macro-assembler-x64.h revision 958fae7ec3f466955f8e5b50fa5b8d38b9e91675
1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
6#define V8_X64_MACRO_ASSEMBLER_X64_H_
7
8#include "src/assembler.h"
9#include "src/bailout-reason.h"
10#include "src/frames.h"
11#include "src/globals.h"
12
13namespace v8 {
14namespace internal {
15
16// Default scratch register used by MacroAssembler (and other code that needs
17// a spare register). The register isn't callee save, and not used by the
18// function calling convention.
19const Register kScratchRegister = { 10 };      // r10.
20const Register kSmiConstantRegister = { 12 };  // r12 (callee save).
21const Register kRootRegister = { 13 };         // r13 (callee save).
22// Value of smi in kSmiConstantRegister.
23const int kSmiConstantRegisterValue = 1;
24// Actual value of root register is offset from the root array's start
25// to take advantage of negitive 8-bit displacement values.
26const int kRootRegisterBias = 128;
27
28// Convenience for platform-independent signatures.
29typedef Operand MemOperand;
30
31enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
32enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
33enum PointersToHereCheck {
34  kPointersToHereMaybeInteresting,
35  kPointersToHereAreAlwaysInteresting
36};
37
38enum SmiOperationConstraint {
39  PRESERVE_SOURCE_REGISTER,
40  BAILOUT_ON_NO_OVERFLOW,
41  BAILOUT_ON_OVERFLOW,
42  NUMBER_OF_CONSTRAINTS
43};
44
45STATIC_ASSERT(NUMBER_OF_CONSTRAINTS <= 8);
46
47class SmiOperationExecutionMode : public EnumSet<SmiOperationConstraint, byte> {
48 public:
49  SmiOperationExecutionMode() : EnumSet<SmiOperationConstraint, byte>(0) { }
50  explicit SmiOperationExecutionMode(byte bits)
51      : EnumSet<SmiOperationConstraint, byte>(bits) { }
52};
53
54#ifdef DEBUG
55bool AreAliased(Register reg1,
56                Register reg2,
57                Register reg3 = no_reg,
58                Register reg4 = no_reg,
59                Register reg5 = no_reg,
60                Register reg6 = no_reg,
61                Register reg7 = no_reg,
62                Register reg8 = no_reg);
63#endif
64
65// Forward declaration.
66class JumpTarget;
67
68struct SmiIndex {
69  SmiIndex(Register index_register, ScaleFactor scale)
70      : reg(index_register),
71        scale(scale) {}
72  Register reg;
73  ScaleFactor scale;
74};
75
76
77// MacroAssembler implements a collection of frequently used macros.
78class MacroAssembler: public Assembler {
79 public:
80  // The isolate parameter can be NULL if the macro assembler should
81  // not use isolate-dependent functionality. In this case, it's the
82  // responsibility of the caller to never invoke such function on the
83  // macro assembler.
84  MacroAssembler(Isolate* isolate, void* buffer, int size);
85
86  // Prevent the use of the RootArray during the lifetime of this
87  // scope object.
88  class NoRootArrayScope BASE_EMBEDDED {
89   public:
90    explicit NoRootArrayScope(MacroAssembler* assembler)
91        : variable_(&assembler->root_array_available_),
92          old_value_(assembler->root_array_available_) {
93      assembler->root_array_available_ = false;
94    }
95    ~NoRootArrayScope() {
96      *variable_ = old_value_;
97    }
98   private:
99    bool* variable_;
100    bool old_value_;
101  };
102
103  // Operand pointing to an external reference.
104  // May emit code to set up the scratch register. The operand is
105  // only guaranteed to be correct as long as the scratch register
106  // isn't changed.
107  // If the operand is used more than once, use a scratch register
108  // that is guaranteed not to be clobbered.
109  Operand ExternalOperand(ExternalReference reference,
110                          Register scratch = kScratchRegister);
111  // Loads and stores the value of an external reference.
112  // Special case code for load and store to take advantage of
113  // load_rax/store_rax if possible/necessary.
114  // For other operations, just use:
115  //   Operand operand = ExternalOperand(extref);
116  //   operation(operand, ..);
117  void Load(Register destination, ExternalReference source);
118  void Store(ExternalReference destination, Register source);
119  // Loads the address of the external reference into the destination
120  // register.
121  void LoadAddress(Register destination, ExternalReference source);
122  // Returns the size of the code generated by LoadAddress.
123  // Used by CallSize(ExternalReference) to find the size of a call.
124  int LoadAddressSize(ExternalReference source);
125  // Pushes the address of the external reference onto the stack.
126  void PushAddress(ExternalReference source);
127
128  // Operations on roots in the root-array.
129  void LoadRoot(Register destination, Heap::RootListIndex index);
130  void StoreRoot(Register source, Heap::RootListIndex index);
131  // Load a root value where the index (or part of it) is variable.
132  // The variable_offset register is added to the fixed_offset value
133  // to get the index into the root-array.
134  void LoadRootIndexed(Register destination,
135                       Register variable_offset,
136                       int fixed_offset);
137  void CompareRoot(Register with, Heap::RootListIndex index);
138  void CompareRoot(const Operand& with, Heap::RootListIndex index);
139  void PushRoot(Heap::RootListIndex index);
140
141  // These functions do not arrange the registers in any particular order so
142  // they are not useful for calls that can cause a GC.  The caller can
143  // exclude up to 3 registers that do not need to be saved and restored.
144  void PushCallerSaved(SaveFPRegsMode fp_mode,
145                       Register exclusion1 = no_reg,
146                       Register exclusion2 = no_reg,
147                       Register exclusion3 = no_reg);
148  void PopCallerSaved(SaveFPRegsMode fp_mode,
149                      Register exclusion1 = no_reg,
150                      Register exclusion2 = no_reg,
151                      Register exclusion3 = no_reg);
152
153// ---------------------------------------------------------------------------
154// GC Support
155
156
157  enum RememberedSetFinalAction {
158    kReturnAtEnd,
159    kFallThroughAtEnd
160  };
161
162  // Record in the remembered set the fact that we have a pointer to new space
163  // at the address pointed to by the addr register.  Only works if addr is not
164  // in new space.
165  void RememberedSetHelper(Register object,  // Used for debug code.
166                           Register addr,
167                           Register scratch,
168                           SaveFPRegsMode save_fp,
169                           RememberedSetFinalAction and_then);
170
171  void CheckPageFlag(Register object,
172                     Register scratch,
173                     int mask,
174                     Condition cc,
175                     Label* condition_met,
176                     Label::Distance condition_met_distance = Label::kFar);
177
178  // Check if object is in new space.  Jumps if the object is not in new space.
179  // The register scratch can be object itself, but scratch will be clobbered.
180  void JumpIfNotInNewSpace(Register object,
181                           Register scratch,
182                           Label* branch,
183                           Label::Distance distance = Label::kFar) {
184    InNewSpace(object, scratch, not_equal, branch, distance);
185  }
186
187  // Check if object is in new space.  Jumps if the object is in new space.
188  // The register scratch can be object itself, but it will be clobbered.
189  void JumpIfInNewSpace(Register object,
190                        Register scratch,
191                        Label* branch,
192                        Label::Distance distance = Label::kFar) {
193    InNewSpace(object, scratch, equal, branch, distance);
194  }
195
196  // Check if an object has the black incremental marking color.  Also uses rcx!
197  void JumpIfBlack(Register object,
198                   Register scratch0,
199                   Register scratch1,
200                   Label* on_black,
201                   Label::Distance on_black_distance = Label::kFar);
202
203  // Detects conservatively whether an object is data-only, i.e. it does need to
204  // be scanned by the garbage collector.
