libvex_ir.h revision 4b21c3de6dabbe17c7f4cc1c4748c5491267c158
1
2/*---------------------------------------------------------------*/
3/*--- begin                                       libvex_ir.h ---*/
4/*---------------------------------------------------------------*/
5
6/*
7   This file is part of Valgrind, a dynamic binary instrumentation
8   framework.
9
10   Copyright (C) 2004-2013 OpenWorks LLP
11      info@open-works.net
12
13   This program is free software; you can redistribute it and/or
14   modify it under the terms of the GNU General Public License as
15   published by the Free Software Foundation; either version 2 of the
16   License, or (at your option) any later version.
17
18   This program is distributed in the hope that it will be useful, but
19   WITHOUT ANY WARRANTY; without even the implied warranty of
20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21   General Public License for more details.
22
23   You should have received a copy of the GNU General Public License
24   along with this program; if not, write to the Free Software
25   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26   02110-1301, USA.
27
28   The GNU General Public License is contained in the file COPYING.
29
30   Neither the names of the U.S. Department of Energy nor the
31   University of California nor the names of its contributors may be
32   used to endorse or promote products derived from this software
33   without prior written permission.
34*/
35
36#ifndef __LIBVEX_IR_H
37#define __LIBVEX_IR_H
38
39#include "libvex_basictypes.h"
40
41
42/*---------------------------------------------------------------*/
43/*--- High-level IR description                               ---*/
44/*---------------------------------------------------------------*/
45
46/* Vex IR is an architecture-neutral intermediate representation.
47   Unlike some IRs in systems similar to Vex, it is not like assembly
48   language (ie. a list of instructions).  Rather, it is more like the
49   IR that might be used in a compiler.
50
51   Code blocks
52   ~~~~~~~~~~~
53   The code is broken into small code blocks ("superblocks", type:
54   'IRSB').  Each code block typically represents from 1 to perhaps 50
55   instructions.  IRSBs are single-entry, multiple-exit code blocks.
56   Each IRSB contains three things:
57   - a type environment, which indicates the type of each temporary
58     value present in the IRSB
59   - a list of statements, which represent code
60   - a jump that exits from the end the IRSB
61   Because the blocks are multiple-exit, there can be additional
62   conditional exit statements that cause control to leave the IRSB
63   before the final exit.  Also because of this, IRSBs can cover
64   multiple non-consecutive sequences of code (up to 3).  These are
65   recorded in the type VexGuestExtents (see libvex.h).
66
67   Statements and expressions
68   ~~~~~~~~~~~~~~~~~~~~~~~~~~
69   Statements (type 'IRStmt') represent operations with side-effects,
70   eg.  guest register writes, stores, and assignments to temporaries.
71   Expressions (type 'IRExpr') represent operations without
72   side-effects, eg. arithmetic operations, loads, constants.
73   Expressions can contain sub-expressions, forming expression trees,
74   eg. (3 + (4 * load(addr1)).
75
76   Storage of guest state
77   ~~~~~~~~~~~~~~~~~~~~~~
78   The "guest state" contains the guest registers of the guest machine
79   (ie.  the machine that we are simulating).  It is stored by default
80   in a block of memory supplied by the user of the VEX library,
81   generally referred to as the guest state (area).  To operate on
82   these registers, one must first read ("Get") them from the guest
83   state into a temporary value.  Afterwards, one can write ("Put")
84   them back into the guest state.
85
86   Get and Put are characterised by a byte offset into the guest
87   state, a small integer which effectively gives the identity of the
88   referenced guest register, and a type, which indicates the size of
89   the value to be transferred.
90
91   The basic "Get" and "Put" operations are sufficient to model normal
92   fixed registers on the guest.  Selected areas of the guest state
93   can be treated as a circular array of registers (type:
94   'IRRegArray'), which can be indexed at run-time.  This is done with
95   the "GetI" and "PutI" primitives.  This is necessary to describe
96   rotating register files, for example the x87 FPU stack, SPARC
97   register windows, and the Itanium register files.
98
99   Examples, and flattened vs. unflattened code
100   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
101   For example, consider this x86 instruction:
102
103     addl %eax, %ebx
104
105   One Vex IR translation for this code would be this:
106
107     ------ IMark(0x24F275, 7, 0) ------
108     t3 = GET:I32(0)             # get %eax, a 32-bit integer
109     t2 = GET:I32(12)            # get %ebx, a 32-bit integer
110     t1 = Add32(t3,t2)           # addl
111     PUT(0) = t1                 # put %eax
112
113   (For simplicity, this ignores the effects on the condition codes, and
114   the update of the instruction pointer.)
115
116   The "IMark" is an IR statement that doesn't represent actual code.
117   Instead it indicates the address and length of the original
118   instruction.  The numbers 0 and 12 are offsets into the guest state
119   for %eax and %ebx.  The full list of offsets for an architecture
120   <ARCH> can be found in the type VexGuest<ARCH>State in the file
121   VEX/pub/libvex_guest_<ARCH>.h.
122
123   The five statements in this example are:
124   - the IMark
125   - three assignments to temporaries
126   - one register write (put)
127
128   The six expressions in this example are:
129   - two register reads (gets)
130   - one arithmetic (add) operation
131   - three temporaries (two nested within the Add32, one in the PUT)
132
133   The above IR is "flattened", ie. all sub-expressions are "atoms",
134   either constants or temporaries.  An equivalent, unflattened version
135   would be:
136
137     PUT(0) = Add32(GET:I32(0), GET:I32(12))
138
139   IR is guaranteed to be flattened at instrumentation-time.  This makes
140   instrumentation easier.  Equivalent flattened and unflattened IR
141   typically results in the same generated code.
142
143   Another example, this one showing loads and stores:
144
145     addl %edx,4(%eax)
146
147   This becomes (again ignoring condition code and instruction pointer
148   updates):
149
150     ------ IMark(0x4000ABA, 3, 0) ------
151     t3 = Add32(GET:I32(0),0x4:I32)
152     t2 = LDle:I32(t3)
153     t1 = GET:I32(8)
154     t0 = Add32(t2,t1)
155     STle(t3) = t0
156
157   The "le" in "LDle" and "STle" is short for "little-endian".
158
159   No need for deallocations
160   ~~~~~~~~~~~~~~~~~~~~~~~~~
161   Although there are allocation functions for various data structures
162   in this file, there are no deallocation functions.  This is because
163   Vex uses a memory allocation scheme that automatically reclaims the
164   memory used by allocated structures once translation is completed.
165   This makes things easier for tools that instruments/transforms code
166   blocks.
167
168   SSAness and typing
169   ~~~~~~~~~~~~~~~~~~
170   The IR is fully typed.  For every IRSB (IR block) it is possible to
171   say unambiguously whether or not it is correctly typed.
172   Incorrectly typed IR has no meaning and the VEX will refuse to
173   process it.  At various points during processing VEX typechecks the
174   IR and aborts if any violations are found.  This seems overkill but
175   makes it a great deal easier to build a reliable JIT.
176
177   IR also has the SSA property.  SSA stands for Static Single
178   Assignment, and what it means is that each IR temporary may be
179   assigned to only once.  This idea became widely used in compiler
180   construction in the mid to late 90s.  It makes many IR-level
181   transformations/code improvements easier, simpler and faster.
182   Whenever it typechecks an IR block, VEX also checks the SSA
183   property holds, and will abort if not so.  So SSAness is
184   mechanically and rigidly enforced.
185*/
186
187/*---------------------------------------------------------------*/
188/*--- Type definitions for the IR                             ---*/
189/*---------------------------------------------------------------*/
190
191/* General comments about naming schemes:
192
193   All publically visible functions contain the name of the primary
194   type on which they operate (IRFoo, IRBar, etc).  Hence you should
195   be able to identify these functions by grepping for "IR[A-Z]".
196
197   For some type 'IRFoo':
198
199   - ppIRFoo is the printing method for IRFoo, printing it to the
200     output channel specified in the LibVEX_Initialise call.
201
202   - eqIRFoo is a structural equality predicate for IRFoos.
203
204   - deepCopyIRFoo is a deep copy constructor for IRFoos.
205     It recursively traverses the entire argument tree and
206     produces a complete new tree.  All types have a deep copy
207     constructor.
208
209   - shallowCopyIRFoo is the shallow copy constructor for IRFoos.
210     It creates a new top-level copy of the supplied object,
211     but does not copy any sub-objects.  Only some types have a
212     shallow copy constructor.
213*/
214
215/* ------------------ Types ------------------ */
216
217/* A type indicates the size of a value, and whether it's an integer, a
218   float, or a vector (SIMD) value. */
219typedef
220   enum {
221      Ity_INVALID=0x1100,
222      Ity_I1,
223      Ity_I8,
224      Ity_I16,
225      Ity_I32,
226      Ity_I64,
227      Ity_I128,  /* 128-bit scalar */
228      Ity_F16,   /* 16 bit float */
229      Ity_F32,   /* IEEE 754 float */
230      Ity_F64,   /* IEEE 754 double */
231      Ity_D32,   /* 32-bit Decimal floating point */
232      Ity_D64,   /* 64-bit Decimal floating point */
233      Ity_D128,  /* 128-bit Decimal floating point */
234      Ity_F128,  /* 128-bit floating point; implementation defined */
235      Ity_V128,  /* 128-bit SIMD */
236      Ity_V256   /* 256-bit SIMD */
237   }
238   IRType;
239
240/* Pretty-print an IRType */
241extern void ppIRType ( IRType );
242
243/* Get the size (in bytes) of an IRType */
244extern Int sizeofIRType ( IRType );
245
246/* Translate 1/2/4/8 into Ity_I{8,16,32,64} respectively.  Asserts on
247   any other input. */
248extern IRType integerIRTypeOfSize ( Int szB );
249
250
251/* ------------------ Endianness ------------------ */
252
253/* IREndness is used in load IRExprs and store IRStmts. */
254typedef
255   enum {
256      Iend_LE=0x1200, /* little endian */
257      Iend_BE          /* big endian */
258   }
259   IREndness;
260
261
262/* ------------------ Constants ------------------ */
263
264/* IRConsts are used within 'Const' and 'Exit' IRExprs. */
265
266/* The various kinds of constant. */
267typedef
268   enum {
269      Ico_U1=0x1300,
270      Ico_U8,
271      Ico_U16,
272      Ico_U32,
273      Ico_U64,
274      Ico_F32,   /* 32-bit IEEE754 floating */
275      Ico_F32i,  /* 32-bit unsigned int to be interpreted literally
276                    as a IEEE754 single value. */
277      Ico_F64,   /* 64-bit IEEE754 floating */
278      Ico_F64i,  /* 64-bit unsigned int to be interpreted literally
279                    as a IEEE754 double value. */
280      Ico_V128,  /* 128-bit restricted vector constant, with 1 bit
281                    (repeated 8 times) for each of the 16 x 1-byte lanes */
282      Ico_V256   /* 256-bit restricted vector constant, with 1 bit
283                    (repeated 8 times) for each of the 32 x 1-byte lanes */
284   }
285   IRConstTag;
286
287/* A constant.  Stored as a tagged union.  'tag' indicates what kind of
288   constant this is.  'Ico' is the union that holds the fields.  If an
289   IRConst 'c' has c.tag equal to Ico_U32, then it's a 32-bit constant,
290   and its value can be accessed with 'c.Ico.U32'. */
291typedef
292   struct _IRConst {
293      IRConstTag tag;
294      union {
295         Bool   U1;
296         UChar  U8;
297         UShort U16;
298         UInt   U32;
299         ULong  U64;
300         Float  F32;
301         UInt   F32i;
302         Double F64;
303         ULong  F64i;
304         UShort V128;   /* 16-bit value; see Ico_V128 comment above */
305         UInt   V256;   /* 32-bit value; see Ico_V256 comment above */
306      } Ico;
307   }
308   IRConst;
309
310/* IRConst constructors */
311extern IRConst* IRConst_U1   ( Bool );
312extern IRConst* IRConst_U8   ( UChar );
313extern IRConst* IRConst_U16  ( UShort );
314extern IRConst* IRConst_U32  ( UInt );
315extern IRConst* IRConst_U64  ( ULong );
316extern IRConst* IRConst_F32  ( Float );
317extern IRConst* IRConst_F32i ( UInt );
318extern IRConst* IRConst_F64  ( Double );
319extern IRConst* IRConst_F64i ( ULong );
320extern IRConst* IRConst_V128 ( UShort );
321extern IRConst* IRConst_V256 ( UInt );
322
323/* Deep-copy an IRConst */
324extern IRConst* deepCopyIRConst ( const IRConst* );
325
326/* Pretty-print an IRConst */
327extern void ppIRConst ( const IRConst* );
328
329/* Compare two IRConsts for equality */
330extern Bool eqIRConst ( const IRConst*, const IRConst* );
331
332
333/* ------------------ Call targets ------------------ */
334
335/* Describes a helper function to call.  The name part is purely for
336   pretty printing and not actually used.  regparms=n tells the back
337   end that the callee has been declared
338   "__attribute__((regparm(n)))", although indirectly using the
339   VEX_REGPARM(n) macro.  On some targets (x86) the back end will need
340   to construct a non-standard sequence to call a function declared
341   like this.
342
343   mcx_mask is a sop to Memcheck.  It indicates which args should be
344   considered 'always defined' when lazily computing definedness of
345   the result.  Bit 0 of mcx_mask corresponds to args[0], bit 1 to
346   args[1], etc.  If a bit is set, the corresponding arg is excluded
347   (hence "x" in "mcx") from definedness checking.
348*/
349
350typedef
351   struct {
352      Int          regparms;
353      const HChar* name;
354      void*        addr;
355      UInt         mcx_mask;
356   }
357   IRCallee;
358
359/* Create an IRCallee. */
360extern IRCallee* mkIRCallee ( Int regparms, const HChar* name, void* addr );
361
362/* Deep-copy an IRCallee. */
363extern IRCallee* deepCopyIRCallee ( const IRCallee* );
364
365/* Pretty-print an IRCallee. */
366extern void ppIRCallee ( const IRCallee* );
367
368
369/* ------------------ Guest state arrays ------------------ */
370
371/* This describes a section of the guest state that we want to
372   be able to index at run time, so as to be able to describe
373   indexed or rotating register files on the guest. */
374typedef
375   struct {
376      Int    base;   /* guest state offset of start of indexed area */
377      IRType elemTy; /* type of each element in the indexed area */
378      Int    nElems; /* number of elements in the indexed area */
379   }
380   IRRegArray;
381
382extern IRRegArray* mkIRRegArray ( Int, IRType, Int );
383
384extern IRRegArray* deepCopyIRRegArray ( const IRRegArray* );
385
386extern void ppIRRegArray ( const IRRegArray* );
387extern Bool eqIRRegArray ( const IRRegArray*, const IRRegArray* );
388
389
390/* ------------------ Temporaries ------------------ */
391
392/* This represents a temporary, eg. t1.  The IR optimiser relies on the
393   fact that IRTemps are 32-bit ints.  Do not change them to be ints of
394   any other size. */
395typedef UInt IRTemp;
396
397/* Pretty-print an IRTemp. */
398extern void ppIRTemp ( IRTemp );
399
400#define IRTemp_INVALID ((IRTemp)0xFFFFFFFF)
401
402
403/* --------------- Primops (arity 1,2,3 and 4) --------------- */
404
405/* Primitive operations that are used in Unop, Binop, Triop and Qop
406   IRExprs.  Once we take into account integer, floating point and SIMD
407   operations of all the different sizes, there are quite a lot of them.
408   Most instructions supported by the architectures that Vex supports
409   (x86, PPC, etc) are represented.  Some more obscure ones (eg. cpuid)
410   are not;  they are instead handled with dirty helpers that emulate
411   their functionality.  Such obscure ones are thus not directly visible
412   in the IR, but their effects on guest state (memory and registers)
413   are made visible via the annotations in IRDirty structures.
414*/
415typedef
416   enum {
417      /* -- Do not change this ordering.  The IR generators rely on
418            (eg) Iop_Add64 == IopAdd8 + 3. -- */
419
420      Iop_INVALID=0x1400,
421      Iop_Add8,  Iop_Add16,  Iop_Add32,  Iop_Add64,
422      Iop_Sub8,  Iop_Sub16,  Iop_Sub32,  Iop_Sub64,
423      /* Signless mul.  MullS/MullU is elsewhere. */
424      Iop_Mul8,  Iop_Mul16,  Iop_Mul32,  Iop_Mul64,
425      Iop_Or8,   Iop_Or16,   Iop_Or32,   Iop_Or64,
426      Iop_And8,  Iop_And16,  Iop_And32,  Iop_And64,
427      Iop_Xor8,  Iop_Xor16,  Iop_Xor32,  Iop_Xor64,
428      Iop_Shl8,  Iop_Shl16,  Iop_Shl32,  Iop_Shl64,
429      Iop_Shr8,  Iop_Shr16,  Iop_Shr32,  Iop_Shr64,
430      Iop_Sar8,  Iop_Sar16,  Iop_Sar32,  Iop_Sar64,
431      /* Integer comparisons. */
432      Iop_CmpEQ8,  Iop_CmpEQ16,  Iop_CmpEQ32,  Iop_CmpEQ64,
433      Iop_CmpNE8,  Iop_CmpNE16,  Iop_CmpNE32,  Iop_CmpNE64,
434      /* Tags for unary ops */
435      Iop_Not8,  Iop_Not16,  Iop_Not32,  Iop_Not64,
436
437      /* Exactly like CmpEQ8/16/32/64, but carrying the additional
438         hint that these compute the success/failure of a CAS
439         operation, and hence are almost certainly applied to two
440         copies of the same value, which in turn has implications for
441         Memcheck's instrumentation. */
442      Iop_CasCmpEQ8, Iop_CasCmpEQ16, Iop_CasCmpEQ32, Iop_CasCmpEQ64,
443      Iop_CasCmpNE8, Iop_CasCmpNE16, Iop_CasCmpNE32, Iop_CasCmpNE64,
444
445      /* Exactly like CmpNE8/16/32/64, but carrying the additional
446         hint that these needs expensive definedness tracking. */
447      Iop_ExpCmpNE8, Iop_ExpCmpNE16, Iop_ExpCmpNE32, Iop_ExpCmpNE64,
448
449      /* -- Ordering not important after here. -- */
450
451      /* Widening multiplies */
452      Iop_MullS8, Iop_MullS16, Iop_MullS32, Iop_MullS64,
453      Iop_MullU8, Iop_MullU16, Iop_MullU32, Iop_MullU64,
454
455      /* Wierdo integer stuff */
456      Iop_Clz64, Iop_Clz32,   /* count leading zeroes */
457      Iop_Ctz64, Iop_Ctz32,   /* count trailing zeros */
458      /* Ctz64/Ctz32/Clz64/Clz32 are UNDEFINED when given arguments of
459         zero.  You must ensure they are never given a zero argument.
