macro-assembler-x64.h revision 3fb3ca8c7ca439d408449a395897395c0faae8d1
1// Copyright 2011 the V8 project authors. All rights reserved. 2// Redistribution and use in source and binary forms, with or without 3// modification, are permitted provided that the following conditions are 4// met: 5// 6// * Redistributions of source code must retain the above copyright 7// notice, this list of conditions and the following disclaimer. 8// * Redistributions in binary form must reproduce the above 9// copyright notice, this list of conditions and the following 10// disclaimer in the documentation and/or other materials provided 11// with the distribution. 12// * Neither the name of Google Inc. nor the names of its 13// contributors may be used to endorse or promote products derived 14// from this software without specific prior written permission. 15// 16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_ 29#define V8_X64_MACRO_ASSEMBLER_X64_H_ 30 31#include "assembler.h" 32#include "v8globals.h" 33 34namespace v8 { 35namespace internal { 36 37// Flags used for the AllocateInNewSpace functions. 38enum AllocationFlags { 39 // No special flags. 40 NO_ALLOCATION_FLAGS = 0, 41 // Return the pointer to the allocated already tagged as a heap object. 42 TAG_OBJECT = 1 << 0, 43 // The content of the result register already contains the allocation top in 44 // new space. 45 RESULT_CONTAINS_TOP = 1 << 1 46}; 47 48 49// Default scratch register used by MacroAssembler (and other code that needs 50// a spare register). The register isn't callee save, and not used by the 51// function calling convention. 52static const Register kScratchRegister = { 10 }; // r10. 53static const Register kSmiConstantRegister = { 12 }; // r12 (callee save). 54static const Register kRootRegister = { 13 }; // r13 (callee save). 55// Value of smi in kSmiConstantRegister. 56static const int kSmiConstantRegisterValue = 1; 57// Actual value of root register is offset from the root array's start 58// to take advantage of negitive 8-bit displacement values. 59static const int kRootRegisterBias = 128; 60 61// Convenience for platform-independent signatures. 62typedef Operand MemOperand; 63 64// Forward declaration. 65class JumpTarget; 66 67struct SmiIndex { 68 SmiIndex(Register index_register, ScaleFactor scale) 69 : reg(index_register), 70 scale(scale) {} 71 Register reg; 72 ScaleFactor scale; 73}; 74 75// MacroAssembler implements a collection of frequently used macros. 76class MacroAssembler: public Assembler { 77 public: 78 // The isolate parameter can be NULL if the macro assembler should 79 // not use isolate-dependent functionality. In this case, it's the 80 // responsibility of the caller to never invoke such function on the 81 // macro assembler. 82 MacroAssembler(Isolate* isolate, void* buffer, int size); 83 84 // Prevent the use of the RootArray during the lifetime of this 85 // scope object. 86 class NoRootArrayScope BASE_EMBEDDED { 87 public: 88 explicit NoRootArrayScope(MacroAssembler* assembler) 89 : variable_(&assembler->root_array_available_), 90 old_value_(assembler->root_array_available_) { 91 assembler->root_array_available_ = false; 92 } 93 ~NoRootArrayScope() { 94 *variable_ = old_value_; 95 } 96 private: 97 bool* variable_; 98 bool old_value_; 99 }; 100 101 // Operand pointing to an external reference. 102 // May emit code to set up the scratch register. The operand is 103 // only guaranteed to be correct as long as the scratch register 104 // isn't changed. 105 // If the operand is used more than once, use a scratch register 106 // that is guaranteed not to be clobbered. 107 Operand ExternalOperand(ExternalReference reference, 108 Register scratch = kScratchRegister); 109 // Loads and stores the value of an external reference. 110 // Special case code for load and store to take advantage of 111 // load_rax/store_rax if possible/necessary. 112 // For other operations, just use: 113 // Operand operand = ExternalOperand(extref); 114 // operation(operand, ..); 115 void Load(Register destination, ExternalReference source); 116 void Store(ExternalReference destination, Register source); 117 // Loads the address of the external reference into the destination 118 // register. 119 void LoadAddress(Register destination, ExternalReference source); 120 // Returns the size of the code generated by LoadAddress. 121 // Used by CallSize(ExternalReference) to find the size of a call. 122 int LoadAddressSize(ExternalReference source); 123 124 // Operations on roots in the root-array. 125 void LoadRoot(Register destination, Heap::RootListIndex index); 126 void StoreRoot(Register source, Heap::RootListIndex index); 127 // Load a root value where the index (or part of it) is variable. 128 // The variable_offset register is added to the fixed_offset value 129 // to get the index into the root-array. 130 void LoadRootIndexed(Register destination, 131 Register variable_offset, 132 int fixed_offset); 133 void CompareRoot(Register with, Heap::RootListIndex index); 134 void CompareRoot(const Operand& with, Heap::RootListIndex index); 135 void PushRoot(Heap::RootListIndex index); 136 137 // --------------------------------------------------------------------------- 138 // GC Support 139 140 // For page containing |object| mark region covering |addr| dirty. 141 // RecordWriteHelper only works if the object is not in new 142 // space. 143 void RecordWriteHelper(Register object, 144 Register addr, 145 Register scratch); 146 147 // Check if object is in new space. The condition cc can be equal or 148 // not_equal. If it is equal a jump will be done if the object is on new 149 // space. The register scratch can be object itself, but it will be clobbered. 