205  void JumpIfDataObject(Register value,
206                        Register scratch,
207                        Label* not_data_object,
208                        Label::Distance not_data_object_distance);
209
210  // Checks the color of an object.  If the object is already grey or black
211  // then we just fall through, since it is already live.  If it is white and
212  // we can determine that it doesn't need to be scanned, then we just mark it
213  // black and fall through.  For the rest we jump to the label so the
214  // incremental marker can fix its assumptions.
215  void EnsureNotWhite(Register object,
216                      Register scratch1,
217                      Register scratch2,
218                      Label* object_is_white_and_not_data,
219                      Label::Distance distance);
220
221  // Notify the garbage collector that we wrote a pointer into an object.
222  // |object| is the object being stored into, |value| is the object being
223  // stored.  value and scratch registers are clobbered by the operation.
224  // The offset is the offset from the start of the object, not the offset from
225  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
226  void RecordWriteField(
227      Register object,
228      int offset,
229      Register value,
230      Register scratch,
231      SaveFPRegsMode save_fp,
232      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
233      SmiCheck smi_check = INLINE_SMI_CHECK,
234      PointersToHereCheck pointers_to_here_check_for_value =
235          kPointersToHereMaybeInteresting);
236
237  // As above, but the offset has the tag presubtracted.  For use with
238  // Operand(reg, off).
239  void RecordWriteContextSlot(
240      Register context,
241      int offset,
242      Register value,
243      Register scratch,
244      SaveFPRegsMode save_fp,
245      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
246      SmiCheck smi_check = INLINE_SMI_CHECK,
247      PointersToHereCheck pointers_to_here_check_for_value =
248          kPointersToHereMaybeInteresting) {
249    RecordWriteField(context,
250                     offset + kHeapObjectTag,
251                     value,
252                     scratch,
253                     save_fp,
254                     remembered_set_action,
255                     smi_check,
256                     pointers_to_here_check_for_value);
257  }
258
259  // Notify the garbage collector that we wrote a pointer into a fixed array.
260  // |array| is the array being stored into, |value| is the
261  // object being stored.  |index| is the array index represented as a non-smi.
262  // All registers are clobbered by the operation RecordWriteArray
263  // filters out smis so it does not update the write barrier if the
264  // value is a smi.
265  void RecordWriteArray(
266      Register array,
267      Register value,
268      Register index,
269      SaveFPRegsMode save_fp,
270      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
271      SmiCheck smi_check = INLINE_SMI_CHECK,
272      PointersToHereCheck pointers_to_here_check_for_value =
273          kPointersToHereMaybeInteresting);
274
275  void RecordWriteForMap(
276      Register object,
277      Register map,
278      Register dst,
279      SaveFPRegsMode save_fp);
280
281  // For page containing |object| mark region covering |address|
282  // dirty. |object| is the object being stored into, |value| is the
283  // object being stored. The address and value registers are clobbered by the
284  // operation.  RecordWrite filters out smis so it does not update
285  // the write barrier if the value is a smi.
286  void RecordWrite(
287      Register object,
288      Register address,
289      Register value,
290      SaveFPRegsMode save_fp,
291      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
292      SmiCheck smi_check = INLINE_SMI_CHECK,
293      PointersToHereCheck pointers_to_here_check_for_value =
294          kPointersToHereMaybeInteresting);
295
296  // ---------------------------------------------------------------------------
297  // Debugger Support
298
299  void DebugBreak();
300
301  // Generates function and stub prologue code.
302  void StubPrologue();
303  void Prologue(bool code_pre_aging);
304
305  // Enter specific kind of exit frame; either in normal or
306  // debug mode. Expects the number of arguments in register rax and
307  // sets up the number of arguments in register rdi and the pointer
308  // to the first argument in register rsi.
309  //
310  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
311  // accessible via StackSpaceOperand.
312  void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
313
314  // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
315  // memory (not GCed) on the stack accessible via StackSpaceOperand.
316  void EnterApiExitFrame(int arg_stack_space);
317
318  // Leave the current exit frame. Expects/provides the return value in
319  // register rax:rdx (untouched) and the pointer to the first
320  // argument in register rsi.
321  void LeaveExitFrame(bool save_doubles = false);
322
323  // Leave the current exit frame. Expects/provides the return value in
324  // register rax (untouched).
325  void LeaveApiExitFrame(bool restore_context);
326
327  // Push and pop the registers that can hold pointers.
328  void PushSafepointRegisters() { Pushad(); }
329  void PopSafepointRegisters() { Popad(); }
330  // Store the value in register src in the safepoint register stack
331  // slot for register dst.
332  void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm);
333  void StoreToSafepointRegisterSlot(Register dst, Register src);
334  void LoadFromSafepointRegisterSlot(Register dst, Register src);
335
336  void InitializeRootRegister() {
337    ExternalReference roots_array_start =
338        ExternalReference::roots_array_start(isolate());
339    Move(kRootRegister, roots_array_start);
340    addp(kRootRegister, Immediate(kRootRegisterBias));
341  }
342
343  // ---------------------------------------------------------------------------
344  // JavaScript invokes
345
346  // Invoke the JavaScript function code by either calling or jumping.
347  void InvokeCode(Register code,
348                  const ParameterCount& expected,
349                  const ParameterCount& actual,
350                  InvokeFlag flag,
351                  const CallWrapper& call_wrapper);
352
353  // Invoke the JavaScript function in the given register. Changes the
354  // current context to the context in the function before invoking.
355  void InvokeFunction(Register function,
356                      const ParameterCount& actual,
357                      InvokeFlag flag,
358                      const CallWrapper& call_wrapper);
359
360  void InvokeFunction(Register function,
361                      const ParameterCount& expected,
362                      const ParameterCount& actual,
363                      InvokeFlag flag,
364                      const CallWrapper& call_wrapper);
365
366  void InvokeFunction(Handle<JSFunction> function,
367                      const ParameterCount& expected,
368                      const ParameterCount& actual,
369                      InvokeFlag flag,
370                      const CallWrapper& call_wrapper);
371
372  // Invoke specified builtin JavaScript function. Adds an entry to
373  // the unresolved list if the name does not resolve.
374  void InvokeBuiltin(Builtins::JavaScript id,
375                     InvokeFlag flag,
376                     const CallWrapper& call_wrapper = NullCallWrapper());
377
378  // Store the function for the given builtin in the target register.
379  void GetBuiltinFunction(Register target, Builtins::JavaScript id);
380
381  // Store the code object for the given builtin in the target register.
382  void GetBuiltinEntry(Register target, Builtins::JavaScript id);
383
384
385  // ---------------------------------------------------------------------------
386  // Smi tagging, untagging and operations on tagged smis.
387
388  // Support for constant splitting.
389  bool IsUnsafeInt(const int32_t x);
390  void SafeMove(Register dst, Smi* src);
391  void SafePush(Smi* src);
392
393  void InitializeSmiConstantRegister() {
394    Move(kSmiConstantRegister, Smi::FromInt(kSmiConstantRegisterValue),
395         Assembler::RelocInfoNone());
396  }
397
398  // Conversions between tagged smi values and non-tagged integer values.
399
400  // Tag an integer value. The result must be known to be a valid smi value.
401  // Only uses the low 32 bits of the src register. Sets the N and Z flags
402  // based on the value of the resulting smi.
403  void Integer32ToSmi(Register dst, Register src);
404
405  // Stores an integer32 value into a memory field that already holds a smi.
406  void Integer32ToSmiField(const Operand& dst, Register src);
407
408  // Adds constant to src and tags the result as a smi.
409  // Result must be a valid smi.
410  void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
411
412  // Convert smi to 32-bit integer. I.e., not sign extended into
413  // high 32 bits of destination.
414  void SmiToInteger32(Register dst, Register src);
415  void SmiToInteger32(Register dst, const Operand& src);
416
417  // Convert smi to 64-bit integer (sign extended if necessary).
418  void SmiToInteger64(Register dst, Register src);
419  void SmiToInteger64(Register dst, const Operand& src);
420
421  // Multiply a positive smi's integer value by a power of two.
