ValueAnimator.java revision 08c7116ab9cd04ad6dd3c04aa1017237e7f409ac
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Looper;
20import android.os.Trace;
21import android.util.AndroidRuntimeException;
22import android.view.Choreographer;
23import android.view.animation.AccelerateDecelerateInterpolator;
24import android.view.animation.AnimationUtils;
25import android.view.animation.LinearInterpolator;
26
27import java.util.ArrayList;
28import java.util.HashMap;
29
30/**
31 * This class provides a simple timing engine for running animations
32 * which calculate animated values and set them on target objects.
33 *
34 * <p>There is a single timing pulse that all animations use. It runs in a
35 * custom handler to ensure that property changes happen on the UI thread.</p>
36 *
37 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
38 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
39 * out of an animation. This behavior can be changed by calling
40 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
41 *
42 * <p>Animators can be created from either code or resource files. Here is an example
43 * of a ValueAnimator resource file:</p>
44 *
45 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
46 *
47 * <p>It is also possible to use a combination of {@link PropertyValuesHolder} and
48 * {@link Keyframe} resource tags to create a multi-step animation.
49 * Note that you can specify explicit fractional values (from 0 to 1) for
50 * each keyframe to determine when, in the overall duration, the animation should arrive at that
51 * value. Alternatively, you can leave the fractions off and the keyframes will be equally
52 * distributed within the total duration:</p>
53 *
54 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
55 * ValueAnimatorKeyframeResources}
56 *
57 * <div class="special reference">
58 * <h3>Developer Guides</h3>
59 * <p>For more information about animating with {@code ValueAnimator}, read the
60 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
61 * Animation</a> developer guide.</p>
62 * </div>
63 */
64@SuppressWarnings("unchecked")
65public class ValueAnimator extends Animator {
66
67    /**
68     * Internal constants
69     */
70    private static float sDurationScale = 1.0f;
71
72    /**
73     * Values used with internal variable mPlayingState to indicate the current state of an
74     * animation.
75     */
76    static final int STOPPED    = 0; // Not yet playing
77    static final int RUNNING    = 1; // Playing normally
78    static final int SEEKED     = 2; // Seeked to some time value
79
80    /**
81     * Internal variables
82     * NOTE: This object implements the clone() method, making a deep copy of any referenced
83     * objects. As other non-trivial fields are added to this class, make sure to add logic
84     * to clone() to make deep copies of them.
85     */
86
87    // The first time that the animation's animateFrame() method is called. This time is used to
88    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
89    // to animateFrame()
90    long mStartTime;
91
92    /**
93     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
94     * to a value.
95     */
96    float mSeekFraction = -1;
97
98    /**
99     * Set on the next frame after pause() is called, used to calculate a new startTime
100     * or delayStartTime which allows the animator to continue from the point at which
101     * it was paused. If negative, has not yet been set.
102     */
103    private long mPauseTime;
104
105    /**
106     * Set when an animator is resumed. This triggers logic in the next frame which
107     * actually resumes the animator.
108     */
109    private boolean mResumed = false;
110
111
112    // The static sAnimationHandler processes the internal timing loop on which all animations
113    // are based
114    /**
115     * @hide
116     */
117    protected static ThreadLocal<AnimationHandler> sAnimationHandler =
118            new ThreadLocal<AnimationHandler>();
119
120    // The time interpolator to be used if none is set on the animation
121    private static final TimeInterpolator sDefaultInterpolator =
122            new AccelerateDecelerateInterpolator();
123
124    /**
125     * Used to indicate whether the animation is currently playing in reverse. This causes the
126     * elapsed fraction to be inverted to calculate the appropriate values.
127     */
128    private boolean mPlayingBackwards = false;
129
130    /**
131     * Flag to indicate whether this animator is playing in reverse mode, specifically
132     * by being started or interrupted by a call to reverse(). This flag is different than
133     * mPlayingBackwards, which indicates merely whether the current iteration of the
134     * animator is playing in reverse. It is used in corner cases to determine proper end
135     * behavior.
136     */
137    private boolean mReversing;
138
139    /**
140     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
141     * repeatCount (if repeatCount!=INFINITE), the animation ends
142     */
143    private int mCurrentIteration = 0;
144
145    /**
146     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
147     */
148    private float mCurrentFraction = 0f;
149
150    /**
151     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
152     */
153    private boolean mStartedDelay = false;
154
155    /**
156     * Tracks the time at which the animation began playing through its startDelay. This is
157     * different from the mStartTime variable, which is used to track when the animation became
158     * active (which is when the startDelay expired and the animation was added to the active
159     * animations list).
160     */
161    private long mDelayStartTime;
162
163    /**
164     * Flag that represents the current state of the animation. Used to figure out when to start
165     * an animation (if state == STOPPED). Also used to end an animation that
166     * has been cancel()'d or end()'d since the last animation frame. Possible values are
167     * STOPPED, RUNNING, SEEKED.
168     */
169    int mPlayingState = STOPPED;
170
171    /**
172     * Additional playing state to indicate whether an animator has been start()'d. There is
173     * some lag between a call to start() and the first animation frame. We should still note
174     * that the animation has been started, even if it's first animation frame has not yet
175     * happened, and reflect that state in isRunning().
176     * Note that delayed animations are different: they are not started until their first
177     * animation frame, which occurs after their delay elapses.
178     */
179    private boolean mRunning = false;
180
181    /**
182     * Additional playing state to indicate whether an animator has been start()'d, whether or
183     * not there is a nonzero startDelay.
184     */
185    private boolean mStarted = false;
186
187    /**
188     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
189     * complex to keep track of since we notify listeners at different times depending on
190     * startDelay and whether start() was called before end().
191     */
192    private boolean mStartListenersCalled = false;
193
194    /**
195     * Flag that denotes whether the animation is set up and ready to go. Used to
196     * set up animation that has not yet been started.
197     */
198    boolean mInitialized = false;
199
200    //
201    // Backing variables
202    //
203
204    // How long the animation should last in ms
205    private long mDuration = (long)(300 * sDurationScale);
206    private long mUnscaledDuration = 300;
207
208    // The amount of time in ms to delay starting the animation after start() is called
209    private long mStartDelay = 0;
210    private long mUnscaledStartDelay = 0;
211
212    // The number of times the animation will repeat. The default is 0, which means the animation
213    // will play only once
214    private int mRepeatCount = 0;
215
216    /**
217     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
218     * animation will start from the beginning on every new cycle. REVERSE means the animation
219     * will reverse directions on each iteration.