460      */
461
462      /* Standard integer comparisons */
463      Iop_CmpLT32S, Iop_CmpLT64S,
464      Iop_CmpLE32S, Iop_CmpLE64S,
465      Iop_CmpLT32U, Iop_CmpLT64U,
466      Iop_CmpLE32U, Iop_CmpLE64U,
467
468      /* As a sop to Valgrind-Memcheck, the following are useful. */
469      Iop_CmpNEZ8, Iop_CmpNEZ16,  Iop_CmpNEZ32,  Iop_CmpNEZ64,
470      Iop_CmpwNEZ32, Iop_CmpwNEZ64, /* all-0s -> all-Os; other -> all-1s */
471      Iop_Left8, Iop_Left16, Iop_Left32, Iop_Left64, /*  \x -> x | -x */
472      Iop_Max32U, /* unsigned max */
473
474      /* PowerPC-style 3-way integer comparisons.  Without them it is
475         difficult to simulate PPC efficiently.
476         op(x,y) | x < y  = 0x8 else
477                 | x > y  = 0x4 else
478                 | x == y = 0x2
479      */
480      Iop_CmpORD32U, Iop_CmpORD64U,
481      Iop_CmpORD32S, Iop_CmpORD64S,
482
483      /* Division */
484      /* TODO: clarify semantics wrt rounding, negative values, whatever */
485      Iop_DivU32,   // :: I32,I32 -> I32 (simple div, no mod)
486      Iop_DivS32,   // ditto, signed
487      Iop_DivU64,   // :: I64,I64 -> I64 (simple div, no mod)
488      Iop_DivS64,   // ditto, signed
489      Iop_DivU64E,  // :: I64,I64 -> I64 (dividend is 64-bit arg (hi)
490                    //                    concat with 64 0's (low))
491      Iop_DivS64E,  // ditto, signed
492      Iop_DivU32E,  // :: I32,I32 -> I32 (dividend is 32-bit arg (hi)
493                    // concat with 32 0's (low))
494      Iop_DivS32E,  // ditto, signed
495
496      Iop_DivModU64to32, // :: I64,I32 -> I64
497                         // of which lo half is div and hi half is mod
498      Iop_DivModS64to32, // ditto, signed
499
500      Iop_DivModU128to64, // :: V128,I64 -> V128
501                          // of which lo half is div and hi half is mod
502      Iop_DivModS128to64, // ditto, signed
503
504      Iop_DivModS64to64, // :: I64,I64 -> I128
505                         // of which lo half is div and hi half is mod
506
507      /* Integer conversions.  Some of these are redundant (eg
508         Iop_64to8 is the same as Iop_64to32 and then Iop_32to8), but
509         having a complete set reduces the typical dynamic size of IR
510         and makes the instruction selectors easier to write. */
511
512      /* Widening conversions */
513      Iop_8Uto16, Iop_8Uto32,  Iop_8Uto64,
514                  Iop_16Uto32, Iop_16Uto64,
515                               Iop_32Uto64,
516      Iop_8Sto16, Iop_8Sto32,  Iop_8Sto64,
517                  Iop_16Sto32, Iop_16Sto64,
518                               Iop_32Sto64,
519
520      /* Narrowing conversions */
521      Iop_64to8, Iop_32to8, Iop_64to16,
522      /* 8 <-> 16 bit conversions */
523      Iop_16to8,      // :: I16 -> I8, low half
524      Iop_16HIto8,    // :: I16 -> I8, high half
525      Iop_8HLto16,    // :: (I8,I8) -> I16
526      /* 16 <-> 32 bit conversions */
527      Iop_32to16,     // :: I32 -> I16, low half
528      Iop_32HIto16,   // :: I32 -> I16, high half
529      Iop_16HLto32,   // :: (I16,I16) -> I32
530      /* 32 <-> 64 bit conversions */
531      Iop_64to32,     // :: I64 -> I32, low half
532      Iop_64HIto32,   // :: I64 -> I32, high half
533      Iop_32HLto64,   // :: (I32,I32) -> I64
534      /* 64 <-> 128 bit conversions */
535      Iop_128to64,    // :: I128 -> I64, low half
536      Iop_128HIto64,  // :: I128 -> I64, high half
537      Iop_64HLto128,  // :: (I64,I64) -> I128
538      /* 1-bit stuff */
539      Iop_Not1,   /* :: Ity_Bit -> Ity_Bit */
540      Iop_32to1,  /* :: Ity_I32 -> Ity_Bit, just select bit[0] */
541      Iop_64to1,  /* :: Ity_I64 -> Ity_Bit, just select bit[0] */
542      Iop_1Uto8,  /* :: Ity_Bit -> Ity_I8,  unsigned widen */
543      Iop_1Uto32, /* :: Ity_Bit -> Ity_I32, unsigned widen */
544      Iop_1Uto64, /* :: Ity_Bit -> Ity_I64, unsigned widen */
545      Iop_1Sto8,  /* :: Ity_Bit -> Ity_I8,  signed widen */
546      Iop_1Sto16, /* :: Ity_Bit -> Ity_I16, signed widen */
547      Iop_1Sto32, /* :: Ity_Bit -> Ity_I32, signed widen */
548      Iop_1Sto64, /* :: Ity_Bit -> Ity_I64, signed widen */
549
550      /* ------ Floating point.  We try to be IEEE754 compliant. ------ */
551
552      /* --- Simple stuff as mandated by 754. --- */
553
554      /* Binary operations, with rounding. */
555      /* :: IRRoundingMode(I32) x F64 x F64 -> F64 */
556      Iop_AddF64, Iop_SubF64, Iop_MulF64, Iop_DivF64,
557
558      /* :: IRRoundingMode(I32) x F32 x F32 -> F32 */
559      Iop_AddF32, Iop_SubF32, Iop_MulF32, Iop_DivF32,
560
561      /* Variants of the above which produce a 64-bit result but which
562         round their result to a IEEE float range first. */
563      /* :: IRRoundingMode(I32) x F64 x F64 -> F64 */
564      Iop_AddF64r32, Iop_SubF64r32, Iop_MulF64r32, Iop_DivF64r32,
565
566      /* Unary operations, without rounding. */
567      /* :: F64 -> F64 */
568      Iop_NegF64, Iop_AbsF64,
569
570      /* :: F32 -> F32 */
571      Iop_NegF32, Iop_AbsF32,
572
573      /* Unary operations, with rounding. */
574      /* :: IRRoundingMode(I32) x F64 -> F64 */
575      Iop_SqrtF64,
576
577      /* :: IRRoundingMode(I32) x F32 -> F32 */
578      Iop_SqrtF32,
579
580      /* Comparison, yielding GT/LT/EQ/UN(ordered), as per the following:
581            0x45 Unordered
582            0x01 LT
583            0x00 GT
584            0x40 EQ
585         This just happens to be the Intel encoding.  The values
586         are recorded in the type IRCmpF64Result.
587      */
588      /* :: F64 x F64 -> IRCmpF64Result(I32) */
589      Iop_CmpF64,
590      Iop_CmpF32,
591      Iop_CmpF128,
592
593      /* --- Int to/from FP conversions. --- */
594
595      /* For the most part, these take a first argument :: Ity_I32 (as
596         IRRoundingMode) which is an indication of the rounding mode
597         to use, as per the following encoding ("the standard
598         encoding"):
599            00b  to nearest (the default)
600            01b  to -infinity
601            10b  to +infinity
602            11b  to zero
603         This just happens to be the Intel encoding.  For reference only,
604         the PPC encoding is:
605            00b  to nearest (the default)
606            01b  to zero
607            10b  to +infinity
608            11b  to -infinity
609         Any PPC -> IR front end will have to translate these PPC
610         encodings, as encoded in the guest state, to the standard
611         encodings, to pass to the primops.
612         For reference only, the ARM VFP encoding is:
613            00b  to nearest
614            01b  to +infinity
615            10b  to -infinity
616            11b  to zero
617         Again, this will have to be converted to the standard encoding
618         to pass to primops.
619
620         If one of these conversions gets an out-of-range condition,
621         or a NaN, as an argument, the result is host-defined.  On x86
622         the "integer indefinite" value 0x80..00 is produced.  On PPC
623         it is either 0x80..00 or 0x7F..FF depending on the sign of
624         the argument.
625
626         On ARMvfp, when converting to a signed integer result, the
627         overflow result is 0x80..00 for negative args and 0x7F..FF
628         for positive args.  For unsigned integer results it is
629         0x00..00 and 0xFF..FF respectively.
630
631         Rounding is required whenever the destination type cannot
632         represent exactly all values of the source type.
633      */
634      Iop_F64toI16S, /* IRRoundingMode(I32) x F64 -> signed I16 */
635      Iop_F64toI32S, /* IRRoundingMode(I32) x F64 -> signed I32 */
636      Iop_F64toI64S, /* IRRoundingMode(I32) x F64 -> signed I64 */
637      Iop_F64toI64U, /* IRRoundingMode(I32) x F64 -> unsigned I64 */
638
639      Iop_F64toI32U, /* IRRoundingMode(I32) x F64 -> unsigned I32 */
640
641      Iop_I32StoF64, /*                       signed I32 -> F64 */
642      Iop_I64StoF64, /* IRRoundingMode(I32) x signed I64 -> F64 */
643      Iop_I64UtoF64, /* IRRoundingMode(I32) x unsigned I64 -> F64 */
644      Iop_I64UtoF32, /* IRRoundingMode(I32) x unsigned I64 -> F32 */
645
646      Iop_I32UtoF32, /* IRRoundingMode(I32) x unsigned I32 -> F32 */
647      Iop_I32UtoF64, /*                       unsigned I32 -> F64 */
648
649      Iop_F32toI32S, /* IRRoundingMode(I32) x F32 -> signed I32 */
650      Iop_F32toI64S, /* IRRoundingMode(I32) x F32 -> signed I64 */
651      Iop_F32toI32U, /* IRRoundingMode(I32) x F32 -> unsigned I32 */
652      Iop_F32toI64U, /* IRRoundingMode(I32) x F32 -> unsigned I64 */
653
654      Iop_I32StoF32, /* IRRoundingMode(I32) x signed I32 -> F32 */
655      Iop_I64StoF32, /* IRRoundingMode(I32) x signed I64 -> F32 */
656
657      /* Conversion between floating point formats */
658      Iop_F32toF64,  /*                       F32 -> F64 */
659      Iop_F64toF32,  /* IRRoundingMode(I32) x F64 -> F32 */
660
661      /* Reinterpretation.  Take an F64 and produce an I64 with
662         the same bit pattern, or vice versa. */
663      Iop_ReinterpF64asI64, Iop_ReinterpI64asF64,
664      Iop_ReinterpF32asI32, Iop_ReinterpI32asF32,
665
666      /* Support for 128-bit floating point */
667      Iop_F64HLtoF128,/* (high half of F128,low half of F128) -> F128 */
668      Iop_F128HItoF64,/* F128 -> high half of F128 into a F64 register */
669      Iop_F128LOtoF64,/* F128 -> low  half of F128 into a F64 register */
670
671      /* :: IRRoundingMode(I32) x F128 x F128 -> F128 */
672      Iop_AddF128, Iop_SubF128, Iop_MulF128, Iop_DivF128,
673
674      /* :: F128 -> F128 */
675      Iop_NegF128, Iop_AbsF128,
676
677      /* :: IRRoundingMode(I32) x F128 -> F128 */
678      Iop_SqrtF128,
679
680      Iop_I32StoF128, /*                signed I32  -> F128 */
681      Iop_I64StoF128, /*                signed I64  -> F128 */
682      Iop_I32UtoF128, /*              unsigned I32  -> F128 */
683      Iop_I64UtoF128, /*              unsigned I64  -> F128 */
684      Iop_F32toF128,  /*                       F32  -> F128 */
685      Iop_F64toF128,  /*                       F64  -> F128 */
686
687      Iop_F128toI32S, /* IRRoundingMode(I32) x F128 -> signed I32  */
688      Iop_F128toI64S, /* IRRoundingMode(I32) x F128 -> signed I64  */
689      Iop_F128toI32U, /* IRRoundingMode(I32) x F128 -> unsigned I32  */
690      Iop_F128toI64U, /* IRRoundingMode(I32) x F128 -> unsigned I64  */
691      Iop_F128toF64,  /* IRRoundingMode(I32) x F128 -> F64         */
692      Iop_F128toF32,  /* IRRoundingMode(I32) x F128 -> F32         */
693
694      /* --- guest x86/amd64 specifics, not mandated by 754. --- */
695
696      /* Binary ops, with rounding. */
697      /* :: IRRoundingMode(I32) x F64 x F64 -> F64 */
698      Iop_AtanF64,       /* FPATAN,  arctan(arg1/arg2)       */
699      Iop_Yl2xF64,       /* FYL2X,   arg1 * log2(arg2)       */
700      Iop_Yl2xp1F64,     /* FYL2XP1, arg1 * log2(arg2+1.0)   */
701      Iop_PRemF64,       /* FPREM,   non-IEEE remainder(arg1/arg2)    */
702      Iop_PRemC3210F64,  /* C3210 flags resulting from FPREM, :: I32 */
703      Iop_PRem1F64,      /* FPREM1,  IEEE remainder(arg1/arg2)    */
704      Iop_PRem1C3210F64, /* C3210 flags resulting from FPREM1, :: I32 */
705      Iop_ScaleF64,      /* FSCALE,  arg1 * (2^RoundTowardsZero(arg2)) */
706      /* Note that on x86 guest, PRem1{C3210} has the same behaviour
707         as the IEEE mandated RemF64, except it is limited in the
708         range of its operand.  Hence the partialness. */
709
710      /* Unary ops, with rounding. */
711      /* :: IRRoundingMode(I32) x F64 -> F64 */
712      Iop_SinF64,    /* FSIN */
713      Iop_CosF64,    /* FCOS */
714      Iop_TanF64,    /* FTAN */
715      Iop_2xm1F64,   /* (2^arg - 1.0) */
716      Iop_RoundF64toInt, /* F64 value to nearest integral value (still
717                            as F64) */
718      Iop_RoundF32toInt, /* F32 value to nearest integral value (still
719                            as F32) */
720
721      /* --- guest s390 specifics, not mandated by 754. --- */
722
723      /* Fused multiply-add/sub */
724      /* :: IRRoundingMode(I32) x F32 x F32 x F32 -> F32
725            (computes arg2 * arg3 +/- arg4) */
726      Iop_MAddF32, Iop_MSubF32,
727
728      /* --- guest ppc32/64 specifics, not mandated by 754. --- */
729
730      /* Ternary operations, with rounding. */
731      /* Fused multiply-add/sub, with 112-bit intermediate
732         precision for ppc.
733         Also used to implement fused multiply-add/sub for s390. */
734      /* :: IRRoundingMode(I32) x F64 x F64 x F64 -> F64
735            (computes arg2 * arg3 +/- arg4) */
736      Iop_MAddF64, Iop_MSubF64,
737
738      /* Variants of the above which produce a 64-bit result but which
739         round their result to a IEEE float range first. */
740      /* :: IRRoundingMode(I32) x F64 x F64 x F64 -> F64 */
741      Iop_MAddF64r32, Iop_MSubF64r32,
742
743      /* :: F64 -> F64 */
744      Iop_RSqrtEst5GoodF64, /* reciprocal square root estimate, 5 good bits */
745      Iop_RoundF64toF64_NEAREST, /* frin */
746      Iop_RoundF64toF64_NegINF,  /* frim */
747      Iop_RoundF64toF64_PosINF,  /* frip */
748      Iop_RoundF64toF64_ZERO,    /* friz */
749
750      /* :: F64 -> F32 */
751      Iop_TruncF64asF32, /* do F64->F32 truncation as per 'fsts' */
752
753      /* :: IRRoundingMode(I32) x F64 -> F64 */
754      Iop_RoundF64toF32, /* round F64 to nearest F32 value (still as F64) */
755      /* NB: pretty much the same as Iop_F64toF32, except no change
756         of type. */
757
758      /* --- guest arm64 specifics, not mandated by 754. --- */
759
760      Iop_RecpExpF64,  /* FRECPX d  :: IRRoundingMode(I32) x F64 -> F64 */
761      Iop_RecpExpF32,  /* FRECPX s  :: IRRoundingMode(I32) x F32 -> F32 */
762
763      /* ------------------ 16-bit scalar FP ------------------ */
764
765      Iop_F16toF64,  /*                       F16 -> F64 */
766      Iop_F64toF16,  /* IRRoundingMode(I32) x F64 -> F16 */
767
768      Iop_F16toF32,  /*                       F16 -> F32 */
769      Iop_F32toF16,  /* IRRoundingMode(I32) x F32 -> F16 */
770
771      /* ------------------ 32-bit SIMD Integer ------------------ */
772
773      /* 32x1 saturating add/sub (ok, well, not really SIMD :) */
774      Iop_QAdd32S,
775      Iop_QSub32S,
776
777      /* 16x2 add/sub, also signed/unsigned saturating variants */
778      Iop_Add16x2, Iop_Sub16x2,
779      Iop_QAdd16Sx2, Iop_QAdd16Ux2,
780      Iop_QSub16Sx2, Iop_QSub16Ux2,
781
782      /* 16x2 signed/unsigned halving add/sub.  For each lane, these
783         compute bits 16:1 of (eg) sx(argL) + sx(argR),
784         or zx(argL) - zx(argR) etc. */
785      Iop_HAdd16Ux2, Iop_HAdd16Sx2,
786      Iop_HSub16Ux2, Iop_HSub16Sx2,
787
788      /* 8x4 add/sub, also signed/unsigned saturating variants */
789      Iop_Add8x4, Iop_Sub8x4,
790      Iop_QAdd8Sx4, Iop_QAdd8Ux4,
791      Iop_QSub8Sx4, Iop_QSub8Ux4,
792
793      /* 8x4 signed/unsigned halving add/sub.  For each lane, these
794         compute bits 8:1 of (eg) sx(argL) + sx(argR),
795         or zx(argL) - zx(argR) etc. */
796      Iop_HAdd8Ux4, Iop_HAdd8Sx4,
797      Iop_HSub8Ux4, Iop_HSub8Sx4,
798
799      /* 8x4 sum of absolute unsigned differences. */
800      Iop_Sad8Ux4,
801
802      /* MISC (vector integer cmp != 0) */
803      Iop_CmpNEZ16x2, Iop_CmpNEZ8x4,
804
805      /* ------------------ 64-bit SIMD FP ------------------------ */
806
807      /* Convertion to/from int */
808      Iop_I32UtoFx2,  Iop_I32StoFx2,    /* I32x4 -> F32x4 */
809      Iop_FtoI32Ux2_RZ,  Iop_FtoI32Sx2_RZ,    /* F32x4 -> I32x4 */
810      /* Fixed32 format is floating-point number with fixed number of fraction
811         bits. The number of fraction bits is passed as a second argument of
812         type I8. */
813      Iop_F32ToFixed32Ux2_RZ, Iop_F32ToFixed32Sx2_RZ, /* fp -> fixed-point */
814      Iop_Fixed32UToF32x2_RN, Iop_Fixed32SToF32x2_RN, /* fixed-point -> fp */
815
816      /* Binary operations */
817      Iop_Max32Fx2,      Iop_Min32Fx2,
818      /* Pairwise Min and Max. See integer pairwise operations for more
819         details. */
820      Iop_PwMax32Fx2,    Iop_PwMin32Fx2,
821      /* Note: For the following compares, the arm front-end assumes a
822         nan in a lane of either argument returns zero for that lane. */
823      Iop_CmpEQ32Fx2, Iop_CmpGT32Fx2, Iop_CmpGE32Fx2,
824
825      /* Vector Reciprocal Estimate finds an approximate reciprocal of each
826      element in the operand vector, and places the results in the destination
827      vector.  */
828      Iop_RecipEst32Fx2,
829
830      /* Vector Reciprocal Step computes (2.0 - arg1 * arg2).
