ValueAnimator.java revision 051d35e41f7b21cd8a1608bdce10cf70952c6be4
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Handler;
20import android.os.Looper;
21import android.os.Message;
22import android.util.AndroidRuntimeException;
23import android.view.animation.AccelerateDecelerateInterpolator;
24import android.view.animation.AnimationUtils;
25
26import java.util.ArrayList;
27import java.util.HashMap;
28
29/**
30 * This class provides a simple timing engine for running animations
31 * which calculate animated values and set them on target objects.
32 *
33 * <p>There is a single timing pulse that all animations use. It runs in a
34 * custom handler to ensure that property changes happen on the UI thread.</p>
35 *
36 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
37 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
38 * out of an animation. This behavior can be changed by calling
39 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
40 */
41public class ValueAnimator extends Animator {
42
43    /**
44     * Internal constants
45     */
46
47    /*
48     * The default amount of time in ms between animation frames
49     */
50    private static final long DEFAULT_FRAME_DELAY = 10;
51
52    /**
53     * Messages sent to timing handler: START is sent when an animation first begins, FRAME is sent
54     * by the handler to itself to process the next animation frame
55     */
56    private static final int ANIMATION_START = 0;
57    private static final int ANIMATION_FRAME = 1;
58
59    /**
60     * Values used with internal variable mPlayingState to indicate the current state of an
61     * animation.
62     */
63    static final int STOPPED    = 0; // Not yet playing
64    static final int RUNNING    = 1; // Playing normally
65    static final int SEEKED     = 2; // Seeked to some time value
66
67    /**
68     * Internal variables
69     * NOTE: This object implements the clone() method, making a deep copy of any referenced
70     * objects. As other non-trivial fields are added to this class, make sure to add logic
71     * to clone() to make deep copies of them.
72     */
73
74    // The first time that the animation's animateFrame() method is called. This time is used to
75    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
76    // to animateFrame()
77    long mStartTime;
78
79    /**
80     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
81     * to a value.
82     */
83    long mSeekTime = -1;
84
85    // TODO: We access the following ThreadLocal variables often, some of them on every update.
86    // If ThreadLocal access is significantly expensive, we may want to put all of these
87    // fields into a structure sot hat we just access ThreadLocal once to get the reference
88    // to that structure, then access the structure directly for each field.
89
90    // The static sAnimationHandler processes the internal timing loop on which all animations
91    // are based
92    private static ThreadLocal<AnimationHandler> sAnimationHandler =
93            new ThreadLocal<AnimationHandler>();
94
95    // The per-thread list of all active animations
96    private static final ThreadLocal<ArrayList<ValueAnimator>> sAnimations =
97            new ThreadLocal<ArrayList<ValueAnimator>>() {
98                @Override
99                protected ArrayList<ValueAnimator> initialValue() {
100                    return new ArrayList<ValueAnimator>();
101                }
102            };
103
104    // The per-thread set of animations to be started on the next animation frame
105    private static final ThreadLocal<ArrayList<ValueAnimator>> sPendingAnimations =
106            new ThreadLocal<ArrayList<ValueAnimator>>() {
107                @Override
108                protected ArrayList<ValueAnimator> initialValue() {
109                    return new ArrayList<ValueAnimator>();
110                }
111            };
112
113    /**
114     * Internal per-thread collections used to avoid set collisions as animations start and end
115     * while being processed.
116     */
117    private static final ThreadLocal<ArrayList<ValueAnimator>> sDelayedAnims =
118            new ThreadLocal<ArrayList<ValueAnimator>>() {
119                @Override
120                protected ArrayList<ValueAnimator> initialValue() {
121                    return new ArrayList<ValueAnimator>();
122                }
123            };
124
125    private static final ThreadLocal<ArrayList<ValueAnimator>> sEndingAnims =
126            new ThreadLocal<ArrayList<ValueAnimator>>() {
127                @Override
128                protected ArrayList<ValueAnimator> initialValue() {
129                    return new ArrayList<ValueAnimator>();
130                }
131            };
132
133    private static final ThreadLocal<ArrayList<ValueAnimator>> sReadyAnims =
134            new ThreadLocal<ArrayList<ValueAnimator>>() {
135                @Override
136                protected ArrayList<ValueAnimator> initialValue() {
137                    return new ArrayList<ValueAnimator>();
138                }
139            };
140
141    // The time interpolator to be used if none is set on the animation
142    private static final TimeInterpolator sDefaultInterpolator =
143            new AccelerateDecelerateInterpolator();
144
145    // type evaluators for the three primitive types handled by this implementation
146    private static final TypeEvaluator sIntEvaluator = new IntEvaluator();
147    private static final TypeEvaluator sFloatEvaluator = new FloatEvaluator();
148    private static final TypeEvaluator sDoubleEvaluator = new DoubleEvaluator();
149
150    /**
151     * Used to indicate whether the animation is currently playing in reverse. This causes the
152     * elapsed fraction to be inverted to calculate the appropriate values.
