ValueAnimator.java revision 0d1c27a713cb49de8f6f4fd0a129baa883153921
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.content.res.ConfigurationBoundResourceCache;
20import android.os.Looper;
21import android.os.Trace;
22import android.util.AndroidRuntimeException;
23import android.view.Choreographer;
24import android.view.animation.AccelerateDecelerateInterpolator;
25import android.view.animation.AnimationUtils;
26import android.view.animation.LinearInterpolator;
27
28import java.util.ArrayList;
29import java.util.HashMap;
30
31/**
32 * This class provides a simple timing engine for running animations
33 * which calculate animated values and set them on target objects.
34 *
35 * <p>There is a single timing pulse that all animations use. It runs in a
36 * custom handler to ensure that property changes happen on the UI thread.</p>
37 *
38 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
39 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
40 * out of an animation. This behavior can be changed by calling
41 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
42 *
43 * <div class="special reference">
44 * <h3>Developer Guides</h3>
45 * <p>For more information about animating with {@code ValueAnimator}, read the
46 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
47 * Animation</a> developer guide.</p>
48 * </div>
49 */
50@SuppressWarnings("unchecked")
51public class ValueAnimator extends Animator {
52
53    /**
54     * Internal constants
55     */
56    private static float sDurationScale = 1.0f;
57
58    /**
59     * Values used with internal variable mPlayingState to indicate the current state of an
60     * animation.
61     */
62    static final int STOPPED    = 0; // Not yet playing
63    static final int RUNNING    = 1; // Playing normally
64    static final int SEEKED     = 2; // Seeked to some time value
65
66    /**
67     * Internal variables
68     * NOTE: This object implements the clone() method, making a deep copy of any referenced
69     * objects. As other non-trivial fields are added to this class, make sure to add logic
70     * to clone() to make deep copies of them.
71     */
72
73    // The first time that the animation's animateFrame() method is called. This time is used to
74    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
75    // to animateFrame()
76    long mStartTime;
77
78    /**
79     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
80     * to a value.
81     */
82    float mSeekFraction = -1;
83
84    /**
85     * Set on the next frame after pause() is called, used to calculate a new startTime
86     * or delayStartTime which allows the animator to continue from the point at which
87     * it was paused. If negative, has not yet been set.
88     */
89    private long mPauseTime;
90
91    /**
92     * Set when an animator is resumed. This triggers logic in the next frame which
93     * actually resumes the animator.
94     */
95    private boolean mResumed = false;
96
97
98    // The static sAnimationHandler processes the internal timing loop on which all animations
99    // are based
100    /**
101     * @hide
102     */
103    protected static ThreadLocal<AnimationHandler> sAnimationHandler =
104            new ThreadLocal<AnimationHandler>();
105
106    // The time interpolator to be used if none is set on the animation
107    private static final TimeInterpolator sDefaultInterpolator =
108            new AccelerateDecelerateInterpolator();
109
110    /**
111     * Used to indicate whether the animation is currently playing in reverse. This causes the
112     * elapsed fraction to be inverted to calculate the appropriate values.
113     */
114    private boolean mPlayingBackwards = false;
115
116    /**
117     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
118     * repeatCount (if repeatCount!=INFINITE), the animation ends
119     */
120    private int mCurrentIteration = 0;
121
122    /**
123     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
124     */
125    private float mCurrentFraction = 0f;
126
127    /**
128     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
129     */
130    private boolean mStartedDelay = false;
131
132    /**
133     * Tracks the time at which the animation began playing through its startDelay. This is
134     * different from the mStartTime variable, which is used to track when the animation became
135     * active (which is when the startDelay expired and the animation was added to the active
136     * animations list).
137     */
138    private long mDelayStartTime;
139
140    /**
141     * Flag that represents the current state of the animation. Used to figure out when to start
142     * an animation (if state == STOPPED). Also used to end an animation that
143     * has been cancel()'d or end()'d since the last animation frame. Possible values are
144     * STOPPED, RUNNING, SEEKED.
145     */
146    int mPlayingState = STOPPED;
147
148    /**
149     * Additional playing state to indicate whether an animator has been start()'d. There is
150     * some lag between a call to start() and the first animation frame. We should still note
151     * that the animation has been started, even if it's first animation frame has not yet
152     * happened, and reflect that state in isRunning().
153     * Note that delayed animations are different: they are not started until their first
154     * animation frame, which occurs after their delay elapses.
155     */
156    private boolean mRunning = false;
157
158    /**
159     * Additional playing state to indicate whether an animator has been start()'d, whether or
160     * not there is a nonzero startDelay.
161     */
162    private boolean mStarted = false;
163
164    /**
165     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
166     * complex to keep track of since we notify listeners at different times depending on
167     * startDelay and whether start() was called before end().
