1
2/*---------------------------------------------------------------*/
3/*--- begin                                  guest_x86_defs.h ---*/
4/*---------------------------------------------------------------*/
5
6/*
7   This file is part of Valgrind, a dynamic binary instrumentation
8   framework.
9
10   Copyright (C) 2004-2015 OpenWorks LLP
11      info@open-works.net
12
13   This program is free software; you can redistribute it and/or
14   modify it under the terms of the GNU General Public License as
15   published by the Free Software Foundation; either version 2 of the
16   License, or (at your option) any later version.
17
18   This program is distributed in the hope that it will be useful, but
19   WITHOUT ANY WARRANTY; without even the implied warranty of
20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21   General Public License for more details.
22
23   You should have received a copy of the GNU General Public License
24   along with this program; if not, write to the Free Software
25   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26   02110-1301, USA.
27
28   The GNU General Public License is contained in the file COPYING.
29
30   Neither the names of the U.S. Department of Energy nor the
31   University of California nor the names of its contributors may be
32   used to endorse or promote products derived from this software
33   without prior written permission.
34*/
35
36/* Only to be used within the guest-x86 directory. */
37
38#ifndef __VEX_GUEST_X86_DEFS_H
39#define __VEX_GUEST_X86_DEFS_H
40
41#include "libvex_basictypes.h"
42#include "libvex_guest_x86.h"           // VexGuestX86State
43#include "libvex_emnote.h"              // VexEmNote
44#include "guest_generic_bb_to_IR.h"     // DisResult
45
46/*---------------------------------------------------------*/
47/*--- x86 to IR conversion                              ---*/
48/*---------------------------------------------------------*/
49
50/* Convert one x86 insn to IR.  See the type DisOneInstrFn in
51   bb_to_IR.h. */
52extern
53DisResult disInstr_X86 ( IRSB*        irbb,
54                         Bool         (*resteerOkFn) ( void*, Addr ),
55                         Bool         resteerCisOk,
56                         void*        callback_opaque,
57                         const UChar* guest_code,
58                         Long         delta,
59                         Addr         guest_IP,
60                         VexArch      guest_arch,
61                         const VexArchInfo* archinfo,
62                         const VexAbiInfo*  abiinfo,
63                         VexEndness   host_endness,
64                         Bool         sigill_diag );
65
66/* Used by the optimiser to specialise calls to helpers. */
67extern
68IRExpr* guest_x86_spechelper ( const HChar* function_name,
69                               IRExpr** args,
70                               IRStmt** precedingStmts,
71                               Int      n_precedingStmts );
72
73/* Describes to the optimiser which part of the guest state require
74   precise memory exceptions.  This is logically part of the guest
75   state description. */
76extern
77Bool guest_x86_state_requires_precise_mem_exns ( Int, Int,
78                                                 VexRegisterUpdates );
79
80extern
81VexGuestLayout x86guest_layout;
82
83
84/*---------------------------------------------------------*/
85/*--- x86 guest helpers                                 ---*/
86/*---------------------------------------------------------*/
87
88/* --- CLEAN HELPERS --- */
89
90extern UInt  x86g_calculate_eflags_all (
91                UInt cc_op, UInt cc_dep1, UInt cc_dep2, UInt cc_ndep
92             );
93
94VEX_REGPARM(3)
95extern UInt  x86g_calculate_eflags_c (
96                UInt cc_op, UInt cc_dep1, UInt cc_dep2, UInt cc_ndep
97             );
98
99extern UInt  x86g_calculate_condition (
100                UInt/*X86Condcode*/ cond,
101                UInt cc_op,
102                UInt cc_dep1, UInt cc_dep2, UInt cc_ndep
103             );
104
105extern UInt  x86g_calculate_FXAM ( UInt tag, ULong dbl );
106
107extern ULong x86g_calculate_RCR (
108                UInt arg, UInt rot_amt, UInt eflags_in, UInt sz
109             );
110extern ULong x86g_calculate_RCL (
111                UInt arg, UInt rot_amt, UInt eflags_in, UInt sz
112             );
113
114extern UInt x86g_calculate_daa_das_aaa_aas ( UInt AX_and_flags, UInt opcode );
115
116extern UInt x86g_calculate_aad_aam ( UInt AX_and_flags, UInt opcode );
117
118extern ULong x86g_check_fldcw ( UInt fpucw );
119
120extern UInt  x86g_create_fpucw ( UInt fpround );
121
122extern ULong x86g_check_ldmxcsr ( UInt mxcsr );
123
124extern UInt  x86g_create_mxcsr ( UInt sseround );
125
126
127/* Translate a guest virtual_addr into a guest linear address by
128   consulting the supplied LDT/GDT structures.  Their representation
129   must be as specified in pub/libvex_guest_x86.h.  To indicate a
130   translation failure, 1<<32 is returned.  On success, the lower 32
131   bits of the returned result indicate the linear address.