422  // Provides result as 64-bit integer value.
423  void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
424                                             Register src,
425                                             int power);
426
427  // Divide a positive smi's integer value by a power of two.
428  // Provides result as 32-bit integer value.
429  void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
430                                           Register src,
431                                           int power);
432
433  // Perform the logical or of two smi values and return a smi value.
434  // If either argument is not a smi, jump to on_not_smis and retain
435  // the original values of source registers. The destination register
436  // may be changed if it's not one of the source registers.
437  void SmiOrIfSmis(Register dst,
438                   Register src1,
439                   Register src2,
440                   Label* on_not_smis,
441                   Label::Distance near_jump = Label::kFar);
442
443
444  // Simple comparison of smis.  Both sides must be known smis to use these,
445  // otherwise use Cmp.
446  void SmiCompare(Register smi1, Register smi2);
447  void SmiCompare(Register dst, Smi* src);
448  void SmiCompare(Register dst, const Operand& src);
449  void SmiCompare(const Operand& dst, Register src);
450  void SmiCompare(const Operand& dst, Smi* src);
451  // Compare the int32 in src register to the value of the smi stored at dst.
452  void SmiCompareInteger32(const Operand& dst, Register src);
453  // Sets sign and zero flags depending on value of smi in register.
454  void SmiTest(Register src);
455
456  // Functions performing a check on a known or potential smi. Returns
457  // a condition that is satisfied if the check is successful.
458
459  // Is the value a tagged smi.
460  Condition CheckSmi(Register src);
461  Condition CheckSmi(const Operand& src);
462
463  // Is the value a non-negative tagged smi.
464  Condition CheckNonNegativeSmi(Register src);
465
466  // Are both values tagged smis.
467  Condition CheckBothSmi(Register first, Register second);
468
469  // Are both values non-negative tagged smis.
470  Condition CheckBothNonNegativeSmi(Register first, Register second);
471
472  // Are either value a tagged smi.
473  Condition CheckEitherSmi(Register first,
474                           Register second,
475                           Register scratch = kScratchRegister);
476
477  // Is the value the minimum smi value (since we are using
478  // two's complement numbers, negating the value is known to yield
479  // a non-smi value).
480  Condition CheckIsMinSmi(Register src);
481
482  // Checks whether an 32-bit integer value is a valid for conversion
483  // to a smi.
484  Condition CheckInteger32ValidSmiValue(Register src);
485
486  // Checks whether an 32-bit unsigned integer value is a valid for
487  // conversion to a smi.
488  Condition CheckUInteger32ValidSmiValue(Register src);
489
490  // Check whether src is a Smi, and set dst to zero if it is a smi,
491  // and to one if it isn't.
492  void CheckSmiToIndicator(Register dst, Register src);
493  void CheckSmiToIndicator(Register dst, const Operand& src);
494
495  // Test-and-jump functions. Typically combines a check function
496  // above with a conditional jump.
497
498  // Jump if the value can be represented by a smi.
499  void JumpIfValidSmiValue(Register src, Label* on_valid,
500                           Label::Distance near_jump = Label::kFar);
501
502  // Jump if the value cannot be represented by a smi.
503  void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
504                              Label::Distance near_jump = Label::kFar);
505
506  // Jump if the unsigned integer value can be represented by a smi.
507  void JumpIfUIntValidSmiValue(Register src, Label* on_valid,
508                               Label::Distance near_jump = Label::kFar);
509
510  // Jump if the unsigned integer value cannot be represented by a smi.
511  void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
512                                  Label::Distance near_jump = Label::kFar);
513
514  // Jump to label if the value is a tagged smi.
515  void JumpIfSmi(Register src,
516                 Label* on_smi,
517                 Label::Distance near_jump = Label::kFar);
518
519  // Jump to label if the value is not a tagged smi.
520  void JumpIfNotSmi(Register src,
521                    Label* on_not_smi,
522                    Label::Distance near_jump = Label::kFar);
523
524  // Jump to label if the value is not a non-negative tagged smi.
525  void JumpUnlessNonNegativeSmi(Register src,
526                                Label* on_not_smi,
527                                Label::Distance near_jump = Label::kFar);
528
529  // Jump to label if the value, which must be a tagged smi, has value equal
530  // to the constant.
531  void JumpIfSmiEqualsConstant(Register src,
532                               Smi* constant,
533                               Label* on_equals,
534                               Label::Distance near_jump = Label::kFar);
535
536  // Jump if either or both register are not smi values.
537  void JumpIfNotBothSmi(Register src1,
538                        Register src2,
539                        Label* on_not_both_smi,
540                        Label::Distance near_jump = Label::kFar);
541
542  // Jump if either or both register are not non-negative smi values.
543  void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
544                                    Label* on_not_both_smi,
545                                    Label::Distance near_jump = Label::kFar);
546
547  // Operations on tagged smi values.
548
549  // Smis represent a subset of integers. The subset is always equivalent to
550  // a two's complement interpretation of a fixed number of bits.
551
552  // Add an integer constant to a tagged smi, giving a tagged smi as result.
553  // No overflow testing on the result is done.
554  void SmiAddConstant(Register dst, Register src, Smi* constant);
555
556  // Add an integer constant to a tagged smi, giving a tagged smi as result.
557  // No overflow testing on the result is done.
558  void SmiAddConstant(const Operand& dst, Smi* constant);
559
560  // Add an integer constant to a tagged smi, giving a tagged smi as result,
561  // or jumping to a label if the result cannot be represented by a smi.
562  void SmiAddConstant(Register dst,
563                      Register src,
564                      Smi* constant,
565                      SmiOperationExecutionMode mode,
566                      Label* bailout_label,
567                      Label::Distance near_jump = Label::kFar);
568
569  // Subtract an integer constant from a tagged smi, giving a tagged smi as
570  // result. No testing on the result is done. Sets the N and Z flags
571  // based on the value of the resulting integer.
572  void SmiSubConstant(Register dst, Register src, Smi* constant);
573
574  // Subtract an integer constant from a tagged smi, giving a tagged smi as
575  // result, or jumping to a label if the result cannot be represented by a smi.
576  void SmiSubConstant(Register dst,
577                      Register src,
578                      Smi* constant,
579                      SmiOperationExecutionMode mode,
580                      Label* bailout_label,
581                      Label::Distance near_jump = Label::kFar);
582
583  // Negating a smi can give a negative zero or too large positive value.
584  // NOTICE: This operation jumps on success, not failure!
585  void SmiNeg(Register dst,
586              Register src,
587              Label* on_smi_result,
588              Label::Distance near_jump = Label::kFar);
589
590  // Adds smi values and return the result as a smi.
591  // If dst is src1, then src1 will be destroyed if the operation is
592  // successful, otherwise kept intact.
593  void SmiAdd(Register dst,
594              Register src1,
595              Register src2,
596              Label* on_not_smi_result,
597              Label::Distance near_jump = Label::kFar);
598  void SmiAdd(Register dst,
599              Register src1,
600              const Operand& src2,
601              Label* on_not_smi_result,
602              Label::Distance near_jump = Label::kFar);
603
604  void SmiAdd(Register dst,
605              Register src1,
606              Register src2);
607
608  // Subtracts smi values and return the result as a smi.
609  // If dst is src1, then src1 will be destroyed if the operation is
610  // successful, otherwise kept intact.
611  void SmiSub(Register dst,
612              Register src1,
613              Register src2,
614              Label* on_not_smi_result,
615              Label::Distance near_jump = Label::kFar);
616  void SmiSub(Register dst,
617              Register src1,
618              const Operand& src2,
619              Label* on_not_smi_result,
620              Label::Distance near_jump = Label::kFar);
621
622  void SmiSub(Register dst,
623              Register src1,
624              Register src2);
625
626  void SmiSub(Register dst,
627              Register src1,
628              const Operand& src2);
629
630  // Multiplies smi values and return the result as a smi,
631  // if possible.