168     */
169    private boolean mStartListenersCalled = false;
170
171    /**
172     * Flag that denotes whether the animation is set up and ready to go. Used to
173     * set up animation that has not yet been started.
174     */
175    boolean mInitialized = false;
176
177    //
178    // Backing variables
179    //
180
181    // How long the animation should last in ms
182    private long mDuration = (long)(300 * sDurationScale);
183    private long mUnscaledDuration = 300;
184
185    // The amount of time in ms to delay starting the animation after start() is called
186    private long mStartDelay = 0;
187    private long mUnscaledStartDelay = 0;
188
189    // The number of times the animation will repeat. The default is 0, which means the animation
190    // will play only once
191    private int mRepeatCount = 0;
192
193    /**
194     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
195     * animation will start from the beginning on every new cycle. REVERSE means the animation
196     * will reverse directions on each iteration.
197     */
198    private int mRepeatMode = RESTART;
199
200    /**
201     * The time interpolator to be used. The elapsed fraction of the animation will be passed
202     * through this interpolator to calculate the interpolated fraction, which is then used to
203     * calculate the animated values.
204     */
205    private TimeInterpolator mInterpolator = sDefaultInterpolator;
206
207    /**
208     * The set of listeners to be sent events through the life of an animation.
209     */
210    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
211
212    /**
213     * The property/value sets being animated.
214     */
215    PropertyValuesHolder[] mValues;
216
217    /**
218     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
219     * by property name during calls to getAnimatedValue(String).
220     */
221    HashMap<String, PropertyValuesHolder> mValuesMap;
222
223    /**
224     * Public constants
225     */
226
227    /**
228     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
229     * or a positive value, the animation restarts from the beginning.
230     */
231    public static final int RESTART = 1;
232    /**
233     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
234     * or a positive value, the animation reverses direction on every iteration.
235     */
236    public static final int REVERSE = 2;
237    /**
238     * This value used used with the {@link #setRepeatCount(int)} property to repeat
239     * the animation indefinitely.
240     */
241    public static final int INFINITE = -1;
242
243
244    /**
245     * @hide
246     */
247    public static void setDurationScale(float durationScale) {
248        sDurationScale = durationScale;
249    }
250
251    /**
252     * @hide
253     */
254    public static float getDurationScale() {
255        return sDurationScale;
256    }
257
258    /**
259     * Creates a new ValueAnimator object. This default constructor is primarily for
260     * use internally; the factory methods which take parameters are more generally
261     * useful.
262     */
263    public ValueAnimator() {
264    }
265
266    /**
267     * Constructs and returns a ValueAnimator that animates between int values. A single
268     * value implies that that value is the one being animated to. However, this is not typically
269     * useful in a ValueAnimator object because there is no way for the object to determine the
270     * starting value for the animation (unlike ObjectAnimator, which can derive that value
271     * from the target object and property being animated). Therefore, there should typically
272     * be two or more values.
273     *
274     * @param values A set of values that the animation will animate between over time.
275     * @return A ValueAnimator object that is set up to animate between the given values.
276     */
277    public static ValueAnimator ofInt(int... values) {
278        ValueAnimator anim = new ValueAnimator();
279        anim.setIntValues(values);
280        return anim;
281    }
282
283    /**
284     * Constructs and returns a ValueAnimator that animates between color values. A single
285     * value implies that that value is the one being animated to. However, this is not typically
286     * useful in a ValueAnimator object because there is no way for the object to determine the
287     * starting value for the animation (unlike ObjectAnimator, which can derive that value
288     * from the target object and property being animated). Therefore, there should typically
289     * be two or more values.
290     *
291     * @param values A set of values that the animation will animate between over time.
292     * @return A ValueAnimator object that is set up to animate between the given values.
293     */
294    public static ValueAnimator ofArgb(int... values) {
295        ValueAnimator anim = new ValueAnimator();
296        anim.setIntValues(values);
297        anim.setEvaluator(ArgbEvaluator.getInstance());
298        return anim;
299    }
300
301    /**
302     * Constructs and returns a ValueAnimator that animates between float values. A single
303     * value implies that that value is the one being animated to. However, this is not typically
304     * useful in a ValueAnimator object because there is no way for the object to determine the
305     * starting value for the animation (unlike ObjectAnimator, which can derive that value
306     * from the target object and property being animated). Therefore, there should typically
307     * be two or more values.
308     *
309     * @param values A set of values that the animation will animate between over time.
310     * @return A ValueAnimator object that is set up to animate between the given values.