132*/
133extern
134ULong x86g_use_seg_selector ( HWord ldt, HWord gdt,
135                              UInt seg_selector, UInt virtual_addr );
136
137extern ULong x86g_calculate_mmx_pmaddwd  ( ULong, ULong );
138extern ULong x86g_calculate_mmx_psadbw   ( ULong, ULong );
139
140
141/* --- DIRTY HELPERS --- */
142
143extern ULong x86g_dirtyhelper_loadF80le  ( Addr );
144
145extern void  x86g_dirtyhelper_storeF80le ( Addr, ULong );
146
147extern void  x86g_dirtyhelper_CPUID_sse0 ( VexGuestX86State* );
148extern void  x86g_dirtyhelper_CPUID_mmxext ( VexGuestX86State* );
149extern void  x86g_dirtyhelper_CPUID_sse1 ( VexGuestX86State* );
150extern void  x86g_dirtyhelper_CPUID_sse2 ( VexGuestX86State* );
151extern void  x86g_dirtyhelper_CPUID_sse3 ( VexGuestX86State* );
152
153extern void  x86g_dirtyhelper_FINIT ( VexGuestX86State* );
154
155extern void  x86g_dirtyhelper_FXSAVE ( VexGuestX86State*, HWord );
156extern void  x86g_dirtyhelper_FSAVE  ( VexGuestX86State*, HWord );
157extern void  x86g_dirtyhelper_FSTENV ( VexGuestX86State*, HWord );
158
159extern ULong x86g_dirtyhelper_RDTSC ( void );
160
161extern UInt x86g_dirtyhelper_IN  ( UInt portno, UInt sz/*1,2 or 4*/ );
162extern void x86g_dirtyhelper_OUT ( UInt portno, UInt data,
163                                   UInt sz/*1,2 or 4*/ );
164
165extern void x86g_dirtyhelper_SxDT ( void* address,
166                                    UInt op /* 0 or 1 */ );
167
168extern VexEmNote
169            x86g_dirtyhelper_FXRSTOR ( VexGuestX86State*, HWord );
170
171extern VexEmNote
172            x86g_dirtyhelper_FRSTOR ( VexGuestX86State*, HWord );
173
174extern VexEmNote
175            x86g_dirtyhelper_FLDENV ( VexGuestX86State*, HWord );
176
177
178/*---------------------------------------------------------*/
179/*--- Condition code stuff                              ---*/
180/*---------------------------------------------------------*/
181
182/* eflags masks */
183#define X86G_CC_SHIFT_O   11
184#define X86G_CC_SHIFT_S   7
185#define X86G_CC_SHIFT_Z   6
186#define X86G_CC_SHIFT_A   4
187#define X86G_CC_SHIFT_C   0
188#define X86G_CC_SHIFT_P   2
189
190#define X86G_CC_MASK_O    (1 << X86G_CC_SHIFT_O)
191#define X86G_CC_MASK_S    (1 << X86G_CC_SHIFT_S)
192#define X86G_CC_MASK_Z    (1 << X86G_CC_SHIFT_Z)
193#define X86G_CC_MASK_A    (1 << X86G_CC_SHIFT_A)
194#define X86G_CC_MASK_C    (1 << X86G_CC_SHIFT_C)
195#define X86G_CC_MASK_P    (1 << X86G_CC_SHIFT_P)
196
197/* additional eflags masks */
198#define X86G_CC_SHIFT_ID  21
199#define X86G_CC_SHIFT_AC  18
200#define X86G_CC_SHIFT_D   10
201
202#define X86G_CC_MASK_ID   (1 << X86G_CC_SHIFT_ID)
203#define X86G_CC_MASK_AC   (1 << X86G_CC_SHIFT_AC)
204#define X86G_CC_MASK_D    (1 << X86G_CC_SHIFT_D)
205
206/* FPU flag masks */
207#define X86G_FC_SHIFT_C3   14
208#define X86G_FC_SHIFT_C2   10
209#define X86G_FC_SHIFT_C1   9
210#define X86G_FC_SHIFT_C0   8
211
212#define X86G_FC_MASK_C3    (1 << X86G_FC_SHIFT_C3)
213#define X86G_FC_MASK_C2    (1 << X86G_FC_SHIFT_C2)
214#define X86G_FC_MASK_C1    (1 << X86G_FC_SHIFT_C1)
215#define X86G_FC_MASK_C0    (1 << X86G_FC_SHIFT_C0)
216
217
218/* %EFLAGS thunk descriptors.  A four-word thunk is used to record
219   details of the most recent flag-setting operation, so the flags can
220   be computed later if needed.  It is possible to do this a little
221   more efficiently using a 3-word thunk, but that makes it impossible
222   to describe the flag data dependencies sufficiently accurately for
223   Memcheck.  Hence 4 words are used, with minimal loss of efficiency.
224
225   The four words are:
226
227      CC_OP, which describes the operation.
228
229      CC_DEP1 and CC_DEP2.  These are arguments to the operation.
230         We want Memcheck to believe that the resulting flags are
231         data-dependent on both CC_DEP1 and CC_DEP2, hence the
232         name DEP.