632  // If dst is src1, then src1 will be destroyed, even if
633  // the operation is unsuccessful.
634  void SmiMul(Register dst,
635              Register src1,
636              Register src2,
637              Label* on_not_smi_result,
638              Label::Distance near_jump = Label::kFar);
639
640  // Divides one smi by another and returns the quotient.
641  // Clobbers rax and rdx registers.
642  void SmiDiv(Register dst,
643              Register src1,
644              Register src2,
645              Label* on_not_smi_result,
646              Label::Distance near_jump = Label::kFar);
647
648  // Divides one smi by another and returns the remainder.
649  // Clobbers rax and rdx registers.
650  void SmiMod(Register dst,
651              Register src1,
652              Register src2,
653              Label* on_not_smi_result,
654              Label::Distance near_jump = Label::kFar);
655
656  // Bitwise operations.
657  void SmiNot(Register dst, Register src);
658  void SmiAnd(Register dst, Register src1, Register src2);
659  void SmiOr(Register dst, Register src1, Register src2);
660  void SmiXor(Register dst, Register src1, Register src2);
661  void SmiAndConstant(Register dst, Register src1, Smi* constant);
662  void SmiOrConstant(Register dst, Register src1, Smi* constant);
663  void SmiXorConstant(Register dst, Register src1, Smi* constant);
664
665  void SmiShiftLeftConstant(Register dst,
666                            Register src,
667                            int shift_value,
668                            Label* on_not_smi_result = NULL,
669                            Label::Distance near_jump = Label::kFar);
670  void SmiShiftLogicalRightConstant(Register dst,
671                                    Register src,
672                                    int shift_value,
673                                    Label* on_not_smi_result,
674                                    Label::Distance near_jump = Label::kFar);
675  void SmiShiftArithmeticRightConstant(Register dst,
676                                       Register src,
677                                       int shift_value);
678
679  // Shifts a smi value to the left, and returns the result if that is a smi.
680  // Uses and clobbers rcx, so dst may not be rcx.
681  void SmiShiftLeft(Register dst,
682                    Register src1,
683                    Register src2,
684                    Label* on_not_smi_result = NULL,
685                    Label::Distance near_jump = Label::kFar);
686  // Shifts a smi value to the right, shifting in zero bits at the top, and
687  // returns the unsigned intepretation of the result if that is a smi.
688  // Uses and clobbers rcx, so dst may not be rcx.
689  void SmiShiftLogicalRight(Register dst,
690                            Register src1,
691                            Register src2,
692                            Label* on_not_smi_result,
693                            Label::Distance near_jump = Label::kFar);
694  // Shifts a smi value to the right, sign extending the top, and
695  // returns the signed intepretation of the result. That will always
696  // be a valid smi value, since it's numerically smaller than the
697  // original.
698  // Uses and clobbers rcx, so dst may not be rcx.
699  void SmiShiftArithmeticRight(Register dst,
700                               Register src1,
701                               Register src2);
702
703  // Specialized operations
704
705  // Select the non-smi register of two registers where exactly one is a
706  // smi. If neither are smis, jump to the failure label.
707  void SelectNonSmi(Register dst,
708                    Register src1,
709                    Register src2,
710                    Label* on_not_smis,
711                    Label::Distance near_jump = Label::kFar);
712
713  // Converts, if necessary, a smi to a combination of number and
714  // multiplier to be used as a scaled index.
715  // The src register contains a *positive* smi value. The shift is the
716  // power of two to multiply the index value by (e.g.
717  // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
718  // The returned index register may be either src or dst, depending
719  // on what is most efficient. If src and dst are different registers,
720  // src is always unchanged.
721  SmiIndex SmiToIndex(Register dst, Register src, int shift);
722
723  // Converts a positive smi to a negative index.
724  SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
725
726  // Add the value of a smi in memory to an int32 register.
727  // Sets flags as a normal add.
728  void AddSmiField(Register dst, const Operand& src);
729
730  // Basic Smi operations.
731  void Move(Register dst, Smi* source) {
732    LoadSmiConstant(dst, source);
733  }
734
735  void Move(const Operand& dst, Smi* source) {
736    Register constant = GetSmiConstant(source);
737    movp(dst, constant);
738  }
739
740  void Push(Smi* smi);
741
742  // Save away a raw integer with pointer size on the stack as two integers
743  // masquerading as smis so that the garbage collector skips visiting them.
744  void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister);
745  // Reconstruct a raw integer with pointer size from two integers masquerading
746  // as smis on the top of stack.
747  void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister);
748
749  void Test(const Operand& dst, Smi* source);
750
751
752  // ---------------------------------------------------------------------------
753  // String macros.
754
755  // Generate code to do a lookup in the number string cache. If the number in
756  // the register object is found in the cache the generated code falls through
757  // with the result in the result register. The object and the result register
758  // can be the same. If the number is not found in the cache the code jumps to
759  // the label not_found with only the content of register object unchanged.
760  void LookupNumberStringCache(Register object,
761                               Register result,
762                               Register scratch1,
763                               Register scratch2,
764                               Label* not_found);
765
766  // If object is a string, its map is loaded into object_map.
767  void JumpIfNotString(Register object,
768                       Register object_map,
769                       Label* not_string,
770                       Label::Distance near_jump = Label::kFar);
771
772
773  void JumpIfNotBothSequentialOneByteStrings(
774      Register first_object, Register second_object, Register scratch1,
775      Register scratch2, Label* on_not_both_flat_one_byte,
776      Label::Distance near_jump = Label::kFar);
777
778  // Check whether the instance type represents a flat one-byte string. Jump
779  // to the label if not. If the instance type can be scratched specify same
780  // register for both instance type and scratch.
781  void JumpIfInstanceTypeIsNotSequentialOneByte(
782      Register instance_type, Register scratch,
783      Label* on_not_flat_one_byte_string,
784      Label::Distance near_jump = Label::kFar);
785
786  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
787      Register first_object_instance_type, Register second_object_instance_type,
788      Register scratch1, Register scratch2, Label* on_fail,
789      Label::Distance near_jump = Label::kFar);
790
791  void EmitSeqStringSetCharCheck(Register string,
792                                 Register index,
793                                 Register value,
794                                 uint32_t encoding_mask);
795
796  // Checks if the given register or operand is a unique name
797  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
798                                       Label::Distance distance = Label::kFar);
799  void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
800                                       Label::Distance distance = Label::kFar);
801
802  // ---------------------------------------------------------------------------
803  // Macro instructions.
804
805  // Load/store with specific representation.
806  void Load(Register dst, const Operand& src, Representation r);
807  void Store(const Operand& dst, Register src, Representation r);
808
809  // Load a register with a long value as efficiently as possible.
810  void Set(Register dst, int64_t x);
811  void Set(const Operand& dst, intptr_t x);
812
813  // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
814  // hinders register renaming and makes dependence chains longer. So we use
815  // xorps to clear the dst register before cvtsi2sd to solve this issue.
816  void Cvtlsi2sd(XMMRegister dst, Register src);
817  void Cvtlsi2sd(XMMRegister dst, const Operand& src);
818
819  // Move if the registers are not identical.
820  void Move(Register target, Register source);
821
822  // TestBit and Load SharedFunctionInfo special field.
823  void TestBitSharedFunctionInfoSpecialField(Register base,
824                                             int offset,
825                                             int bit_index);
826  void LoadSharedFunctionInfoSpecialField(Register dst,
827                                          Register base,
828                                          int offset);
829
830  // Handle support
831  void Move(Register dst, Handle<Object> source);
832  void Move(const Operand& dst, Handle<Object> source);
833  void Cmp(Register dst, Handle<Object> source);
834  void Cmp(const Operand& dst, Handle<Object> source);
835  void Cmp(Register dst, Smi* src);
836  void Cmp(const Operand& dst, Smi* src);
837  void Push(Handle<Object> source);
838
839  // Load a heap object and handle the case of new-space objects by
840  // indirecting via a global cell.