220     */
221    private int mRepeatMode = RESTART;
222
223    /**
224     * The time interpolator to be used. The elapsed fraction of the animation will be passed
225     * through this interpolator to calculate the interpolated fraction, which is then used to
226     * calculate the animated values.
227     */
228    private TimeInterpolator mInterpolator = sDefaultInterpolator;
229
230    /**
231     * The set of listeners to be sent events through the life of an animation.
232     */
233    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
234
235    /**
236     * The property/value sets being animated.
237     */
238    PropertyValuesHolder[] mValues;
239
240    /**
241     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
242     * by property name during calls to getAnimatedValue(String).
243     */
244    HashMap<String, PropertyValuesHolder> mValuesMap;
245
246    /**
247     * Public constants
248     */
249
250    /**
251     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
252     * or a positive value, the animation restarts from the beginning.
253     */
254    public static final int RESTART = 1;
255    /**
256     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
257     * or a positive value, the animation reverses direction on every iteration.
258     */
259    public static final int REVERSE = 2;
260    /**
261     * This value used used with the {@link #setRepeatCount(int)} property to repeat
262     * the animation indefinitely.
263     */
264    public static final int INFINITE = -1;
265
266
267    /**
268     * @hide
269     */
270    public static void setDurationScale(float durationScale) {
271        sDurationScale = durationScale;
272    }
273
274    /**
275     * @hide
276     */
277    public static float getDurationScale() {
278        return sDurationScale;
279    }
280
281    /**
282     * Creates a new ValueAnimator object. This default constructor is primarily for
283     * use internally; the factory methods which take parameters are more generally
284     * useful.
285     */
286    public ValueAnimator() {
287    }
288
289    /**
290     * Constructs and returns a ValueAnimator that animates between int values. A single
291     * value implies that that value is the one being animated to. However, this is not typically
292     * useful in a ValueAnimator object because there is no way for the object to determine the
293     * starting value for the animation (unlike ObjectAnimator, which can derive that value
294     * from the target object and property being animated). Therefore, there should typically
295     * be two or more values.
296     *
297     * @param values A set of values that the animation will animate between over time.
298     * @return A ValueAnimator object that is set up to animate between the given values.
299     */
300    public static ValueAnimator ofInt(int... values) {
301        ValueAnimator anim = new ValueAnimator();
302        anim.setIntValues(values);
303        return anim;
304    }
305
306    /**
307     * Constructs and returns a ValueAnimator that animates between color values. A single
308     * value implies that that value is the one being animated to. However, this is not typically
309     * useful in a ValueAnimator object because there is no way for the object to determine the
310     * starting value for the animation (unlike ObjectAnimator, which can derive that value
311     * from the target object and property being animated). Therefore, there should typically
312     * be two or more values.
313     *
314     * @param values A set of values that the animation will animate between over time.
315     * @return A ValueAnimator object that is set up to animate between the given values.
316     */
317    public static ValueAnimator ofArgb(int... values) {
318        ValueAnimator anim = new ValueAnimator();
319        anim.setIntValues(values);
320        anim.setEvaluator(ArgbEvaluator.getInstance());
321        return anim;
322    }
323
324    /**
325     * Constructs and returns a ValueAnimator that animates between float values. A single
326     * value implies that that value is the one being animated to. However, this is not typically
327     * useful in a ValueAnimator object because there is no way for the object to determine the
328     * starting value for the animation (unlike ObjectAnimator, which can derive that value
329     * from the target object and property being animated). Therefore, there should typically
330     * be two or more values.
331     *
332     * @param values A set of values that the animation will animate between over time.
333     * @return A ValueAnimator object that is set up to animate between the given values.
334     */
335    public static ValueAnimator ofFloat(float... values) {
336        ValueAnimator anim = new ValueAnimator();
337        anim.setFloatValues(values);
338        return anim;
339    }
340
341    /**
342     * Constructs and returns a ValueAnimator that animates between the values
343     * specified in the PropertyValuesHolder objects.
344     *
345     * @param values A set of PropertyValuesHolder objects whose values will be animated
346     * between over time.
347     * @return A ValueAnimator object that is set up to animate between the given values.
348     */
349    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
350        ValueAnimator anim = new ValueAnimator();
351        anim.setValues(values);
352        return anim;
353    }
354    /**
355     * Constructs and returns a ValueAnimator that animates between Object values. A single
356     * value implies that that value is the one being animated to. However, this is not typically
357     * useful in a ValueAnimator object because there is no way for the object to determine the
358     * starting value for the animation (unlike ObjectAnimator, which can derive that value
359     * from the target object and property being animated). Therefore, there should typically
360     * be two or more values.
361     *
362     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
363     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
364     * to perform that interpolation.
365     *
366     * @param evaluator A TypeEvaluator that will be called on each animation frame to
367     * provide the ncessry interpolation between the Object values to derive the animated
368     * value.
369     * @param values A set of values that the animation will animate between over time.
370     * @return A ValueAnimator object that is set up to animate between the given values.
371     */
372    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
373        ValueAnimator anim = new ValueAnimator();
374        anim.setObjectValues(values);
375        anim.setEvaluator(evaluator);
376        return anim;
377    }
378
379    /**
380     * Sets int values that will be animated between. A single
381     * value implies that that value is the one being animated to. However, this is not typically
382     * useful in a ValueAnimator object because there is no way for the object to determine the
383     * starting value for the animation (unlike ObjectAnimator, which can derive that value
384     * from the target object and property being animated). Therefore, there should typically
385     * be two or more values.
386     *
387     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
388     * than one PropertyValuesHolder object, this method will set the values for the first
389     * of those objects.</p>
390     *
391     * @param values A set of values that the animation will animate between over time.