150 void InNewSpace(Register object, 151 Register scratch, 152 Condition cc, 153 Label* branch, 154 Label::Distance near_jump = Label::kFar); 155 156 // For page containing |object| mark region covering [object+offset] 157 // dirty. |object| is the object being stored into, |value| is the 158 // object being stored. If |offset| is zero, then the |scratch| 159 // register contains the array index into the elements array 160 // represented as an untagged 32-bit integer. All registers are 161 // clobbered by the operation. RecordWrite filters out smis so it 162 // does not update the write barrier if the value is a smi. 163 void RecordWrite(Register object, 164 int offset, 165 Register value, 166 Register scratch); 167 168 // For page containing |object| mark region covering [address] 169 // dirty. |object| is the object being stored into, |value| is the 170 // object being stored. All registers are clobbered by the 171 // operation. RecordWrite filters out smis so it does not update 172 // the write barrier if the value is a smi. 173 void RecordWrite(Register object, 174 Register address, 175 Register value); 176 177 // For page containing |object| mark region covering [object+offset] dirty. 178 // The value is known to not be a smi. 179 // object is the object being stored into, value is the object being stored. 180 // If offset is zero, then the scratch register contains the array index into 181 // the elements array represented as an untagged 32-bit integer. 182 // All registers are clobbered by the operation. 183 void RecordWriteNonSmi(Register object, 184 int offset, 185 Register value, 186 Register scratch); 187 188#ifdef ENABLE_DEBUGGER_SUPPORT 189 // --------------------------------------------------------------------------- 190 // Debugger Support 191 192 void DebugBreak(); 193#endif 194 195 // --------------------------------------------------------------------------- 196 // Activation frames 197 198 void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } 199 void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } 200 201 void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); } 202 void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); } 203 204 // Enter specific kind of exit frame; either in normal or 205 // debug mode. Expects the number of arguments in register rax and 206 // sets up the number of arguments in register rdi and the pointer 207 // to the first argument in register rsi. 208 // 209 // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack 210 // accessible via StackSpaceOperand. 211 void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false); 212 213 // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize 214 // memory (not GCed) on the stack accessible via StackSpaceOperand. 215 void EnterApiExitFrame(int arg_stack_space); 216 217 // Leave the current exit frame. Expects/provides the return value in 218 // register rax:rdx (untouched) and the pointer to the first 219 // argument in register rsi. 220 void LeaveExitFrame(bool save_doubles = false); 221 222 // Leave the current exit frame. Expects/provides the return value in 223 // register rax (untouched). 224 void LeaveApiExitFrame(); 225 226 // Push and pop the registers that can hold pointers. 227 void PushSafepointRegisters() { Pushad(); } 228 void PopSafepointRegisters() { Popad(); } 229 // Store the value in register src in the safepoint register stack 230 // slot for register dst. 231 void StoreToSafepointRegisterSlot(Register dst, Register src); 232 void LoadFromSafepointRegisterSlot(Register dst, Register src); 233 234 void InitializeRootRegister() { 235 ExternalReference roots_address = 236 ExternalReference::roots_address(isolate()); 237 movq(kRootRegister, roots_address); 238 addq(kRootRegister, Immediate(kRootRegisterBias)); 239 } 240 241 // --------------------------------------------------------------------------- 242 // JavaScript invokes 243 244 // Setup call kind marking in rcx. The method takes rcx as an 245 // explicit first parameter to make the code more readable at the 246 // call sites. 247 void SetCallKind(Register dst, CallKind kind); 248 249 // Invoke the JavaScript function code by either calling or jumping. 250 void InvokeCode(Register code, 251 const ParameterCount& expected, 252 const ParameterCount& actual, 253 InvokeFlag flag, 254 const CallWrapper& call_wrapper, 255 CallKind call_kind); 256 257 void InvokeCode(Handle<Code> code, 258 const ParameterCount& expected, 259 const ParameterCount& actual, 260 RelocInfo::Mode rmode, 261 InvokeFlag flag, 262 const CallWrapper& call_wrapper, 263 CallKind call_kind); 264 265 // Invoke the JavaScript function in the given register. Changes the 266 // current context to the context in the function before invoking. 267 void InvokeFunction(Register function, 268 const ParameterCount& actual, 269 InvokeFlag flag, 270 const CallWrapper& call_wrapper, 271 CallKind call_kind); 272 273 void InvokeFunction(JSFunction* function, 274 const ParameterCount& actual, 275 InvokeFlag flag, 276 const CallWrapper& call_wrapper, 277 CallKind call_kind); 278 279 // Invoke specified builtin JavaScript function. Adds an entry to 280 // the unresolved list if the name does not resolve. 281 void InvokeBuiltin(Builtins::JavaScript id, 282 InvokeFlag flag, 283 const CallWrapper& call_wrapper = NullCallWrapper()); 284 285 // Store the function for the given builtin in the target register. 286 void GetBuiltinFunction(Register target, Builtins::JavaScript id); 287 288 // Store the code object for the given builtin in the target register. 289 void GetBuiltinEntry(Register target, Builtins::JavaScript id); 290 291 292 // --------------------------------------------------------------------------- 293 // Smi tagging, untagging and operations on tagged smis. 294 295 void InitializeSmiConstantRegister() { 296 movq(kSmiConstantRegister, 297 reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)), 298 RelocInfo::NONE); 299 } 300 301 // Conversions between tagged smi values and non-tagged integer values. 302 303 // Tag an integer value. The result must be known to be a valid smi value. 304 // Only uses the low 32 bits of the src register. Sets the N and Z flags 305 // based on the value of the resulting smi. 306 void Integer32ToSmi(Register dst, Register src); 307 308 // Stores an integer32 value into a memory field that already holds a smi. 309 void Integer32ToSmiField(const Operand& dst, Register src); 310 311 // Adds constant to src and tags the result as a smi. 312 // Result must be a valid smi. 313 void Integer64PlusConstantToSmi(Register dst, Register src, int constant); 314 315 // Convert smi to 32-bit integer. I.e., not sign extended into 316 // high 32 bits of destination. 317 void SmiToInteger32(Register dst, Register src); 318 void SmiToInteger32(Register dst, const Operand& src); 319 320 // Convert smi to 64-bit integer (sign extended if necessary). 