153     */
154    private boolean mPlayingBackwards = false;
155
156    /**
157     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
158     * repeatCount (if repeatCount!=INFINITE), the animation ends
159     */
160    private int mCurrentIteration = 0;
161
162    /**
163     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
164     */
165    private boolean mStartedDelay = false;
166
167    /**
168     * Tracks the time at which the animation began playing through its startDelay. This is
169     * different from the mStartTime variable, which is used to track when the animation became
170     * active (which is when the startDelay expired and the animation was added to the active
171     * animations list).
172     */
173    private long mDelayStartTime;
174
175    /**
176     * Flag that represents the current state of the animation. Used to figure out when to start
177     * an animation (if state == STOPPED). Also used to end an animation that
178     * has been cancel()'d or end()'d since the last animation frame. Possible values are
179     * STOPPED, RUNNING, SEEKED.
180     */
181    int mPlayingState = STOPPED;
182
183    /**
184     * Flag that denotes whether the animation is set up and ready to go. Used to
185     * set up animation that has not yet been started.
186     */
187    boolean mInitialized = false;
188
189    //
190    // Backing variables
191    //
192
193    // How long the animation should last in ms
194    private long mDuration = 300;
195
196    // The amount of time in ms to delay starting the animation after start() is called
197    private long mStartDelay = 0;
198
199    // The number of milliseconds between animation frames
200    private static long sFrameDelay = DEFAULT_FRAME_DELAY;
201
202    // The number of times the animation will repeat. The default is 0, which means the animation
203    // will play only once
204    private int mRepeatCount = 0;
205
206    /**
207     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
208     * animation will start from the beginning on every new cycle. REVERSE means the animation
209     * will reverse directions on each iteration.
210     */
211    private int mRepeatMode = RESTART;
212
213    /**
214     * The time interpolator to be used. The elapsed fraction of the animation will be passed
215     * through this interpolator to calculate the interpolated fraction, which is then used to
216     * calculate the animated values.
217     */
218    private TimeInterpolator mInterpolator = sDefaultInterpolator;
219
220    /**
221     * The set of listeners to be sent events through the life of an animation.
222     */
223    private ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
224
225    /**
226     * The property/value sets being animated.
227     */
228    PropertyValuesHolder[] mValues;
229
230    /**
231     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
232     * by property name during calls to getAnimatedValue(String).
233     */
234    HashMap<String, PropertyValuesHolder> mValuesMap;
235
236    /**
237     * Public constants
238     */
239
240    /**
241     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
242     * or a positive value, the animation restarts from the beginning.
243     */
244    public static final int RESTART = 1;
245    /**
246     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
247     * or a positive value, the animation reverses direction on every iteration.
248     */
249    public static final int REVERSE = 2;
250    /**
251     * This value used used with the {@link #setRepeatCount(int)} property to repeat
252     * the animation indefinitely.
253     */
254    public static final int INFINITE = -1;
255
256    /**
257     * Creates a new ValueAnimator object. This default constructor is primarily for
258     * use internally; the factory methods which take parameters are more generally
259     * useful.
260     */
261    public ValueAnimator() {
262    }
263
264    /**
265     * Constructs and returns a ValueAnimator that animates between int values. A single
266     * value implies that that value is the one being animated to. However, this is not typically
267     * useful in a ValueAnimator object because there is no way for the object to determine the
268     * starting value for the animation (unlike ObjectAnimator, which can derive that value
269     * from the target object and property being animated). Therefore, there should typically
270     * be two or more values.
271     *
272     * @param values A set of values that the animation will animate between over time.
273     * @return A ValueAnimator object that is set up to animate between the given values.
274     */
275    public static ValueAnimator ofInt(int... values) {
276        ValueAnimator anim = new ValueAnimator();
277        anim.setIntValues(values);
278        return anim;
279    }
280
281    /**
282     * Constructs and returns a ValueAnimator that animates between float values. A single
283     * value implies that that value is the one being animated to. However, this is not typically
284     * useful in a ValueAnimator object because there is no way for the object to determine the
285     * starting value for the animation (unlike ObjectAnimator, which can derive that value
286     * from the target object and property being animated). Therefore, there should typically
287     * be two or more values.
288     *
289     * @param values A set of values that the animation will animate between over time.
290     * @return A ValueAnimator object that is set up to animate between the given values.
291     */
292    public static ValueAnimator ofFloat(float... values) {
293        ValueAnimator anim = new ValueAnimator();
294        anim.setFloatValues(values);
295        return anim;
296    }
297
298    /**
299     * Constructs and returns a ValueAnimator that animates between the values
300     * specified in the PropertyValuesHolder objects.
301     *
302     * @param values A set of PropertyValuesHolder objects whose values will be animated
303     * between over time.
304     * @return A ValueAnimator object that is set up to animate between the given values.