392     */
393    public void setIntValues(int... values) {
394        if (values == null || values.length == 0) {
395            return;
396        }
397        if (mValues == null || mValues.length == 0) {
398            setValues(PropertyValuesHolder.ofInt("", values));
399        } else {
400            PropertyValuesHolder valuesHolder = mValues[0];
401            valuesHolder.setIntValues(values);
402        }
403        // New property/values/target should cause re-initialization prior to starting
404        mInitialized = false;
405    }
406
407    /**
408     * Sets float values that will be animated between. A single
409     * value implies that that value is the one being animated to. However, this is not typically
410     * useful in a ValueAnimator object because there is no way for the object to determine the
411     * starting value for the animation (unlike ObjectAnimator, which can derive that value
412     * from the target object and property being animated). Therefore, there should typically
413     * be two or more values.
414     *
415     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
416     * than one PropertyValuesHolder object, this method will set the values for the first
417     * of those objects.</p>
418     *
419     * @param values A set of values that the animation will animate between over time.
420     */
421    public void setFloatValues(float... values) {
422        if (values == null || values.length == 0) {
423            return;
424        }
425        if (mValues == null || mValues.length == 0) {
426            setValues(PropertyValuesHolder.ofFloat("", values));
427        } else {
428            PropertyValuesHolder valuesHolder = mValues[0];
429            valuesHolder.setFloatValues(values);
430        }
431        // New property/values/target should cause re-initialization prior to starting
432        mInitialized = false;
433    }
434
435    /**
436     * Sets the values to animate between for this animation. A single
437     * value implies that that value is the one being animated to. However, this is not typically
438     * useful in a ValueAnimator object because there is no way for the object to determine the
439     * starting value for the animation (unlike ObjectAnimator, which can derive that value
440     * from the target object and property being animated). Therefore, there should typically
441     * be two or more values.
442     *
443     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
444     * than one PropertyValuesHolder object, this method will set the values for the first
445     * of those objects.</p>
446     *
447     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
448     * between these value objects. ValueAnimator only knows how to interpolate between the
449     * primitive types specified in the other setValues() methods.</p>
450     *
451     * @param values The set of values to animate between.
452     */
453    public void setObjectValues(Object... values) {
454        if (values == null || values.length == 0) {
455            return;
456        }
457        if (mValues == null || mValues.length == 0) {
458            setValues(PropertyValuesHolder.ofObject("", null, values));
459        } else {
460            PropertyValuesHolder valuesHolder = mValues[0];
461            valuesHolder.setObjectValues(values);
462        }
463        // New property/values/target should cause re-initialization prior to starting
464        mInitialized = false;
465    }
466
467    /**
468     * Sets the values, per property, being animated between. This function is called internally
469     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
470     * be constructed without values and this method can be called to set the values manually
471     * instead.
472     *
473     * @param values The set of values, per property, being animated between.
474     */
475    public void setValues(PropertyValuesHolder... values) {
476        int numValues = values.length;
477        mValues = values;
478        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
479        for (int i = 0; i < numValues; ++i) {
480            PropertyValuesHolder valuesHolder = values[i];
481            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
482        }
483        // New property/values/target should cause re-initialization prior to starting
484        mInitialized = false;
485    }
486
487    /**
488     * Returns the values that this ValueAnimator animates between. These values are stored in
489     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
490     * of value objects instead.
491     *
492     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
493     * values, per property, that define the animation.
494     */
495    public PropertyValuesHolder[] getValues() {
496        return mValues;
497    }
498
499    /**
500     * This function is called immediately before processing the first animation
501     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
502     * function is called after that delay ends.
503     * It takes care of the final initialization steps for the
504     * animation.
505     *
506     *  <p>Overrides of this method should call the superclass method to ensure
507     *  that internal mechanisms for the animation are set up correctly.</p>
508     */
509    void initAnimation() {
510        if (!mInitialized) {
511            int numValues = mValues.length;
512            for (int i = 0; i < numValues; ++i) {
513                mValues[i].init();
514            }
515            mInitialized = true;
516        }
517    }
518
519
520    /**
521     * Sets the length of the animation. The default duration is 300 milliseconds.
522     *
523     * @param duration The length of the animation, in milliseconds. This value cannot
524     * be negative.
525     * @return ValueAnimator The object called with setDuration(). This return
526     * value makes it easier to compose statements together that construct and then set the
527     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
528     */
529    public ValueAnimator setDuration(long duration) {
530        if (duration < 0) {
531            throw new IllegalArgumentException("Animators cannot have negative duration: " +
532                    duration);
533        }
534        mUnscaledDuration = duration;
535        updateScaledDuration();
536        return this;
537    }
538
539    private void updateScaledDuration() {
540        mDuration = (long)(mUnscaledDuration * sDurationScale);
541    }
542
543    /**
544     * Gets the length of the animation. The default duration is 300 milliseconds.
545     *
546     * @return The length of the animation, in milliseconds.
547     */
548    public long getDuration() {
549        return mUnscaledDuration;
550    }
551
552    /**
553     * Sets the position of the animation to the specified point in time. This time should
554     * be between 0 and the total duration of the animation, including any repetition. If
555     * the animation has not yet been started, then it will not advance forward after it is
556     * set to this time; it will simply set the time to this value and perform any appropriate
557     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
558     * will set the current playing time to this value and continue playing from that point.
559     *
560     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
561     */
562    public void setCurrentPlayTime(long playTime) {
563        float fraction = mUnscaledDuration > 0 ? (float) playTime / mUnscaledDuration : 1;
564        setCurrentFraction(fraction);
565    }
566
567    /**
568     * Sets the position of the animation to the specified fraction. This fraction should
569     * be between 0 and the total fraction of the animation, including any repetition. That is,
570     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
571     * and a value of 2 at the end of a reversing animator that repeats once. If
572     * the animation has not yet been started, then it will not advance forward after it is
573     * set to this fraction; it will simply set the fraction to this value and perform any
574     * appropriate actions based on that fraction. If the animation is already running, then
575     * setCurrentFraction() will set the current fraction to this value and continue
576     * playing from that point. {@link Animator.AnimatorListener} events are not called
577     * due to changing the fraction; those events are only processed while the animation
578     * is running.
579     *
580     * @param fraction The fraction to which the animation is advanced or rewound. Values
581     * outside the range of 0 to the maximum fraction for the animator will be clamped to
582     * the correct range.