321 void SmiToInteger64(Register dst, Register src); 322 void SmiToInteger64(Register dst, const Operand& src); 323 324 // Multiply a positive smi's integer value by a power of two. 325 // Provides result as 64-bit integer value. 326 void PositiveSmiTimesPowerOfTwoToInteger64(Register dst, 327 Register src, 328 int power); 329 330 // Divide a positive smi's integer value by a power of two. 331 // Provides result as 32-bit integer value. 332 void PositiveSmiDivPowerOfTwoToInteger32(Register dst, 333 Register src, 334 int power); 335 336 // Perform the logical or of two smi values and return a smi value. 337 // If either argument is not a smi, jump to on_not_smis and retain 338 // the original values of source registers. The destination register 339 // may be changed if it's not one of the source registers. 340 void SmiOrIfSmis(Register dst, 341 Register src1, 342 Register src2, 343 Label* on_not_smis, 344 Label::Distance near_jump = Label::kFar); 345 346 347 // Simple comparison of smis. Both sides must be known smis to use these, 348 // otherwise use Cmp. 349 void SmiCompare(Register smi1, Register smi2); 350 void SmiCompare(Register dst, Smi* src); 351 void SmiCompare(Register dst, const Operand& src); 352 void SmiCompare(const Operand& dst, Register src); 353 void SmiCompare(const Operand& dst, Smi* src); 354 // Compare the int32 in src register to the value of the smi stored at dst. 355 void SmiCompareInteger32(const Operand& dst, Register src); 356 // Sets sign and zero flags depending on value of smi in register. 357 void SmiTest(Register src); 358 359 // Functions performing a check on a known or potential smi. Returns 360 // a condition that is satisfied if the check is successful. 361 362 // Is the value a tagged smi. 363 Condition CheckSmi(Register src); 364 Condition CheckSmi(const Operand& src); 365 366 // Is the value a non-negative tagged smi. 367 Condition CheckNonNegativeSmi(Register src); 368 369 // Are both values tagged smis. 370 Condition CheckBothSmi(Register first, Register second); 371 372 // Are both values non-negative tagged smis. 373 Condition CheckBothNonNegativeSmi(Register first, Register second); 374 375 // Are either value a tagged smi. 376 Condition CheckEitherSmi(Register first, 377 Register second, 378 Register scratch = kScratchRegister); 379 380 // Is the value the minimum smi value (since we are using 381 // two's complement numbers, negating the value is known to yield 382 // a non-smi value). 383 Condition CheckIsMinSmi(Register src); 384 385 // Checks whether an 32-bit integer value is a valid for conversion 386 // to a smi. 387 Condition CheckInteger32ValidSmiValue(Register src); 388 389 // Checks whether an 32-bit unsigned integer value is a valid for 390 // conversion to a smi. 391 Condition CheckUInteger32ValidSmiValue(Register src); 392 393 // Check whether src is a Smi, and set dst to zero if it is a smi, 394 // and to one if it isn't. 395 void CheckSmiToIndicator(Register dst, Register src); 396 void CheckSmiToIndicator(Register dst, const Operand& src); 397 398 // Test-and-jump functions. Typically combines a check function 399 // above with a conditional jump. 400 401 // Jump if the value cannot be represented by a smi. 402 void JumpIfNotValidSmiValue(Register src, Label* on_invalid, 403 Label::Distance near_jump = Label::kFar); 404 405 // Jump if the unsigned integer value cannot be represented by a smi. 406 void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid, 407 Label::Distance near_jump = Label::kFar); 408 409 // Jump to label if the value is a tagged smi. 410 void JumpIfSmi(Register src, 411 Label* on_smi, 412 Label::Distance near_jump = Label::kFar); 413 414 // Jump to label if the value is not a tagged smi. 415 void JumpIfNotSmi(Register src, 416 Label* on_not_smi, 417 Label::Distance near_jump = Label::kFar); 418 419 // Jump to label if the value is not a non-negative tagged smi. 420 void JumpUnlessNonNegativeSmi(Register src, 421 Label* on_not_smi, 422 Label::Distance near_jump = Label::kFar); 423 424 // Jump to label if the value, which must be a tagged smi, has value equal 425 // to the constant. 426 void JumpIfSmiEqualsConstant(Register src, 427 Smi* constant, 428 Label* on_equals, 429 Label::Distance near_jump = Label::kFar); 430 431 // Jump if either or both register are not smi values. 432 void JumpIfNotBothSmi(Register src1, 433 Register src2, 434 Label* on_not_both_smi, 435 Label::Distance near_jump = Label::kFar); 436 437 // Jump if either or both register are not non-negative smi values. 438 void JumpUnlessBothNonNegativeSmi(Register src1, Register src2, 439 Label* on_not_both_smi, 440 Label::Distance near_jump = Label::kFar); 441 442 // Operations on tagged smi values. 443 444 // Smis represent a subset of integers. The subset is always equivalent to 445 // a two's complement interpretation of a fixed number of bits. 446 447 // Optimistically adds an integer constant to a supposed smi. 448 // If the src is not a smi, or the result is not a smi, jump to 449 // the label. 450 void SmiTryAddConstant(Register dst, 451 Register src, 452 Smi* constant, 453 Label* on_not_smi_result, 454 Label::Distance near_jump = Label::kFar); 455 456 // Add an integer constant to a tagged smi, giving a tagged smi as result. 457 // No overflow testing on the result is done. 458 void SmiAddConstant(Register dst, Register src, Smi* constant); 459 460 // Add an integer constant to a tagged smi, giving a tagged smi as result. 461 // No overflow testing on the result is done. 462 void SmiAddConstant(const Operand& dst, Smi* constant); 463 464 // Add an integer constant to a tagged smi, giving a tagged smi as result, 465 // or jumping to a label if the result cannot be represented by a smi. 466 void SmiAddConstant(Register dst, 467 Register src, 468 Smi* constant, 469 Label* on_not_smi_result, 470 Label::Distance near_jump = Label::kFar); 471 472 // Subtract an integer constant from a tagged smi, giving a tagged smi as 473 // result. No testing on the result is done. Sets the N and Z flags 474 // based on the value of the resulting integer. 