305     */
306    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
307        ValueAnimator anim = new ValueAnimator();
308        anim.setValues(values);
309        return anim;
310    }
311    /**
312     * Constructs and returns a ValueAnimator that animates between Object values. A single
313     * value implies that that value is the one being animated to. However, this is not typically
314     * useful in a ValueAnimator object because there is no way for the object to determine the
315     * starting value for the animation (unlike ObjectAnimator, which can derive that value
316     * from the target object and property being animated). Therefore, there should typically
317     * be two or more values.
318     *
319     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
320     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
321     * to perform that interpolation.
322     *
323     * @param evaluator A TypeEvaluator that will be called on each animation frame to
324     * provide the ncessry interpolation between the Object values to derive the animated
325     * value.
326     * @param values A set of values that the animation will animate between over time.
327     * @return A ValueAnimator object that is set up to animate between the given values.
328     */
329    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
330        ValueAnimator anim = new ValueAnimator();
331        anim.setObjectValues(values);
332        anim.setEvaluator(evaluator);
333        return anim;
334    }
335
336    /**
337     * Sets int values that will be animated between. A single
338     * value implies that that value is the one being animated to. However, this is not typically
339     * useful in a ValueAnimator object because there is no way for the object to determine the
340     * starting value for the animation (unlike ObjectAnimator, which can derive that value
341     * from the target object and property being animated). Therefore, there should typically
342     * be two or more values.
343     *
344     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
345     * than one PropertyValuesHolder object, this method will set the values for the first
346     * of those objects.</p>
347     *
348     * @param values A set of values that the animation will animate between over time.
349     */
350    public void setIntValues(int... values) {
351        if (values == null || values.length == 0) {
352            return;
353        }
354        if (mValues == null || mValues.length == 0) {
355            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofInt("", values)});
356        } else {
357            PropertyValuesHolder valuesHolder = mValues[0];
358            valuesHolder.setIntValues(values);
359        }
360        // New property/values/target should cause re-initialization prior to starting
361        mInitialized = false;
362    }
363
364    /**
365     * Sets float values that will be animated between. A single
366     * value implies that that value is the one being animated to. However, this is not typically
367     * useful in a ValueAnimator object because there is no way for the object to determine the
368     * starting value for the animation (unlike ObjectAnimator, which can derive that value
369     * from the target object and property being animated). Therefore, there should typically
370     * be two or more values.
371     *
372     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
373     * than one PropertyValuesHolder object, this method will set the values for the first
374     * of those objects.</p>
375     *
376     * @param values A set of values that the animation will animate between over time.
377     */
378    public void setFloatValues(float... values) {
379        if (values == null || values.length == 0) {
380            return;
381        }
382        if (mValues == null || mValues.length == 0) {
383            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofFloat("", values)});
384        } else {
385            PropertyValuesHolder valuesHolder = mValues[0];
386            valuesHolder.setFloatValues(values);
387        }
388        // New property/values/target should cause re-initialization prior to starting
389        mInitialized = false;
390    }
391
392    /**
393     * Sets the values to animate between for this animation. A single
394     * value implies that that value is the one being animated to. However, this is not typically
395     * useful in a ValueAnimator object because there is no way for the object to determine the
396     * starting value for the animation (unlike ObjectAnimator, which can derive that value
397     * from the target object and property being animated). Therefore, there should typically
398     * be two or more values.
399     *
400     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
401     * than one PropertyValuesHolder object, this method will set the values for the first
402     * of those objects.</p>
403     *
404     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
405     * between these value objects. ValueAnimator only knows how to interpolate between the
406     * primitive types specified in the other setValues() methods.</p>
407     *
408     * @param values The set of values to animate between.
409     */
410    public void setObjectValues(Object... values) {
411        if (values == null || values.length == 0) {
412            return;
413        }
414        if (mValues == null || mValues.length == 0) {
415            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofObject("",
416                    (TypeEvaluator)null, values)});
417        } else {
418            PropertyValuesHolder valuesHolder = mValues[0];
419            valuesHolder.setObjectValues(values);
420        }
421        // New property/values/target should cause re-initialization prior to starting
422        mInitialized = false;
423    }
424
425    /**
426     * Sets the values, per property, being animated between. This function is called internally
427     * by the constructors of ValueAnimator that take a list of values. But an ValueAnimator can
428     * be constructed without values and this method can be called to set the values manually
429     * instead.
430     *
431     * @param values The set of values, per property, being animated between.
432     */
433    public void setValues(PropertyValuesHolder... values) {
434        int numValues = values.length;
435        mValues = values;
436        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
437        for (int i = 0; i < numValues; ++i) {
438            PropertyValuesHolder valuesHolder = (PropertyValuesHolder) values[i];
439            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
440        }
441        // New property/values/target should cause re-initialization prior to starting
442        mInitialized = false;
443    }
444
445    /**
446     * Returns the values that this ValueAnimator animates between. These values are stored in
447     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
448     * of value objects instead.
449     *
450     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
451     * values, per property, that define the animation.
452     */
453    public PropertyValuesHolder[] getValues() {
454        return mValues;
455    }
456
457    /**
458     * This function is called immediately before processing the first animation
459     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
460     * function is called after that delay ends.