841  void MoveHeapObject(Register result, Handle<Object> object);
842
843  // Load a global cell into a register.
844  void LoadGlobalCell(Register dst, Handle<Cell> cell);
845
846  // Compare the given value and the value of weak cell.
847  void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
848
849  // Load the value of the weak cell in the value register. Branch to the given
850  // miss label if the weak cell was cleared.
851  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
852
853  // Emit code to discard a non-negative number of pointer-sized elements
854  // from the stack, clobbering only the rsp register.
855  void Drop(int stack_elements);
856  // Emit code to discard a positive number of pointer-sized elements
857  // from the stack under the return address which remains on the top,
858  // clobbering the rsp register.
859  void DropUnderReturnAddress(int stack_elements,
860                              Register scratch = kScratchRegister);
861
862  void Call(Label* target) { call(target); }
863  void Push(Register src);
864  void Push(const Operand& src);
865  void PushQuad(const Operand& src);
866  void Push(Immediate value);
867  void PushImm32(int32_t imm32);
868  void Pop(Register dst);
869  void Pop(const Operand& dst);
870  void PopQuad(const Operand& dst);
871  void PushReturnAddressFrom(Register src) { pushq(src); }
872  void PopReturnAddressTo(Register dst) { popq(dst); }
873  void Move(Register dst, ExternalReference ext) {
874    movp(dst, reinterpret_cast<void*>(ext.address()),
875         RelocInfo::EXTERNAL_REFERENCE);
876  }
877
878  // Loads a pointer into a register with a relocation mode.
879  void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
880    // This method must not be used with heap object references. The stored
881    // address is not GC safe. Use the handle version instead.
882    DCHECK(rmode > RelocInfo::LAST_GCED_ENUM);
883    movp(dst, ptr, rmode);
884  }
885
886  void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) {
887    AllowDeferredHandleDereference using_raw_address;
888    DCHECK(!RelocInfo::IsNone(rmode));
889    DCHECK(value->IsHeapObject());
890    DCHECK(!isolate()->heap()->InNewSpace(*value));
891    movp(dst, reinterpret_cast<void*>(value.location()), rmode);
892  }
893
894  void Move(XMMRegister dst, uint32_t src);
895  void Move(XMMRegister dst, uint64_t src);
896
897  // Control Flow
898  void Jump(Address destination, RelocInfo::Mode rmode);
899  void Jump(ExternalReference ext);
900  void Jump(const Operand& op);
901  void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
902
903  void Call(Address destination, RelocInfo::Mode rmode);
904  void Call(ExternalReference ext);
905  void Call(const Operand& op);
906  void Call(Handle<Code> code_object,
907            RelocInfo::Mode rmode,
908            TypeFeedbackId ast_id = TypeFeedbackId::None());
909
910  // The size of the code generated for different call instructions.
911  int CallSize(Address destination) {
912    return kCallSequenceLength;
913  }
914  int CallSize(ExternalReference ext);
915  int CallSize(Handle<Code> code_object) {
916    // Code calls use 32-bit relative addressing.
917    return kShortCallInstructionLength;
918  }
919  int CallSize(Register target) {
920    // Opcode: REX_opt FF /2 m64
921    return (target.high_bit() != 0) ? 3 : 2;
922  }
923  int CallSize(const Operand& target) {
924    // Opcode: REX_opt FF /2 m64
925    return (target.requires_rex() ? 2 : 1) + target.operand_size();
926  }
927
928  // Emit call to the code we are currently generating.
929  void CallSelf() {
930    Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
931    Call(self, RelocInfo::CODE_TARGET);
932  }
933
934  // Non-x64 instructions.
935  // Push/pop all general purpose registers.
936  // Does not push rsp/rbp nor any of the assembler's special purpose registers
937  // (kScratchRegister, kSmiConstantRegister, kRootRegister).
938  void Pushad();
939  void Popad();
940  // Sets the stack as after performing Popad, without actually loading the
941  // registers.
942  void Dropad();
943
944  // Compare object type for heap object.
945  // Always use unsigned comparisons: above and below, not less and greater.
946  // Incoming register is heap_object and outgoing register is map.
947  // They may be the same register, and may be kScratchRegister.
948  void CmpObjectType(Register heap_object, InstanceType type, Register map);
949
950  // Compare instance type for map.
951  // Always use unsigned comparisons: above and below, not less and greater.
952  void CmpInstanceType(Register map, InstanceType type);
953
954  // Check if a map for a JSObject indicates that the object has fast elements.
955  // Jump to the specified label if it does not.
956  void CheckFastElements(Register map,
957                         Label* fail,
958                         Label::Distance distance = Label::kFar);
959
960  // Check if a map for a JSObject indicates that the object can have both smi
961  // and HeapObject elements.  Jump to the specified label if it does not.
962  void CheckFastObjectElements(Register map,
963                               Label* fail,
964                               Label::Distance distance = Label::kFar);
965
966  // Check if a map for a JSObject indicates that the object has fast smi only
967  // elements.  Jump to the specified label if it does not.
968  void CheckFastSmiElements(Register map,
969                            Label* fail,
970                            Label::Distance distance = Label::kFar);
971
972  // Check to see if maybe_number can be stored as a double in
973  // FastDoubleElements. If it can, store it at the index specified by index in
974  // the FastDoubleElements array elements, otherwise jump to fail.  Note that
975  // index must not be smi-tagged.
976  void StoreNumberToDoubleElements(Register maybe_number,
977                                   Register elements,
978                                   Register index,
979                                   XMMRegister xmm_scratch,
980                                   Label* fail,
981                                   int elements_offset = 0);
982
983  // Compare an object's map with the specified map.
984  void CompareMap(Register obj, Handle<Map> map);
985
986  // Check if the map of an object is equal to a specified map and branch to
987  // label if not. Skip the smi check if not required (object is known to be a
988  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
989  // against maps that are ElementsKind transition maps of the specified map.
990  void CheckMap(Register obj,
991                Handle<Map> map,
992                Label* fail,
993                SmiCheckType smi_check_type);
994
995  // Check if the map of an object is equal to a specified weak map and branch
996  // to a specified target if equal. Skip the smi check if not required
997  // (object is known to be a heap object)
998  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
999                       Handle<WeakCell> cell, Handle<Code> success,
1000                       SmiCheckType smi_check_type);
1001
1002  // Check if the object in register heap_object is a string. Afterwards the
1003  // register map contains the object map and the register instance_type
1004  // contains the instance_type. The registers map and instance_type can be the
1005  // same in which case it contains the instance type afterwards. Either of the
1006  // registers map and instance_type can be the same as heap_object.
1007  Condition IsObjectStringType(Register heap_object,
1008                               Register map,
1009                               Register instance_type);
1010
1011  // Check if the object in register heap_object is a name. Afterwards the
1012  // register map contains the object map and the register instance_type
1013  // contains the instance_type. The registers map and instance_type can be the
1014  // same in which case it contains the instance type afterwards. Either of the
1015  // registers map and instance_type can be the same as heap_object.
1016  Condition IsObjectNameType(Register heap_object,
1017                             Register map,
1018                             Register instance_type);
1019
1020  // FCmp compares and pops the two values on top of the FPU stack.