475 void SmiSubConstant(Register dst, Register src, Smi* constant); 476 477 // Subtract an integer constant from a tagged smi, giving a tagged smi as 478 // result, or jumping to a label if the result cannot be represented by a smi. 479 void SmiSubConstant(Register dst, 480 Register src, 481 Smi* constant, 482 Label* on_not_smi_result, 483 Label::Distance near_jump = Label::kFar); 484 485 // Negating a smi can give a negative zero or too large positive value. 486 // NOTICE: This operation jumps on success, not failure! 487 void SmiNeg(Register dst, 488 Register src, 489 Label* on_smi_result, 490 Label::Distance near_jump = Label::kFar); 491 492 // Adds smi values and return the result as a smi. 493 // If dst is src1, then src1 will be destroyed, even if 494 // the operation is unsuccessful. 495 void SmiAdd(Register dst, 496 Register src1, 497 Register src2, 498 Label* on_not_smi_result, 499 Label::Distance near_jump = Label::kFar); 500 void SmiAdd(Register dst, 501 Register src1, 502 const Operand& src2, 503 Label* on_not_smi_result, 504 Label::Distance near_jump = Label::kFar); 505 506 void SmiAdd(Register dst, 507 Register src1, 508 Register src2); 509 510 // Subtracts smi values and return the result as a smi. 511 // If dst is src1, then src1 will be destroyed, even if 512 // the operation is unsuccessful. 513 void SmiSub(Register dst, 514 Register src1, 515 Register src2, 516 Label* on_not_smi_result, 517 Label::Distance near_jump = Label::kFar); 518 519 void SmiSub(Register dst, 520 Register src1, 521 Register src2); 522 523 void SmiSub(Register dst, 524 Register src1, 525 const Operand& src2, 526 Label* on_not_smi_result, 527 Label::Distance near_jump = Label::kFar); 528 529 void SmiSub(Register dst, 530 Register src1, 531 const Operand& src2); 532 533 // Multiplies smi values and return the result as a smi, 534 // if possible. 535 // If dst is src1, then src1 will be destroyed, even if 536 // the operation is unsuccessful. 537 void SmiMul(Register dst, 538 Register src1, 539 Register src2, 540 Label* on_not_smi_result, 541 Label::Distance near_jump = Label::kFar); 542 543 // Divides one smi by another and returns the quotient. 544 // Clobbers rax and rdx registers. 545 void SmiDiv(Register dst, 546 Register src1, 547 Register src2, 548 Label* on_not_smi_result, 549 Label::Distance near_jump = Label::kFar); 550 551 // Divides one smi by another and returns the remainder. 552 // Clobbers rax and rdx registers. 553 void SmiMod(Register dst, 554 Register src1, 555 Register src2, 556 Label* on_not_smi_result, 557 Label::Distance near_jump = Label::kFar); 558 559 // Bitwise operations. 560 void SmiNot(Register dst, Register src); 561 void SmiAnd(Register dst, Register src1, Register src2); 562 void SmiOr(Register dst, Register src1, Register src2); 563 void SmiXor(Register dst, Register src1, Register src2); 564 void SmiAndConstant(Register dst, Register src1, Smi* constant); 565 void SmiOrConstant(Register dst, Register src1, Smi* constant); 566 void SmiXorConstant(Register dst, Register src1, Smi* constant); 567 568 void SmiShiftLeftConstant(Register dst, 569 Register src, 570 int shift_value); 571 void SmiShiftLogicalRightConstant(Register dst, 572 Register src, 573 int shift_value, 574 Label* on_not_smi_result, 575 Label::Distance near_jump = Label::kFar); 576 void SmiShiftArithmeticRightConstant(Register dst, 577 Register src, 578 int shift_value); 579 580 // Shifts a smi value to the left, and returns the result if that is a smi. 581 // Uses and clobbers rcx, so dst may not be rcx. 582 void SmiShiftLeft(Register dst, 583 Register src1, 584 Register src2); 585 // Shifts a smi value to the right, shifting in zero bits at the top, and 586 // returns the unsigned intepretation of the result if that is a smi. 587 // Uses and clobbers rcx, so dst may not be rcx. 588 void SmiShiftLogicalRight(Register dst, 589 Register src1, 590 Register src2, 591 Label* on_not_smi_result, 592 Label::Distance near_jump = Label::kFar); 593 // Shifts a smi value to the right, sign extending the top, and 594 // returns the signed intepretation of the result. That will always 595 // be a valid smi value, since it's numerically smaller than the 596 // original. 597 // Uses and clobbers rcx, so dst may not be rcx. 598 void SmiShiftArithmeticRight(Register dst, 599 Register src1, 600 Register src2); 601 602 // Specialized operations 603 604 // Select the non-smi register of two registers where exactly one is a 605 // smi. If neither are smis, jump to the failure label. 606 void SelectNonSmi(Register dst, 607 Register src1, 608 Register src2, 609 Label* on_not_smis, 610 Label::Distance near_jump = Label::kFar); 611 612 // Converts, if necessary, a smi to a combination of number and 613 // multiplier to be used as a scaled index. 614 // The src register contains a *positive* smi value. The shift is the 615 // power of two to multiply the index value by (e.g. 616 // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2). 617 // The returned index register may be either src or dst, depending 618 // on what is most efficient. If src and dst are different registers, 619 // src is always unchanged. 620 SmiIndex SmiToIndex(Register dst, Register src, int shift); 621 622 // Converts a positive smi to a negative index. 623 SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift); 624 625 // Add the value of a smi in memory to an int32 register. 626 // Sets flags as a normal add. 627 void AddSmiField(Register dst, const Operand& src); 628 629 // Basic Smi operations. 630 void Move(Register dst, Smi* source) { 631 LoadSmiConstant(dst, source); 632 } 633 634 void Move(const Operand& dst, Smi* source) { 635 Register constant = GetSmiConstant(source); 636 movq(dst, constant); 637 } 638 639 void Push(Smi* smi); 640 void Test(const Operand& dst, Smi* source); 641 642 // --------------------------------------------------------------------------- 643 // String macros. 644 645 // If object is a string, its map is loaded into object_map. 646 void JumpIfNotString(Register object, 647 Register object_map, 648 Label* not_string, 649 Label::Distance near_jump = Label::kFar); 650 651 652 void JumpIfNotBothSequentialAsciiStrings( 653 Register first_object, 654 Register second_object, 655 Register scratch1, 656 Register scratch2, 657 Label* on_not_both_flat_ascii, 658 Label::Distance near_jump = Label::kFar); 659 660 // Check whether the instance type represents a flat ascii string. Jump to the 661 // label if not. If the instance type can be scratched specify same register 662 // for both instance type and scratch. 