461     * It takes care of the final initialization steps for the
462     * animation.
463     *
464     *  <p>Overrides of this method should call the superclass method to ensure
465     *  that internal mechanisms for the animation are set up correctly.</p>
466     */
467    void initAnimation() {
468        if (!mInitialized) {
469            int numValues = mValues.length;
470            for (int i = 0; i < numValues; ++i) {
471                mValues[i].init();
472            }
473            mInitialized = true;
474        }
475    }
476
477
478    /**
479     * Sets the length of the animation. The default duration is 300 milliseconds.
480     *
481     * @param duration The length of the animation, in milliseconds.
482     * @return ValueAnimator The object called with setDuration(). This return
483     * value makes it easier to compose statements together that construct and then set the
484     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
485     */
486    public ValueAnimator setDuration(long duration) {
487        mDuration = duration;
488        return this;
489    }
490
491    /**
492     * Gets the length of the animation. The default duration is 300 milliseconds.
493     *
494     * @return The length of the animation, in milliseconds.
495     */
496    public long getDuration() {
497        return mDuration;
498    }
499
500    /**
501     * Sets the position of the animation to the specified point in time. This time should
502     * be between 0 and the total duration of the animation, including any repetition. If
503     * the animation has not yet been started, then it will not advance forward after it is
504     * set to this time; it will simply set the time to this value and perform any appropriate
505     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
506     * will set the current playing time to this value and continue playing from that point.
507     *
508     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
509     */
510    public void setCurrentPlayTime(long playTime) {
511        initAnimation();
512        long currentTime = AnimationUtils.currentAnimationTimeMillis();
513        if (mPlayingState != RUNNING) {
514            mSeekTime = playTime;
515            mPlayingState = SEEKED;
516        }
517        mStartTime = currentTime - playTime;
518        animationFrame(currentTime);
519    }
520
521    /**
522     * Gets the current position of the animation in time, which is equal to the current
523     * time minus the time that the animation started. An animation that is not yet started will
524     * return a value of zero.
525     *
526     * @return The current position in time of the animation.
527     */
528    public long getCurrentPlayTime() {
529        if (!mInitialized || mPlayingState == STOPPED) {
530            return 0;
531        }
532        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
533    }
534
535    /**
536     * This custom, static handler handles the timing pulse that is shared by
537     * all active animations. This approach ensures that the setting of animation
538     * values will happen on the UI thread and that all animations will share
539     * the same times for calculating their values, which makes synchronizing
540     * animations possible.
541     *
542     */
543    private static class AnimationHandler extends Handler {
544        /**
545         * There are only two messages that we care about: ANIMATION_START and
546         * ANIMATION_FRAME. The START message is sent when an animation's start()
547         * method is called. It cannot start synchronously when start() is called
548         * because the call may be on the wrong thread, and it would also not be
549         * synchronized with other animations because it would not start on a common
550         * timing pulse. So each animation sends a START message to the handler, which
551         * causes the handler to place the animation on the active animations queue and
552         * start processing frames for that animation.
553         * The FRAME message is the one that is sent over and over while there are any
554         * active animations to process.
555         */
556        @Override
557        public void handleMessage(Message msg) {
558            boolean callAgain = true;
559            ArrayList<ValueAnimator> animations = sAnimations.get();
560            ArrayList<ValueAnimator> delayedAnims = sDelayedAnims.get();
561            switch (msg.what) {
562                // TODO: should we avoid sending frame message when starting if we
563                // were already running?
564                case ANIMATION_START:
565                    ArrayList<ValueAnimator> pendingAnimations = sPendingAnimations.get();
566                    if (animations.size() > 0 || delayedAnims.size() > 0) {
567                        callAgain = false;
568                    }
569                    // pendingAnims holds any animations that have requested to be started
570                    // We're going to clear sPendingAnimations, but starting animation may
571                    // cause more to be added to the pending list (for example, if one animation
572                    // starting triggers another starting). So we loop until sPendingAnimations
573                    // is empty.