583     */
584    public void setCurrentFraction(float fraction) {
585        initAnimation();
586        if (fraction < 0) {
587            fraction = 0;
588        }
589        int iteration = (int) fraction;
590        if (fraction == 1) {
591            iteration -= 1;
592        } else if (fraction > 1) {
593            if (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE) {
594                if (mRepeatMode == REVERSE) {
595                    mPlayingBackwards = (iteration % 2) != 0;
596                }
597                fraction = fraction % 1f;
598            } else {
599                fraction = 1;
600                iteration -= 1;
601            }
602        } else {
603            mPlayingBackwards = mReversing;
604        }
605        mCurrentIteration = iteration;
606        long seekTime = (long) (mDuration * fraction);
607        long currentTime = AnimationUtils.currentAnimationTimeMillis();
608        mStartTime = currentTime - seekTime;
609        if (mPlayingState != RUNNING) {
610            mSeekFraction = fraction;
611            mPlayingState = SEEKED;
612        }
613        if (mPlayingBackwards) {
614            fraction = 1f - fraction;
615        }
616        animateValue(fraction);
617    }
618
619    /**
620     * Gets the current position of the animation in time, which is equal to the current
621     * time minus the time that the animation started. An animation that is not yet started will
622     * return a value of zero.
623     *
624     * @return The current position in time of the animation.
625     */
626    public long getCurrentPlayTime() {
627        if (!mInitialized || mPlayingState == STOPPED) {
628            return 0;
629        }
630        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
631    }
632
633    /**
634     * This custom, static handler handles the timing pulse that is shared by
635     * all active animations. This approach ensures that the setting of animation
636     * values will happen on the UI thread and that all animations will share
637     * the same times for calculating their values, which makes synchronizing
638     * animations possible.
639     *
640     * The handler uses the Choreographer for executing periodic callbacks.
641     *
642     * @hide
643     */
644    @SuppressWarnings("unchecked")
645    protected static class AnimationHandler implements Runnable {
646        // The per-thread list of all active animations
647        /** @hide */
648        protected final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
649
650        // Used in doAnimationFrame() to avoid concurrent modifications of mAnimations
651        private final ArrayList<ValueAnimator> mTmpAnimations = new ArrayList<ValueAnimator>();
652
653        // The per-thread set of animations to be started on the next animation frame
654        /** @hide */
655        protected final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
656
657        /**
658         * Internal per-thread collections used to avoid set collisions as animations start and end
659         * while being processed.
660         * @hide
661         */
662        protected final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
663        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
664        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
665
666        private final Choreographer mChoreographer;
667        private boolean mAnimationScheduled;
668
669        private AnimationHandler() {
670            mChoreographer = Choreographer.getInstance();
671        }
672
673        /**
674         * Start animating on the next frame.
675         */
676        public void start() {
677            scheduleAnimation();
678        }
679
680        private void doAnimationFrame(long frameTime) {
681            // mPendingAnimations holds any animations that have requested to be started
682            // We're going to clear mPendingAnimations, but starting animation may
683            // cause more to be added to the pending list (for example, if one animation
684            // starting triggers another starting). So we loop until mPendingAnimations
685            // is empty.
686            while (mPendingAnimations.size() > 0) {
687                ArrayList<ValueAnimator> pendingCopy =
688                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
689                mPendingAnimations.clear();
690                int count = pendingCopy.size();
691                for (int i = 0; i < count; ++i) {
692                    ValueAnimator anim = pendingCopy.get(i);
693                    // If the animation has a startDelay, place it on the delayed list
694                    if (anim.mStartDelay == 0) {
695                        anim.startAnimation(this);
696                    } else {
697                        mDelayedAnims.add(anim);
698                    }
699                }
700            }
701            // Next, process animations currently sitting on the delayed queue, adding
702            // them to the active animations if they are ready
703            int numDelayedAnims = mDelayedAnims.size();
704            for (int i = 0; i < numDelayedAnims; ++i) {
705                ValueAnimator anim = mDelayedAnims.get(i);
706                if (anim.delayedAnimationFrame(frameTime)) {
707                    mReadyAnims.add(anim);
708                }
709            }
710            int numReadyAnims = mReadyAnims.size();
711            if (numReadyAnims > 0) {
712                for (int i = 0; i < numReadyAnims; ++i) {
713                    ValueAnimator anim = mReadyAnims.get(i);
714                    anim.startAnimation(this);
715                    anim.mRunning = true;
716                    mDelayedAnims.remove(anim);
717                }
718                mReadyAnims.clear();
719            }
720
721            // Now process all active animations. The return value from animationFrame()
722            // tells the handler whether it should now be ended
723            int numAnims = mAnimations.size();
724            for (int i = 0; i < numAnims; ++i) {
725                mTmpAnimations.add(mAnimations.get(i));
726            }
727            for (int i = 0; i < numAnims; ++i) {
728                ValueAnimator anim = mTmpAnimations.get(i);
729                if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
730                    mEndingAnims.add(anim);
731                }
732            }
733            mTmpAnimations.clear();
734            if (mEndingAnims.size() > 0) {
735                for (int i = 0; i < mEndingAnims.size(); ++i) {
736                    mEndingAnims.get(i).endAnimation(this);
737                }
738                mEndingAnims.clear();
739            }
740
741            // If there are still active or delayed animations, schedule a future call to
742            // onAnimate to process the next frame of the animations.
743            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
744                scheduleAnimation();
745            }
746        }
747
748        // Called by the Choreographer.
749        @Override
750        public void run() {
751            mAnimationScheduled = false;
752            doAnimationFrame(mChoreographer.getFrameTime());
753        }
754
755        private void scheduleAnimation() {
756            if (!mAnimationScheduled) {
757                mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, this, null);
758                mAnimationScheduled = true;
759            }
760        }
761    }
762
763    /**
764     * The amount of time, in milliseconds, to delay starting the animation after
765     * {@link #start()} is called.
766     *
767     * @return the number of milliseconds to delay running the animation
768     */
769    public long getStartDelay() {
770        return mUnscaledStartDelay;
771    }
772
773    /**
774     * The amount of time, in milliseconds, to delay starting the animation after
775     * {@link #start()} is called.