233
234      CC_NDEP.  This is a 3rd argument to the operation which is
235         sometimes needed.  We arrange things so that Memcheck does
236         not believe the resulting flags are data-dependent on CC_NDEP
237         ("not dependent").
238
239   To make Memcheck believe that (the definedness of) the encoded
240   flags depends only on (the definedness of) CC_DEP1 and CC_DEP2
241   requires two things:
242
243   (1) In the guest state layout info (x86guest_layout), CC_OP and
244       CC_NDEP are marked as always defined.
245
246   (2) When passing the thunk components to an evaluation function
247       (calculate_condition, calculate_eflags, calculate_eflags_c) the
248       IRCallee's mcx_mask must be set so as to exclude from
249       consideration all passed args except CC_DEP1 and CC_DEP2.
250
251   Strictly speaking only (2) is necessary for correctness.  However,
252   (1) helps efficiency in that since (2) means we never ask about the
253   definedness of CC_OP or CC_NDEP, we may as well not even bother to
254   track their definedness.
255
256   When building the thunk, it is always necessary to write words into
257   CC_DEP1 and CC_DEP2, even if those args are not used given the
258   CC_OP field (eg, CC_DEP2 is not used if CC_OP is CC_LOGIC1/2/4).
259   This is important because otherwise Memcheck could give false
260   positives as it does not understand the relationship between the
261   CC_OP field and CC_DEP1 and CC_DEP2, and so believes that the
262   definedness of the stored flags always depends on both CC_DEP1 and
263   CC_DEP2.
264
265   However, it is only necessary to set CC_NDEP when the CC_OP value
266   requires it, because Memcheck ignores CC_NDEP, and the evaluation
267   functions do understand the CC_OP fields and will only examine
268   CC_NDEP for suitable values of CC_OP.
269
270   A summary of the field usages is:
271
272   Operation          DEP1               DEP2               NDEP
273   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
274
275   add/sub/mul        first arg          second arg         unused
276
277   adc/sbb            first arg          (second arg)
278                                         XOR old_carry      old_carry
279
280   and/or/xor         result             zero               unused
281
282   inc/dec            result             zero               old_carry
283
284   shl/shr/sar        result             subshifted-        unused
285                                         result
286
287   rol/ror            result             zero               old_flags
288
289   copy               old_flags          zero               unused.
290
291
292   Therefore Memcheck will believe the following:
293
294   * add/sub/mul -- definedness of result flags depends on definedness
295     of both args.
296
297   * adc/sbb -- definedness of result flags depends on definedness of
298     both args and definedness of the old C flag.  Because only two
299     DEP fields are available, the old C flag is XOR'd into the second
300     arg so that Memcheck sees the data dependency on it.  That means
301     the NDEP field must contain a second copy of the old C flag
302     so that the evaluation functions can correctly recover the second
303     arg.
304
305   * and/or/xor are straightforward -- definedness of result flags
306     depends on definedness of result value.
307
308   * inc/dec -- definedness of result flags depends only on
309     definedness of result.  This isn't really true -- it also depends
310     on the old C flag.  However, we don't want Memcheck to see that,
311     and so the old C flag must be passed in NDEP and not in DEP2.
312     It's inconceivable that a compiler would generate code that puts
313     the C flag in an undefined state, then does an inc/dec, which
314     leaves C unchanged, and then makes a conditional jump/move based
315     on C.  So our fiction seems a good approximation.
316
317   * shl/shr/sar -- straightforward, again, definedness of result
318     flags depends on definedness of result value.  The subshifted
319     value (value shifted one less) is also needed, but its
320     definedness is the same as the definedness of the shifted value.
321
322   * rol/ror -- these only set O and C, and leave A Z C P alone.
323     However it seems prudent (as per inc/dec) to say the definedness
324     of all resulting flags depends on the definedness of the result,
325     hence the old flags must go in as NDEP and not DEP2.
326
327   * rcl/rcr are too difficult to do in-line, and so are done by a
328     helper function.  They are not part of this scheme.  The helper
329     function takes the value to be rotated, the rotate amount and the
330     old flags, and returns the new flags and the rotated value.