574                    while (pendingAnimations.size() > 0) {
575                        ArrayList<ValueAnimator> pendingCopy =
576                                (ArrayList<ValueAnimator>) pendingAnimations.clone();
577                        pendingAnimations.clear();
578                        int count = pendingCopy.size();
579                        for (int i = 0; i < count; ++i) {
580                            ValueAnimator anim = pendingCopy.get(i);
581                            // If the animation has a startDelay, place it on the delayed list
582                            if (anim.mStartDelay == 0) {
583                                anim.startAnimation();
584                            } else {
585                                delayedAnims.add(anim);
586                            }
587                        }
588                    }
589                    // fall through to process first frame of new animations
590                case ANIMATION_FRAME:
591                    // currentTime holds the common time for all animations processed
592                    // during this frame
593                    long currentTime = AnimationUtils.currentAnimationTimeMillis();
594                    ArrayList<ValueAnimator> readyAnims = sReadyAnims.get();
595                    ArrayList<ValueAnimator> endingAnims = sEndingAnims.get();
596
597                    // First, process animations currently sitting on the delayed queue, adding
598                    // them to the active animations if they are ready
599                    int numDelayedAnims = delayedAnims.size();
600                    for (int i = 0; i < numDelayedAnims; ++i) {
601                        ValueAnimator anim = delayedAnims.get(i);
602                        if (anim.delayedAnimationFrame(currentTime)) {
603                            readyAnims.add(anim);
604                        }
605                    }
606                    int numReadyAnims = readyAnims.size();
607                    if (numReadyAnims > 0) {
608                        for (int i = 0; i < numReadyAnims; ++i) {
609                            ValueAnimator anim = readyAnims.get(i);
610                            anim.startAnimation();
611                            delayedAnims.remove(anim);
612                        }
613                        readyAnims.clear();
614                    }
615
616                    // Now process all active animations. The return value from animationFrame()
617                    // tells the handler whether it should now be ended
618                    int numAnims = animations.size();
619                    int i = 0;
620                    while (i < numAnims) {
621                        ValueAnimator anim = animations.get(i);
622                        if (anim.animationFrame(currentTime)) {
623                            endingAnims.add(anim);
624                        }
625                        if (animations.size() == numAnims) {
626                            ++i;
627                        } else {
628                            // An animation might be canceled or ended by client code
629                            // during the animation frame. Check to see if this happened by
630                            // seeing whether the current index is the same as it was before
631                            // calling animationFrame(). Another approach would be to copy
632                            // animations to a temporary list and process that list instead,
633                            // but that entails garbage and processing overhead that would
634                            // be nice to avoid.
635                            --numAnims;
636                            endingAnims.remove(anim);
637                        }
638                    }
639                    if (endingAnims.size() > 0) {
640                        for (i = 0; i < endingAnims.size(); ++i) {
641                            endingAnims.get(i).endAnimation();
642                        }
643                        endingAnims.clear();
644                    }
645
646                    // If there are still active or delayed animations, call the handler again
647                    // after the frameDelay
648                    if (callAgain && (!animations.isEmpty() || !delayedAnims.isEmpty())) {
649                        sendEmptyMessageDelayed(ANIMATION_FRAME, Math.max(0, sFrameDelay -
650                            (AnimationUtils.currentAnimationTimeMillis() - currentTime)));
651                    }
652                    break;
653            }
654        }
655    }
656
657    /**
658     * The amount of time, in milliseconds, to delay starting the animation after
659     * {@link #start()} is called.
660     *
661     * @return the number of milliseconds to delay running the animation
662     */
663    public long getStartDelay() {
664        return mStartDelay;
665    }
666
667    /**
668     * The amount of time, in milliseconds, to delay starting the animation after
669     * {@link #start()} is called.
670
671     * @param startDelay The amount of the delay, in milliseconds
672     */
673    public void setStartDelay(long startDelay) {
674        this.mStartDelay = startDelay;
675    }
676
677    /**
678     * The amount of time, in milliseconds, between each frame of the animation. This is a
679     * requested time that the animation will attempt to honor, but the actual delay between
680     * frames may be different, depending on system load and capabilities. This is a static
681     * function because the same delay will be applied to all animations, since they are all
682     * run off of a single timing loop.
683     *
684     * @return the requested time between frames, in milliseconds
685     */
686    public static long getFrameDelay() {
687        return sFrameDelay;
688    }
689
690    /**
691     * The amount of time, in milliseconds, between each frame of the animation. This is a
692     * requested time that the animation will attempt to honor, but the actual delay between
693     * frames may be different, depending on system load and capabilities. This is a static
694     * function because the same delay will be applied to all animations, since they are all
695     * run off of a single timing loop.
696     *
697     * @param frameDelay the requested time between frames, in milliseconds
698     */
699    public static void setFrameDelay(long frameDelay) {
700        sFrameDelay = frameDelay;
701    }
702
703    /**
704     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
705     * property being animated. This value is only sensible while the animation is running. The main
706     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
707     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
708     * is called during each animation frame, immediately after the value is calculated.
709     *
710     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
711     * the single property being animated. If there are several properties being animated
712     * (specified by several PropertyValuesHolder objects in the constructor), this function
713     * returns the animated value for the first of those objects.
714     */
715    public Object getAnimatedValue() {
716        if (mValues != null && mValues.length > 0) {
717            return mValues[0].getAnimatedValue();
718        }
719        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
720        return null;
721    }
722
723    /**
724     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
725     * The main purpose for this read-only property is to retrieve the value from the
726     * <code>ValueAnimator</code> during a call to
727     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
728     * is called during each animation frame, immediately after the value is calculated.
729     *
730     * @return animatedValue The value most recently calculated for the named property
731     * by this <code>ValueAnimator</code>.
732     */
733    public Object getAnimatedValue(String propertyName) {
734        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
735        if (valuesHolder != null) {
736            return valuesHolder.getAnimatedValue();
737        } else {
738            // At least avoid crashing if called with bogus propertyName
739            return null;
740        }
741    }
742
743    /**
744     * Sets how many times the animation should be repeated. If the repeat
745     * count is 0, the animation is never repeated. If the repeat count is
746     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
747     * into account. The repeat count is 0 by default.