776
777     * @param startDelay The amount of the delay, in milliseconds
778     */
779    public void setStartDelay(long startDelay) {
780        this.mStartDelay = (long)(startDelay * sDurationScale);
781        mUnscaledStartDelay = startDelay;
782    }
783
784    /**
785     * The amount of time, in milliseconds, between each frame of the animation. This is a
786     * requested time that the animation will attempt to honor, but the actual delay between
787     * frames may be different, depending on system load and capabilities. This is a static
788     * function because the same delay will be applied to all animations, since they are all
789     * run off of a single timing loop.
790     *
791     * The frame delay may be ignored when the animation system uses an external timing
792     * source, such as the display refresh rate (vsync), to govern animations.
793     *
794     * @return the requested time between frames, in milliseconds
795     */
796    public static long getFrameDelay() {
797        return Choreographer.getFrameDelay();
798    }
799
800    /**
801     * The amount of time, in milliseconds, between each frame of the animation. This is a
802     * requested time that the animation will attempt to honor, but the actual delay between
803     * frames may be different, depending on system load and capabilities. This is a static
804     * function because the same delay will be applied to all animations, since they are all
805     * run off of a single timing loop.
806     *
807     * The frame delay may be ignored when the animation system uses an external timing
808     * source, such as the display refresh rate (vsync), to govern animations.
809     *
810     * @param frameDelay the requested time between frames, in milliseconds
811     */
812    public static void setFrameDelay(long frameDelay) {
813        Choreographer.setFrameDelay(frameDelay);
814    }
815
816    /**
817     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
818     * property being animated. This value is only sensible while the animation is running. The main
819     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
820     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
821     * is called during each animation frame, immediately after the value is calculated.
822     *
823     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
824     * the single property being animated. If there are several properties being animated
825     * (specified by several PropertyValuesHolder objects in the constructor), this function
826     * returns the animated value for the first of those objects.
827     */
828    public Object getAnimatedValue() {
829        if (mValues != null && mValues.length > 0) {
830            return mValues[0].getAnimatedValue();
831        }
832        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
833        return null;
834    }
835
836    /**
837     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
838     * The main purpose for this read-only property is to retrieve the value from the
839     * <code>ValueAnimator</code> during a call to
840     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
841     * is called during each animation frame, immediately after the value is calculated.
842     *
843     * @return animatedValue The value most recently calculated for the named property
844     * by this <code>ValueAnimator</code>.
845     */
846    public Object getAnimatedValue(String propertyName) {
847        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
848        if (valuesHolder != null) {
849            return valuesHolder.getAnimatedValue();
850        } else {
851            // At least avoid crashing if called with bogus propertyName
852            return null;
853        }
854    }
855
856    /**
857     * Sets how many times the animation should be repeated. If the repeat
858     * count is 0, the animation is never repeated. If the repeat count is
859     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
860     * into account. The repeat count is 0 by default.
861     *
862     * @param value the number of times the animation should be repeated
863     */
864    public void setRepeatCount(int value) {
865        mRepeatCount = value;
866    }
867    /**
868     * Defines how many times the animation should repeat. The default value
869     * is 0.
870     *
871     * @return the number of times the animation should repeat, or {@link #INFINITE}
872     */
873    public int getRepeatCount() {
874        return mRepeatCount;
875    }
876
877    /**
878     * Defines what this animation should do when it reaches the end. This
879     * setting is applied only when the repeat count is either greater than
880     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
881     *
882     * @param value {@link #RESTART} or {@link #REVERSE}
883     */
884    public void setRepeatMode(int value) {
885        mRepeatMode = value;
886    }
887
888    /**
889     * Defines what this animation should do when it reaches the end.
890     *
891     * @return either one of {@link #REVERSE} or {@link #RESTART}
892     */
893    public int getRepeatMode() {
894        return mRepeatMode;
895    }
896
897    /**
898     * Adds a listener to the set of listeners that are sent update events through the life of
899     * an animation. This method is called on all listeners for every frame of the animation,
900     * after the values for the animation have been calculated.
901     *
902     * @param listener the listener to be added to the current set of listeners for this animation.
903     */
904    public void addUpdateListener(AnimatorUpdateListener listener) {
905        if (mUpdateListeners == null) {
906            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
907        }
908        mUpdateListeners.add(listener);
909    }
910
911    /**
912     * Removes all listeners from the set listening to frame updates for this animation.
913     */
914    public void removeAllUpdateListeners() {
915        if (mUpdateListeners == null) {
916            return;
917        }
918        mUpdateListeners.clear();
919        mUpdateListeners = null;
920    }
921
922    /**
923     * Removes a listener from the set listening to frame updates for this animation.
924     *
925     * @param listener the listener to be removed from the current set of update listeners
926     * for this animation.
927     */
928    public void removeUpdateListener(AnimatorUpdateListener listener) {
929        if (mUpdateListeners == null) {
930            return;
931        }
932        mUpdateListeners.remove(listener);
933        if (mUpdateListeners.size() == 0) {
934            mUpdateListeners = null;
935        }
936    }
937
938
939    /**
940     * The time interpolator used in calculating the elapsed fraction of this animation. The
941     * interpolator determines whether the animation runs with linear or non-linear motion,
942     * such as acceleration and deceleration. The default value is
943     * {@link android.view.animation.AccelerateDecelerateInterpolator}
944     *
945     * @param value the interpolator to be used by this animation. A value of <code>null</code>
946     * will result in linear interpolation.
947     */
948    @Override
949    public void setInterpolator(TimeInterpolator value) {
950        if (value != null) {
951            mInterpolator = value;
952        } else {
953            mInterpolator = new LinearInterpolator();
954        }
955    }
956
957    /**
958     * Returns the timing interpolator that this ValueAnimator uses.
959     *
960     * @return The timing interpolator for this ValueAnimator.
961     */
962    @Override
963    public TimeInterpolator getInterpolator() {
964        return mInterpolator;
965    }
966
967    /**
968     * The type evaluator to be used when calculating the animated values of this animation.
969     * The system will automatically assign a float or int evaluator based on the type
970     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
971     * are not one of these primitive types, or if different evaluation is desired (such as is
972     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
973     * For example, when running an animation on color values, the {@link ArgbEvaluator}
974     * should be used to get correct RGB color interpolation.