663 void JumpIfInstanceTypeIsNotSequentialAscii( 664 Register instance_type, 665 Register scratch, 666 Label*on_not_flat_ascii_string, 667 Label::Distance near_jump = Label::kFar); 668 669 void JumpIfBothInstanceTypesAreNotSequentialAscii( 670 Register first_object_instance_type, 671 Register second_object_instance_type, 672 Register scratch1, 673 Register scratch2, 674 Label* on_fail, 675 Label::Distance near_jump = Label::kFar); 676 677 // --------------------------------------------------------------------------- 678 // Macro instructions. 679 680 // Load a register with a long value as efficiently as possible. 681 void Set(Register dst, int64_t x); 682 void Set(const Operand& dst, int64_t x); 683 684 // Move if the registers are not identical. 685 void Move(Register target, Register source); 686 687 // Handle support 688 void Move(Register dst, Handle<Object> source); 689 void Move(const Operand& dst, Handle<Object> source); 690 void Cmp(Register dst, Handle<Object> source); 691 void Cmp(const Operand& dst, Handle<Object> source); 692 void Cmp(Register dst, Smi* src); 693 void Cmp(const Operand& dst, Smi* src); 694 void Push(Handle<Object> source); 695 696 // Emit code to discard a non-negative number of pointer-sized elements 697 // from the stack, clobbering only the rsp register. 698 void Drop(int stack_elements); 699 700 void Call(Label* target) { call(target); } 701 702 // Control Flow 703 void Jump(Address destination, RelocInfo::Mode rmode); 704 void Jump(ExternalReference ext); 705 void Jump(Handle<Code> code_object, RelocInfo::Mode rmode); 706 707 void Call(Address destination, RelocInfo::Mode rmode); 708 void Call(ExternalReference ext); 709 void Call(Handle<Code> code_object, 710 RelocInfo::Mode rmode, 711 unsigned ast_id = kNoASTId); 712 713 // The size of the code generated for different call instructions. 714 int CallSize(Address destination, RelocInfo::Mode rmode) { 715 return kCallInstructionLength; 716 } 717 int CallSize(ExternalReference ext); 718 int CallSize(Handle<Code> code_object) { 719 // Code calls use 32-bit relative addressing. 720 return kShortCallInstructionLength; 721 } 722 int CallSize(Register target) { 723 // Opcode: REX_opt FF /2 m64 724 return (target.high_bit() != 0) ? 3 : 2; 725 } 726 int CallSize(const Operand& target) { 727 // Opcode: REX_opt FF /2 m64 728 return (target.requires_rex() ? 2 : 1) + target.operand_size(); 729 } 730 731 // Emit call to the code we are currently generating. 732 void CallSelf() { 733 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location())); 734 Call(self, RelocInfo::CODE_TARGET); 735 } 736 737 // Non-x64 instructions. 738 // Push/pop all general purpose registers. 739 // Does not push rsp/rbp nor any of the assembler's special purpose registers 740 // (kScratchRegister, kSmiConstantRegister, kRootRegister). 741 void Pushad(); 742 void Popad(); 743 // Sets the stack as after performing Popad, without actually loading the 744 // registers. 745 void Dropad(); 746 747 // Compare object type for heap object. 748 // Always use unsigned comparisons: above and below, not less and greater. 749 // Incoming register is heap_object and outgoing register is map. 750 // They may be the same register, and may be kScratchRegister. 751 void CmpObjectType(Register heap_object, InstanceType type, Register map); 752 753 // Compare instance type for map. 754 // Always use unsigned comparisons: above and below, not less and greater. 755 void CmpInstanceType(Register map, InstanceType type); 756 757 // Check if a map for a JSObject indicates that the object has fast elements. 758 // Jump to the specified label if it does not. 759 void CheckFastElements(Register map, 760 Label* fail, 761 Label::Distance distance = Label::kFar); 762 763 // Check if the map of an object is equal to a specified map and 764 // branch to label if not. Skip the smi check if not required 765 // (object is known to be a heap object) 766 void CheckMap(Register obj, 767 Handle<Map> map, 768 Label* fail, 769 SmiCheckType smi_check_type); 770 771 // Check if the map of an object is equal to a specified map and branch to a 772 // specified target if equal. Skip the smi check if not required (object is 773 // known to be a heap object) 774 void DispatchMap(Register obj, 775 Handle<Map> map, 776 Handle<Code> success, 777 SmiCheckType smi_check_type); 778 779 // Check if the object in register heap_object is a string. Afterwards the 780 // register map contains the object map and the register instance_type 781 // contains the instance_type. The registers map and instance_type can be the 782 // same in which case it contains the instance type afterwards. Either of the 783 // registers map and instance_type can be the same as heap_object. 784 Condition IsObjectStringType(Register heap_object, 785 Register map, 786 Register instance_type); 787 788 // FCmp compares and pops the two values on top of the FPU stack. 789 // The flag results are similar to integer cmp, but requires unsigned 790 // jcc instructions (je, ja, jae, jb, jbe, je, and jz). 791 void FCmp(); 792 793 void ClampUint8(Register reg); 794 795 void ClampDoubleToUint8(XMMRegister input_reg, 796 XMMRegister temp_xmm_reg, 797 Register result_reg, 798 Register temp_reg); 799 800 void LoadInstanceDescriptors(Register map, Register descriptors); 801 802 // Abort execution if argument is not a number. Used in debug code. 803 void AbortIfNotNumber(Register object); 804 805 // Abort execution if argument is a smi. Used in debug code. 806 void AbortIfSmi(Register object); 807 808 // Abort execution if argument is not a smi. Used in debug code. 809 void AbortIfNotSmi(Register object); 810 void AbortIfNotSmi(const Operand& object); 811 812 // Abort execution if argument is a string. Used in debug code. 813 void AbortIfNotString(Register object); 814 815 // Abort execution if argument is not the root value with the given index. 