748     *
749     * @param value the number of times the animation should be repeated
750     */
751    public void setRepeatCount(int value) {
752        mRepeatCount = value;
753    }
754    /**
755     * Defines how many times the animation should repeat. The default value
756     * is 0.
757     *
758     * @return the number of times the animation should repeat, or {@link #INFINITE}
759     */
760    public int getRepeatCount() {
761        return mRepeatCount;
762    }
763
764    /**
765     * Defines what this animation should do when it reaches the end. This
766     * setting is applied only when the repeat count is either greater than
767     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
768     *
769     * @param value {@link #RESTART} or {@link #REVERSE}
770     */
771    public void setRepeatMode(int value) {
772        mRepeatMode = value;
773    }
774
775    /**
776     * Defines what this animation should do when it reaches the end.
777     *
778     * @return either one of {@link #REVERSE} or {@link #RESTART}
779     */
780    public int getRepeatMode() {
781        return mRepeatMode;
782    }
783
784    /**
785     * Adds a listener to the set of listeners that are sent update events through the life of
786     * an animation. This method is called on all listeners for every frame of the animation,
787     * after the values for the animation have been calculated.
788     *
789     * @param listener the listener to be added to the current set of listeners for this animation.
790     */
791    public void addUpdateListener(AnimatorUpdateListener listener) {
792        if (mUpdateListeners == null) {
793            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
794        }
795        mUpdateListeners.add(listener);
796    }
797
798    /**
799     * Removes all listeners from the set listening to frame updates for this animation.
800     */
801    public void removeAllUpdateListeners() {
802        if (mUpdateListeners == null) {
803            return;
804        }
805        mUpdateListeners.clear();
806        mUpdateListeners = null;
807    }
808
809    /**
810     * Removes a listener from the set listening to frame updates for this animation.
811     *
812     * @param listener the listener to be removed from the current set of update listeners
813     * for this animation.
814     */
815    public void removeUpdateListener(AnimatorUpdateListener listener) {
816        if (mUpdateListeners == null) {
817            return;
818        }
819        mUpdateListeners.remove(listener);
820        if (mUpdateListeners.size() == 0) {
821            mUpdateListeners = null;
822        }
823    }
824
825
826    /**
827     * The time interpolator used in calculating the elapsed fraction of this animation. The
828     * interpolator determines whether the animation runs with linear or non-linear motion,
829     * such as acceleration and deceleration. The default value is
830     * {@link android.view.animation.AccelerateDecelerateInterpolator}
831     *
832     * @param value the interpolator to be used by this animation
833     */
834    @Override
835    public void setInterpolator(TimeInterpolator value) {
836        if (value != null) {
837            mInterpolator = value;
838        }
839    }
840
841    /**
842     * Returns the timing interpolator that this ValueAnimator uses.
843     *
844     * @return The timing interpolator for this ValueAnimator.
845     */
846    public TimeInterpolator getInterpolator() {
847        return mInterpolator;
848    }
849
850    /**
851     * The type evaluator to be used when calculating the animated values of this animation.
852     * The system will automatically assign a float, int, or double evaluator based on the type
853     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
854     * are not one of these primitive types, or if different evaluation is desired (such as is
855     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
856     * For example, when running an animation on color values, the {@link RGBEvaluator}
857     * should be used to get correct RGB color interpolation.
858     *
859     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
860     * will be used for that set. If there are several sets of values being animated, which is
861     * the case if PropertyValuesHOlder objects were set on the ValueAnimator, then the evaluator
862     * is assigned just to the first PropertyValuesHolder object.</p>
863     *
864     * @param value the evaluator to be used this animation
865     */
866    public void setEvaluator(TypeEvaluator value) {
867        if (value != null && mValues != null && mValues.length > 0) {
868            mValues[0].setEvaluator(value);
869        }
870    }
871
872    /**
873     * Start the animation playing. This version of start() takes a boolean flag that indicates
874     * whether the animation should play in reverse. The flag is usually false, but may be set
875     * to true if called from the reverse() method.