975     *
976     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
977     * will be used for that set. If there are several sets of values being animated, which is
978     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
979     * is assigned just to the first PropertyValuesHolder object.</p>
980     *
981     * @param value the evaluator to be used this animation
982     */
983    public void setEvaluator(TypeEvaluator value) {
984        if (value != null && mValues != null && mValues.length > 0) {
985            mValues[0].setEvaluator(value);
986        }
987    }
988
989    private void notifyStartListeners() {
990        if (mListeners != null && !mStartListenersCalled) {
991            ArrayList<AnimatorListener> tmpListeners =
992                    (ArrayList<AnimatorListener>) mListeners.clone();
993            int numListeners = tmpListeners.size();
994            for (int i = 0; i < numListeners; ++i) {
995                tmpListeners.get(i).onAnimationStart(this);
996            }
997        }
998        mStartListenersCalled = true;
999    }
1000
1001    /**
1002     * Start the animation playing. This version of start() takes a boolean flag that indicates
1003     * whether the animation should play in reverse. The flag is usually false, but may be set
1004     * to true if called from the reverse() method.
1005     *
1006     * <p>The animation started by calling this method will be run on the thread that called
1007     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
1008     * this is not the case). Also, if the animation will animate
1009     * properties of objects in the view hierarchy, then the calling thread should be the UI
1010     * thread for that view hierarchy.</p>
1011     *
1012     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
1013     */
1014    private void start(boolean playBackwards) {
1015        if (Looper.myLooper() == null) {
1016            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1017        }
1018        mReversing = playBackwards;
1019        mPlayingBackwards = playBackwards;
1020        if (playBackwards && mSeekFraction != -1) {
1021            if (mSeekFraction == 0 && mCurrentIteration == 0) {
1022                // special case: reversing from seek-to-0 should act as if not seeked at all
1023                mSeekFraction = 0;
1024            } else if (mRepeatCount == INFINITE) {
1025                mSeekFraction = 1 - (mSeekFraction % 1);
1026            } else {
1027                mSeekFraction = 1 + mRepeatCount - (mCurrentIteration + mSeekFraction);
1028            }
1029            mCurrentIteration = (int) mSeekFraction;
1030            mSeekFraction = mSeekFraction % 1;
1031        }
1032        if (mCurrentIteration > 0 && mRepeatMode == REVERSE &&
1033                (mCurrentIteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
1034            // if we were seeked to some other iteration in a reversing animator,
1035            // figure out the correct direction to start playing based on the iteration
1036            if (playBackwards) {
1037                mPlayingBackwards = (mCurrentIteration % 2) == 0;
1038            } else {
1039                mPlayingBackwards = (mCurrentIteration % 2) != 0;
1040            }
1041        }
1042        int prevPlayingState = mPlayingState;
1043        mPlayingState = STOPPED;
1044        mStarted = true;
1045        mStartedDelay = false;
1046        mPaused = false;
1047        updateScaledDuration(); // in case the scale factor has changed since creation time
1048        AnimationHandler animationHandler = getOrCreateAnimationHandler();
1049        animationHandler.mPendingAnimations.add(this);
1050        if (mStartDelay == 0) {
1051            // This sets the initial value of the animation, prior to actually starting it running
1052            if (prevPlayingState != SEEKED) {
1053                setCurrentPlayTime(0);
1054            }
1055            mPlayingState = STOPPED;
1056            mRunning = true;
1057            notifyStartListeners();
1058        }
1059        animationHandler.start();
1060    }
1061
1062    @Override
1063    public void start() {
1064        start(false);
1065    }
1066
1067    @Override
1068    public void cancel() {
1069        // Only cancel if the animation is actually running or has been started and is about
1070        // to run
1071        AnimationHandler handler = getOrCreateAnimationHandler();
1072        if (mPlayingState != STOPPED
1073                || handler.mPendingAnimations.contains(this)
1074                || handler.mDelayedAnims.contains(this)) {
1075            // Only notify listeners if the animator has actually started
1076            if ((mStarted || mRunning) && mListeners != null) {
1077                if (!mRunning) {
1078                    // If it's not yet running, then start listeners weren't called. Call them now.
1079                    notifyStartListeners();
1080                }
1081                ArrayList<AnimatorListener> tmpListeners =
1082                        (ArrayList<AnimatorListener>) mListeners.clone();
1083                for (AnimatorListener listener : tmpListeners) {
1084                    listener.onAnimationCancel(this);
1085                }
1086            }
1087            endAnimation(handler);
1088        }
1089    }
1090
1091    @Override
1092    public void end() {
1093        AnimationHandler handler = getOrCreateAnimationHandler();
1094        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
1095            // Special case if the animation has not yet started; get it ready for ending
1096            mStartedDelay = false;
1097            startAnimation(handler);
1098            mStarted = true;
1099        } else if (!mInitialized) {
1100            initAnimation();
1101        }
1102        animateValue(mPlayingBackwards ? 0f : 1f);
1103        endAnimation(handler);
1104    }
1105
1106    @Override
1107    public void resume() {
1108        if (mPaused) {
1109            mResumed = true;
1110        }
1111        super.resume();
1112    }
1113
1114    @Override
1115    public void pause() {
1116        boolean previouslyPaused = mPaused;
1117        super.pause();
1118        if (!previouslyPaused && mPaused) {
1119            mPauseTime = -1;
1120            mResumed = false;
1121        }
1122    }
1123
1124    @Override
1125    public boolean isRunning() {
1126        return (mPlayingState == RUNNING || mRunning);
1127    }
1128
1129    @Override
1130    public boolean isStarted() {
1131        return mStarted;
1132    }
1133
1134    /**
1135     * Plays the ValueAnimator in reverse. If the animation is already running,
1136     * it will stop itself and play backwards from the point reached when reverse was called.
1137     * If the animation is not currently running, then it will start from the end and
1138     * play backwards. This behavior is only set for the current animation; future playing
1139     * of the animation will use the default behavior of playing forward.