831         Note, that if one of the arguments is zero and another one is infinity
832         of arbitrary sign the result of the operation is 2.0. */
833      Iop_RecipStep32Fx2,
834
835      /* Vector Reciprocal Square Root Estimate finds an approximate reciprocal
836         square root of each element in the operand vector. */
837      Iop_RSqrtEst32Fx2,
838
839      /* Vector Reciprocal Square Root Step computes (3.0 - arg1 * arg2) / 2.0.
840         Note, that of one of the arguments is zero and another one is infiinty
841         of arbitrary sign the result of the operation is 1.5. */
842      Iop_RSqrtStep32Fx2,
843
844      /* Unary */
845      Iop_Neg32Fx2, Iop_Abs32Fx2,
846
847      /* ------------------ 64-bit SIMD Integer. ------------------ */
848
849      /* MISC (vector integer cmp != 0) */
850      Iop_CmpNEZ8x8, Iop_CmpNEZ16x4, Iop_CmpNEZ32x2,
851
852      /* ADDITION (normal / unsigned sat / signed sat) */
853      Iop_Add8x8,   Iop_Add16x4,   Iop_Add32x2,
854      Iop_QAdd8Ux8, Iop_QAdd16Ux4, Iop_QAdd32Ux2, Iop_QAdd64Ux1,
855      Iop_QAdd8Sx8, Iop_QAdd16Sx4, Iop_QAdd32Sx2, Iop_QAdd64Sx1,
856
857      /* PAIRWISE operations */
858      /* Iop_PwFoo16x4( [a,b,c,d], [e,f,g,h] ) =
859            [Foo16(a,b), Foo16(c,d), Foo16(e,f), Foo16(g,h)] */
860      Iop_PwAdd8x8,  Iop_PwAdd16x4,  Iop_PwAdd32x2,
861      Iop_PwMax8Sx8, Iop_PwMax16Sx4, Iop_PwMax32Sx2,
862      Iop_PwMax8Ux8, Iop_PwMax16Ux4, Iop_PwMax32Ux2,
863      Iop_PwMin8Sx8, Iop_PwMin16Sx4, Iop_PwMin32Sx2,
864      Iop_PwMin8Ux8, Iop_PwMin16Ux4, Iop_PwMin32Ux2,
865      /* Longening variant is unary. The resulting vector contains two times
866         less elements than operand, but they are two times wider.
867         Example:
868            Iop_PAddL16Ux4( [a,b,c,d] ) = [a+b,c+d]
869               where a+b and c+d are unsigned 32-bit values. */
870      Iop_PwAddL8Ux8, Iop_PwAddL16Ux4, Iop_PwAddL32Ux2,
871      Iop_PwAddL8Sx8, Iop_PwAddL16Sx4, Iop_PwAddL32Sx2,
872
873      /* SUBTRACTION (normal / unsigned sat / signed sat) */
874      Iop_Sub8x8,   Iop_Sub16x4,   Iop_Sub32x2,
875      Iop_QSub8Ux8, Iop_QSub16Ux4, Iop_QSub32Ux2, Iop_QSub64Ux1,
876      Iop_QSub8Sx8, Iop_QSub16Sx4, Iop_QSub32Sx2, Iop_QSub64Sx1,
877
878      /* ABSOLUTE VALUE */
879      Iop_Abs8x8, Iop_Abs16x4, Iop_Abs32x2,
880
881      /* MULTIPLICATION (normal / high half of signed/unsigned / plynomial ) */
882      Iop_Mul8x8, Iop_Mul16x4, Iop_Mul32x2,
883      Iop_Mul32Fx2,
884      Iop_MulHi16Ux4,
885      Iop_MulHi16Sx4,
886      /* Plynomial multiplication treats it's arguments as coefficients of
887         polynoms over {0, 1}. */
888      Iop_PolynomialMul8x8,
889
890      /* Vector Saturating Doubling Multiply Returning High Half and
891         Vector Saturating Rounding Doubling Multiply Returning High Half */
892      /* These IROp's multiply corresponding elements in two vectors, double
893         the results, and place the most significant half of the final results
894         in the destination vector. The results are truncated or rounded. If
895         any of the results overflow, they are saturated. */
896      Iop_QDMulHi16Sx4, Iop_QDMulHi32Sx2,
897      Iop_QRDMulHi16Sx4, Iop_QRDMulHi32Sx2,
898
899      /* AVERAGING: note: (arg1 + arg2 + 1) >>u 1 */
900      Iop_Avg8Ux8,
901      Iop_Avg16Ux4,
902
903      /* MIN/MAX */
904      Iop_Max8Sx8, Iop_Max16Sx4, Iop_Max32Sx2,
905      Iop_Max8Ux8, Iop_Max16Ux4, Iop_Max32Ux2,
906      Iop_Min8Sx8, Iop_Min16Sx4, Iop_Min32Sx2,
907      Iop_Min8Ux8, Iop_Min16Ux4, Iop_Min32Ux2,
908
909      /* COMPARISON */
910      Iop_CmpEQ8x8,  Iop_CmpEQ16x4,  Iop_CmpEQ32x2,
911      Iop_CmpGT8Ux8, Iop_CmpGT16Ux4, Iop_CmpGT32Ux2,
912      Iop_CmpGT8Sx8, Iop_CmpGT16Sx4, Iop_CmpGT32Sx2,
913
914      /* COUNT ones / leading zeroes / leading sign bits (not including topmost
915         bit) */
916      Iop_Cnt8x8,
917      Iop_Clz8x8, Iop_Clz16x4, Iop_Clz32x2,
918      Iop_Cls8x8, Iop_Cls16x4, Iop_Cls32x2,
919      Iop_Clz64x2,
920
921      /* VECTOR x VECTOR SHIFT / ROTATE */
922      Iop_Shl8x8, Iop_Shl16x4, Iop_Shl32x2,
923      Iop_Shr8x8, Iop_Shr16x4, Iop_Shr32x2,
924      Iop_Sar8x8, Iop_Sar16x4, Iop_Sar32x2,
925      Iop_Sal8x8, Iop_Sal16x4, Iop_Sal32x2, Iop_Sal64x1,
926
927      /* VECTOR x SCALAR SHIFT (shift amt :: Ity_I8) */
928      Iop_ShlN8x8, Iop_ShlN16x4, Iop_ShlN32x2,
929      Iop_ShrN8x8, Iop_ShrN16x4, Iop_ShrN32x2,
930      Iop_SarN8x8, Iop_SarN16x4, Iop_SarN32x2,
931
932      /* VECTOR x VECTOR SATURATING SHIFT */
933      Iop_QShl8x8, Iop_QShl16x4, Iop_QShl32x2, Iop_QShl64x1,
934      Iop_QSal8x8, Iop_QSal16x4, Iop_QSal32x2, Iop_QSal64x1,
935      /* VECTOR x INTEGER SATURATING SHIFT */
936      Iop_QShlNsatSU8x8,  Iop_QShlNsatSU16x4,
937      Iop_QShlNsatSU32x2, Iop_QShlNsatSU64x1,
938      Iop_QShlNsatUU8x8,  Iop_QShlNsatUU16x4,
939      Iop_QShlNsatUU32x2, Iop_QShlNsatUU64x1,
940      Iop_QShlNsatSS8x8,  Iop_QShlNsatSS16x4,
941      Iop_QShlNsatSS32x2, Iop_QShlNsatSS64x1,
942
943      /* NARROWING (binary)
944         -- narrow 2xI64 into 1xI64, hi half from left arg */
945      /* For saturated narrowing, I believe there are 4 variants of
946         the basic arithmetic operation, depending on the signedness
947         of argument and result.  Here are examples that exemplify
948         what I mean:
949
950         QNarrow16Uto8U ( UShort x )  if (x >u 255) x = 255;
951                                      return x[7:0];
952
953         QNarrow16Sto8S ( Short x )   if (x <s -128) x = -128;
954                                      if (x >s  127) x = 127;
955                                      return x[7:0];
956
957         QNarrow16Uto8S ( UShort x )  if (x >u 127) x = 127;
958                                      return x[7:0];
959
960         QNarrow16Sto8U ( Short x )   if (x <s 0)   x = 0;
961                                      if (x >s 255) x = 255;
962                                      return x[7:0];
963      */
964      Iop_QNarrowBin16Sto8Ux8,
965      Iop_QNarrowBin16Sto8Sx8, Iop_QNarrowBin32Sto16Sx4,
966      Iop_NarrowBin16to8x8,    Iop_NarrowBin32to16x4,
967
968      /* INTERLEAVING */
969      /* Interleave lanes from low or high halves of
970         operands.  Most-significant result lane is from the left
971         arg. */
972      Iop_InterleaveHI8x8, Iop_InterleaveHI16x4, Iop_InterleaveHI32x2,
973      Iop_InterleaveLO8x8, Iop_InterleaveLO16x4, Iop_InterleaveLO32x2,
974      /* Interleave odd/even lanes of operands.  Most-significant result lane
975         is from the left arg.  Note that Interleave{Odd,Even}Lanes32x2 are
976         identical to Interleave{HI,LO}32x2 and so are omitted.*/
977      Iop_InterleaveOddLanes8x8, Iop_InterleaveEvenLanes8x8,
978      Iop_InterleaveOddLanes16x4, Iop_InterleaveEvenLanes16x4,
979
980      /* CONCATENATION -- build a new value by concatenating either
981         the even or odd lanes of both operands.  Note that
982         Cat{Odd,Even}Lanes32x2 are identical to Interleave{HI,LO}32x2
983         and so are omitted. */
984      Iop_CatOddLanes8x8, Iop_CatOddLanes16x4,
985      Iop_CatEvenLanes8x8, Iop_CatEvenLanes16x4,
986
987      /* GET / SET elements of VECTOR
988         GET is binop (I64, I8) -> I<elem_size>
989         SET is triop (I64, I8, I<elem_size>) -> I64 */
990      /* Note: the arm back-end handles only constant second argument */
991      Iop_GetElem8x8, Iop_GetElem16x4, Iop_GetElem32x2,
992      Iop_SetElem8x8, Iop_SetElem16x4, Iop_SetElem32x2,
993
994      /* DUPLICATING -- copy value to all lanes */
995      Iop_Dup8x8,   Iop_Dup16x4,   Iop_Dup32x2,
996
997      /* SLICE -- produces the lowest 64 bits of (arg1:arg2) >> (8 * arg3).
998         arg3 is a shift amount in bytes and may be between 0 and 8
999         inclusive.  When 0, the result is arg2; when 8, the result is arg1.
1000         Not all back ends handle all values.  The arm32 and arm64 back
1001         ends handle only immediate arg3 values. */
1002      Iop_Slice64,  // (I64, I64, I8) -> I64
1003
1004      /* REVERSE the order of chunks in vector lanes.  Chunks must be
1005         smaller than the vector lanes (obviously) and so may be 8-,
1006         16- and 32-bit in size. */
1007      /* Examples:
1008            Reverse8sIn16_x4([a,b,c,d,e,f,g,h]) = [b,a,d,c,f,e,h,g]
1009            Reverse8sIn32_x2([a,b,c,d,e,f,g,h]) = [d,c,b,a,h,g,f,e]
1010            Reverse8sIn64_x1([a,b,c,d,e,f,g,h]) = [h,g,f,e,d,c,b,a] */
1011      Iop_Reverse8sIn16_x4,
1012      Iop_Reverse8sIn32_x2, Iop_Reverse16sIn32_x2,
1013      Iop_Reverse8sIn64_x1, Iop_Reverse16sIn64_x1, Iop_Reverse32sIn64_x1,
1014
1015      /* PERMUTING -- copy src bytes to dst,
1016         as indexed by control vector bytes:
1017            for i in 0 .. 7 . result[i] = argL[ argR[i] ]
1018         argR[i] values may only be in the range 0 .. 7, else behaviour
1019         is undefined. */
1020      Iop_Perm8x8,
1021
1022      /* MISC CONVERSION -- get high bits of each byte lane, a la
1023         x86/amd64 pmovmskb */
1024      Iop_GetMSBs8x8, /* I64 -> I8 */
1025
1026      /* Vector Reciprocal Estimate and Vector Reciprocal Square Root Estimate
1027         See floating-point equivalents for details. */
1028      Iop_RecipEst32Ux2, Iop_RSqrtEst32Ux2,
1029
1030      /* ------------------ Decimal Floating Point ------------------ */
1031
1032      /* ARITHMETIC INSTRUCTIONS   64-bit
1033	 ----------------------------------
1034	 IRRoundingMode(I32) X D64 X D64 -> D64
1035      */
1036      Iop_AddD64, Iop_SubD64, Iop_MulD64, Iop_DivD64,
1037
1038      /* ARITHMETIC INSTRUCTIONS  128-bit
1039	 ----------------------------------
1040	 IRRoundingMode(I32) X D128 X D128 -> D128
1041      */
1042      Iop_AddD128, Iop_SubD128, Iop_MulD128, Iop_DivD128,
1043
1044      /* SHIFT SIGNIFICAND INSTRUCTIONS
1045       *    The DFP significand is shifted by the number of digits specified
1046       *    by the U8 operand.  Digits shifted out of the leftmost digit are
1047       *    lost. Zeros are supplied to the vacated positions on the right.
1048       *    The sign of the result is the same as the sign of the original
1049       *    operand.
1050       *
1051       * D64 x U8  -> D64    left shift and right shift respectively */
1052      Iop_ShlD64, Iop_ShrD64,
1053
1054      /* D128 x U8  -> D128  left shift and right shift respectively */
1055      Iop_ShlD128, Iop_ShrD128,
1056
1057
1058      /* FORMAT CONVERSION INSTRUCTIONS
1059       *   D32 -> D64
1060       */
1061      Iop_D32toD64,
1062
1063      /*   D64 -> D128 */
1064      Iop_D64toD128,
1065
1066      /*   I32S -> D128 */
1067      Iop_I32StoD128,
1068
1069      /*   I32U -> D128 */
1070      Iop_I32UtoD128,
1071
1072      /*   I64S -> D128 */
1073      Iop_I64StoD128,
1074
1075      /*   I64U -> D128 */
1076      Iop_I64UtoD128,
1077
1078      /*   IRRoundingMode(I32) x D64 -> D32 */
1079      Iop_D64toD32,
1080
1081      /*   IRRoundingMode(I32) x D128 -> D64 */
1082      Iop_D128toD64,
1083
1084      /*   I32S -> D64 */
1085      Iop_I32StoD64,
1086
1087      /*   I32U -> D64 */
1088      Iop_I32UtoD64,
1089
1090      /*   IRRoundingMode(I32) x I64 -> D64 */
1091      Iop_I64StoD64,
1092
1093      /*   IRRoundingMode(I32) x I64 -> D64 */
1094      Iop_I64UtoD64,
1095
1096      /*   IRRoundingMode(I32) x D64 -> I32 */
1097      Iop_D64toI32S,
1098
1099      /*   IRRoundingMode(I32) x D64 -> I32 */
1100      Iop_D64toI32U,
1101
1102      /*   IRRoundingMode(I32) x D64 -> I64 */
1103      Iop_D64toI64S,
1104
1105      /*   IRRoundingMode(I32) x D64 -> I64 */
1106      Iop_D64toI64U,
1107
1108      /*   IRRoundingMode(I32) x D128 -> I32 */
1109      Iop_D128toI32S,
1110
1111      /*   IRRoundingMode(I32) x D128 -> I32 */
1112      Iop_D128toI32U,
1113
1114      /*   IRRoundingMode(I32) x D128 -> I64 */
1115      Iop_D128toI64S,
1116
1117      /*   IRRoundingMode(I32) x D128 -> I64 */
1118      Iop_D128toI64U,
1119
1120      /*   IRRoundingMode(I32) x F32 -> D32 */
1121      Iop_F32toD32,
1122
1123      /*   IRRoundingMode(I32) x F32 -> D64 */
1124      Iop_F32toD64,
1125
1126      /*   IRRoundingMode(I32) x F32 -> D128 */
1127      Iop_F32toD128,
1128
1129      /*   IRRoundingMode(I32) x F64 -> D32 */
1130      Iop_F64toD32,
1131
1132      /*   IRRoundingMode(I32) x F64 -> D64 */
1133      Iop_F64toD64,
1134
1135      /*   IRRoundingMode(I32) x F64 -> D128 */
1136      Iop_F64toD128,
1137
1138      /*   IRRoundingMode(I32) x F128 -> D32 */
1139      Iop_F128toD32,
1140
1141      /*   IRRoundingMode(I32) x F128 -> D64 */
1142      Iop_F128toD64,
1143
1144      /*   IRRoundingMode(I32) x F128 -> D128 */
1145      Iop_F128toD128,
1146
1147      /*   IRRoundingMode(I32) x D32 -> F32 */
1148      Iop_D32toF32,
1149
1150      /*   IRRoundingMode(I32) x D32 -> F64 */
1151      Iop_D32toF64,
1152
1153      /*   IRRoundingMode(I32) x D32 -> F128 */
1154      Iop_D32toF128,
1155
1156      /*   IRRoundingMode(I32) x D64 -> F32 */
1157      Iop_D64toF32,
1158
1159      /*   IRRoundingMode(I32) x D64 -> F64 */
1160      Iop_D64toF64,
1161
1162      /*   IRRoundingMode(I32) x D64 -> F128 */
1163      Iop_D64toF128,
1164
1165      /*   IRRoundingMode(I32) x D128 -> F32 */
1166      Iop_D128toF32,
1167
1168      /*   IRRoundingMode(I32) x D128 -> F64 */
1169      Iop_D128toF64,
1170
1171      /*   IRRoundingMode(I32) x D128 -> F128 */
1172      Iop_D128toF128,
1173
1174      /* ROUNDING INSTRUCTIONS
1175       * IRRoundingMode(I32) x D64 -> D64
1176       * The D64 operand, if a finite number, it is rounded to a
1177       * floating point integer value, i.e. no fractional part.