876     *
877     * <p>The animation started by calling this method will be run on the thread that called
878     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
879     * this is not the case). Also, if the animation will animate
880     * properties of objects in the view hierarchy, then the calling thread should be the UI
881     * thread for that view hierarchy.</p>
882     *
883     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
884     */
885    private void start(boolean playBackwards) {
886        if (Looper.myLooper() == null) {
887            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
888        }
889        mPlayingBackwards = playBackwards;
890        if (mStartDelay == 0) {
891            if (mListeners != null) {
892                ArrayList<AnimatorListener> tmpListeners =
893                        (ArrayList<AnimatorListener>) mListeners.clone();
894                int numListeners = tmpListeners.size();
895                for (int i = 0; i < numListeners; ++i) {
896                    tmpListeners.get(i).onAnimationStart(this);
897                }
898            }
899            // This sets the initial value of the animation, prior to actually starting it running
900            setCurrentPlayTime(getCurrentPlayTime());
901        }
902        mCurrentIteration = 0;
903        mPlayingState = STOPPED;
904        mStartedDelay = false;
905        sPendingAnimations.get().add(this);
906        AnimationHandler animationHandler = sAnimationHandler.get();
907        if (animationHandler == null) {
908            animationHandler = new AnimationHandler();
909            sAnimationHandler.set(animationHandler);
910        }
911        animationHandler.sendEmptyMessage(ANIMATION_START);
912    }
913
914    @Override
915    public void start() {
916        start(false);
917    }
918
919    @Override
920    public void cancel() {
921        if (mListeners != null) {
922            ArrayList<AnimatorListener> tmpListeners =
923                    (ArrayList<AnimatorListener>) mListeners.clone();
924            for (AnimatorListener listener : tmpListeners) {
925                listener.onAnimationCancel(this);
926            }
927        }
928        // Only cancel if the animation is actually running or has been started and is about
929        // to run
930        if (mPlayingState != STOPPED || sPendingAnimations.get().contains(this) ||
931                sDelayedAnims.get().contains(this)) {
932            endAnimation();
933        }
934    }
935
936    @Override
937    public void end() {
938        if (!sAnimations.get().contains(this) && !sPendingAnimations.get().contains(this)) {
939            // Special case if the animation has not yet started; get it ready for ending
940            mStartedDelay = false;
941            startAnimation();
942        }
943        // The final value set on the target varies, depending on whether the animation
944        // was supposed to repeat an odd number of times
945        if (mRepeatCount > 0 && (mRepeatCount & 0x01) == 1) {
946            animateValue(0f);
947        } else {
948            animateValue(1f);
949        }
950        endAnimation();
951    }
952
953    @Override
954    public boolean isRunning() {
955        return (mPlayingState == RUNNING);
956    }
957
958    /**
959     * Plays the ValueAnimator in reverse. If the animation is already running,
960     * it will stop itself and play backwards from the point reached when reverse was called.
961     * If the animation is not currently running, then it will start from the end and
962     * play backwards. This behavior is only set for the current animation; future playing
963     * of the animation will use the default behavior of playing forward.
964     */
965    public void reverse() {
966        mPlayingBackwards = !mPlayingBackwards;
967        if (mPlayingState == RUNNING) {
968            long currentTime = AnimationUtils.currentAnimationTimeMillis();
969            long currentPlayTime = currentTime - mStartTime;
970            long timeLeft = mDuration - currentPlayTime;
971            mStartTime = currentTime - timeLeft;
972        } else {
973            start(true);
974        }
975    }
976
977    /**
978     * Called internally to end an animation by removing it from the animations list. Must be
979     * called on the UI thread.
980     */
981    private void endAnimation() {
982        sAnimations.get().remove(this);
983        sPendingAnimations.get().remove(this);
984        sDelayedAnims.get().remove(this);
985        mPlayingState = STOPPED;
986        if (mListeners != null) {
987            ArrayList<AnimatorListener> tmpListeners =
988                    (ArrayList<AnimatorListener>) mListeners.clone();
989            int numListeners = tmpListeners.size();
990            for (int i = 0; i < numListeners; ++i) {
991                tmpListeners.get(i).onAnimationEnd(this);
992            }
993        }
994    }
995
996    /**
997     * Called internally to start an animation by adding it to the active animations list. Must be
998     * called on the UI thread.
999     */
1000    private void startAnimation() {
1001        initAnimation();
1002        sAnimations.get().add(this);
1003        if (mStartDelay > 0 && mListeners != null) {
1004            // Listeners were already notified in start() if startDelay is 0; this is
1005            // just for delayed animations
1006            ArrayList<AnimatorListener> tmpListeners =
1007                    (ArrayList<AnimatorListener>) mListeners.clone();
1008            int numListeners = tmpListeners.size();
1009            for (int i = 0; i < numListeners; ++i) {
1010                tmpListeners.get(i).onAnimationStart(this);
1011            }
1012        }
1013    }
1014
1015    /**
1016     * Internal function called to process an animation frame on an animation that is currently
1017     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1018     * should be woken up and put on the active animations queue.
1019     *
1020     * @param currentTime The current animation time, used to calculate whether the animation
1021     * has exceeded its <code>startDelay</code> and should be started.
1022     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1023     * should be added to the set of active animations.
1024     */
1025    private boolean delayedAnimationFrame(long currentTime) {
1026        if (!mStartedDelay) {
1027            mStartedDelay = true;
1028            mDelayStartTime = currentTime;
1029        } else {
1030            long deltaTime = currentTime - mDelayStartTime;
1031            if (deltaTime > mStartDelay) {
1032                // startDelay ended - start the anim and record the
1033                // mStartTime appropriately
1034                mStartTime = currentTime - (deltaTime - mStartDelay);
1035                mPlayingState = RUNNING;
1036                return true;
1037            }
1038        }
1039        return false;
1040    }
1041
1042    /**
1043     * This internal function processes a single animation frame for a given animation. The
1044     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1045     * elapsed duration, and therefore
1046     * the elapsed fraction, of the animation. The return value indicates whether the animation
1047     * should be ended (which happens when the elapsed time of the animation exceeds the
1048     * animation's duration, including the repeatCount).
