* stub);
1493
1494  // ---------------------------------------------------------------------------
1495  // Number utilities.
1496
1497  // Check whether the value of reg is a power of two and not zero. If not
1498  // control continues at the label not_power_of_two. If reg is a power of two
1499  // the register scratch contains the value of (reg - 1) when control falls
1500  // through.
1501  void JumpIfNotPowerOfTwoOrZero(Register reg,
1502                                 Register scratch,
1503                                 Label* not_power_of_two_or_zero);
1504
1505  // -------------------------------------------------------------------------
1506  // Smi utilities.
1507
1508  void SmiTag(Register reg) {
1509    Addu(reg, reg, reg);
1510  }
1511
1512  void SmiTag(Register dst, Register src) { Addu(dst, src, src); }
1513
1514  // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1515  void SmiTagCheckOverflow(Register reg, Register overflow);
1516  void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1517
1518  void BranchOnOverflow(Label* label, Register overflow_check,
1519                        BranchDelaySlot bd = PROTECT) {
1520    Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1521  }
1522
1523  void BranchOnNoOverflow(Label* label, Register overflow_check,
1524                          BranchDelaySlot bd = PROTECT) {
1525    Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1526  }
1527
1528
1529  // Try to convert int32 to smi. If the value is to large, preserve
1530  // the original value and jump to not_a_smi. Destroys scratch and
1531  // sets flags.
1532  void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1533    TrySmiTag(reg, reg, scratch, not_a_smi);
1534  }
1535  void TrySmiTag(Register dst,
1536                 Register src,
1537                 Register scratch,
1538                 Label* not_a_smi) {
1539    SmiTagCheckOverflow(at, src, scratch);
1540    BranchOnOverflow(not_a_smi, scratch);
1541    mov(dst, at);
1542  }
1543
1544  void SmiUntag(Register reg) {
1545    sra(reg, reg, kSmiTagSize);
1546  }
1547
1548  void SmiUntag(Register dst, Register src) {
1549    sra(dst, src, kSmiTagSize);
1550  }
1551
1552  // Test if the register contains a smi.
1553  inline void SmiTst(Register value, Register scratch) {
1554    And(scratch, value, Operand(kSmiTagMask));
1555  }
1556  inline void NonNegativeSmiTst(Register value, Register scratch) {
1557    And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1558  }
1559
1560  // Untag the source value into destination and jump if source is a smi.
1561  // Souce and destination can be the same register.
1562  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1563
1564  // Untag the source value into destination and jump if source is not a smi.
1565  // Souce and destination can be the same register.
1566  void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1567
1568  // Jump the register contains a smi.
1569  void JumpIfSmi(Register value,
1570                 Label* smi_label,
1571                 Register scratch = at,
1572                 BranchDelaySlot bd = PROTECT);
1573
1574  // Jump if the register contains a non-smi.
1575  void JumpIfNotSmi(Register value,
1576                    Label* not_smi_label,
1577                    Register scratch = at,
1578                    BranchDelaySlot bd = PROTECT);
1579
1580  // Jump if either of the registers contain a non-smi.
1581  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1582  // Jump if either of the registers contain a smi.
1583  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1584
1585  // Abort execution if argument is a number, enabled via --debug-code.
1586  void AssertNotNumber(Register object);
1587
1588  // Abort execution if argument is a smi, enabled via --debug-code.
1589  void AssertNotSmi(Register object);
1590  void AssertSmi(Register object);
1591
1592  // Abort execution if argument is not a string, enabled via --debug-code.
1593  void AssertString(Register object);
1594
1595  // Abort execution if argument is not a name, enabled via --debug-code.
1596  void AssertName(Register object);
1597
1598  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1599  void AssertFunction(Register object);
1600
1601  // Abort execution if argument is not a JSBoundFunction,
1602  // enabled via --debug-code.
1603  void AssertBoundFunction(Register object);
1604
1605  // Abort execution if argument is not a JSGeneratorObject,
1606  // enabled via --debug-code.
1607  void AssertGeneratorObject(Register object);
1608
1609  // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1610  void AssertReceiver(Register object);
1611
1612  // Abort execution if argument is not undefined or an AllocationSite, enabled
1613  // via --debug-code.
1614  void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1615
1616  // Abort execution if reg is not the root value with the given index,
1617  // enabled via --debug-code.
1618  void AssertIsRoot(Register reg, Heap::RootListIndex index);
1619
1620  // ---------------------------------------------------------------------------
1621  // HeapNumber utilities.
1622
1623  void JumpIfNotHeapNumber(Register object,
1624                           Register heap_number_map,
1625                           Register scratch,
1626                           Label* on_not_heap_number);
1627
1628  // -------------------------------------------------------------------------
1629  // String utilities.
1630
1631  // Checks if both instance types are sequential ASCII strings and jumps to
1632  // label if either is not.