1021  // The flag results are similar to integer cmp, but requires unsigned
1022  // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
1023  void FCmp();
1024
1025  void ClampUint8(Register reg);
1026
1027  void ClampDoubleToUint8(XMMRegister input_reg,
1028                          XMMRegister temp_xmm_reg,
1029                          Register result_reg);
1030
1031  void SlowTruncateToI(Register result_reg, Register input_reg,
1032      int offset = HeapNumber::kValueOffset - kHeapObjectTag);
1033
1034  void TruncateHeapNumberToI(Register result_reg, Register input_reg);
1035  void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
1036
1037  void DoubleToI(Register result_reg, XMMRegister input_reg,
1038                 XMMRegister scratch, MinusZeroMode minus_zero_mode,
1039                 Label* lost_precision, Label* is_nan, Label* minus_zero,
1040                 Label::Distance dst = Label::kFar);
1041
1042  void LoadUint32(XMMRegister dst, Register src);
1043
1044  void LoadInstanceDescriptors(Register map, Register descriptors);
1045  void EnumLength(Register dst, Register map);
1046  void NumberOfOwnDescriptors(Register dst, Register map);
1047
1048  template<typename Field>
1049  void DecodeField(Register reg) {
1050    static const int shift = Field::kShift;
1051    static const int mask = Field::kMask >> Field::kShift;
1052    if (shift != 0) {
1053      shrp(reg, Immediate(shift));
1054    }
1055    andp(reg, Immediate(mask));
1056  }
1057
1058  template<typename Field>
1059  void DecodeFieldToSmi(Register reg) {
1060    if (SmiValuesAre32Bits()) {
1061      andp(reg, Immediate(Field::kMask));
1062      shlp(reg, Immediate(kSmiShift - Field::kShift));
1063    } else {
1064      static const int shift = Field::kShift;
1065      static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
1066      DCHECK(SmiValuesAre31Bits());
1067      DCHECK(kSmiShift == kSmiTagSize);
1068      DCHECK((mask & 0x80000000u) == 0);
1069      if (shift < kSmiShift) {
1070        shlp(reg, Immediate(kSmiShift - shift));
1071      } else if (shift > kSmiShift) {
1072        sarp(reg, Immediate(shift - kSmiShift));
1073      }
1074      andp(reg, Immediate(mask));
1075    }
1076  }
1077
1078  // Abort execution if argument is not a number, enabled via --debug-code.
1079  void AssertNumber(Register object);
1080
1081  // Abort execution if argument is a smi, enabled via --debug-code.
1082  void AssertNotSmi(Register object);
1083
1084  // Abort execution if argument is not a smi, enabled via --debug-code.
1085  void AssertSmi(Register object);
1086  void AssertSmi(const Operand& object);
1087
1088  // Abort execution if a 64 bit register containing a 32 bit payload does not
1089  // have zeros in the top 32 bits, enabled via --debug-code.
1090  void AssertZeroExtended(Register reg);
1091
1092  // Abort execution if argument is not a string, enabled via --debug-code.
1093  void AssertString(Register object);
1094
1095  // Abort execution if argument is not a name, enabled via --debug-code.
1096  void AssertName(Register object);
1097
1098  // Abort execution if argument is not undefined or an AllocationSite, enabled
1099  // via --debug-code.
1100  void AssertUndefinedOrAllocationSite(Register object);
1101
1102  // Abort execution if argument is not the root value with the given index,
1103  // enabled via --debug-code.
1104  void AssertRootValue(Register src,
1105                       Heap::RootListIndex root_value_index,
1106                       BailoutReason reason);
1107
1108  // ---------------------------------------------------------------------------
1109  // Exception handling
1110
1111  // Push a new try handler and link it into try handler chain.
1112  void PushTryHandler(StackHandler::Kind kind, int handler_index);
1113
1114  // Unlink the stack handler on top of the stack from the try handler chain.
1115  void PopTryHandler();
1116
1117  // Activate the top handler in the try hander chain and pass the
1118  // thrown value.
1119  void Throw(Register value);
1120
1121  // Propagate an uncatchable exception out of the current JS stack.
1122  void ThrowUncatchable(Register value);
1123
1124  // ---------------------------------------------------------------------------
1125  // Inline caching support
1126
1127  // Generate code for checking access rights - used for security checks
1128  // on access to global objects across environments. The holder register
1129  // is left untouched, but the scratch register and kScratchRegister,
1130  // which must be different, are clobbered.
1131  void CheckAccessGlobalProxy(Register holder_reg,
1132                              Register scratch,
1133                              Label* miss);
1134
1135  void GetNumberHash(Register r0, Register scratch);
1136
1137  void LoadFromNumberDictionary(Label* miss,
1138                                Register elements,
1139                                Register key,
1140                                Register r0,
1141                                Register r1,
1142                                Register r2,
1143                                Register result);
1144
1145
1146  // ---------------------------------------------------------------------------
1147  // Allocation support
1148
1149  // Allocate an object in new space or old pointer space. If the given space
1150  // is exhausted control continues at the gc_required label. The allocated
1151  // object is returned in result and end of the new object is returned in
1152  // result_end. The register scratch can be passed as no_reg in which case
1153  // an additional object reference will be added to the reloc info. The
1154  // returned pointers in result and result_end have not yet been tagged as
1155  // heap objects. If result_contains_top_on_entry is true the content of
1156  // result is known to be the allocation top on entry (could be result_end
1157  // from a previous call). If result_contains_top_on_entry is true scratch
1158  // should be no_reg as it is never used.
1159  void Allocate(int object_size,
1160                Register result,
1161                Register result_end,
1162                Register scratch,
1163                Label* gc_required,
1164                AllocationFlags flags);
1165
1166  void Allocate(int header_size,
1167                ScaleFactor element_size,
1168                Register element_count,
1169                Register result,
1170                Register result_end,
1171                Register scratch,
1172                Label* gc_required,
1173                AllocationFlags flags);
1174
1175  void Allocate(Register object_size,
1176                Register result,
1177                Register result_end,
1178                Register scratch,
1179                Label* gc_required,
1180                AllocationFlags flags);
1181
1182  // Undo allocation in new space. The object passed and objects allocated after
1183  // it will no longer be allocated. Make sure that no pointers are left to the
1184  // object(s) no longer allocated as they would be invalid when allocation is
1185  // un-done.
1186  void UndoAllocationInNewSpace(Register object);
1187
1188  // Allocate a heap number in new space with undefined value. Returns
1189  // tagged pointer in result register, or jumps to gc_required if new
1190  // space is full.
1191  void AllocateHeapNumber(Register result,
1192                          Register scratch,
1193                          Label* gc_required,
1194                          MutableMode mode = IMMUTABLE);
1195
1196  // Allocate a sequential string. All the header fields of the string object
1197  // are initialized.
1198  void AllocateTwoByteString(Register result,
1199                             Register length,
1200                             Register scratch1,
1201                             Register scratch2,
1202                             Register scratch3,
1203                             Label* gc_required);
1204  void AllocateOneByteString(Register result, Register length,
1205                             Register scratch1, Register scratch2,
1206                             Register scratch3, Label* gc_required);
1207
1208  // Allocate a raw cons string object. Only the map field of the result is
1209  // initialized.
1210  void AllocateTwoByteConsString(Register result,
1211                          Register scratch1,
1212                          Register scratch2,
1213                          Label* gc_required);
1214  void AllocateOneByteConsString(Register result, Register scratch1,
1215                                 Register scratch2, Label* gc_required);
1216
1217  // Allocate a raw sliced string object. Only the map field of the result is
1218  // initialized.
1219  void AllocateTwoByteSlicedString(Register result,
1220                            Register scratch1,
1221                            Register scratch2,
1222                            Label* gc_required);
1223  void AllocateOneByteSlicedString(Register result, Register scratch1,
1224                                   Register scratch2, Label* gc_required);
1225
1226  // ---------------------------------------------------------------------------
1227  // Support functions.
1228
1229  // Check if result is zero and op is negative.
1230  void NegativeZeroTest(Register result, Register op, Label* then_label);
1231
1232  // Check if result is zero and op is negative in code using jump targets.
1233  void NegativeZeroTest(CodeGenerator* cgen,
1234                        Register result,
1235                        Register op,
1236                        JumpTarget* then_target);
1237
1238  // Check if result is zero and any of op1 and op2 are negative.