1049     *
1050     * @param currentTime The current time, as tracked by the static timing handler
1051     * @return true if the animation's duration, including any repetitions due to
1052     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1053     */
1054    boolean animationFrame(long currentTime) {
1055        boolean done = false;
1056
1057        if (mPlayingState == STOPPED) {
1058            mPlayingState = RUNNING;
1059            if (mSeekTime < 0) {
1060                mStartTime = currentTime;
1061            } else {
1062                mStartTime = currentTime - mSeekTime;
1063                // Now that we're playing, reset the seek time
1064                mSeekTime = -1;
1065            }
1066        }
1067        switch (mPlayingState) {
1068        case RUNNING:
1069        case SEEKED:
1070            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1071            if (fraction >= 1f) {
1072                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1073                    // Time to repeat
1074                    if (mListeners != null) {
1075                        int numListeners = mListeners.size();
1076                        for (int i = 0; i < numListeners; ++i) {
1077                            mListeners.get(i).onAnimationRepeat(this);
1078                        }
1079                    }
1080                    if (mRepeatMode == REVERSE) {
1081                        mPlayingBackwards = mPlayingBackwards ? false : true;
1082                    }
1083                    mCurrentIteration += (int)fraction;
1084                    fraction = fraction % 1f;
1085                    mStartTime += mDuration;
1086                } else {
1087                    done = true;
1088                    fraction = Math.min(fraction, 1.0f);
1089                }
1090            }
1091            if (mPlayingBackwards) {
1092                fraction = 1f - fraction;
1093            }
1094            animateValue(fraction);
1095            break;
1096        }
1097
1098        return done;
1099    }
1100
1101    /**
1102     * This method is called with the elapsed fraction of the animation during every
1103     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1104     * and then into an animated value (from the evaluator. The function is called mostly during
1105     * animation updates, but it is also called when the <code>end()</code>
1106     * function is called, to set the final value on the property.
1107     *
1108     * <p>Overrides of this method must call the superclass to perform the calculation
1109     * of the animated value.</p>
1110     *
1111     * @param fraction The elapsed fraction of the animation.
1112     */
1113    void animateValue(float fraction) {
1114        fraction = mInterpolator.getInterpolation(fraction);
1115        int numValues = mValues.length;
1116        for (int i = 0; i < numValues; ++i) {
1117            mValues[i].calculateValue(fraction);
1118        }
1119        if (mUpdateListeners != null) {
1120            int numListeners = mUpdateListeners.size();
1121            for (int i = 0; i < numListeners; ++i) {
1122                mUpdateListeners.get(i).onAnimationUpdate(this);
1123            }
1124        }
1125    }
1126
1127    @Override
1128    public ValueAnimator clone() {
1129        final ValueAnimator anim = (ValueAnimator) super.clone();
1130        if (mUpdateListeners != null) {
1131            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1132            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1133            int numListeners = oldListeners.size();
1134            for (int i = 0; i < numListeners; ++i) {
1135                anim.mUpdateListeners.add(oldListeners.get(i));
1136            }
1137        }
1138        anim.mSeekTime = -1;
1139        anim.mPlayingBackwards = false;
1140        anim.mCurrentIteration = 0;
1141        anim.mInitialized = false;
1142        anim.mPlayingState = STOPPED;
1143        anim.mStartedDelay = false;
1144        PropertyValuesHolder[] oldValues = mValues;
1145        if (oldValues != null) {
1146            int numValues = oldValues.length;
1147            anim.mValues = new PropertyValuesHolder[numValues];
1148            for (int i = 0; i < numValues; ++i) {
1149                anim.mValues[i] = oldValues[i].clone();
1150            }
1151            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1152            for (int i = 0; i < numValues; ++i) {
1153                PropertyValuesHolder valuesHolder = mValues[i];
1154                anim.mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
1155            }
1156        }
1157        return anim;
1158    }
1159
1160    /**
1161     * Implementors of this interface can add themselves as update listeners
1162     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1163     * frame, after the current frame's values have been calculated for that
1164     * <code>ValueAnimator</code>.
1165     */
1166    public static interface AnimatorUpdateListener {
1167        /**
1168         * <p>Notifies the occurrence of another frame of the animation.</p>
1169         *
1170         * @param animation The animation which was repeated.
1171         */
1172        void onAnimationUpdate(ValueAnimator animation);
1173
1174    }
1175
1176    /**
1177     * Return the number of animations currently running.
1178     *
1179     * Used by StrictMode internally to annotate violations.  Only
1180     * called on the main thread.
1181     *
1182     * @hide
1183     */
1184    public static int getCurrentAnimationsCount() {
1185        return sAnimations.get().size();
1186    }
1187}
1188