816 void AbortIfNotRootValue(Register src, 817 Heap::RootListIndex root_value_index, 818 const char* message); 819 820 // --------------------------------------------------------------------------- 821 // Exception handling 822 823 // Push a new try handler and link into try handler chain. The return 824 // address must be pushed before calling this helper. 825 void PushTryHandler(CodeLocation try_location, HandlerType type); 826 827 // Unlink the stack handler on top of the stack from the try handler chain. 828 void PopTryHandler(); 829 830 // Activate the top handler in the try hander chain and pass the 831 // thrown value. 832 void Throw(Register value); 833 834 // Propagate an uncatchable exception out of the current JS stack. 835 void ThrowUncatchable(UncatchableExceptionType type, Register value); 836 837 // --------------------------------------------------------------------------- 838 // Inline caching support 839 840 // Generate code for checking access rights - used for security checks 841 // on access to global objects across environments. The holder register 842 // is left untouched, but the scratch register and kScratchRegister, 843 // which must be different, are clobbered. 844 void CheckAccessGlobalProxy(Register holder_reg, 845 Register scratch, 846 Label* miss); 847 848 849 void LoadFromNumberDictionary(Label* miss, 850 Register elements, 851 Register key, 852 Register r0, 853 Register r1, 854 Register r2, 855 Register result); 856 857 858 // --------------------------------------------------------------------------- 859 // Allocation support 860 861 // Allocate an object in new space. If the new space is exhausted control 862 // continues at the gc_required label. The allocated object is returned in 863 // result and end of the new object is returned in result_end. The register 864 // scratch can be passed as no_reg in which case an additional object 865 // reference will be added to the reloc info. The returned pointers in result 866 // and result_end have not yet been tagged as heap objects. If 867 // result_contains_top_on_entry is true the content of result is known to be 868 // the allocation top on entry (could be result_end from a previous call to 869 // AllocateInNewSpace). If result_contains_top_on_entry is true scratch 870 // should be no_reg as it is never used. 871 void AllocateInNewSpace(int object_size, 872 Register result, 873 Register result_end, 874 Register scratch, 875 Label* gc_required, 876 AllocationFlags flags); 877 878 void AllocateInNewSpace(int header_size, 879 ScaleFactor element_size, 880 Register element_count, 881 Register result, 882 Register result_end, 883 Register scratch, 884 Label* gc_required, 885 AllocationFlags flags); 886 887 void AllocateInNewSpace(Register object_size, 888 Register result, 889 Register result_end, 890 Register scratch, 891 Label* gc_required, 892 AllocationFlags flags); 893 894 // Undo allocation in new space. The object passed and objects allocated after 895 // it will no longer be allocated. Make sure that no pointers are left to the 896 // object(s) no longer allocated as they would be invalid when allocation is 897 // un-done. 898 void UndoAllocationInNewSpace(Register object); 899 900 // Allocate a heap number in new space with undefined value. Returns 901 // tagged pointer in result register, or jumps to gc_required if new 902 // space is full. 903 void AllocateHeapNumber(Register result, 904 Register scratch, 905 Label* gc_required); 906 907 // Allocate a sequential string. All the header fields of the string object 908 // are initialized. 909 void AllocateTwoByteString(Register result, 910 Register length, 911 Register scratch1, 912 Register scratch2, 913 Register scratch3, 914 Label* gc_required); 915 void AllocateAsciiString(Register result, 916 Register length, 917 Register scratch1, 918 Register scratch2, 919 Register scratch3, 920 Label* gc_required); 921 922 // Allocate a raw cons string object. Only the map field of the result is 923 // initialized. 924 void AllocateConsString(Register result, 925 Register scratch1, 926 Register scratch2, 927 Label* gc_required); 928 void AllocateAsciiConsString(Register result, 929 Register scratch1, 930 Register scratch2, 931 Label* gc_required); 932 933 // --------------------------------------------------------------------------- 934 // Support functions. 935 936 // Check if result is zero and op is negative. 937 void NegativeZeroTest(Register result, Register op, Label* then_label); 938 939 // Check if result is zero and op is negative in code using jump targets. 940 void NegativeZeroTest(CodeGenerator* cgen, 941 Register result, 942 Register op, 943 JumpTarget* then_target); 944 945 // Check if result is zero and any of op1 and op2 are negative. 946 // Register scratch is destroyed, and it must be different from op2. 947 void NegativeZeroTest(Register result, Register op1, Register op2, 948 Register scratch, Label* then_label); 949 950 // Try to get function prototype of a function and puts the value in 951 // the result register. Checks that the function really is a 952 // function and jumps to the miss label if the fast checks fail. The 953 // function register will be untouched; the other register may be 954 // clobbered. 955 void TryGetFunctionPrototype(Register function, 956 Register result, 957 Label* miss); 958 959 // Generates code for reporting that an illegal operation has 960 // occurred. 961 void IllegalOperation(int num_arguments); 962 963 // Picks out an array index from the hash field. 964 // Register use: 965 // hash - holds the index's hash. Clobbered. 966 // index - holds the overwritten index on exit. 967 void IndexFromHash(Register hash, Register index); 968 969 // Find the function context up the context chain. 970 void LoadContext(Register dst, int context_chain_length); 971 972 // Load the global function with the given index. 973 void LoadGlobalFunction(int index, Register function); 974 975 // Load the initial map from the global function. The registers 976 // function and map can be the same. 977 void LoadGlobalFunctionInitialMap(Register function, Register map); 978 979 // --------------------------------------------------------------------------- 980 // Runtime calls 981 982 // Call a code stub. 983 void CallStub(CodeStub* stub, unsigned ast_id = kNoASTId); 984 985 // Call a code stub and return the code object called. Try to generate 986 // the code if necessary. Do not perform a GC but instead return a retry 987 // after GC failure. 