1178       */
1179      Iop_RoundD64toInt,
1180
1181      /* IRRoundingMode(I32) x D128 -> D128 */
1182      Iop_RoundD128toInt,
1183
1184      /* COMPARE INSTRUCTIONS
1185       * D64 x D64 -> IRCmpD64Result(I32) */
1186      Iop_CmpD64,
1187
1188      /* D128 x D128 -> IRCmpD128Result(I32) */
1189      Iop_CmpD128,
1190
1191      /* COMPARE BIASED EXPONENET INSTRUCTIONS
1192       * D64 x D64 -> IRCmpD64Result(I32) */
1193      Iop_CmpExpD64,
1194
1195      /* D128 x D128 -> IRCmpD128Result(I32) */
1196      Iop_CmpExpD128,
1197
1198      /* QUANTIZE AND ROUND INSTRUCTIONS
1199       * The source operand is converted and rounded to the form with the
1200       * immediate exponent specified by the rounding and exponent parameter.
1201       *
1202       * The second operand is converted and rounded to the form
1203       * of the first operand's exponent and the rounded based on the specified
1204       * rounding mode parameter.
1205       *
1206       * IRRoundingMode(I32) x D64 x D64-> D64 */
1207      Iop_QuantizeD64,
1208
1209      /* IRRoundingMode(I32) x D128 x D128 -> D128 */
1210      Iop_QuantizeD128,
1211
1212      /* IRRoundingMode(I32) x I8 x D64 -> D64
1213       *    The Decimal Floating point operand is rounded to the requested
1214       *    significance given by the I8 operand as specified by the rounding
1215       *    mode.
1216       */
1217      Iop_SignificanceRoundD64,
1218
1219      /* IRRoundingMode(I32) x I8 x D128 -> D128 */
1220      Iop_SignificanceRoundD128,
1221
1222      /* EXTRACT AND INSERT INSTRUCTIONS
1223       * D64 -> I64
1224       *    The exponent of the D32 or D64 operand is extracted.  The
1225       *    extracted exponent is converted to a 64-bit signed binary integer.
1226       */
1227      Iop_ExtractExpD64,
1228
1229      /* D128 -> I64 */
1230      Iop_ExtractExpD128,
1231
1232      /* D64 -> I64
1233       * The number of significand digits of the D64 operand is extracted.
1234       * The number is stored as a 64-bit signed binary integer.
1235       */
1236      Iop_ExtractSigD64,
1237
1238      /* D128 -> I64 */
1239      Iop_ExtractSigD128,
1240
1241      /* I64 x D64  -> D64
1242       *    The exponent is specified by the first I64 operand the signed
1243       *    significand is given by the second I64 value.  The result is a D64
1244       *    value consisting of the specified significand and exponent whose
1245       *    sign is that of the specified significand.
1246       */
1247      Iop_InsertExpD64,
1248
1249      /* I64 x D128 -> D128 */
1250      Iop_InsertExpD128,
1251
1252      /* Support for 128-bit DFP type */
1253      Iop_D64HLtoD128, Iop_D128HItoD64, Iop_D128LOtoD64,
1254
1255      /*  I64 -> I64
1256       *     Convert 50-bit densely packed BCD string to 60 bit BCD string
1257       */
1258      Iop_DPBtoBCD,
1259
1260      /* I64 -> I64
1261       *     Convert 60 bit BCD string to 50-bit densely packed BCD string
1262       */
1263      Iop_BCDtoDPB,
1264
1265      /* BCD arithmetic instructions, (V128, V128) -> V128
1266       * The BCD format is the same as that used in the BCD<->DPB conversion
1267       * routines, except using 124 digits (vs 60) plus the trailing 4-bit
1268       * signed code. */
1269      Iop_BCDAdd, Iop_BCDSub,
1270
1271      /* Conversion I64 -> D64 */
1272      Iop_ReinterpI64asD64,
1273
1274      /* Conversion D64 -> I64 */
1275      Iop_ReinterpD64asI64,
1276
1277      /* ------------------ 128-bit SIMD FP. ------------------ */
1278
1279      /* --- 32x4 vector FP --- */
1280
1281      /* ternary :: IRRoundingMode(I32) x V128 x V128 -> V128 */
1282      Iop_Add32Fx4, Iop_Sub32Fx4, Iop_Mul32Fx4, Iop_Div32Fx4,
1283
1284      /* binary */
1285      Iop_Max32Fx4, Iop_Min32Fx4,
1286      Iop_Add32Fx2, Iop_Sub32Fx2,
1287      /* Note: For the following compares, the ppc and arm front-ends assume a
1288         nan in a lane of either argument returns zero for that lane. */
1289      Iop_CmpEQ32Fx4, Iop_CmpLT32Fx4, Iop_CmpLE32Fx4, Iop_CmpUN32Fx4,
1290      Iop_CmpGT32Fx4, Iop_CmpGE32Fx4,
1291
1292      /* Pairwise Max and Min. See integer pairwise operations for details. */
1293      Iop_PwMax32Fx4, Iop_PwMin32Fx4,
1294
1295      /* unary */
1296      Iop_Abs32Fx4,
1297      Iop_Neg32Fx4,
1298
1299      /* binary :: IRRoundingMode(I32) x V128 -> V128 */
1300      Iop_Sqrt32Fx4,
1301
1302      /* Vector Reciprocal Estimate finds an approximate reciprocal of each
1303         element in the operand vector, and places the results in the
1304         destination vector.  */
1305      Iop_RecipEst32Fx4,
1306
1307      /* Vector Reciprocal Step computes (2.0 - arg1 * arg2).
1308         Note, that if one of the arguments is zero and another one is infinity
1309         of arbitrary sign the result of the operation is 2.0. */
1310      Iop_RecipStep32Fx4,
1311
1312      /* Vector Reciprocal Square Root Estimate finds an approximate reciprocal
1313         square root of each element in the operand vector. */
1314      Iop_RSqrtEst32Fx4,
1315
1316      /* Vector Reciprocal Square Root Step computes (3.0 - arg1 * arg2) / 2.0.
1317         Note, that of one of the arguments is zero and another one is infiinty
1318         of arbitrary sign the result of the operation is 1.5. */
1319      Iop_RSqrtStep32Fx4,
1320
1321      /* --- Int to/from FP conversion --- */
1322      /* Unlike the standard fp conversions, these irops take no
1323         rounding mode argument. Instead the irop trailers _R{M,P,N,Z}
1324         indicate the mode: {-inf, +inf, nearest, zero} respectively. */
1325      Iop_I32UtoFx4,     Iop_I32StoFx4,       /* I32x4 -> F32x4       */
1326      Iop_FtoI32Ux4_RZ,  Iop_FtoI32Sx4_RZ,    /* F32x4 -> I32x4       */
1327      Iop_QFtoI32Ux4_RZ, Iop_QFtoI32Sx4_RZ,   /* F32x4 -> I32x4 (saturating) */
1328      Iop_RoundF32x4_RM, Iop_RoundF32x4_RP,   /* round to fp integer  */
1329      Iop_RoundF32x4_RN, Iop_RoundF32x4_RZ,   /* round to fp integer  */
1330      /* Fixed32 format is floating-point number with fixed number of fraction
1331         bits. The number of fraction bits is passed as a second argument of
1332         type I8. */
1333      Iop_F32ToFixed32Ux4_RZ, Iop_F32ToFixed32Sx4_RZ, /* fp -> fixed-point */
1334      Iop_Fixed32UToF32x4_RN, Iop_Fixed32SToF32x4_RN, /* fixed-point -> fp */
1335
1336      /* --- Single to/from half conversion --- */
1337      /* FIXME: what kind of rounding in F32x4 -> F16x4 case? */
1338      Iop_F32toF16x4, Iop_F16toF32x4,         /* F32x4 <-> F16x4      */
1339
1340      /* --- 32x4 lowest-lane-only scalar FP --- */
1341
1342      /* In binary cases, upper 3/4 is copied from first operand.  In
1343         unary cases, upper 3/4 is copied from the operand. */
1344
1345      /* binary */
1346      Iop_Add32F0x4, Iop_Sub32F0x4, Iop_Mul32F0x4, Iop_Div32F0x4,
1347      Iop_Max32F0x4, Iop_Min32F0x4,
1348      Iop_CmpEQ32F0x4, Iop_CmpLT32F0x4, Iop_CmpLE32F0x4, Iop_CmpUN32F0x4,
1349
1350      /* unary */
1351      Iop_RecipEst32F0x4, Iop_Sqrt32F0x4, Iop_RSqrtEst32F0x4,
1352
1353      /* --- 64x2 vector FP --- */
1354
1355      /* ternary :: IRRoundingMode(I32) x V128 x V128 -> V128 */
1356      Iop_Add64Fx2, Iop_Sub64Fx2, Iop_Mul64Fx2, Iop_Div64Fx2,
1357
1358      /* binary */
1359      Iop_Max64Fx2, Iop_Min64Fx2,
1360      Iop_CmpEQ64Fx2, Iop_CmpLT64Fx2, Iop_CmpLE64Fx2, Iop_CmpUN64Fx2,
1361
1362      /* unary */
1363      Iop_Abs64Fx2,
1364      Iop_Neg64Fx2,
1365
1366      /* binary :: IRRoundingMode(I32) x V128 -> V128 */
1367      Iop_Sqrt64Fx2,
1368
1369      /* see 32Fx4 variants for description */
1370      Iop_RecipEst64Fx2,    // unary
1371      Iop_RecipStep64Fx2,   // binary
1372      Iop_RSqrtEst64Fx2,    // unary
1373      Iop_RSqrtStep64Fx2,   // binary
1374
1375      /* --- 64x2 lowest-lane-only scalar FP --- */
1376
1377      /* In binary cases, upper half is copied from first operand.  In
1378         unary cases, upper half is copied from the operand. */
1379
1380      /* binary */
1381      Iop_Add64F0x2, Iop_Sub64F0x2, Iop_Mul64F0x2, Iop_Div64F0x2,
1382      Iop_Max64F0x2, Iop_Min64F0x2,
1383      Iop_CmpEQ64F0x2, Iop_CmpLT64F0x2, Iop_CmpLE64F0x2, Iop_CmpUN64F0x2,
1384
1385      /* unary */
1386      Iop_Sqrt64F0x2,
1387
1388      /* --- pack / unpack --- */
1389
1390      /* 64 <-> 128 bit vector */
1391      Iop_V128to64,     // :: V128 -> I64, low half
1392      Iop_V128HIto64,   // :: V128 -> I64, high half
1393      Iop_64HLtoV128,   // :: (I64,I64) -> V128
1394
1395      Iop_64UtoV128,
1396      Iop_SetV128lo64,
1397
1398      /* Copies lower 64/32/16/8 bits, zeroes out the rest. */
1399      Iop_ZeroHI64ofV128,    // :: V128 -> V128
1400      Iop_ZeroHI96ofV128,    // :: V128 -> V128
1401      Iop_ZeroHI112ofV128,   // :: V128 -> V128
1402      Iop_ZeroHI120ofV128,   // :: V128 -> V128
1403
1404      /* 32 <-> 128 bit vector */
1405      Iop_32UtoV128,
1406      Iop_V128to32,     // :: V128 -> I32, lowest lane
1407      Iop_SetV128lo32,  // :: (V128,I32) -> V128
1408
1409      /* ------------------ 128-bit SIMD Integer. ------------------ */
1410
1411      /* BITWISE OPS */
1412      Iop_NotV128,
1413      Iop_AndV128, Iop_OrV128, Iop_XorV128,
1414
1415      /* VECTOR SHIFT (shift amt :: Ity_I8) */
1416      Iop_ShlV128, Iop_ShrV128,
1417
1418      /* MISC (vector integer cmp != 0) */
1419      Iop_CmpNEZ8x16, Iop_CmpNEZ16x8, Iop_CmpNEZ32x4, Iop_CmpNEZ64x2,
1420
1421      /* ADDITION (normal / U->U sat / S->S sat) */
1422      Iop_Add8x16,    Iop_Add16x8,    Iop_Add32x4,    Iop_Add64x2,
1423      Iop_QAdd8Ux16,  Iop_QAdd16Ux8,  Iop_QAdd32Ux4,  Iop_QAdd64Ux2,
1424      Iop_QAdd8Sx16,  Iop_QAdd16Sx8,  Iop_QAdd32Sx4,  Iop_QAdd64Sx2,
1425
1426      /* ADDITION, ARM64 specific saturating variants. */
1427      /* Unsigned widen left arg, signed widen right arg, add, saturate S->S.
1428         This corresponds to SUQADD. */
1429      Iop_QAddExtUSsatSS8x16, Iop_QAddExtUSsatSS16x8,
1430      Iop_QAddExtUSsatSS32x4, Iop_QAddExtUSsatSS64x2,
1431      /* Signed widen left arg, unsigned widen right arg, add, saturate U->U.
1432         This corresponds to USQADD. */
1433      Iop_QAddExtSUsatUU8x16, Iop_QAddExtSUsatUU16x8,
1434      Iop_QAddExtSUsatUU32x4, Iop_QAddExtSUsatUU64x2,
1435
1436      /* SUBTRACTION (normal / unsigned sat / signed sat) */
1437      Iop_Sub8x16,   Iop_Sub16x8,   Iop_Sub32x4,   Iop_Sub64x2,
1438      Iop_QSub8Ux16, Iop_QSub16Ux8, Iop_QSub32Ux4, Iop_QSub64Ux2,
1439      Iop_QSub8Sx16, Iop_QSub16Sx8, Iop_QSub32Sx4, Iop_QSub64Sx2,
1440
1441      /* MULTIPLICATION (normal / high half of signed/unsigned) */
1442      Iop_Mul8x16,  Iop_Mul16x8,    Iop_Mul32x4,
1443                    Iop_MulHi16Ux8, Iop_MulHi32Ux4,
1444                    Iop_MulHi16Sx8, Iop_MulHi32Sx4,
1445      /* (widening signed/unsigned of even lanes, with lowest lane=zero) */
1446      Iop_MullEven8Ux16, Iop_MullEven16Ux8, Iop_MullEven32Ux4,
1447      Iop_MullEven8Sx16, Iop_MullEven16Sx8, Iop_MullEven32Sx4,
1448
1449      /* Widening multiplies, all of the form (I64, I64) -> V128 */
1450      Iop_Mull8Ux8, Iop_Mull8Sx8,
1451      Iop_Mull16Ux4, Iop_Mull16Sx4,
1452      Iop_Mull32Ux2, Iop_Mull32Sx2,
1453
1454      /* Signed doubling saturating widening multiplies, (I64, I64) -> V128 */
1455      Iop_QDMull16Sx4, Iop_QDMull32Sx2,
1456
1457      /* Vector Saturating Doubling Multiply Returning High Half and
1458         Vector Saturating Rounding Doubling Multiply Returning High Half.
1459         These IROps multiply corresponding elements in two vectors, double
1460         the results, and place the most significant half of the final results
1461         in the destination vector.  The results are truncated or rounded.  If
1462         any of the results overflow, they are saturated.  To be more precise,
1463         for each lane, the computed result is:
1464           QDMulHi:
1465             hi-half( sign-extend(laneL) *q sign-extend(laneR) *q 2 )
1466           QRDMulHi:
1467             hi-half( sign-extend(laneL) *q sign-extend(laneR) *q 2
1468                      +q (1 << (lane-width-in-bits - 1)) )
1469      */
1470      Iop_QDMulHi16Sx8,  Iop_QDMulHi32Sx4,  /* (V128, V128) -> V128 */
1471      Iop_QRDMulHi16Sx8, Iop_QRDMulHi32Sx4, /* (V128, V128) -> V128 */
1472
1473      /* Polynomial multiplication treats its arguments as
1474         coefficients of polynomials over {0, 1}. */
1475      Iop_PolynomialMul8x16, /* (V128, V128) -> V128 */
1476      Iop_PolynomialMull8x8, /*   (I64, I64) -> V128 */
1477
1478      /* Vector Polynomial multiplication add.   (V128, V128) -> V128
1479
1480       *** Below is the algorithm for the instructions. These Iops could
1481           be emulated to get this functionality, but the emulation would
1482           be long and messy.