331     Since the helper's mcx_mask does not have any set bits, Memcheck
332     will lazily propagate undefinedness from any of the 3 args into
333     both results (flags and actual value).
334*/
335enum {
336    X86G_CC_OP_COPY=0,  /* DEP1 = current flags, DEP2 = 0, NDEP = unused */
337                        /* just copy DEP1 to output */
338
339    X86G_CC_OP_ADDB,    /* 1 */
340    X86G_CC_OP_ADDW,    /* 2 DEP1 = argL, DEP2 = argR, NDEP = unused */
341    X86G_CC_OP_ADDL,    /* 3 */
342
343    X86G_CC_OP_SUBB,    /* 4 */
344    X86G_CC_OP_SUBW,    /* 5 DEP1 = argL, DEP2 = argR, NDEP = unused */
345    X86G_CC_OP_SUBL,    /* 6 */
346
347    X86G_CC_OP_ADCB,    /* 7 */
348    X86G_CC_OP_ADCW,    /* 8 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
349    X86G_CC_OP_ADCL,    /* 9 */
350
351    X86G_CC_OP_SBBB,    /* 10 */
352    X86G_CC_OP_SBBW,    /* 11 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
353    X86G_CC_OP_SBBL,    /* 12 */
354
355    X86G_CC_OP_LOGICB,  /* 13 */
356    X86G_CC_OP_LOGICW,  /* 14 DEP1 = result, DEP2 = 0, NDEP = unused */
357    X86G_CC_OP_LOGICL,  /* 15 */
358
359    X86G_CC_OP_INCB,    /* 16 */
360    X86G_CC_OP_INCW,    /* 17 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
361    X86G_CC_OP_INCL,    /* 18 */
362
363    X86G_CC_OP_DECB,    /* 19 */
364    X86G_CC_OP_DECW,    /* 20 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
365    X86G_CC_OP_DECL,    /* 21 */
366
367    X86G_CC_OP_SHLB,    /* 22 DEP1 = res, DEP2 = res', NDEP = unused */
368    X86G_CC_OP_SHLW,    /* 23 where res' is like res but shifted one bit less */
369    X86G_CC_OP_SHLL,    /* 24 */
370
371    X86G_CC_OP_SHRB,    /* 25 DEP1 = res, DEP2 = res', NDEP = unused */
372    X86G_CC_OP_SHRW,    /* 26 where res' is like res but shifted one bit less */
373    X86G_CC_OP_SHRL,    /* 27 */
374
375    X86G_CC_OP_ROLB,    /* 28 */
376    X86G_CC_OP_ROLW,    /* 29 DEP1 = res, DEP2 = 0, NDEP = old flags */
377    X86G_CC_OP_ROLL,    /* 30 */
378
379    X86G_CC_OP_RORB,    /* 31 */
380    X86G_CC_OP_RORW,    /* 32 DEP1 = res, DEP2 = 0, NDEP = old flags */
381    X86G_CC_OP_RORL,    /* 33 */
382
383    X86G_CC_OP_UMULB,   /* 34 */
384    X86G_CC_OP_UMULW,   /* 35 DEP1 = argL, DEP2 = argR, NDEP = unused */
385    X86G_CC_OP_UMULL,   /* 36 */
386
387    X86G_CC_OP_SMULB,   /* 37 */
388    X86G_CC_OP_SMULW,   /* 38 DEP1 = argL, DEP2 = argR, NDEP = unused */
389    X86G_CC_OP_SMULL,   /* 39 */
390
391    X86G_CC_OP_NUMBER
392};
393
394typedef
395   enum {
396      X86CondO      = 0,  /* overflow           */
397      X86CondNO     = 1,  /* no overflow        */
398
399      X86CondB      = 2,  /* below              */
400      X86CondNB     = 3,  /* not below          */
401
402      X86CondZ      = 4,  /* zero               */
403      X86CondNZ     = 5,  /* not zero           */
404
405      X86CondBE     = 6,  /* below or equal     */
406      X86CondNBE    = 7,  /* not below or equal */
407
408      X86CondS      = 8,  /* negative           */
409      X86CondNS     = 9,  /* not negative       */
410
411      X86CondP      = 10, /* parity even        */
412      X86CondNP     = 11, /* not parity even    */
413
414      X86CondL      = 12, /* jump less          */
415      X86CondNL     = 13, /* not less           */
416
417      X86CondLE     = 14, /* less or equal      */
418      X86CondNLE    = 15, /* not less or equal  */
419
420      X86CondAlways = 16  /* HACK */
421   }
422   X86Condcode;
423
424#endif /* ndef __VEX_GUEST_X86_DEFS_H */
425
426/*---------------------------------------------------------------*/
427/*--- end                                    guest_x86_defs.h ---*/
428/*---------------------------------------------------------------*/
429