1633  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1634      Register first_object_instance_type, Register second_object_instance_type,
1635      Register scratch1, Register scratch2, Label* failure);
1636
1637  // Check if instance type is sequential one-byte string and jump to label if
1638  // it is not.
1639  void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1640                                                Label* failure);
1641
1642  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1643
1644  void EmitSeqStringSetCharCheck(Register string,
1645                                 Register index,
1646                                 Register value,
1647                                 Register scratch,
1648                                 uint32_t encoding_mask);
1649
1650  // Checks if both objects are sequential one-byte strings and jumps to label
1651  // if either is not. Assumes that neither object is a smi.
1652  void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1653                                                    Register second,
1654                                                    Register scratch1,
1655                                                    Register scratch2,
1656                                                    Label* failure);
1657
1658  // Checks if both objects are sequential one-byte strings and jumps to label
1659  // if either is not.
1660  void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1661                                             Register scratch1,
1662                                             Register scratch2,
1663                                             Label* not_flat_one_byte_strings);
1664
1665  void ClampUint8(Register output_reg, Register input_reg);
1666
1667  void ClampDoubleToUint8(Register result_reg,
1668                          DoubleRegister input_reg,
1669                          DoubleRegister temp_double_reg);
1670
1671
1672  void LoadInstanceDescriptors(Register map, Register descriptors);
1673  void EnumLength(Register dst, Register map);
1674  void NumberOfOwnDescriptors(Register dst, Register map);
1675  void LoadAccessor(Register dst, Register holder, int accessor_index,
1676                    AccessorComponent accessor);
1677
1678  template<typename Field>
1679  void DecodeField(Register dst, Register src) {
1680    Ext(dst, src, Field::kShift, Field::kSize);
1681  }
1682
1683  template<typename Field>
1684  void DecodeField(Register reg) {
1685    DecodeField<Field>(reg, reg);
1686  }
1687
1688  template<typename Field>
1689  void DecodeFieldToSmi(Register dst, Register src) {
1690    static const int shift = Field::kShift;
1691    static const int mask = Field::kMask >> shift << kSmiTagSize;
1692    STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1693    STATIC_ASSERT(kSmiTag == 0);
1694    if (shift < kSmiTagSize) {
1695      sll(dst, src, kSmiTagSize - shift);
1696      And(dst, dst, Operand(mask));
1697    } else if (shift > kSmiTagSize) {
1698      srl(dst, src, shift - kSmiTagSize);
1699      And(dst, dst, Operand(mask));
1700    } else {
1701      And(dst, src, Operand(mask));
1702    }
1703  }
1704
1705  template<typename Field>
1706  void DecodeFieldToSmi(Register reg) {
1707    DecodeField<Field>(reg, reg);
1708  }
1709
1710  // Generates function and stub prologue code.
1711  void StubPrologue(StackFrame::Type type);
1712  void Prologue(bool code_pre_aging);
1713
1714  // Load the type feedback vector from a JavaScript frame.
1715  void EmitLoadTypeFeedbackVector(Register vector);
1716
1717  // Activation support.
1718  void EnterFrame(StackFrame::Type type);
1719  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1720  void LeaveFrame(StackFrame::Type type);
1721
1722  // Expects object in a0 and returns map with validated enum cache
1723  // in a0.  Assumes that any other register can be used as a scratch.
1724  void CheckEnumCache(Label* call_runtime);
1725
1726  // AllocationMemento support. Arrays may have an associated AllocationMemento
1727  // object that can be checked for in order to pretransition to another type.
1728  // On entry, receiver_reg should point to the array object. scratch_reg gets
1729  // clobbered. If no info is present jump to no_memento_found, otherwise fall
1730  // through.
1731  void TestJSArrayForAllocationMemento(Register receiver_reg,
1732                                       Register scratch_reg,
1733                                       Label* no_memento_found);
1734
1735  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1736                                         Register scratch_reg,
1737                                         Label* memento_found) {
1738    Label no_memento_found;
1739    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1740                                    &no_memento_found);
1741    Branch(memento_found);
1742    bind(&no_memento_found);
1743  }
1744
1745  // Jumps to found label if a prototype map has dictionary elements.
1746  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1747                                        Register scratch1, Label* found);
1748
1749  bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1750
1751 private:
1752  void CallCFunctionHelper(Register function,
1753                           int num_reg_arguments,
1754                           int num_double_arguments);
1755
1756  inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1757  inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1758  void BranchShortHelperR6(int32_t offset, Label* L);
1759  void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1760  bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1761                           Register rs, const Operand& rt);
1762  bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1763                         const Operand& rt, BranchDelaySlot bdslot);
1764  bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1765                        const Operand& rt, BranchDelaySlot bdslot);
1766
1767  void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1768  void BranchAndLinkShortHelper(int16_t offset, Label* L,
1769                                BranchDelaySlot bdslot);
1770  void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1771  void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1772  bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1773                                  Register rs, const Operand& rt);
1774  bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1775                                Register rs, const Operand& rt,
1776                                BranchDelaySlot bdslot);
1777  bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1778                               Register rs, const Operand& rt,
1779                               BranchDelaySlot bdslot);
1780  void BranchLong(Label* L, BranchDelaySlot bdslot);
1781  void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1782
1783  // Common implementation of BranchF functions for the different formats.