988 MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub); 989 990 // Tail call a code stub (jump). 991 void TailCallStub(CodeStub* stub); 992 993 // Tail call a code stub (jump) and return the code object called. Try to 994 // generate the code if necessary. Do not perform a GC but instead return 995 // a retry after GC failure. 996 MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub); 997 998 // Return from a code stub after popping its arguments. 999 void StubReturn(int argc); 1000 1001 // Call a runtime routine. 1002 void CallRuntime(const Runtime::Function* f, int num_arguments); 1003 1004 // Call a runtime function and save the value of XMM registers. 1005 void CallRuntimeSaveDoubles(Runtime::FunctionId id); 1006 1007 // Call a runtime function, returning the CodeStub object called. 1008 // Try to generate the stub code if necessary. Do not perform a GC 1009 // but instead return a retry after GC failure. 1010 MUST_USE_RESULT MaybeObject* TryCallRuntime(const Runtime::Function* f, 1011 int num_arguments); 1012 1013 // Convenience function: Same as above, but takes the fid instead. 1014 void CallRuntime(Runtime::FunctionId id, int num_arguments); 1015 1016 // Convenience function: Same as above, but takes the fid instead. 1017 MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id, 1018 int num_arguments); 1019 1020 // Convenience function: call an external reference. 1021 void CallExternalReference(const ExternalReference& ext, 1022 int num_arguments); 1023 1024 // Tail call of a runtime routine (jump). 1025 // Like JumpToExternalReference, but also takes care of passing the number 1026 // of parameters. 1027 void TailCallExternalReference(const ExternalReference& ext, 1028 int num_arguments, 1029 int result_size); 1030 1031 MUST_USE_RESULT MaybeObject* TryTailCallExternalReference( 1032 const ExternalReference& ext, int num_arguments, int result_size); 1033 1034 // Convenience function: tail call a runtime routine (jump). 1035 void TailCallRuntime(Runtime::FunctionId fid, 1036 int num_arguments, 1037 int result_size); 1038 1039 MUST_USE_RESULT MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid, 1040 int num_arguments, 1041 int result_size); 1042 1043 // Jump to a runtime routine. 1044 void JumpToExternalReference(const ExternalReference& ext, int result_size); 1045 1046 // Jump to a runtime routine. 1047 MaybeObject* TryJumpToExternalReference(const ExternalReference& ext, 1048 int result_size); 1049 1050 // Prepares stack to put arguments (aligns and so on). 1051 // WIN64 calling convention requires to put the pointer to the return value 1052 // slot into rcx (rcx must be preserverd until TryCallApiFunctionAndReturn). 1053 // Saves context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize 1054 // inside the exit frame (not GCed) accessible via StackSpaceOperand. 1055 void PrepareCallApiFunction(int arg_stack_space); 1056 1057 // Calls an API function. Allocates HandleScope, extracts 1058 // returned value from handle and propagates exceptions. 1059 // Clobbers r14, r15, rbx and caller-save registers. Restores context. 1060 // On return removes stack_space * kPointerSize (GCed). 1061 MUST_USE_RESULT MaybeObject* TryCallApiFunctionAndReturn( 1062 ApiFunction* function, int stack_space); 1063 1064 // Before calling a C-function from generated code, align arguments on stack. 1065 // After aligning the frame, arguments must be stored in esp[0], esp[4], 1066 // etc., not pushed. The argument count assumes all arguments are word sized. 1067 // The number of slots reserved for arguments depends on platform. On Windows 1068 // stack slots are reserved for the arguments passed in registers. On other 1069 // platforms stack slots are only reserved for the arguments actually passed 1070 // on the stack. 1071 void PrepareCallCFunction(int num_arguments); 1072 1073 // Calls a C function and cleans up the space for arguments allocated 1074 // by PrepareCallCFunction. The called function is not allowed to trigger a 1075 // garbage collection, since that might move the code and invalidate the 1076 // return address (unless this is somehow accounted for by the called 1077 // function). 1078 void CallCFunction(ExternalReference function, int num_arguments); 1079 void CallCFunction(Register function, int num_arguments); 1080 1081 // Calculate the number of stack slots to reserve for arguments when calling a 1082 // C function. 1083 int ArgumentStackSlotsForCFunctionCall(int num_arguments); 1084 1085 // --------------------------------------------------------------------------- 1086 // Utilities 1087 1088 void Ret(); 1089 1090 // Return and drop arguments from stack, where the number of arguments 1091 // may be bigger than 2^16 - 1. Requires a scratch register. 1092 void Ret(int bytes_dropped, Register scratch); 1093 1094 Handle<Object> CodeObject() { 1095 ASSERT(!code_object_.is_null()); 1096 return code_object_; 1097 } 1098 1099 // Copy length bytes from source to destination. 1100 // Uses scratch register internally (if you have a low-eight register 1101 // free, do use it, otherwise kScratchRegister will be used). 1102 // The min_length is a minimum limit on the value that length will have. 1103 // The algorithm has some special cases that might be omitted if the string 1104 // is known to always be long. 1105 void CopyBytes(Register destination, 1106 Register source, 1107 Register length, 1108 int min_length = 0, 1109 Register scratch = kScratchRegister); 1110 1111 1112 // --------------------------------------------------------------------------- 1113 // StatsCounter support 1114 1115 void SetCounter(StatsCounter* counter, int value); 1116 void IncrementCounter(StatsCounter* counter, int value); 1117 void DecrementCounter(StatsCounter* counter, int value); 1118 1119 1120 // --------------------------------------------------------------------------- 1121 // Debugging 1122 1123 // Calls Abort(msg) if the condition cc is not satisfied. 1124 // Use --debug_code to enable. 1125 void Assert(Condition cc, const char* msg); 1126 1127 void AssertFastElements(Register elements); 1128 1129 // Like Assert(), but always enabled. 1130 void Check(Condition cc, const char* msg); 1131 1132 // Print a message to stdout and abort execution. 