1483
1484        Example for polynomial multiply add for vector of bytes
1485        do i = 0 to 15
1486            prod[i].bit[0:14] <- 0
1487            srcA <- VR[argL].byte[i]
1488            srcB <- VR[argR].byte[i]
1489            do j = 0 to 7
1490                do k = 0 to j
1491                    gbit <- srcA.bit[k] & srcB.bit[j-k]
1492                    prod[i].bit[j] <- prod[i].bit[j] ^ gbit
1493                end
1494            end
1495
1496            do j = 8 to 14
1497                do k = j-7 to 7
1498                     gbit <- (srcA.bit[k] & srcB.bit[j-k])
1499                     prod[i].bit[j] <- prod[i].bit[j] ^ gbit
1500                end
1501            end
1502        end
1503
1504        do i = 0 to 7
1505            VR[dst].hword[i] <- 0b0 || (prod[2×i] ^ prod[2×i+1])
1506        end
1507      */
1508      Iop_PolynomialMulAdd8x16, Iop_PolynomialMulAdd16x8,
1509      Iop_PolynomialMulAdd32x4, Iop_PolynomialMulAdd64x2,
1510
1511      /* PAIRWISE operations */
1512      /* Iop_PwFoo16x4( [a,b,c,d], [e,f,g,h] ) =
1513            [Foo16(a,b), Foo16(c,d), Foo16(e,f), Foo16(g,h)] */
1514      Iop_PwAdd8x16, Iop_PwAdd16x8, Iop_PwAdd32x4,
1515      Iop_PwAdd32Fx2,
1516      /* Longening variant is unary. The resulting vector contains two times
1517         less elements than operand, but they are two times wider.
1518         Example:
1519            Iop_PwAddL16Ux4( [a,b,c,d] ) = [a+b,c+d]
1520               where a+b and c+d are unsigned 32-bit values. */
1521      Iop_PwAddL8Ux16, Iop_PwAddL16Ux8, Iop_PwAddL32Ux4,
1522      Iop_PwAddL8Sx16, Iop_PwAddL16Sx8, Iop_PwAddL32Sx4,
1523
1524      /* Other unary pairwise ops */
1525
1526      /* Vector bit matrix transpose.  (V128) -> V128 */
1527      /* For each doubleword element of the source vector, an 8-bit x 8-bit
1528       * matrix transpose is performed. */
1529      Iop_PwBitMtxXpose64x2,
1530
1531      /* ABSOLUTE VALUE */
1532      Iop_Abs8x16, Iop_Abs16x8, Iop_Abs32x4, Iop_Abs64x2,
1533
1534      /* AVERAGING: note: (arg1 + arg2 + 1) >>u 1 */
1535      Iop_Avg8Ux16, Iop_Avg16Ux8, Iop_Avg32Ux4,
1536      Iop_Avg8Sx16, Iop_Avg16Sx8, Iop_Avg32Sx4,
1537
1538      /* MIN/MAX */
1539      Iop_Max8Sx16, Iop_Max16Sx8, Iop_Max32Sx4, Iop_Max64Sx2,
1540      Iop_Max8Ux16, Iop_Max16Ux8, Iop_Max32Ux4, Iop_Max64Ux2,
1541      Iop_Min8Sx16, Iop_Min16Sx8, Iop_Min32Sx4, Iop_Min64Sx2,
1542      Iop_Min8Ux16, Iop_Min16Ux8, Iop_Min32Ux4, Iop_Min64Ux2,
1543
1544      /* COMPARISON */
1545      Iop_CmpEQ8x16,  Iop_CmpEQ16x8,  Iop_CmpEQ32x4,  Iop_CmpEQ64x2,
1546      Iop_CmpGT8Sx16, Iop_CmpGT16Sx8, Iop_CmpGT32Sx4, Iop_CmpGT64Sx2,
1547      Iop_CmpGT8Ux16, Iop_CmpGT16Ux8, Iop_CmpGT32Ux4, Iop_CmpGT64Ux2,
1548
1549      /* COUNT ones / leading zeroes / leading sign bits (not including topmost
1550         bit) */
1551      Iop_Cnt8x16,
1552      Iop_Clz8x16, Iop_Clz16x8, Iop_Clz32x4,
1553      Iop_Cls8x16, Iop_Cls16x8, Iop_Cls32x4,
1554
1555      /* VECTOR x SCALAR SHIFT (shift amt :: Ity_I8) */
1556      Iop_ShlN8x16, Iop_ShlN16x8, Iop_ShlN32x4, Iop_ShlN64x2,
1557      Iop_ShrN8x16, Iop_ShrN16x8, Iop_ShrN32x4, Iop_ShrN64x2,
1558      Iop_SarN8x16, Iop_SarN16x8, Iop_SarN32x4, Iop_SarN64x2,
1559
1560      /* VECTOR x VECTOR SHIFT / ROTATE */
1561      /* FIXME: I'm pretty sure the ARM32 front/back ends interpret these
1562         differently from all other targets.  The intention is that
1563         the shift amount (2nd arg) is interpreted as unsigned and
1564         only the lowest log2(lane-bits) bits are relevant.  But the
1565         ARM32 versions treat the shift amount as an 8 bit signed
1566         number.  The ARM32 uses should be replaced by the relevant
1567         vector x vector bidirectional shifts instead. */
1568      Iop_Shl8x16, Iop_Shl16x8, Iop_Shl32x4, Iop_Shl64x2,
1569      Iop_Shr8x16, Iop_Shr16x8, Iop_Shr32x4, Iop_Shr64x2,
1570      Iop_Sar8x16, Iop_Sar16x8, Iop_Sar32x4, Iop_Sar64x2,
1571      Iop_Sal8x16, Iop_Sal16x8, Iop_Sal32x4, Iop_Sal64x2,
1572      Iop_Rol8x16, Iop_Rol16x8, Iop_Rol32x4, Iop_Rol64x2,
1573
1574      /* VECTOR x VECTOR SATURATING SHIFT */
1575      Iop_QShl8x16, Iop_QShl16x8, Iop_QShl32x4, Iop_QShl64x2,
1576      Iop_QSal8x16, Iop_QSal16x8, Iop_QSal32x4, Iop_QSal64x2,
1577      /* VECTOR x INTEGER SATURATING SHIFT */
1578      Iop_QShlNsatSU8x16, Iop_QShlNsatSU16x8,
1579      Iop_QShlNsatSU32x4, Iop_QShlNsatSU64x2,
1580      Iop_QShlNsatUU8x16, Iop_QShlNsatUU16x8,
1581      Iop_QShlNsatUU32x4, Iop_QShlNsatUU64x2,
1582      Iop_QShlNsatSS8x16, Iop_QShlNsatSS16x8,
1583      Iop_QShlNsatSS32x4, Iop_QShlNsatSS64x2,
1584
1585      /* VECTOR x VECTOR BIDIRECTIONAL SATURATING (& MAYBE ROUNDING) SHIFT */
1586      /* All of type (V128, V128) -> V256. */
1587      /* The least significant 8 bits of each lane of the second
1588         operand are used as the shift amount, and interpreted signedly.
1589         Positive values mean a shift left, negative a shift right.  The
1590         result is signedly or unsignedly saturated.  There are also
1591         rounding variants, which add 2^(shift_amount-1) to the value before
1592         shifting, but only in the shift-right case.  Vacated positions
1593         are filled with zeroes.  IOW, it's either SHR or SHL, but not SAR.
1594
1595         These operations return 129 bits: one bit ("Q") indicating whether
1596         saturation occurred, and the shift result.  The result type is V256,
1597         of which the lower V128 is the shift result, and Q occupies the
1598         least significant bit of the upper V128.  All other bits of the
1599         upper V128 are zero. */
1600      // Unsigned saturation, no rounding
1601      Iop_QandUQsh8x16, Iop_QandUQsh16x8,
1602      Iop_QandUQsh32x4, Iop_QandUQsh64x2,
1603      // Signed saturation, no rounding
1604      Iop_QandSQsh8x16, Iop_QandSQsh16x8,
1605      Iop_QandSQsh32x4, Iop_QandSQsh64x2,
1606
1607      // Unsigned saturation, rounding
1608      Iop_QandUQRsh8x16, Iop_QandUQRsh16x8,
1609      Iop_QandUQRsh32x4, Iop_QandUQRsh64x2,
1610      // Signed saturation, rounding
1611      Iop_QandSQRsh8x16, Iop_QandSQRsh16x8,
1612      Iop_QandSQRsh32x4, Iop_QandSQRsh64x2,
1613
1614      /* VECTOR x VECTOR BIDIRECTIONAL (& MAYBE ROUNDING) SHIFT */
1615      /* All of type (V128, V128) -> V128 */
1616      /* The least significant 8 bits of each lane of the second
1617         operand are used as the shift amount, and interpreted signedly.
1618         Positive values mean a shift left, negative a shift right.
1619         There are also rounding variants, which add 2^(shift_amount-1)
1620         to the value before shifting, but only in the shift-right case.
1621
1622         For left shifts, the vacated places are filled with zeroes.
1623         For right shifts, the vacated places are filled with zeroes
1624         for the U variants and sign bits for the S variants. */
1625      // Signed and unsigned, non-rounding
1626      Iop_Sh8Sx16, Iop_Sh16Sx8, Iop_Sh32Sx4, Iop_Sh64Sx2,
1627      Iop_Sh8Ux16, Iop_Sh16Ux8, Iop_Sh32Ux4, Iop_Sh64Ux2,
1628
1629      // Signed and unsigned, rounding
1630      Iop_Rsh8Sx16, Iop_Rsh16Sx8, Iop_Rsh32Sx4, Iop_Rsh64Sx2,
1631      Iop_Rsh8Ux16, Iop_Rsh16Ux8, Iop_Rsh32Ux4, Iop_Rsh64Ux2,
1632
1633      /* The least significant 8 bits of each lane of the second
1634         operand are used as the shift amount, and interpreted signedly.
1635         Positive values mean a shift left, negative a shift right.  The
1636         result is signedly or unsignedly saturated.  There are also
1637         rounding variants, which add 2^(shift_amount-1) to the value before
1638         shifting, but only in the shift-right case.  Vacated positions
1639         are filled with zeroes.  IOW, it's either SHR or SHL, but not SAR.
1640      */
1641
1642      /* VECTOR x SCALAR SATURATING (& MAYBE ROUNDING) NARROWING SHIFT RIGHT */
1643      /* All of type (V128, I8) -> V128 */
1644      /* The first argument is shifted right, then narrowed to half the width
1645         by saturating it.  The second argument is a scalar shift amount that
1646         applies to all lanes, and must be a value in the range 1 to lane_width.
1647         The shift may be done signedly (Sar variants) or unsignedly (Shr
1648         variants).  The saturation is done according to the two signedness
1649         indicators at the end of the name.  For example 64Sto32U means a
1650         signed 64 bit value is saturated into an unsigned 32 bit value.
1651         Additionally, the QRS variants do rounding, that is, they add the
1652         value (1 << (shift_amount-1)) to each source lane before shifting.
1653
1654         These operations return 65 bits: one bit ("Q") indicating whether
1655         saturation occurred, and the shift result.  The result type is V128,
1656         of which the lower half is the shift result, and Q occupies the
1657         least significant bit of the upper half.  All other bits of the
1658         upper half are zero. */
1659      // No rounding, sat U->U
1660      Iop_QandQShrNnarrow16Uto8Ux8,
1661      Iop_QandQShrNnarrow32Uto16Ux4, Iop_QandQShrNnarrow64Uto32Ux2,
1662      // No rounding, sat S->S
1663      Iop_QandQSarNnarrow16Sto8Sx8,
1664      Iop_QandQSarNnarrow32Sto16Sx4, Iop_QandQSarNnarrow64Sto32Sx2,
1665      // No rounding, sat S->U
1666      Iop_QandQSarNnarrow16Sto8Ux8,
1667      Iop_QandQSarNnarrow32Sto16Ux4, Iop_QandQSarNnarrow64Sto32Ux2,
1668
1669      // Rounding, sat U->U
1670      Iop_QandQRShrNnarrow16Uto8Ux8,
1671      Iop_QandQRShrNnarrow32Uto16Ux4, Iop_QandQRShrNnarrow64Uto32Ux2,
1672      // Rounding, sat S->S
1673      Iop_QandQRSarNnarrow16Sto8Sx8,
1674      Iop_QandQRSarNnarrow32Sto16Sx4, Iop_QandQRSarNnarrow64Sto32Sx2,
1675      // Rounding, sat S->U
1676      Iop_QandQRSarNnarrow16Sto8Ux8,
1677      Iop_QandQRSarNnarrow32Sto16Ux4, Iop_QandQRSarNnarrow64Sto32Ux2,
1678
1679      /* NARROWING (binary)
1680         -- narrow 2xV128 into 1xV128, hi half from left arg */
1681      /* See comments above w.r.t. U vs S issues in saturated narrowing. */
1682      Iop_QNarrowBin16Sto8Ux16, Iop_QNarrowBin32Sto16Ux8,
1683      Iop_QNarrowBin16Sto8Sx16, Iop_QNarrowBin32Sto16Sx8,
1684      Iop_QNarrowBin16Uto8Ux16, Iop_QNarrowBin32Uto16Ux8,
1685      Iop_NarrowBin16to8x16, Iop_NarrowBin32to16x8,
1686      Iop_QNarrowBin64Sto32Sx4, Iop_QNarrowBin64Uto32Ux4,
1687      Iop_NarrowBin64to32x4,
1688
1689      /* NARROWING (unary) -- narrow V128 into I64 */
1690      Iop_NarrowUn16to8x8, Iop_NarrowUn32to16x4, Iop_NarrowUn64to32x2,
1691      /* Saturating narrowing from signed source to signed/unsigned
1692         destination */
1693      Iop_QNarrowUn16Sto8Sx8, Iop_QNarrowUn32Sto16Sx4, Iop_QNarrowUn64Sto32Sx2,
1694      Iop_QNarrowUn16Sto8Ux8, Iop_QNarrowUn32Sto16Ux4, Iop_QNarrowUn64Sto32Ux2,
1695      /* Saturating narrowing from unsigned source to unsigned destination */
1696      Iop_QNarrowUn16Uto8Ux8, Iop_QNarrowUn32Uto16Ux4, Iop_QNarrowUn64Uto32Ux2,
1697
1698      /* WIDENING -- sign or zero extend each element of the argument
1699         vector to the twice original size.  The resulting vector consists of
1700         the same number of elements but each element and the vector itself
1701         are twice as wide.
1702         All operations are I64->V128.
1703         Example
1704            Iop_Widen32Sto64x2( [a, b] ) = [c, d]
1705               where c = Iop_32Sto64(a) and d = Iop_32Sto64(b) */
1706      Iop_Widen8Uto16x8, Iop_Widen16Uto32x4, Iop_Widen32Uto64x2,
1707      Iop_Widen8Sto16x8, Iop_Widen16Sto32x4, Iop_Widen32Sto64x2,
1708
1709      /* INTERLEAVING */
1710      /* Interleave lanes from low or high halves of
1711         operands.  Most-significant result lane is from the left
1712         arg. */
1713      Iop_InterleaveHI8x16, Iop_InterleaveHI16x8,
1714      Iop_InterleaveHI32x4, Iop_InterleaveHI64x2,
1715      Iop_InterleaveLO8x16, Iop_InterleaveLO16x8,
1716      Iop_InterleaveLO32x4, Iop_InterleaveLO64x2,
1717      /* Interleave odd/even lanes of operands.  Most-significant result lane
1718         is from the left arg. */
1719      Iop_InterleaveOddLanes8x16, Iop_InterleaveEvenLanes8x16,
1720      Iop_InterleaveOddLanes16x8, Iop_InterleaveEvenLanes16x8,
1721      Iop_InterleaveOddLanes32x4, Iop_InterleaveEvenLanes32x4,
1722
1723      /* CONCATENATION -- build a new value by concatenating either
1724         the even or odd lanes of both operands.  Note that
1725         Cat{Odd,Even}Lanes64x2 are identical to Interleave{HI,LO}64x2
1726         and so are omitted. */
1727      Iop_CatOddLanes8x16, Iop_CatOddLanes16x8, Iop_CatOddLanes32x4,
1728      Iop_CatEvenLanes8x16, Iop_CatEvenLanes16x8, Iop_CatEvenLanes32x4,
1729
1730      /* GET elements of VECTOR
1731         GET is binop (V128, I8) -> I<elem_size> */
1732      /* Note: the arm back-end handles only constant second argument. */
1733      Iop_GetElem8x16, Iop_GetElem16x8, Iop_GetElem32x4, Iop_GetElem64x2,
1734
1735      /* DUPLICATING -- copy value to all lanes */
1736      Iop_Dup8x16,   Iop_Dup16x8,   Iop_Dup32x4,
1737
1738      /* SLICE -- produces the lowest 128 bits of (arg1:arg2) >> (8 * arg3).
1739         arg3 is a shift amount in bytes and may be between 0 and 16
1740         inclusive.  When 0, the result is arg2; when 16, the result is arg1.