1239  // Register scratch is destroyed, and it must be different from op2.
1240  void NegativeZeroTest(Register result, Register op1, Register op2,
1241                        Register scratch, Label* then_label);
1242
1243  // Try to get function prototype of a function and puts the value in
1244  // the result register. Checks that the function really is a
1245  // function and jumps to the miss label if the fast checks fail. The
1246  // function register will be untouched; the other register may be
1247  // clobbered.
1248  void TryGetFunctionPrototype(Register function,
1249                               Register result,
1250                               Label* miss,
1251                               bool miss_on_bound_function = false);
1252
1253  // Picks out an array index from the hash field.
1254  // Register use:
1255  //   hash - holds the index's hash. Clobbered.
1256  //   index - holds the overwritten index on exit.
1257  void IndexFromHash(Register hash, Register index);
1258
1259  // Find the function context up the context chain.
1260  void LoadContext(Register dst, int context_chain_length);
1261
1262  // Conditionally load the cached Array transitioned map of type
1263  // transitioned_kind from the native context if the map in register
1264  // map_in_out is the cached Array map in the native context of
1265  // expected_kind.
1266  void LoadTransitionedArrayMapConditional(
1267      ElementsKind expected_kind,
1268      ElementsKind transitioned_kind,
1269      Register map_in_out,
1270      Register scratch,
1271      Label* no_map_match);
1272
1273  // Load the global function with the given index.
1274  void LoadGlobalFunction(int index, Register function);
1275
1276  // Load the initial map from the global function. The registers
1277  // function and map can be the same.
1278  void LoadGlobalFunctionInitialMap(Register function, Register map);
1279
1280  // ---------------------------------------------------------------------------
1281  // Runtime calls
1282
1283  // Call a code stub.
1284  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
1285
1286  // Tail call a code stub (jump).
1287  void TailCallStub(CodeStub* stub);
1288
1289  // Return from a code stub after popping its arguments.
1290  void StubReturn(int argc);
1291
1292  // Call a runtime routine.
1293  void CallRuntime(const Runtime::Function* f,
1294                   int num_arguments,
1295                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1296
1297  // Call a runtime function and save the value of XMM registers.
1298  void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1299    const Runtime::Function* function = Runtime::FunctionForId(id);
1300    CallRuntime(function, function->nargs, kSaveFPRegs);
1301  }
1302
1303  // Convenience function: Same as above, but takes the fid instead.
1304  void CallRuntime(Runtime::FunctionId id,
1305                   int num_arguments,
1306                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1307    CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1308  }
1309
1310  // Convenience function: call an external reference.
1311  void CallExternalReference(const ExternalReference& ext,
1312                             int num_arguments);
1313
1314  // Tail call of a runtime routine (jump).
1315  // Like JumpToExternalReference, but also takes care of passing the number
1316  // of parameters.
1317  void TailCallExternalReference(const ExternalReference& ext,
1318                                 int num_arguments,
1319                                 int result_size);
1320
1321  // Convenience function: tail call a runtime routine (jump).
1322  void TailCallRuntime(Runtime::FunctionId fid,
1323                       int num_arguments,
1324                       int result_size);
1325
1326  // Jump to a runtime routine.
1327  void JumpToExternalReference(const ExternalReference& ext, int result_size);
1328
1329  // Prepares stack to put arguments (aligns and so on).  WIN64 calling
1330  // convention requires to put the pointer to the return value slot into
1331  // rcx (rcx must be preserverd until CallApiFunctionAndReturn).  Saves
1332  // context (rsi).  Clobbers rax.  Allocates arg_stack_space * kPointerSize
1333  // inside the exit frame (not GCed) accessible via StackSpaceOperand.
1334  void PrepareCallApiFunction(int arg_stack_space);
1335
1336  // Calls an API function.  Allocates HandleScope, extracts returned value
1337  // from handle and propagates exceptions.  Clobbers r14, r15, rbx and
1338  // caller-save registers.  Restores context.  On return removes
1339  // stack_space * kPointerSize (GCed).
1340  void CallApiFunctionAndReturn(Register function_address,
1341                                ExternalReference thunk_ref,
1342                                Register thunk_last_arg,
1343                                int stack_space,
1344                                Operand return_value_operand,
1345                                Operand* context_restore_operand);
1346
1347  // Before calling a C-function from generated code, align arguments on stack.
1348  // After aligning the frame, arguments must be stored in rsp[0], rsp[8],
1349  // etc., not pushed. The argument count assumes all arguments are word sized.
1350  // The number of slots reserved for arguments depends on platform. On Windows
1351  // stack slots are reserved for the arguments passed in registers. On other
1352  // platforms stack slots are only reserved for the arguments actually passed
1353  // on the stack.
1354  void PrepareCallCFunction(int num_arguments);
1355
1356  // Calls a C function and cleans up the space for arguments allocated
1357  // by PrepareCallCFunction. The called function is not allowed to trigger a
1358  // garbage collection, since that might move the code and invalidate the
1359  // return address (unless this is somehow accounted for by the called
1360  // function).
1361  void CallCFunction(ExternalReference function, int num_arguments);
1362  void CallCFunction(Register function, int num_arguments);
1363
1364  // Calculate the number of stack slots to reserve for arguments when calling a
1365  // C function.
1366  int ArgumentStackSlotsForCFunctionCall(int num_arguments);
1367
1368  // ---------------------------------------------------------------------------
1369  // Utilities
1370
1371  void Ret();
1372
1373  // Return and drop arguments from stack, where the number of arguments
1374  // may be bigger than 2^16 - 1.  Requires a scratch register.
1375  void Ret(int bytes_dropped, Register scratch);
1376
1377  Handle<Object> CodeObject() {
1378    DCHECK(!code_object_.is_null());
1379    return code_object_;
1380  }
1381
1382  // Copy length bytes from source to destination.
1383  // Uses scratch register internally (if you have a low-eight register
1384  // free, do use it, otherwise kScratchRegister will be used).
1385  // The min_length is a minimum limit on the value that length will have.
1386  // The algorithm has some special cases that might be omitted if the string
1387  // is known to always be long.
1388  void CopyBytes(Register destination,
1389                 Register source,
1390                 Register length,
1391                 int min_length = 0,
1392                 Register scratch = kScratchRegister);
1393
1394  // Initialize fields with filler values.  Fields starting at |start_offset|
1395  // not including end_offset are overwritten with the value in |filler|.  At
1396  // the end the loop, |start_offset| takes the value of |end_offset|.
1397  void InitializeFieldsWithFiller(Register start_offset,
1398                                  Register end_offset,
1399                                  Register filler);
1400
1401
1402  // Emit code for a truncating division by a constant. The dividend register is
1403  // unchanged, the result is in rdx, and rax gets clobbered.
1404  void TruncatingDiv(Register dividend, int32_t divisor);
1405
1406  // ---------------------------------------------------------------------------
1407  // StatsCounter support
1408
1409  void SetCounter(StatsCounter* counter, int value);
1410  void IncrementCounter(StatsCounter* counter, int value);
1411  void DecrementCounter(StatsCounter* counter, int value);
1412
1413
1414  // ---------------------------------------------------------------------------
1415  // Debugging
1416
1417  // Calls Abort(msg) if the condition cc is not satisfied.
1418  // Use --debug_code to enable.
1419  void Assert(Condition cc, BailoutReason reason);
1420
1421  void AssertFastElements(Register elements);
1422
1423  // Like Assert(), but always enabled.
1424  void Check(Condition cc, BailoutReason reason);
1425
1426  // Print a message to stdout and abort execution.
1427  void Abort(BailoutReason msg);
1428
1429  // Check that the stack is aligned.
1430  void CheckStackAlignment();
1431
1432  // Verify restrictions about code generated in stubs.