1133 void Abort(const char* msg); 1134 1135 // Check that the stack is aligned. 1136 void CheckStackAlignment(); 1137 1138 // Verify restrictions about code generated in stubs. 1139 void set_generating_stub(bool value) { generating_stub_ = value; } 1140 bool generating_stub() { return generating_stub_; } 1141 void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } 1142 bool allow_stub_calls() { return allow_stub_calls_; } 1143 1144 static int SafepointRegisterStackIndex(Register reg) { 1145 return SafepointRegisterStackIndex(reg.code()); 1146 } 1147 1148 private: 1149 // Order general registers are pushed by Pushad. 1150 // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15. 1151 static int kSafepointPushRegisterIndices[Register::kNumRegisters]; 1152 static const int kNumSafepointSavedRegisters = 11; 1153 static const int kSmiShift = kSmiTagSize + kSmiShiftSize; 1154 1155 bool generating_stub_; 1156 bool allow_stub_calls_; 1157 bool root_array_available_; 1158 1159 // Returns a register holding the smi value. The register MUST NOT be 1160 // modified. It may be the "smi 1 constant" register. 1161 Register GetSmiConstant(Smi* value); 1162 1163 // Moves the smi value to the destination register. 1164 void LoadSmiConstant(Register dst, Smi* value); 1165 1166 // This handle will be patched with the code object on installation. 1167 Handle<Object> code_object_; 1168 1169 // Helper functions for generating invokes. 1170 void InvokePrologue(const ParameterCount& expected, 1171 const ParameterCount& actual, 1172 Handle<Code> code_constant, 1173 Register code_register, 1174 Label* done, 1175 InvokeFlag flag, 1176 Label::Distance near_jump = Label::kFar, 1177 const CallWrapper& call_wrapper = NullCallWrapper(), 1178 CallKind call_kind = CALL_AS_METHOD); 1179 1180 // Activation support. 1181 void EnterFrame(StackFrame::Type type); 1182 void LeaveFrame(StackFrame::Type type); 1183 1184 void EnterExitFramePrologue(bool save_rax); 1185 1186 // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack 1187 // accessible via StackSpaceOperand. 1188 void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles); 1189 1190 void LeaveExitFrameEpilogue(); 1191 1192 // Allocation support helpers. 1193 // Loads the top of new-space into the result register. 1194 // Otherwise the address of the new-space top is loaded into scratch (if 1195 // scratch is valid), and the new-space top is loaded into result. 1196 void LoadAllocationTopHelper(Register result, 1197 Register scratch, 1198 AllocationFlags flags); 1199 // Update allocation top with value in result_end register. 1200 // If scratch is valid, it contains the address of the allocation top. 1201 void UpdateAllocationTopHelper(Register result_end, Register scratch); 1202 1203 // Helper for PopHandleScope. Allowed to perform a GC and returns 1204 // NULL if gc_allowed. Does not perform a GC if !gc_allowed, and 1205 // possibly returns a failure object indicating an allocation failure. 1206 Object* PopHandleScopeHelper(Register saved, 1207 Register scratch, 1208 bool gc_allowed); 1209 1210 1211 // Compute memory operands for safepoint stack slots. 1212 Operand SafepointRegisterSlot(Register reg); 1213 static int SafepointRegisterStackIndex(int reg_code) { 1214 return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1; 1215 } 1216 1217 // Needs access to SafepointRegisterStackIndex for optimized frame 1218 // traversal. 1219 friend class OptimizedFrame; 1220}; 1221 1222 1223// The code patcher is used to patch (typically) small parts of code e.g. for 1224// debugging and other types of instrumentation. When using the code patcher 1225// the exact number of bytes specified must be emitted. Is not legal to emit 1226// relocation information. If any of these constraints are violated it causes 1227// an assertion. 1228class CodePatcher { 1229 public: 1230 CodePatcher(byte* address, int size); 1231 virtual ~CodePatcher(); 1232 1233 // Macro assembler to emit code. 1234 MacroAssembler* masm() { return &masm_; } 1235 1236 private: 1237 byte* address_; // The address of the code being patched. 1238 int size_; // Number of bytes of the expected patch size. 1239 MacroAssembler masm_; // Macro assembler used to generate the code. 1240}; 1241 1242 1243// ----------------------------------------------------------------------------- 1244// Static helper functions. 1245 1246// Generate an Operand for loading a field from an object. 1247static inline Operand FieldOperand(Register object, int offset) { 1248 return Operand(object, offset - kHeapObjectTag); 1249} 1250 1251 1252// Generate an Operand for loading an indexed field from an object. 1253static inline Operand FieldOperand(Register object, 1254 Register index, 1255 ScaleFactor scale, 1256 int offset) { 1257 return Operand(object, index, scale, offset - kHeapObjectTag); 1258} 1259 1260 1261static inline Operand ContextOperand(Register context, int index) { 1262 return Operand(context, Context::SlotOffset(index)); 1263} 1264 1265 1266static inline Operand GlobalObjectOperand() { 1267 return ContextOperand(rsi, Context::GLOBAL_INDEX); 1268} 1269 1270 1271// Provides access to exit frame stack space (not GCed). 1272static inline Operand StackSpaceOperand(int index) { 1273#ifdef _WIN64 1274 const int kShaddowSpace = 4; 1275 return Operand(rsp, (index + kShaddowSpace) * kPointerSize); 1276#else 1277 return Operand(rsp, index * kPointerSize); 1278#endif 1279} 1280 1281 1282 1283#ifdef GENERATED_CODE_COVERAGE 1284extern void LogGeneratedCodeCoverage(const char* file_line); 1285#define CODE_COVERAGE_STRINGIFY(x) #x 1286#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) 1287#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) 1288#define ACCESS_MASM(masm) { \ 1289 byte* x64_coverage_function = \ 1290 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \ 1291 masm->pushfd(); \ 1292 masm->pushad(); \ 1293 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \ 1294 masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \ 1295 masm->pop(rax); \ 1296 masm->popad(); \ 1297 masm->popfd(); \ 1298 } \ 1299 masm-> 1300#else 1301#define ACCESS_MASM(masm) masm-> 1302#endif 1303 1304} } // namespace v8::internal 1305 1306#endif // V8_X64_MACRO_ASSEMBLER_X64_H_ 1307