1741         Not all back ends handle all values.  The arm64 back
1742         end handles only immediate arg3 values. */
1743      Iop_SliceV128,  // (V128, V128, I8) -> V128
1744
1745      /* REVERSE the order of chunks in vector lanes.  Chunks must be
1746         smaller than the vector lanes (obviously) and so may be 8-,
1747         16- and 32-bit in size.  See definitions of 64-bit SIMD
1748         versions above for examples. */
1749      Iop_Reverse8sIn16_x8,
1750      Iop_Reverse8sIn32_x4, Iop_Reverse16sIn32_x4,
1751      Iop_Reverse8sIn64_x2, Iop_Reverse16sIn64_x2, Iop_Reverse32sIn64_x2,
1752      Iop_Reverse1sIn8_x16, /* Reverse bits in each byte lane. */
1753
1754      /* PERMUTING -- copy src bytes to dst,
1755         as indexed by control vector bytes:
1756            for i in 0 .. 15 . result[i] = argL[ argR[i] ]
1757         argR[i] values may only be in the range 0 .. 15, else behaviour
1758         is undefined. */
1759      Iop_Perm8x16,
1760      Iop_Perm32x4, /* ditto, except argR values are restricted to 0 .. 3 */
1761
1762      /* MISC CONVERSION -- get high bits of each byte lane, a la
1763         x86/amd64 pmovmskb */
1764      Iop_GetMSBs8x16, /* V128 -> I16 */
1765
1766      /* Vector Reciprocal Estimate and Vector Reciprocal Square Root Estimate
1767         See floating-point equivalents for details. */
1768      Iop_RecipEst32Ux4, Iop_RSqrtEst32Ux4,
1769
1770      /* ------------------ 256-bit SIMD Integer. ------------------ */
1771
1772      /* Pack/unpack */
1773      Iop_V256to64_0,  // V256 -> I64, extract least significant lane
1774      Iop_V256to64_1,
1775      Iop_V256to64_2,
1776      Iop_V256to64_3,  // V256 -> I64, extract most significant lane
1777
1778      Iop_64x4toV256,  // (I64,I64,I64,I64)->V256
1779                       // first arg is most significant lane
1780
1781      Iop_V256toV128_0, // V256 -> V128, less significant lane
1782      Iop_V256toV128_1, // V256 -> V128, more significant lane
1783      Iop_V128HLtoV256, // (V128,V128)->V256, first arg is most signif
1784
1785      Iop_AndV256,
1786      Iop_OrV256,
1787      Iop_XorV256,
1788      Iop_NotV256,
1789
1790      /* MISC (vector integer cmp != 0) */
1791      Iop_CmpNEZ8x32, Iop_CmpNEZ16x16, Iop_CmpNEZ32x8, Iop_CmpNEZ64x4,
1792
1793      Iop_Add8x32,    Iop_Add16x16,    Iop_Add32x8,    Iop_Add64x4,
1794      Iop_Sub8x32,    Iop_Sub16x16,    Iop_Sub32x8,    Iop_Sub64x4,
1795
1796      Iop_CmpEQ8x32,  Iop_CmpEQ16x16,  Iop_CmpEQ32x8,  Iop_CmpEQ64x4,
1797      Iop_CmpGT8Sx32, Iop_CmpGT16Sx16, Iop_CmpGT32Sx8, Iop_CmpGT64Sx4,
1798
1799      Iop_ShlN16x16, Iop_ShlN32x8, Iop_ShlN64x4,
1800      Iop_ShrN16x16, Iop_ShrN32x8, Iop_ShrN64x4,
1801      Iop_SarN16x16, Iop_SarN32x8,
1802
1803      Iop_Max8Sx32, Iop_Max16Sx16, Iop_Max32Sx8,
1804      Iop_Max8Ux32, Iop_Max16Ux16, Iop_Max32Ux8,
1805      Iop_Min8Sx32, Iop_Min16Sx16, Iop_Min32Sx8,
1806      Iop_Min8Ux32, Iop_Min16Ux16, Iop_Min32Ux8,
1807
1808      Iop_Mul16x16, Iop_Mul32x8,
1809      Iop_MulHi16Ux16, Iop_MulHi16Sx16,
1810
1811      Iop_QAdd8Ux32, Iop_QAdd16Ux16,
1812      Iop_QAdd8Sx32, Iop_QAdd16Sx16,
1813      Iop_QSub8Ux32, Iop_QSub16Ux16,
1814      Iop_QSub8Sx32, Iop_QSub16Sx16,
1815
1816      Iop_Avg8Ux32, Iop_Avg16Ux16,
1817
1818      Iop_Perm32x8,
1819
1820      /* (V128, V128) -> V128 */
1821      Iop_CipherV128, Iop_CipherLV128, Iop_CipherSV128,
1822      Iop_NCipherV128, Iop_NCipherLV128,
1823
1824      /* Hash instructions, Federal Information Processing Standards
1825       * Publication 180-3 Secure Hash Standard. */
1826      /* (V128, I8) -> V128; The I8 input arg is (ST | SIX), where ST and
1827       * SIX are fields from the insn. See ISA 2.07 description of
1828       * vshasigmad and vshasigmaw insns.*/
1829      Iop_SHA512, Iop_SHA256,
1830
1831      /* ------------------ 256-bit SIMD FP. ------------------ */
1832
1833      /* ternary :: IRRoundingMode(I32) x V256 x V256 -> V256 */
1834      Iop_Add64Fx4, Iop_Sub64Fx4, Iop_Mul64Fx4, Iop_Div64Fx4,
1835      Iop_Add32Fx8, Iop_Sub32Fx8, Iop_Mul32Fx8, Iop_Div32Fx8,
1836
1837      Iop_Sqrt32Fx8,
1838      Iop_Sqrt64Fx4,
1839      Iop_RSqrtEst32Fx8,
1840      Iop_RecipEst32Fx8,
1841
1842      Iop_Max32Fx8, Iop_Min32Fx8,
1843      Iop_Max64Fx4, Iop_Min64Fx4,
1844      Iop_LAST      /* must be the last enumerator */
1845   }
1846   IROp;
1847
1848/* Pretty-print an op. */
1849extern void ppIROp ( IROp );
1850
1851
1852/* Encoding of IEEE754-specified rounding modes.
1853   Note, various front and back ends rely on the actual numerical
1854   values of these, so do not change them. */
1855typedef
1856   enum {
1857      Irrm_NEAREST              = 0,  // Round to nearest, ties to even
1858      Irrm_NegINF               = 1,  // Round to negative infinity
1859      Irrm_PosINF               = 2,  // Round to positive infinity
1860      Irrm_ZERO                 = 3,  // Round toward zero
1861      Irrm_NEAREST_TIE_AWAY_0   = 4,  // Round to nearest, ties away from 0
1862      Irrm_PREPARE_SHORTER      = 5,  // Round to prepare for shorter
1863                                      // precision
1864      Irrm_AWAY_FROM_ZERO       = 6,  // Round to away from 0
1865      Irrm_NEAREST_TIE_TOWARD_0 = 7   // Round to nearest, ties towards 0
1866   }
1867   IRRoundingMode;
1868
1869/* Binary floating point comparison result values.
1870   This is also derived from what IA32 does. */
1871typedef
1872   enum {
1873      Ircr_UN = 0x45,
1874      Ircr_LT = 0x01,
1875      Ircr_GT = 0x00,
1876      Ircr_EQ = 0x40
1877   }
1878   IRCmpFResult;
1879
1880typedef IRCmpFResult IRCmpF32Result;
1881typedef IRCmpFResult IRCmpF64Result;
1882typedef IRCmpFResult IRCmpF128Result;
1883
1884/* Decimal floating point result values. */
1885typedef IRCmpFResult IRCmpDResult;
1886typedef IRCmpDResult IRCmpD64Result;
1887typedef IRCmpDResult IRCmpD128Result;
1888
1889/* ------------------ Expressions ------------------ */
1890
1891typedef struct _IRQop   IRQop;   /* forward declaration */
1892typedef struct _IRTriop IRTriop; /* forward declaration */
1893
1894
1895/* The different kinds of expressions.  Their meaning is explained below
1896   in the comments for IRExpr. */
1897typedef
1898   enum {
1899      Iex_Binder=0x1900,
1900      Iex_Get,
1901      Iex_GetI,
1902      Iex_RdTmp,
1903      Iex_Qop,
1904      Iex_Triop,
1905      Iex_Binop,
1906      Iex_Unop,
1907      Iex_Load,
1908      Iex_Const,
1909      Iex_ITE,
1910      Iex_CCall,
1911      Iex_VECRET,
1912      Iex_BBPTR
1913   }
1914   IRExprTag;
1915
1916/* An expression.  Stored as a tagged union.  'tag' indicates what kind
1917   of expression this is.  'Iex' is the union that holds the fields.  If
1918   an IRExpr 'e' has e.tag equal to Iex_Load, then it's a load
1919   expression, and the fields can be accessed with
1920   'e.Iex.Load.<fieldname>'.
1921
1922   For each kind of expression, we show what it looks like when
1923   pretty-printed with ppIRExpr().
1924*/
1925typedef
1926   struct _IRExpr
1927   IRExpr;
1928
1929struct _IRExpr {
1930   IRExprTag tag;
1931   union {
1932      /* Used only in pattern matching within Vex.  Should not be seen
1933         outside of Vex. */
1934      struct {
1935         Int binder;
1936      } Binder;
1937
1938      /* Read a guest register, at a fixed offset in the guest state.
1939         ppIRExpr output: GET:<ty>(<offset>), eg. GET:I32(0)
1940      */
1941      struct {
1942         Int    offset;    /* Offset into the guest state */
1943         IRType ty;        /* Type of the value being read */
1944      } Get;
1945
1946      /* Read a guest register at a non-fixed offset in the guest
1947         state.  This allows circular indexing into parts of the guest
1948         state, which is essential for modelling situations where the
1949         identity of guest registers is not known until run time.  One
1950         example is the x87 FP register stack.
1951
1952         The part of the guest state to be treated as a circular array
1953         is described in the IRRegArray 'descr' field.  It holds the
1954         offset of the first element in the array, the type of each
1955         element, and the number of elements.
1956
1957         The array index is indicated rather indirectly, in a way
1958         which makes optimisation easy: as the sum of variable part
1959         (the 'ix' field) and a constant offset (the 'bias' field).
1960
1961         Since the indexing is circular, the actual array index to use
1962         is computed as (ix + bias) % num-of-elems-in-the-array.
1963
1964         Here's an example.  The description
1965
1966            (96:8xF64)[t39,-7]
1967
1968         describes an array of 8 F64-typed values, the
1969         guest-state-offset of the first being 96.  This array is
1970         being indexed at (t39 - 7) % 8.
1971
1972         It is important to get the array size/type exactly correct
1973         since IR optimisation looks closely at such info in order to
1974         establish aliasing/non-aliasing between seperate GetI and
1975         PutI events, which is used to establish when they can be
1976         reordered, etc.  Putting incorrect info in will lead to
1977         obscure IR optimisation bugs.
1978
1979            ppIRExpr output: GETI<descr>[<ix>,<bias]
1980                         eg. GETI(128:8xI8)[t1,0]
1981      */
1982      struct {
1983         IRRegArray* descr; /* Part of guest state treated as circular */
1984         IRExpr*     ix;    /* Variable part of index into array */
1985         Int         bias;  /* Constant offset part of index into array */
1986      } GetI;
1987
1988      /* The value held by a temporary.
1989         ppIRExpr output: t<tmp>, eg. t1
1990      */
1991      struct {
1992         IRTemp tmp;       /* The temporary number */
1993      } RdTmp;
1994
1995      /* A quaternary operation.
1996         ppIRExpr output: <op>(<arg1>, <arg2>, <arg3>, <arg4>),
1997                      eg. MAddF64r32(t1, t2, t3, t4)
1998      */
1999      struct {
2000        IRQop* details;
2001      } Qop;
2002
2003      /* A ternary operation.
2004         ppIRExpr output: <op>(<arg1>, <arg2>, <arg3>),
2005                      eg. MulF64(1, 2.0, 3.0)
2006      */
2007      struct {
2008        IRTriop* details;
2009      } Triop;
2010
2011      /* A binary operation.
2012         ppIRExpr output: <op>(<arg1>, <arg2>), eg. Add32(t1,t2)
2013      */
2014      struct {
2015         IROp op;          /* op-code   */
2016         IRExpr* arg1;     /* operand 1 */
2017         IRExpr* arg2;     /* operand 2 */
2018      } Binop;
2019
2020      /* A unary operation.
2021         ppIRExpr output: <op>(<arg>), eg. Neg8(t1)
2022      */
2023      struct {
2024         IROp    op;       /* op-code */
2025         IRExpr* arg;      /* operand */
2026      } Unop;
2027
2028      /* A load from memory -- a normal load, not a load-linked.
2029         Load-Linkeds (and Store-Conditionals) are instead represented
2030         by IRStmt.LLSC since Load-Linkeds have side effects and so
2031         are not semantically valid IRExpr's.
2032         ppIRExpr output: LD<end>:<ty>(<addr>), eg. LDle:I32(t1)
2033      */
2034      struct {
2035         IREndness end;    /* Endian-ness of the load */
2036         IRType    ty;     /* Type of the loaded value */
2037         IRExpr*   addr;   /* Address being loaded from */
2038      } Load;
2039
2040      /* A constant-valued expression.
2041         ppIRExpr output: <con>, eg. 0x4:I32
2042      */
2043      struct {
2044         IRConst* con;     /* The constant itself */
2045      } Const;
2046
2047      /* A call to a pure (no side-effects) helper C function.
2048
2049         With the 'cee' field, 'name' is the function's name.  It is
2050         only used for pretty-printing purposes.  The address to call
2051         (host address, of course) is stored in the 'addr' field
2052         inside 'cee'.
2053
2054         The 'args' field is a NULL-terminated array of arguments.
2055         The stated return IRType, and the implied argument types,
2056         must match that of the function being called well enough so
2057         that the back end can actually generate correct code for the
2058         call.
2059
2060         The called function **must** satisfy the following:
2061
2062         * no side effects -- must be a pure function, the result of
2063           which depends only on the passed parameters.
2064
2065         * it may not look at, nor modify, any of the guest state
2066           since that would hide guest state transitions from
2067           instrumenters
2068
2069         * it may not access guest memory, since that would hide
2070           guest memory transactions from the instrumenters
2071
2072         * it must not assume that arguments are being evaluated in a
2073           particular order. The oder of evaluation is unspecified.
2074
2075         This is restrictive, but makes the semantics clean, and does
2076         not interfere with IR optimisation.
2077
2078         If you want to call a helper which can mess with guest state
2079         and/or memory, instead use Ist_Dirty.  This is a lot more
2080         flexible, but you have to give a bunch of details about what
2081         the helper does (and you better be telling the truth,
2082         otherwise any derived instrumentation will be wrong).  Also
2083         Ist_Dirty inhibits various IR optimisations and so can cause
2084         quite poor code to be generated.  Try to avoid it.
2085
2086         In principle it would be allowable to have the arg vector
2087         contain an IRExpr_VECRET(), although not IRExpr_BBPTR(). However,
2088         at the moment there is no requirement for clean helper calls to
2089         be able to return V128 or V256 values.  Hence this is not allowed.
2090
2091         ppIRExpr output: <cee>(<args>):<retty>
2092                      eg. foo{0x80489304}(t1, t2):I32
2093      */
2094      struct {
2095         IRCallee* cee;    /* Function to call. */
2096         IRType    retty;  /* Type of return value. */
2097         IRExpr**  args;   /* Vector of argument expressions. */
2098      }  CCall;
2099
2100      /* A ternary if-then-else operator.  It returns iftrue if cond is
2101         nonzero, iffalse otherwise.  Note that it is STRICT, ie. both
2102         iftrue and iffalse are evaluated in all cases.
2103
2104         ppIRExpr output: ITE(<cond>,<iftrue>,<iffalse>),
2105                         eg. ITE(t6,t7,t8)
2106      */
2107      struct {
2108         IRExpr* cond;     /* Condition */
2109         IRExpr* iftrue;   /* True expression */
2110         IRExpr* iffalse;  /* False expression */
2111      } ITE;
2112   } Iex;
2113};
2114
2115/* Expression auxiliaries: a ternary expression. */
2116struct _IRTriop {
2117   IROp op;          /* op-code   */
2118   IRExpr* arg1;     /* operand 1 */
2119   IRExpr* arg2;     /* operand 2 */
2120   IRExpr* arg3;     /* operand 3 */
2121};
2122
2123/* Expression auxiliaries: a quarternary expression. */
2124struct _IRQop {
2125   IROp op;          /* op-code   */
2126   IRExpr* arg1;     /* operand 1 */
2127   IRExpr* arg2;     /* operand 2 */
2128   IRExpr* arg3;     /* operand 3 */
2129   IRExpr* arg4;     /* operand 4 */
2130};
2131
2132
2133/* Two special kinds of IRExpr, which can ONLY be used in
2134   argument lists for dirty helper calls (IRDirty.args) and in NO
2135   OTHER PLACES.  And then only in very limited ways.  */
2136
2137/* Denotes an argument which (in the helper) takes a pointer to a
2138   (naturally aligned) V128 or V256, into which the helper is expected
2139   to write its result.  Use of IRExpr_VECRET() is strictly
2140   controlled.  If the helper returns a V128 or V256 value then
2141   IRExpr_VECRET() must appear exactly once in the arg list, although
2142   it can appear anywhere, and the helper must have a C 'void' return
2143   type.  If the helper returns any other type, IRExpr_VECRET() may
2144   not appear in the argument list. */
2145
2146/* Denotes an void* argument which is passed to the helper, which at
2147   run time will point to the thread's guest state area.  This can
2148   only appear at most once in an argument list, and it may not appear
2149   at all in argument lists for clean helper calls. */
2150
2151static inline Bool is_IRExpr_VECRET_or_BBPTR ( const IRExpr* e ) {
2152   return e->tag == Iex_VECRET || e->tag == Iex_BBPTR;
2153}
2154
2155
2156/* Expression constructors. */
2157extern IRExpr* IRExpr_Binder ( Int binder );
2158extern IRExpr* IRExpr_Get    ( Int off, IRType ty );
2159extern IRExpr* IRExpr_GetI   ( IRRegArray* descr, IRExpr* ix, Int bias );
2160extern IRExpr* IRExpr_RdTmp  ( IRTemp tmp );
2161extern IRExpr* IRExpr_Qop    ( IROp op, IRExpr* arg1, IRExpr* arg2,
2162                                        IRExpr* arg3, IRExpr* arg4 );
2163extern IRExpr* IRExpr_Triop  ( IROp op, IRExpr* arg1,
2164                                        IRExpr* arg2, IRExpr* arg3 );
2165extern IRExpr* IRExpr_Binop  ( IROp op, IRExpr* arg1, IRExpr* arg2 );
2166extern IRExpr* IRExpr_Unop   ( IROp op, IRExpr* arg );
2167extern IRExpr* IRExpr_Load   ( IREndness end, IRType ty, IRExpr* addr );
2168extern IRExpr* IRExpr_Const  ( IRConst* con );
2169extern IRExpr* IRExpr_CCall  ( IRCallee* cee, IRType retty, IRExpr** args );
2170extern IRExpr* IRExpr_ITE    ( IRExpr* cond, IRExpr* iftrue, IRExpr* iffalse );
2171extern IRExpr* IRExpr_VECRET ( void );
2172extern IRExpr* IRExpr_BBPTR  ( void );
2173
2174/* Deep-copy an IRExpr. */
2175extern IRExpr* deepCopyIRExpr ( const IRExpr* );
2176
2177/* Pretty-print an IRExpr. */
2178extern void ppIRExpr ( const IRExpr* );
2179
2180/* NULL-terminated IRExpr vector constructors, suitable for
2181   use as arg lists in clean/dirty helper calls. */
2182extern IRExpr** mkIRExprVec_0 ( void );
2183extern IRExpr** mkIRExprVec_1 ( IRExpr* );
2184extern IRExpr** mkIRExprVec_2 ( IRExpr*, IRExpr* );
2185extern IRExpr** mkIRExprVec_3 ( IRExpr*, IRExpr*, IRExpr* );
2186extern IRExpr** mkIRExprVec_4 ( IRExpr*, IRExpr*, IRExpr*, IRExpr* );
2187extern IRExpr** mkIRExprVec_5 ( IRExpr*, IRExpr*, IRExpr*, IRExpr*,
2188                                IRExpr* );
2189extern IRExpr** mkIRExprVec_6 ( IRExpr*, IRExpr*, IRExpr*, IRExpr*,
2190                                IRExpr*, IRExpr* );
2191extern IRExpr** mkIRExprVec_7 ( IRExpr*, IRExpr*, IRExpr*, IRExpr*,
2192                                IRExpr*, IRExpr*, IRExpr* );
2193extern IRExpr** mkIRExprVec_8 ( IRExpr*, IRExpr*, IRExpr*, IRExpr*,
2194                                IRExpr*, IRExpr*, IRExpr*, IRExpr*);
2195
2196/* IRExpr copiers:
2197   - shallowCopy: shallow-copy (ie. create a new vector that shares the
2198     elements with the original).