1784  void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1785                     Condition cc, FPURegister cmp1, FPURegister cmp2,
1786                     BranchDelaySlot bd = PROTECT);
1787
1788  void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1789                    FPURegister cmp1, FPURegister cmp2,
1790                    BranchDelaySlot bd = PROTECT);
1791
1792  // Helper functions for generating invokes.
1793  void InvokePrologue(const ParameterCount& expected,
1794                      const ParameterCount& actual,
1795                      Label* done,
1796                      bool* definitely_mismatches,
1797                      InvokeFlag flag,
1798                      const CallWrapper& call_wrapper);
1799
1800  void InitializeNewString(Register string,
1801                           Register length,
1802                           Heap::RootListIndex map_index,
1803                           Register scratch1,
1804                           Register scratch2);
1805
1806  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1807  void InNewSpace(Register object, Register scratch,
1808                  Condition cond,  // ne for new space, eq otherwise.
1809                  Label* branch);
1810
1811  // Helper for finding the mark bits for an address.  Afterwards, the
1812  // bitmap register points at the word with the mark bits and the mask
1813  // the position of the first bit.  Leaves addr_reg unchanged.
1814  inline void GetMarkBits(Register addr_reg,
1815                          Register bitmap_reg,
1816                          Register mask_reg);
1817
1818  // Compute memory operands for safepoint stack slots.
1819  static int SafepointRegisterStackIndex(int reg_code);
1820  MemOperand SafepointRegisterSlot(Register reg);
1821  MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1822
1823  bool generating_stub_;
1824  bool has_frame_;
1825  bool has_double_zero_reg_set_;
1826  // This handle will be patched with the code object on installation.
1827  Handle<Object> code_object_;
1828
1829  // Needs access to SafepointRegisterStackIndex for compiled frame
1830  // traversal.
1831  friend class StandardFrame;
1832};
1833
1834
1835// The code patcher is used to patch (typically) small parts of code e.g. for
1836// debugging and other types of instrumentation. When using the code patcher
1837// the exact number of bytes specified must be emitted. It is not legal to emit
1838// relocation information. If any of these constraints are violated it causes
1839// an assertion to fail.
1840class CodePatcher {
1841 public:
1842  enum FlushICache {
1843    FLUSH,
1844    DONT_FLUSH
1845  };
1846
1847  CodePatcher(Isolate* isolate, byte* address, int instructions,
1848              FlushICache flush_cache = FLUSH);
1849  ~CodePatcher();
1850
1851  // Macro assembler to emit code.
1852  MacroAssembler* masm() { return &masm_; }
1853
1854  // Emit an instruction directly.
1855  void Emit(Instr instr);
1856
1857  // Emit an address directly.
1858  void Emit(Address addr);
1859
1860  // Change the condition part of an instruction leaving the rest of the current
1861  // instruction unchanged.
1862  void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
1863
1864 private:
1865  byte* address_;  // The address of the code being patched.
1866  int size_;  // Number of bytes of the expected patch size.
1867  MacroAssembler masm_;  // Macro assembler used to generate the code.
1868  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1869};
1870
1871template <typename Func>
1872void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
1873                                         Func GetLabelFunction) {
1874  if (kArchVariant >= kMips32r6) {
1875    BlockTrampolinePoolFor(case_count + 5);
1876    addiupc(at, 5);
1877    Lsa(at, at, index, kPointerSizeLog2);
1878    lw(at, MemOperand(at));
1879  } else {
1880    Label here;
1881    BlockTrampolinePoolFor(case_count + 10);
1882    push(ra);
1883    bal(&here);
1884    sll(at, index, kPointerSizeLog2);  // Branch delay slot.
1885    bind(&here);
1886    addu(at, at, ra);
1887    pop(ra);
1888    lw(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
1889  }
1890  jr(at);
1891  nop();  // Branch delay slot nop.
1892  for (size_t index = 0; index < case_count; ++index) {
1893    dd(GetLabelFunction(index));
1894  }
1895}
1896
1897#ifdef GENERATED_CODE_COVERAGE
1898#define CODE_COVERAGE_STRINGIFY(x) #x
1899#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1900#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1901#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1902#else
1903#define ACCESS_MASM(masm) masm->
1904#endif
1905
1906}  // namespace internal
1907}  // namespace v8
1908
1909#endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
1910