1433  void set_generating_stub(bool value) { generating_stub_ = value; }
1434  bool generating_stub() { return generating_stub_; }
1435  void set_has_frame(bool value) { has_frame_ = value; }
1436  bool has_frame() { return has_frame_; }
1437  inline bool AllowThisStubCall(CodeStub* stub);
1438
1439  static int SafepointRegisterStackIndex(Register reg) {
1440    return SafepointRegisterStackIndex(reg.code());
1441  }
1442
1443  // Activation support.
1444  void EnterFrame(StackFrame::Type type);
1445  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1446  void LeaveFrame(StackFrame::Type type);
1447
1448  // Expects object in rax and returns map with validated enum cache
1449  // in rax.  Assumes that any other register can be used as a scratch.
1450  void CheckEnumCache(Register null_value,
1451                      Label* call_runtime);
1452
1453  // AllocationMemento support. Arrays may have an associated
1454  // AllocationMemento object that can be checked for in order to pretransition
1455  // to another type.
1456  // On entry, receiver_reg should point to the array object.
1457  // scratch_reg gets clobbered.
1458  // If allocation info is present, condition flags are set to equal.
1459  void TestJSArrayForAllocationMemento(Register receiver_reg,
1460                                       Register scratch_reg,
1461                                       Label* no_memento_found);
1462
1463  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1464                                         Register scratch_reg,
1465                                         Label* memento_found) {
1466    Label no_memento_found;
1467    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1468                                    &no_memento_found);
1469    j(equal, memento_found);
1470    bind(&no_memento_found);
1471  }
1472
1473  // Jumps to found label if a prototype map has dictionary elements.
1474  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1475                                        Register scratch1, Label* found);
1476
1477 private:
1478  // Order general registers are pushed by Pushad.
1479  // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
1480  static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
1481  static const int kNumSafepointSavedRegisters = 11;
1482  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1483
1484  bool generating_stub_;
1485  bool has_frame_;
1486  bool root_array_available_;
1487
1488  // Returns a register holding the smi value. The register MUST NOT be
1489  // modified. It may be the "smi 1 constant" register.
1490  Register GetSmiConstant(Smi* value);
1491
1492  int64_t RootRegisterDelta(ExternalReference other);
1493
1494  // Moves the smi value to the destination register.
1495  void LoadSmiConstant(Register dst, Smi* value);
1496
1497  // This handle will be patched with the code object on installation.
1498  Handle<Object> code_object_;
1499
1500  // Helper functions for generating invokes.
1501  void InvokePrologue(const ParameterCount& expected,
1502                      const ParameterCount& actual,
1503                      Handle<Code> code_constant,
1504                      Register code_register,
1505                      Label* done,
1506                      bool* definitely_mismatches,
1507                      InvokeFlag flag,
1508                      Label::Distance near_jump = Label::kFar,
1509                      const CallWrapper& call_wrapper = NullCallWrapper());
1510
1511  void EnterExitFramePrologue(bool save_rax);
1512
1513  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
1514  // accessible via StackSpaceOperand.
1515  void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
1516
1517  void LeaveExitFrameEpilogue(bool restore_context);
1518
1519  // Allocation support helpers.
1520  // Loads the top of new-space into the result register.
1521  // Otherwise the address of the new-space top is loaded into scratch (if
1522  // scratch is valid), and the new-space top is loaded into result.
1523  void LoadAllocationTopHelper(Register result,
1524                               Register scratch,
1525                               AllocationFlags flags);
1526
1527  void MakeSureDoubleAlignedHelper(Register result,
1528                                   Register scratch,
1529                                   Label* gc_required,
1530                                   AllocationFlags flags);
1531
1532  // Update allocation top with value in result_end register.
1533  // If scratch is valid, it contains the address of the allocation top.
1534  void UpdateAllocationTopHelper(Register result_end,
1535                                 Register scratch,
1536                                 AllocationFlags flags);
1537
1538  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1539  void InNewSpace(Register object,
1540                  Register scratch,
1541                  Condition cc,
1542                  Label* branch,
1543                  Label::Distance distance = Label::kFar);
1544
1545  // Helper for finding the mark bits for an address.  Afterwards, the
1546  // bitmap register points at the word with the mark bits and the mask
1547  // the position of the first bit.  Uses rcx as scratch and leaves addr_reg
1548  // unchanged.
1549  inline void GetMarkBits(Register addr_reg,
1550                          Register bitmap_reg,
1551                          Register mask_reg);
1552
1553  // Helper for throwing exceptions.  Compute a handler address and jump to
1554  // it.  See the implementation for register usage.
1555  void JumpToHandlerEntry();
1556
1557  // Compute memory operands for safepoint stack slots.
1558  Operand SafepointRegisterSlot(Register reg);
1559  static int SafepointRegisterStackIndex(int reg_code) {
1560    return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
1561  }
1562
1563  // Needs access to SafepointRegisterStackIndex for compiled frame
1564  // traversal.
1565  friend class StandardFrame;
1566};
1567
1568
1569// The code patcher is used to patch (typically) small parts of code e.g. for
1570// debugging and other types of instrumentation. When using the code patcher
1571// the exact number of bytes specified must be emitted. Is not legal to emit
1572// relocation information. If any of these constraints are violated it causes
1573// an assertion.
1574class CodePatcher {
1575 public:
1576  CodePatcher(byte* address, int size);
1577  virtual ~CodePatcher();
1578
1579  // Macro assembler to emit code.
1580  MacroAssembler* masm() { return &masm_; }
1581
1582 private:
1583  byte* address_;  // The address of the code being patched.
1584  int size_;  // Number of bytes of the expected patch size.
1585  MacroAssembler masm_;  // Macro assembler used to generate the code.
1586};
1587
1588
1589// -----------------------------------------------------------------------------
1590// Static helper functions.
1591
1592// Generate an Operand for loading a field from an object.
1593inline Operand FieldOperand(Register object, int offset) {
1594  return Operand(object, offset - kHeapObjectTag);
1595}
1596
1597
1598// Generate an Operand for loading an indexed field from an object.
1599inline Operand FieldOperand(Register object,
1600                            Register index,
1601                            ScaleFactor scale,
1602                            int offset) {
1603  return Operand(object, index, scale, offset - kHeapObjectTag);
1604}
1605
1606
1607inline Operand ContextOperand(Register context, int index) {
1608  return Operand(context, Context::SlotOffset(index));
1609}
1610
1611
1612inline Operand GlobalObjectOperand() {
1613  return ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX);
1614}
1615
1616
1617// Provides access to exit frame stack space (not GCed).
1618inline Operand StackSpaceOperand(int index) {
1619#ifdef _WIN64
1620  const int kShaddowSpace = 4;
1621  return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
1622#else
1623  return Operand(rsp, index * kPointerSize);
1624#endif
1625}
1626
1627
1628inline Operand StackOperandForReturnAddress(int32_t disp) {
1629  return Operand(rsp, disp);
1630}
1631
1632
1633#ifdef GENERATED_CODE_COVERAGE
1634extern void LogGeneratedCodeCoverage(const char* file_line);
1635#define CODE_COVERAGE_STRINGIFY(x) #x
1636#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1637#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1638#define ACCESS_MASM(masm) {                                                  \
1639    Address x64_coverage_function = FUNCTION_ADDR(LogGeneratedCodeCoverage); \
1640    masm->pushfq();                                                          \
1641    masm->Pushad();                                                          \
1642    masm->Push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));            \
1643    masm->Call(x64_coverage_function, RelocInfo::EXTERNAL_REFERENCE);        \
1644    masm->Pop(rax);                                                          \
1645    masm->Popad();                                                           \
1646    masm->popfq();                                                           \
1647  }                                                                          \
1648  masm->
1649#else
1650#define ACCESS_MASM(masm) masm->
1651#endif
1652
1653} }  // namespace v8::internal
1654
1655#endif  // V8_X64_MACRO_ASSEMBLER_X64_H_
1656