2199   - deepCopy: deep-copy (ie. create a completely new vector). */
2200extern IRExpr** shallowCopyIRExprVec ( IRExpr** );
2201extern IRExpr** deepCopyIRExprVec ( IRExpr *const * );
2202
2203/* Make a constant expression from the given host word taking into
2204   account (of course) the host word size. */
2205extern IRExpr* mkIRExpr_HWord ( HWord );
2206
2207/* Convenience function for constructing clean helper calls. */
2208extern
2209IRExpr* mkIRExprCCall ( IRType retty,
2210                        Int regparms, const HChar* name, void* addr,
2211                        IRExpr** args );
2212
2213
2214/* Convenience functions for atoms (IRExprs which are either Iex_Tmp or
2215 * Iex_Const). */
2216static inline Bool isIRAtom ( const IRExpr* e ) {
2217   return toBool(e->tag == Iex_RdTmp || e->tag == Iex_Const);
2218}
2219
2220/* Are these two IR atoms identical?  Causes an assertion
2221   failure if they are passed non-atoms. */
2222extern Bool eqIRAtom ( const IRExpr*, const IRExpr* );
2223
2224
2225/* ------------------ Jump kinds ------------------ */
2226
2227/* This describes hints which can be passed to the dispatcher at guest
2228   control-flow transfer points.
2229
2230   Re Ijk_InvalICache and Ijk_FlushDCache: the guest state _must_ have
2231   two pseudo-registers, guest_CMSTART and guest_CMLEN, which specify
2232   the start and length of the region to be invalidated.  CM stands
2233   for "Cache Management".  These are both the size of a guest word.
2234   It is the responsibility of the relevant toIR.c to ensure that
2235   these are filled in with suitable values before issuing a jump of
2236   kind Ijk_InvalICache or Ijk_FlushDCache.
2237
2238   Ijk_InvalICache requests invalidation of translations taken from
2239   the requested range.  Ijk_FlushDCache requests flushing of the D
2240   cache for the specified range.
2241
2242   Re Ijk_EmWarn and Ijk_EmFail: the guest state must have a
2243   pseudo-register guest_EMNOTE, which is 32-bits regardless of the
2244   host or guest word size.  That register should be made to hold a
2245   VexEmNote value to indicate the reason for the exit.
2246
2247   In the case of Ijk_EmFail, the exit is fatal (Vex-generated code
2248   cannot continue) and so the jump destination can be anything.
2249
2250   Re Ijk_Sys_ (syscall jumps): the guest state must have a
2251   pseudo-register guest_IP_AT_SYSCALL, which is the size of a guest
2252   word.  Front ends should set this to be the IP at the most recently
2253   executed kernel-entering (system call) instruction.  This makes it
2254   very much easier (viz, actually possible at all) to back up the
2255   guest to restart a syscall that has been interrupted by a signal.
2256*/
2257typedef
2258   enum {
2259      Ijk_INVALID=0x1A00,
2260      Ijk_Boring,         /* not interesting; just goto next */
2261      Ijk_Call,           /* guest is doing a call */
2262      Ijk_Ret,            /* guest is doing a return */
2263      Ijk_ClientReq,      /* do guest client req before continuing */
2264      Ijk_Yield,          /* client is yielding to thread scheduler */
2265      Ijk_EmWarn,         /* report emulation warning before continuing */
2266      Ijk_EmFail,         /* emulation critical (FATAL) error; give up */
2267      Ijk_NoDecode,       /* current instruction cannot be decoded */
2268      Ijk_MapFail,        /* Vex-provided address translation failed */
2269      Ijk_InvalICache,    /* Inval icache for range [CMSTART, +CMLEN) */
2270      Ijk_FlushDCache,    /* Flush dcache for range [CMSTART, +CMLEN) */
2271      Ijk_NoRedir,        /* Jump to un-redirected guest addr */
2272      Ijk_SigILL,         /* current instruction synths SIGILL */
2273      Ijk_SigTRAP,        /* current instruction synths SIGTRAP */
2274      Ijk_SigSEGV,        /* current instruction synths SIGSEGV */
2275      Ijk_SigBUS,         /* current instruction synths SIGBUS */
2276      Ijk_SigFPE_IntDiv,  /* current instruction synths SIGFPE - IntDiv */
2277      Ijk_SigFPE_IntOvf,  /* current instruction synths SIGFPE - IntOvf */
2278      /* Unfortunately, various guest-dependent syscall kinds.  They
2279	 all mean: do a syscall before continuing. */
2280      Ijk_Sys_syscall,    /* amd64/x86 'syscall', ppc 'sc', arm 'svc #0' */
2281      Ijk_Sys_int32,      /* amd64/x86 'int $0x20' */
2282      Ijk_Sys_int128,     /* amd64/x86 'int $0x80' */
2283      Ijk_Sys_int129,     /* amd64/x86 'int $0x81' */
2284      Ijk_Sys_int130,     /* amd64/x86 'int $0x82' */
2285      Ijk_Sys_sysenter    /* x86 'sysenter'.  guest_EIP becomes
2286                             invalid at the point this happens. */
2287   }
2288   IRJumpKind;
2289
2290extern void ppIRJumpKind ( IRJumpKind );
2291
2292
2293/* ------------------ Dirty helper calls ------------------ */
2294
2295/* A dirty call is a flexible mechanism for calling (possibly
2296   conditionally) a helper function or procedure.  The helper function
2297   may read, write or modify client memory, and may read, write or
2298   modify client state.  It can take arguments and optionally return a
2299   value.  It may return different results and/or do different things
2300   when called repeatedly with the same arguments, by means of storing
2301   private state.
2302
2303   If a value is returned, it is assigned to the nominated return
2304   temporary.
2305
2306   Dirty calls are statements rather than expressions for obvious
2307   reasons.  If a dirty call is marked as writing guest state, any
2308   pre-existing values derived from the written parts of the guest
2309   state are invalid.  Similarly, if the dirty call is stated as
2310   writing memory, any pre-existing loaded values are invalidated by
2311   it.
2312
2313   In order that instrumentation is possible, the call must state, and
2314   state correctly:
2315
2316   * Whether it reads, writes or modifies memory, and if so where.
2317
2318   * Whether it reads, writes or modifies guest state, and if so which
2319     pieces.  Several pieces may be stated, and their extents must be
2320     known at translation-time.  Each piece is allowed to repeat some
2321     number of times at a fixed interval, if required.
2322
2323   Normally, code is generated to pass just the args to the helper.
2324   However, if IRExpr_BBPTR() is present in the argument list (at most
2325   one instance is allowed), then the baseblock pointer is passed for
2326   that arg, so that the callee can access the guest state.  It is
2327   invalid for .nFxState to be zero but IRExpr_BBPTR() to be present,
2328   since .nFxState==0 is a claim that the call does not access guest
2329   state.
2330
2331   IMPORTANT NOTE re GUARDS: Dirty calls are strict, very strict.  The
2332   arguments and 'mFx' are evaluated REGARDLESS of the guard value.
2333   The order of argument evaluation is unspecified.  The guard
2334   expression is evaluated AFTER the arguments and 'mFx' have been
2335   evaluated.  'mFx' is expected (by Memcheck) to be a defined value
2336   even if the guard evaluates to false.
2337*/
2338
2339#define VEX_N_FXSTATE  7   /* enough for FXSAVE/FXRSTOR on x86 */
2340
2341/* Effects on resources (eg. registers, memory locations) */
2342typedef
2343   enum {
2344      Ifx_None=0x1B00,      /* no effect */
2345      Ifx_Read,             /* reads the resource */
2346      Ifx_Write,            /* writes the resource */
2347      Ifx_Modify,           /* modifies the resource */
2348   }
2349   IREffect;
2350
2351/* Pretty-print an IREffect */
2352extern void ppIREffect ( IREffect );
2353
2354typedef
2355   struct _IRDirty {
2356      /* What to call, and details of args/results.  .guard must be
2357         non-NULL.  If .tmp is not IRTemp_INVALID, then the call
2358         returns a result which is placed in .tmp.  If at runtime the
2359         guard evaluates to false, .tmp has an 0x555..555 bit pattern
2360         written to it.  Hence conditional calls that assign .tmp are
2361         allowed. */
2362      IRCallee* cee;    /* where to call */
2363      IRExpr*   guard;  /* :: Ity_Bit.  Controls whether call happens */
2364      /* The args vector may contain IRExpr_BBPTR() and/or
2365         IRExpr_VECRET(), in both cases, at most once. */
2366      IRExpr**  args;   /* arg vector, ends in NULL. */
2367      IRTemp    tmp;    /* to assign result to, or IRTemp_INVALID if none */
2368
2369      /* Mem effects; we allow only one R/W/M region to be stated */
2370      IREffect  mFx;    /* indicates memory effects, if any */
2371      IRExpr*   mAddr;  /* of access, or NULL if mFx==Ifx_None */
2372      Int       mSize;  /* of access, or zero if mFx==Ifx_None */
2373
2374      /* Guest state effects; up to N allowed */
2375      Int  nFxState; /* must be 0 .. VEX_N_FXSTATE */
2376      struct {
2377         IREffect fx:16;   /* read, write or modify?  Ifx_None is invalid. */
2378         UShort   offset;
2379         UShort   size;
2380         UChar    nRepeats;
2381         UChar    repeatLen;
2382      } fxState[VEX_N_FXSTATE];
2383      /* The access can be repeated, as specified by nRepeats and
2384         repeatLen.  To describe only a single access, nRepeats and
2385         repeatLen should be zero.  Otherwise, repeatLen must be a
2386         multiple of size and greater than size. */
2387      /* Overall, the parts of the guest state denoted by (offset,
2388         size, nRepeats, repeatLen) is
2389               [offset, +size)
2390            and, if nRepeats > 0,
2391               for (i = 1; i <= nRepeats; i++)
2392                  [offset + i * repeatLen, +size)
2393         A convenient way to enumerate all segments is therefore
2394            for (i = 0; i < 1 + nRepeats; i++)
2395               [offset + i * repeatLen, +size)
2396      */
2397   }
2398   IRDirty;
2399
2400/* Pretty-print a dirty call */
2401extern void     ppIRDirty ( const IRDirty* );
2402
2403/* Allocate an uninitialised dirty call */
2404extern IRDirty* emptyIRDirty ( void );
2405
2406/* Deep-copy a dirty call */
2407extern IRDirty* deepCopyIRDirty ( const IRDirty* );
2408
2409/* A handy function which takes some of the tedium out of constructing
2410   dirty helper calls.  The called function impliedly does not return
2411   any value and has a constant-True guard.  The call is marked as
2412   accessing neither guest state nor memory (hence the "unsafe"
2413   designation) -- you can change this marking later if need be.  A
2414   suitable IRCallee is constructed from the supplied bits. */
2415extern
2416IRDirty* unsafeIRDirty_0_N ( Int regparms, const HChar* name, void* addr,
2417                             IRExpr** args );
2418
2419/* Similarly, make a zero-annotation dirty call which returns a value,
2420   and assign that to the given temp. */
2421extern
2422IRDirty* unsafeIRDirty_1_N ( IRTemp dst,
2423                             Int regparms, const HChar* name, void* addr,
2424                             IRExpr** args );
2425
2426
2427/* --------------- Memory Bus Events --------------- */
2428
2429typedef
2430   enum {
2431      Imbe_Fence=0x1C00,
2432      /* Needed only on ARM.  It cancels a reservation made by a
2433         preceding Linked-Load, and needs to be handed through to the
2434         back end, just as LL and SC themselves are. */
2435      Imbe_CancelReservation
2436   }
2437   IRMBusEvent;
2438
2439extern void ppIRMBusEvent ( IRMBusEvent );
2440
2441
2442/* --------------- Compare and Swap --------------- */
2443
2444/* This denotes an atomic compare and swap operation, either
2445   a single-element one or a double-element one.
2446
2447   In the single-element case:
2448
2449     .addr is the memory address.
2450     .end  is the endianness with which memory is accessed
2451
2452     If .addr contains the same value as .expdLo, then .dataLo is
2453     written there, else there is no write.  In both cases, the
2454     original value at .addr is copied into .oldLo.
2455
2456     Types: .expdLo, .dataLo and .oldLo must all have the same type.
2457     It may be any integral type, viz: I8, I16, I32 or, for 64-bit
2458     guests, I64.
2459
2460     .oldHi must be IRTemp_INVALID, and .expdHi and .dataHi must
2461     be NULL.
2462
2463   In the double-element case:
2464
2465     .addr is the memory address.
2466     .end  is the endianness with which memory is accessed
2467
2468     The operation is the same:
2469
2470     If .addr contains the same value as .expdHi:.expdLo, then
2471     .dataHi:.dataLo is written there, else there is no write.  In
2472     both cases the original value at .addr is copied into
2473     .oldHi:.oldLo.
2474
2475     Types: .expdHi, .expdLo, .dataHi, .dataLo, .oldHi, .oldLo must
2476     all have the same type, which may be any integral type, viz: I8,
2477     I16, I32 or, for 64-bit guests, I64.
2478
2479     The double-element case is complicated by the issue of
2480     endianness.  In all cases, the two elements are understood to be
2481     located adjacently in memory, starting at the address .addr.
2482
2483       If .end is Iend_LE, then the .xxxLo component is at the lower
2484       address and the .xxxHi component is at the higher address, and
2485       each component is itself stored little-endianly.
2486
2487       If .end is Iend_BE, then the .xxxHi component is at the lower
2488       address and the .xxxLo component is at the higher address, and
2489       each component is itself stored big-endianly.
2490
2491   This allows representing more cases than most architectures can
2492   handle.  For example, x86 cannot do DCAS on 8- or 16-bit elements.
2493
2494   How to know if the CAS succeeded?
2495
2496   * if .oldLo == .expdLo (resp. .oldHi:.oldLo == .expdHi:.expdLo),
2497     then the CAS succeeded, .dataLo (resp. .dataHi:.dataLo) is now
2498     stored at .addr, and the original value there was .oldLo (resp
2499     .oldHi:.oldLo).
2500
2501   * if .oldLo != .expdLo (resp. .oldHi:.oldLo != .expdHi:.expdLo),
2502     then the CAS failed, and the original value at .addr was .oldLo
2503     (resp. .oldHi:.oldLo).
2504
2505   Hence it is easy to know whether or not the CAS succeeded.
2506*/
2507typedef
2508   struct {
2509      IRTemp    oldHi;  /* old value of *addr is written here */
2510      IRTemp    oldLo;
2511      IREndness end;    /* endianness of the data in memory */
2512      IRExpr*   addr;   /* store address */
2513      IRExpr*   expdHi; /* expected old value at *addr */
2514      IRExpr*   expdLo;
2515      IRExpr*   dataHi; /* new value for *addr */
2516      IRExpr*   dataLo;
2517   }
2518   IRCAS;
2519
2520extern void ppIRCAS ( const IRCAS* cas );
2521
2522extern IRCAS* mkIRCAS ( IRTemp oldHi, IRTemp oldLo,
2523                        IREndness end, IRExpr* addr,
2524                        IRExpr* expdHi, IRExpr* expdLo,
2525                        IRExpr* dataHi, IRExpr* dataLo );
2526
2527extern IRCAS* deepCopyIRCAS ( const IRCAS* );
2528
2529
2530/* ------------------ Circular Array Put ------------------ */
2531
2532typedef
2533   struct {
2534      IRRegArray* descr; /* Part of guest state treated as circular */
2535      IRExpr*     ix;    /* Variable part of index into array */
2536      Int         bias;  /* Constant offset part of index into array */
2537      IRExpr*     data;  /* The value to write */
2538   } IRPutI;
2539
2540extern void ppIRPutI ( const IRPutI* puti );
2541
2542extern IRPutI* mkIRPutI ( IRRegArray* descr, IRExpr* ix,
2543                          Int bias, IRExpr* data );
2544
2545extern IRPutI* deepCopyIRPutI ( const IRPutI* );
2546
2547
2548/* --------------- Guarded loads and stores --------------- */
2549
2550/* Conditional stores are straightforward.  They are the same as
2551   normal stores, with an extra 'guard' field :: Ity_I1 that
2552   determines whether or not the store actually happens.  If not,
2553   memory is unmodified.
2554
2555   The semantics of this is that 'addr' and 'data' are fully evaluated
2556   even in the case where 'guard' evaluates to zero (false).
2557*/
2558typedef
2559   struct {
2560      IREndness end;    /* Endianness of the store */
2561      IRExpr*   addr;   /* store address */
2562      IRExpr*   data;   /* value to write */
2563      IRExpr*   guard;  /* Guarding value */
2564   }
2565   IRStoreG;
2566
2567/* Conditional loads are a little more complex.  'addr' is the
2568   address, 'guard' is the guarding condition.  If the load takes
2569   place, the loaded value is placed in 'dst'.  If it does not take
2570   place, 'alt' is copied to 'dst'.  However, the loaded value is not
2571   placed directly in 'dst' -- it is first subjected to the conversion
2572   specified by 'cvt'.
2573
2574   For example, imagine doing a conditional 8-bit load, in which the
2575   loaded value is zero extended to 32 bits.  Hence:
2576   * 'dst' and 'alt' must have type I32
2577   * 'cvt' must be a unary op which converts I8 to I32.  In this
2578     example, it would be ILGop_8Uto32.
2579
2580   There is no explicit indication of the type at which the load is
2581   done, since that is inferrable from the arg type of 'cvt'.  Note
2582   that the types of 'alt' and 'dst' and the result type of 'cvt' must
2583   all be the same.