1140     */
1141    @Override
1142    public void reverse() {
1143        mPlayingBackwards = !mPlayingBackwards;
1144        if (mPlayingState == RUNNING) {
1145            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1146            long currentPlayTime = currentTime - mStartTime;
1147            long timeLeft = mDuration - currentPlayTime;
1148            mStartTime = currentTime - timeLeft;
1149            mReversing = !mReversing;
1150        } else if (mStarted) {
1151            end();
1152        } else {
1153            start(true);
1154        }
1155    }
1156
1157    /**
1158     * @hide
1159     */
1160    @Override
1161    public boolean canReverse() {
1162        return true;
1163    }
1164
1165    /**
1166     * Called internally to end an animation by removing it from the animations list. Must be
1167     * called on the UI thread.
1168     * @hide
1169     */
1170    protected void endAnimation(AnimationHandler handler) {
1171        handler.mAnimations.remove(this);
1172        handler.mPendingAnimations.remove(this);
1173        handler.mDelayedAnims.remove(this);
1174        mPlayingState = STOPPED;
1175        mPaused = false;
1176        if ((mStarted || mRunning) && mListeners != null) {
1177            if (!mRunning) {
1178                // If it's not yet running, then start listeners weren't called. Call them now.
1179                notifyStartListeners();
1180             }
1181            ArrayList<AnimatorListener> tmpListeners =
1182                    (ArrayList<AnimatorListener>) mListeners.clone();
1183            int numListeners = tmpListeners.size();
1184            for (int i = 0; i < numListeners; ++i) {
1185                tmpListeners.get(i).onAnimationEnd(this);
1186            }
1187        }
1188        mRunning = false;
1189        mStarted = false;
1190        mStartListenersCalled = false;
1191        mPlayingBackwards = false;
1192        mReversing = false;
1193        mCurrentIteration = 0;
1194        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1195            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1196                    System.identityHashCode(this));
1197        }
1198    }
1199
1200    /**
1201     * Called internally to start an animation by adding it to the active animations list. Must be
1202     * called on the UI thread.
1203     */
1204    private void startAnimation(AnimationHandler handler) {
1205        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1206            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1207                    System.identityHashCode(this));
1208        }
1209        initAnimation();
1210        handler.mAnimations.add(this);
1211        if (mStartDelay > 0 && mListeners != null) {
1212            // Listeners were already notified in start() if startDelay is 0; this is
1213            // just for delayed animations
1214            notifyStartListeners();
1215        }
1216    }
1217
1218    /**
1219     * Returns the name of this animator for debugging purposes.
1220     */
1221    String getNameForTrace() {
1222        return "animator";
1223    }
1224
1225
1226    /**
1227     * Internal function called to process an animation frame on an animation that is currently
1228     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1229     * should be woken up and put on the active animations queue.
1230     *
1231     * @param currentTime The current animation time, used to calculate whether the animation
1232     * has exceeded its <code>startDelay</code> and should be started.
1233     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1234     * should be added to the set of active animations.
1235     */
1236    private boolean delayedAnimationFrame(long currentTime) {
1237        if (!mStartedDelay) {
1238            mStartedDelay = true;
1239            mDelayStartTime = currentTime;
1240        }
1241        if (mPaused) {
1242            if (mPauseTime < 0) {
1243                mPauseTime = currentTime;
1244            }
1245            return false;
1246        } else if (mResumed) {
1247            mResumed = false;
1248            if (mPauseTime > 0) {
1249                // Offset by the duration that the animation was paused
1250                mDelayStartTime += (currentTime - mPauseTime);
1251            }
1252        }
1253        long deltaTime = currentTime - mDelayStartTime;
1254        if (deltaTime > mStartDelay) {
1255            // startDelay ended - start the anim and record the
1256            // mStartTime appropriately
1257            mStartTime = currentTime - (deltaTime - mStartDelay);
1258            mPlayingState = RUNNING;
1259            return true;
1260        }
1261        return false;
1262    }
1263
1264    /**
1265     * This internal function processes a single animation frame for a given animation. The
1266     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1267     * elapsed duration, and therefore
1268     * the elapsed fraction, of the animation. The return value indicates whether the animation
1269     * should be ended (which happens when the elapsed time of the animation exceeds the
1270     * animation's duration, including the repeatCount).
1271     *
1272     * @param currentTime The current time, as tracked by the static timing handler
1273     * @return true if the animation's duration, including any repetitions due to
1274     * <code>repeatCount</code>, has been exceeded and the animation should be ended.
1275     */
1276    boolean animationFrame(long currentTime) {
1277        boolean done = false;
1278        switch (mPlayingState) {
1279        case RUNNING:
1280        case SEEKED:
1281            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1282            if (mDuration == 0 && mRepeatCount != INFINITE) {
1283                // Skip to the end
1284                mCurrentIteration = mRepeatCount;
1285                if (!mReversing) {
1286                    mPlayingBackwards = false;
1287                }
1288            }
1289            if (fraction >= 1f) {
1290                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1291                    // Time to repeat
1292                    if (mListeners != null) {
1293                        int numListeners = mListeners.size();
1294                        for (int i = 0; i < numListeners; ++i) {
1295                            mListeners.get(i).onAnimationRepeat(this);
1296                        }
1297                    }
1298                    if (mRepeatMode == REVERSE) {
1299                        mPlayingBackwards = !mPlayingBackwards;
1300                    }
1301                    mCurrentIteration += (int) fraction;
1302                    fraction = fraction % 1f;
1303                    mStartTime += mDuration;
1304                } else {
1305                    done = true;
1306                    fraction = Math.min(fraction, 1.0f);
1307                }
1308            }
1309            if (mPlayingBackwards) {
1310                fraction = 1f - fraction;
1311            }
1312            animateValue(fraction);
1313            break;
1314        }
1315
1316        return done;
1317    }
1318
1319    /**
1320     * Processes a frame of the animation, adjusting the start time if needed.
1321     *
1322     * @param frameTime The frame time.
1323     * @return true if the animation has ended.
1324     */
1325    final boolean doAnimationFrame(long frameTime) {
1326        if (mPlayingState == STOPPED) {
1327            mPlayingState = RUNNING;
1328            if (mSeekFraction < 0) {
1329                mStartTime = frameTime;
1330            } else {
1331                long seekTime = (long) (mDuration * mSeekFraction);
1332                mStartTime = frameTime - seekTime;
1333                mSeekFraction = -1;
1334            }
1335        }
1336        if (mPaused) {
1337            if (mPauseTime < 0) {
1338                mPauseTime = frameTime;
1339            }
1340            return false;
1341        } else if (mResumed) {
1342            mResumed = false;
1343            if (mPauseTime > 0) {
1344                // Offset by the duration that the animation was paused
1345                mStartTime += (frameTime - mPauseTime);
1346            }
1347        }
1348        // The frame time might be before the start time during the first frame of
1349        // an animation.  The "current time" must always be on or after the start
1350        // time to avoid animating frames at negative time intervals.  In practice, this
1351        // is very rare and only happens when seeking backwards.