2584
2585   Semantically, 'addr' is evaluated even in the case where 'guard'
2586   evaluates to zero (false), and 'alt' is evaluated even when 'guard'
2587   evaluates to one (true).  That is, 'addr' and 'alt' are always
2588   evaluated.
2589*/
2590typedef
2591   enum {
2592      ILGop_INVALID=0x1D00,
2593      ILGop_Ident64,   /* 64 bit, no conversion */
2594      ILGop_Ident32,   /* 32 bit, no conversion */
2595      ILGop_16Uto32,   /* 16 bit load, Z-widen to 32 */
2596      ILGop_16Sto32,   /* 16 bit load, S-widen to 32 */
2597      ILGop_8Uto32,    /* 8 bit load, Z-widen to 32 */
2598      ILGop_8Sto32     /* 8 bit load, S-widen to 32 */
2599   }
2600   IRLoadGOp;
2601
2602typedef
2603   struct {
2604      IREndness end;    /* Endianness of the load */
2605      IRLoadGOp cvt;    /* Conversion to apply to the loaded value */
2606      IRTemp    dst;    /* Destination (LHS) of assignment */
2607      IRExpr*   addr;   /* Address being loaded from */
2608      IRExpr*   alt;    /* Value if load is not done. */
2609      IRExpr*   guard;  /* Guarding value */
2610   }
2611   IRLoadG;
2612
2613extern void ppIRStoreG ( const IRStoreG* sg );
2614
2615extern void ppIRLoadGOp ( IRLoadGOp cvt );
2616
2617extern void ppIRLoadG ( const IRLoadG* lg );
2618
2619extern IRStoreG* mkIRStoreG ( IREndness end,
2620                              IRExpr* addr, IRExpr* data,
2621                              IRExpr* guard );
2622
2623extern IRLoadG* mkIRLoadG ( IREndness end, IRLoadGOp cvt,
2624                            IRTemp dst, IRExpr* addr, IRExpr* alt,
2625                            IRExpr* guard );
2626
2627
2628/* ------------------ Statements ------------------ */
2629
2630/* The different kinds of statements.  Their meaning is explained
2631   below in the comments for IRStmt.
2632
2633   Those marked META do not represent code, but rather extra
2634   information about the code.  These statements can be removed
2635   without affecting the functional behaviour of the code, however
2636   they are required by some IR consumers such as tools that
2637   instrument the code.
2638*/
2639
2640typedef
2641   enum {
2642      Ist_NoOp=0x1E00,
2643      Ist_IMark,     /* META */
2644      Ist_AbiHint,   /* META */
2645      Ist_Put,
2646      Ist_PutI,
2647      Ist_WrTmp,
2648      Ist_Store,
2649      Ist_LoadG,
2650      Ist_StoreG,
2651      Ist_CAS,
2652      Ist_LLSC,
2653      Ist_Dirty,
2654      Ist_MBE,
2655      Ist_Exit
2656   }
2657   IRStmtTag;
2658
2659/* A statement.  Stored as a tagged union.  'tag' indicates what kind
2660   of expression this is.  'Ist' is the union that holds the fields.
2661   If an IRStmt 'st' has st.tag equal to Iex_Store, then it's a store
2662   statement, and the fields can be accessed with
2663   'st.Ist.Store.<fieldname>'.
2664
2665   For each kind of statement, we show what it looks like when
2666   pretty-printed with ppIRStmt().
2667*/
2668typedef
2669   struct _IRStmt {
2670      IRStmtTag tag;
2671      union {
2672         /* A no-op (usually resulting from IR optimisation).  Can be
2673            omitted without any effect.
2674
2675            ppIRStmt output: IR-NoOp
2676         */
2677         struct {
2678	 } NoOp;
2679
2680         /* META: instruction mark.  Marks the start of the statements
2681            that represent a single machine instruction (the end of
2682            those statements is marked by the next IMark or the end of
2683            the IRSB).  Contains the address and length of the
2684            instruction.
2685
2686            It also contains a delta value.  The delta must be
2687            subtracted from a guest program counter value before
2688            attempting to establish, by comparison with the address
2689            and length values, whether or not that program counter
2690            value refers to this instruction.  For x86, amd64, ppc32,
2691            ppc64 and arm, the delta value is zero.  For Thumb
2692            instructions, the delta value is one.  This is because, on
2693            Thumb, guest PC values (guest_R15T) are encoded using the
2694            top 31 bits of the instruction address and a 1 in the lsb;
2695            hence they appear to be (numerically) 1 past the start of
2696            the instruction they refer to.  IOW, guest_R15T on ARM
2697            holds a standard ARM interworking address.
2698
2699            ppIRStmt output: ------ IMark(<addr>, <len>, <delta>) ------,
2700                         eg. ------ IMark(0x4000792, 5, 0) ------,
2701         */
2702         struct {
2703            Addr   addr;   /* instruction address */
2704            UInt   len;    /* instruction length */
2705            UChar  delta;  /* addr = program counter as encoded in guest state
2706                                     - delta */
2707         } IMark;
2708
2709         /* META: An ABI hint, which says something about this
2710            platform's ABI.
2711
2712            At the moment, the only AbiHint is one which indicates
2713            that a given chunk of address space, [base .. base+len-1],
2714            has become undefined.  This is used on amd64-linux and
2715            some ppc variants to pass stack-redzoning hints to whoever
2716            wants to see them.  It also indicates the address of the
2717            next (dynamic) instruction that will be executed.  This is
2718            to help Memcheck to origin tracking.
2719
2720            ppIRStmt output: ====== AbiHint(<base>, <len>, <nia>) ======
2721                         eg. ====== AbiHint(t1, 16, t2) ======
2722         */
2723         struct {
2724            IRExpr* base;     /* Start  of undefined chunk */
2725            Int     len;      /* Length of undefined chunk */
2726            IRExpr* nia;      /* Address of next (guest) insn */
2727         } AbiHint;
2728
2729         /* Write a guest register, at a fixed offset in the guest state.
2730            ppIRStmt output: PUT(<offset>) = <data>, eg. PUT(60) = t1
2731         */
2732         struct {
2733            Int     offset;   /* Offset into the guest state */
2734            IRExpr* data;     /* The value to write */
2735         } Put;
2736
2737         /* Write a guest register, at a non-fixed offset in the guest
2738            state.  See the comment for GetI expressions for more
2739            information.
2740
2741            ppIRStmt output: PUTI<descr>[<ix>,<bias>] = <data>,
2742                         eg. PUTI(64:8xF64)[t5,0] = t1
2743         */
2744         struct {
2745            IRPutI* details;
2746         } PutI;
2747
2748         /* Assign a value to a temporary.  Note that SSA rules require
2749            each tmp is only assigned to once.  IR sanity checking will
2750            reject any block containing a temporary which is not assigned
2751            to exactly once.
2752
2753            ppIRStmt output: t<tmp> = <data>, eg. t1 = 3
2754         */
2755         struct {
2756            IRTemp  tmp;   /* Temporary  (LHS of assignment) */
2757            IRExpr* data;  /* Expression (RHS of assignment) */
2758         } WrTmp;
2759
2760         /* Write a value to memory.  This is a normal store, not a
2761            Store-Conditional.  To represent a Store-Conditional,
2762            instead use IRStmt.LLSC.
2763            ppIRStmt output: ST<end>(<addr>) = <data>, eg. STle(t1) = t2
2764         */
2765         struct {
2766            IREndness end;    /* Endianness of the store */
2767            IRExpr*   addr;   /* store address */
2768            IRExpr*   data;   /* value to write */
2769         } Store;
2770
2771         /* Guarded store.  Note that this is defined to evaluate all
2772            expression fields (addr, data) even if the guard evaluates
2773            to false.
2774            ppIRStmt output:
2775              if (<guard>) ST<end>(<addr>) = <data> */
2776         struct {
2777            IRStoreG* details;
2778         } StoreG;
2779
2780         /* Guarded load.  Note that this is defined to evaluate all
2781            expression fields (addr, alt) even if the guard evaluates
2782            to false.
2783            ppIRStmt output:
2784              t<tmp> = if (<guard>) <cvt>(LD<end>(<addr>)) else <alt> */
2785         struct {
2786            IRLoadG* details;
2787         } LoadG;
2788
2789         /* Do an atomic compare-and-swap operation.  Semantics are
2790            described above on a comment at the definition of IRCAS.
2791
2792            ppIRStmt output:
2793               t<tmp> = CAS<end>(<addr> :: <expected> -> <new>)
2794            eg
2795               t1 = CASle(t2 :: t3->Add32(t3,1))
2796               which denotes a 32-bit atomic increment
2797               of a value at address t2
2798
2799            A double-element CAS may also be denoted, in which case <tmp>,
2800            <expected> and <new> are all pairs of items, separated by
2801            commas.
2802         */
2803         struct {
2804            IRCAS* details;
2805         } CAS;
2806
2807         /* Either Load-Linked or Store-Conditional, depending on
2808            STOREDATA.
2809
2810            If STOREDATA is NULL then this is a Load-Linked, meaning
2811            that data is loaded from memory as normal, but a
2812            'reservation' for the address is also lodged in the
2813            hardware.
2814
2815               result = Load-Linked(addr, end)
2816
2817            The data transfer type is the type of RESULT (I32, I64,
2818            etc).  ppIRStmt output:
2819
2820               result = LD<end>-Linked(<addr>), eg. LDbe-Linked(t1)
2821
2822            If STOREDATA is not NULL then this is a Store-Conditional,
2823            hence:
2824
2825               result = Store-Conditional(addr, storedata, end)
2826
2827            The data transfer type is the type of STOREDATA and RESULT
2828            has type Ity_I1. The store may fail or succeed depending
2829            on the state of a previously lodged reservation on this
2830            address.  RESULT is written 1 if the store succeeds and 0
2831            if it fails.  eg ppIRStmt output:
2832
2833               result = ( ST<end>-Cond(<addr>) = <storedata> )
2834               eg t3 = ( STbe-Cond(t1, t2) )
2835
2836            In all cases, the address must be naturally aligned for
2837            the transfer type -- any misaligned addresses should be
2838            caught by a dominating IR check and side exit.  This
2839            alignment restriction exists because on at least some
2840            LL/SC platforms (ppc), stwcx. etc will trap w/ SIGBUS on
2841            misaligned addresses, and we have to actually generate
2842            stwcx. on the host, and we don't want it trapping on the
2843            host.
2844
2845            Summary of rules for transfer type:
2846              STOREDATA == NULL (LL):
2847                transfer type = type of RESULT
2848              STOREDATA != NULL (SC):
2849                transfer type = type of STOREDATA, and RESULT :: Ity_I1
2850         */
2851         struct {
2852            IREndness end;
2853            IRTemp    result;
2854            IRExpr*   addr;
2855            IRExpr*   storedata; /* NULL => LL, non-NULL => SC */
2856         } LLSC;
2857
2858         /* Call (possibly conditionally) a C function that has side
2859            effects (ie. is "dirty").  See the comments above the
2860            IRDirty type declaration for more information.
2861
2862            ppIRStmt output:
2863               t<tmp> = DIRTY <guard> <effects>
2864                  ::: <callee>(<args>)
2865            eg.
2866               t1 = DIRTY t27 RdFX-gst(16,4) RdFX-gst(60,4)
2867                     ::: foo{0x380035f4}(t2)
2868         */
2869         struct {
2870            IRDirty* details;
2871         } Dirty;
2872
2873         /* A memory bus event - a fence, or acquisition/release of the
2874            hardware bus lock.  IR optimisation treats all these as fences
2875            across which no memory references may be moved.
2876            ppIRStmt output: MBusEvent-Fence,
2877                             MBusEvent-BusLock, MBusEvent-BusUnlock.
2878         */
2879         struct {
2880            IRMBusEvent event;
2881         } MBE;
2882
2883         /* Conditional exit from the middle of an IRSB.
2884            ppIRStmt output: if (<guard>) goto {<jk>} <dst>
2885                         eg. if (t69) goto {Boring} 0x4000AAA:I32
2886            If <guard> is true, the guest state is also updated by
2887            PUT-ing <dst> at <offsIP>.  This is done because a
2888            taken exit must update the guest program counter.
2889         */
2890         struct {
2891            IRExpr*    guard;    /* Conditional expression */
2892            IRConst*   dst;      /* Jump target (constant only) */
2893            IRJumpKind jk;       /* Jump kind */
2894            Int        offsIP;   /* Guest state offset for IP */
2895         } Exit;
2896      } Ist;
2897   }
2898   IRStmt;
2899
2900/* Statement constructors. */
2901extern IRStmt* IRStmt_NoOp    ( void );
2902extern IRStmt* IRStmt_IMark   ( Addr addr, UInt len, UChar delta );
2903extern IRStmt* IRStmt_AbiHint ( IRExpr* base, Int len, IRExpr* nia );
2904extern IRStmt* IRStmt_Put     ( Int off, IRExpr* data );
2905extern IRStmt* IRStmt_PutI    ( IRPutI* details );
2906extern IRStmt* IRStmt_WrTmp   ( IRTemp tmp, IRExpr* data );
2907extern IRStmt* IRStmt_Store   ( IREndness end, IRExpr* addr, IRExpr* data );
2908extern IRStmt* IRStmt_StoreG  ( IREndness end, IRExpr* addr, IRExpr* data,
2909                                IRExpr* guard );
2910extern IRStmt* IRStmt_LoadG   ( IREndness end, IRLoadGOp cvt, IRTemp dst,
2911                                IRExpr* addr, IRExpr* alt, IRExpr* guard );
2912extern IRStmt* IRStmt_CAS     ( IRCAS* details );
2913extern IRStmt* IRStmt_LLSC    ( IREndness end, IRTemp result,
2914                                IRExpr* addr, IRExpr* storedata );
2915extern IRStmt* IRStmt_Dirty   ( IRDirty* details );
2916extern IRStmt* IRStmt_MBE     ( IRMBusEvent event );
2917extern IRStmt* IRStmt_Exit    ( IRExpr* guard, IRJumpKind jk, IRConst* dst,
2918                                Int offsIP );
2919
2920/* Deep-copy an IRStmt. */
2921extern IRStmt* deepCopyIRStmt ( const IRStmt* );
2922
2923/* Pretty-print an IRStmt. */
2924extern void ppIRStmt ( const IRStmt* );
2925
2926
2927/* ------------------ Basic Blocks ------------------ */
2928
2929/* Type environments: a bunch of statements, expressions, etc, are
2930   incomplete without an environment indicating the type of each
2931   IRTemp.  So this provides one.  IR temporaries are really just
2932   unsigned ints and so this provides an array, 0 .. n_types_used-1 of
2933   them.
2934*/
2935typedef
2936   struct {
2937      IRType* types;
2938      Int     types_size;
2939      Int     types_used;
2940   }
2941   IRTypeEnv;
2942
2943/* Obtain a new IRTemp */
2944extern IRTemp newIRTemp ( IRTypeEnv*, IRType );
2945
2946/* Deep-copy a type environment */
2947extern IRTypeEnv* deepCopyIRTypeEnv ( const IRTypeEnv* );
2948
2949/* Pretty-print a type environment */
2950extern void ppIRTypeEnv ( const IRTypeEnv* );
2951
2952
2953/* Code blocks, which in proper compiler terminology are superblocks
2954   (single entry, multiple exit code sequences) contain:
2955
2956   - A table giving a type for each temp (the "type environment")
2957   - An expandable array of statements
2958   - An expression of type 32 or 64 bits, depending on the
2959     guest's word size, indicating the next destination if the block
2960     executes all the way to the end, without a side exit
2961   - An indication of any special actions (JumpKind) needed
2962     for this final jump.
2963   - Offset of the IP field in the guest state.  This will be
2964     updated before the final jump is done.
2965
2966   "IRSB" stands for "IR Super Block".
2967*/
2968typedef
2969   struct {
2970      IRTypeEnv* tyenv;
2971      IRStmt**   stmts;
2972      Int        stmts_size;
2973      Int        stmts_used;
2974      IRExpr*    next;
2975      IRJumpKind jumpkind;
2976      Int        offsIP;
2977   }
2978   IRSB;
2979
2980/* Allocate a new, uninitialised IRSB */
2981extern IRSB* emptyIRSB ( void );
2982
2983/* Deep-copy an IRSB */
2984extern IRSB* deepCopyIRSB ( const IRSB* );
2985
2986/* Deep-copy an IRSB, except for the statements list, which set to be
2987   a new, empty, list of statements. */
2988extern IRSB* deepCopyIRSBExceptStmts ( const IRSB* );
2989
2990/* Pretty-print an IRSB */
2991extern void ppIRSB ( const IRSB* );
2992
2993/* Append an IRStmt to an IRSB */
2994extern void addStmtToIRSB ( IRSB*, IRStmt* );
2995
2996
2997/*---------------------------------------------------------------*/
2998/*--- Helper functions for the IR                             ---*/
2999/*---------------------------------------------------------------*/
3000
3001/* For messing with IR type environments */
3002extern IRTypeEnv* emptyIRTypeEnv  ( void );
3003
3004/* What is the type of this expression? */
3005extern IRType typeOfIRConst ( const IRConst* );
3006extern IRType typeOfIRTemp  ( const IRTypeEnv*, IRTemp );
3007extern IRType typeOfIRExpr  ( const IRTypeEnv*, const IRExpr* );
3008
3009/* What are the arg and result type for this IRLoadGOp? */
3010extern void typeOfIRLoadGOp ( IRLoadGOp cvt,
3011                              /*OUT*/IRType* t_res,
3012                              /*OUT*/IRType* t_arg );
3013
3014/* Sanity check a BB of IR */
3015extern void sanityCheckIRSB ( const  IRSB*  bb,
3016                              const  HChar* caller,
3017                              Bool   require_flatness,
3018                              IRType guest_word_size );
3019extern Bool isFlatIRStmt ( const IRStmt* );
3020
3021/* Is this any value actually in the enumeration 'IRType' ? */
3022extern Bool isPlausibleIRType ( IRType ty );
3023
3024
3025/*---------------------------------------------------------------*/
3026/*--- IR injection                                            ---*/
3027/*---------------------------------------------------------------*/
3028
3029void vex_inject_ir(IRSB *, IREndness);
3030
3031
3032#endif /* ndef __LIBVEX_IR_H */
3033
3034/*---------------------------------------------------------------*/
3035/*---                                             libvex_ir.h ---*/
3036/*---------------------------------------------------------------*/
3037