1352        final long currentTime = Math.max(frameTime, mStartTime);
1353        return animationFrame(currentTime);
1354    }
1355
1356    /**
1357     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1358     * the most recent frame update on the animation.
1359     *
1360     * @return Elapsed/interpolated fraction of the animation.
1361     */
1362    public float getAnimatedFraction() {
1363        return mCurrentFraction;
1364    }
1365
1366    /**
1367     * This method is called with the elapsed fraction of the animation during every
1368     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1369     * and then into an animated value (from the evaluator. The function is called mostly during
1370     * animation updates, but it is also called when the <code>end()</code>
1371     * function is called, to set the final value on the property.
1372     *
1373     * <p>Overrides of this method must call the superclass to perform the calculation
1374     * of the animated value.</p>
1375     *
1376     * @param fraction The elapsed fraction of the animation.
1377     */
1378    void animateValue(float fraction) {
1379        fraction = mInterpolator.getInterpolation(fraction);
1380        mCurrentFraction = fraction;
1381        int numValues = mValues.length;
1382        for (int i = 0; i < numValues; ++i) {
1383            mValues[i].calculateValue(fraction);
1384        }
1385        if (mUpdateListeners != null) {
1386            int numListeners = mUpdateListeners.size();
1387            for (int i = 0; i < numListeners; ++i) {
1388                mUpdateListeners.get(i).onAnimationUpdate(this);
1389            }
1390        }
1391    }
1392
1393    @Override
1394    public ValueAnimator clone() {
1395        final ValueAnimator anim = (ValueAnimator) super.clone();
1396        if (mUpdateListeners != null) {
1397            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1398        }
1399        anim.mSeekFraction = -1;
1400        anim.mPlayingBackwards = false;
1401        anim.mReversing = false;
1402        anim.mCurrentIteration = 0;
1403        anim.mInitialized = false;
1404        anim.mPlayingState = STOPPED;
1405        anim.mStartedDelay = false;
1406        PropertyValuesHolder[] oldValues = mValues;
1407        if (oldValues != null) {
1408            int numValues = oldValues.length;
1409            anim.mValues = new PropertyValuesHolder[numValues];
1410            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1411            for (int i = 0; i < numValues; ++i) {
1412                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1413                anim.mValues[i] = newValuesHolder;
1414                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1415            }
1416        }
1417        return anim;
1418    }
1419
1420    /**
1421     * Implementors of this interface can add themselves as update listeners
1422     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1423     * frame, after the current frame's values have been calculated for that
1424     * <code>ValueAnimator</code>.
1425     */
1426    public static interface AnimatorUpdateListener {
1427        /**
1428         * <p>Notifies the occurrence of another frame of the animation.</p>
1429         *
1430         * @param animation The animation which was repeated.
1431         */
1432        void onAnimationUpdate(ValueAnimator animation);
1433
1434    }
1435
1436    /**
1437     * Return the number of animations currently running.
1438     *
1439     * Used by StrictMode internally to annotate violations.
1440     * May be called on arbitrary threads!
1441     *
1442     * @hide
1443     */
1444    public static int getCurrentAnimationsCount() {
1445        AnimationHandler handler = sAnimationHandler.get();
1446        return handler != null ? handler.mAnimations.size() : 0;
1447    }
1448
1449    /**
1450     * Clear all animations on this thread, without canceling or ending them.
1451     * This should be used with caution.
1452     *
1453     * @hide
1454     */
1455    public static void clearAllAnimations() {
1456        AnimationHandler handler = sAnimationHandler.get();
1457        if (handler != null) {
1458            handler.mAnimations.clear();
1459            handler.mPendingAnimations.clear();
1460            handler.mDelayedAnims.clear();
1461        }
1462    }
1463
1464    private static AnimationHandler getOrCreateAnimationHandler() {
1465        AnimationHandler handler = sAnimationHandler.get();
1466        if (handler == null) {
1467            handler = new AnimationHandler();
1468            sAnimationHandler.set(handler);
1469        }
1470        return handler;
1471    }
1472
1473    @Override
1474    public String toString() {
1475        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1476        if (mValues != null) {
1477            for (int i = 0; i < mValues.length; ++i) {
1478                returnVal += "\n    " + mValues[i].toString();
1479            }
1480        }
1481        return returnVal;
1482    }
1483
1484    /**
1485     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1486     * the UI thread. This is a hint that informs the ValueAnimator that it is
1487     * OK to run the animation off-thread, however ValueAnimator may decide
1488     * that it must run the animation on the UI thread anyway. For example if there
1489     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1490     * regardless of the value of this hint.</p>
1491     *
1492     * <p>Regardless of whether or not the animation runs asynchronously, all
1493     * listener callbacks will be called on the UI thread.</p>
1494     *
1495     * <p>To be able to use this hint the following must be true:</p>
1496     * <ol>
1497     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1498     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1499     *    to change values, duration, delay, etc... may be ignored.</li>
1500     * <li>Lifecycle callback events may be asynchronous. Events such as
1501     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1502     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1503     *    as they must be posted back to the UI thread, and any actions performed
1504     *    by those callbacks (such as starting new animations) will not happen
1505     *    in the same frame.</li>
1506     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1507     *    may be asynchronous. It is guaranteed that all state changes that are
1508     *    performed on the UI thread in the same frame will be applied as a single
1509     *    atomic update, however that frame may be the current frame,
1510     *    the next frame, or some future frame. This will also impact the observed
1511     *    state of the Animator. For example, {@link #isStarted()} may still return true
1512     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1513     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1514     *    for this reason.</li>
1515     * </ol>
1516     * @hide
1517     */
1518    @Override
1519    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1520        // It is up to subclasses to support this, if they can.
1521    }
1522}
1523