311     */
312    public static ValueAnimator ofFloat(float... values) {
313        ValueAnimator anim = new ValueAnimator();
314        anim.setFloatValues(values);
315        return anim;
316    }
317
318    /**
319     * Constructs and returns a ValueAnimator that animates between the values
320     * specified in the PropertyValuesHolder objects.
321     *
322     * @param values A set of PropertyValuesHolder objects whose values will be animated
323     * between over time.
324     * @return A ValueAnimator object that is set up to animate between the given values.
325     */
326    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
327        ValueAnimator anim = new ValueAnimator();
328        anim.setValues(values);
329        return anim;
330    }
331    /**
332     * Constructs and returns a ValueAnimator that animates between Object values. A single
333     * value implies that that value is the one being animated to. However, this is not typically
334     * useful in a ValueAnimator object because there is no way for the object to determine the
335     * starting value for the animation (unlike ObjectAnimator, which can derive that value
336     * from the target object and property being animated). Therefore, there should typically
337     * be two or more values.
338     *
339     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
340     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
341     * to perform that interpolation.
342     *
343     * @param evaluator A TypeEvaluator that will be called on each animation frame to
344     * provide the ncessry interpolation between the Object values to derive the animated
345     * value.
346     * @param values A set of values that the animation will animate between over time.
347     * @return A ValueAnimator object that is set up to animate between the given values.
348     */
349    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
350        ValueAnimator anim = new ValueAnimator();
351        anim.setObjectValues(values);
352        anim.setEvaluator(evaluator);
353        return anim;
354    }
355
356    /**
357     * Sets int values that will be animated between. A single
358     * value implies that that value is the one being animated to. However, this is not typically
359     * useful in a ValueAnimator object because there is no way for the object to determine the
360     * starting value for the animation (unlike ObjectAnimator, which can derive that value
361     * from the target object and property being animated). Therefore, there should typically
362     * be two or more values.
363     *
364     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
365     * than one PropertyValuesHolder object, this method will set the values for the first
366     * of those objects.</p>
367     *
368     * @param values A set of values that the animation will animate between over time.
369     */
370    public void setIntValues(int... values) {
371        if (values == null || values.length == 0) {
372            return;
373        }
374        if (mValues == null || mValues.length == 0) {
375            setValues(PropertyValuesHolder.ofInt("", values));
376        } else {
377            PropertyValuesHolder valuesHolder = mValues[0];
378            valuesHolder.setIntValues(values);
379        }
380        // New property/values/target should cause re-initialization prior to starting
381        mInitialized = false;
382    }
383
384    /**
385     * Sets float values that will be animated between. A single
386     * value implies that that value is the one being animated to. However, this is not typically
387     * useful in a ValueAnimator object because there is no way for the object to determine the
388     * starting value for the animation (unlike ObjectAnimator, which can derive that value
389     * from the target object and property being animated). Therefore, there should typically
390     * be two or more values.
391     *
392     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
393     * than one PropertyValuesHolder object, this method will set the values for the first
394     * of those objects.</p>
395     *
396     * @param values A set of values that the animation will animate between over time.
397     */
398    public void setFloatValues(float... values) {
399        if (values == null || values.length == 0) {
400            return;
401        }
402        if (mValues == null || mValues.length == 0) {
403            setValues(PropertyValuesHolder.ofFloat("", values));
404        } else {
405            PropertyValuesHolder valuesHolder = mValues[0];
406            valuesHolder.setFloatValues(values);
407        }
408        // New property/values/target should cause re-initialization prior to starting
409        mInitialized = false;
410    }
411
412    /**
413     * Sets the values to animate between for this animation. A single
414     * value implies that that value is the one being animated to. However, this is not typically
415     * useful in a ValueAnimator object because there is no way for the object to determine the
416     * starting value for the animation (unlike ObjectAnimator, which can derive that value
417     * from the target object and property being animated). Therefore, there should typically
418     * be two or more values.
419     *
420     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
421     * than one PropertyValuesHolder object, this method will set the values for the first
422     * of those objects.</p>
423     *
424     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
425     * between these value objects. ValueAnimator only knows how to interpolate between the
426     * primitive types specified in the other setValues() methods.</p>
427     *
428     * @param values The set of values to animate between.
429     */
430    public void setObjectValues(Object... values) {
431        if (values == null || values.length == 0) {
432            return;
433        }
434        if (mValues == null || mValues.length == 0) {
435            setValues(PropertyValuesHolder.ofObject("", null, values));
436        } else {
437            PropertyValuesHolder valuesHolder = mValues[0];
438            valuesHolder.setObjectValues(values);
439        }
440        // New property/values/target should cause re-initialization prior to starting
441        mInitialized = false;
442    }
443
444    /**
445     * Sets the values, per property, being animated between. This function is called internally
446     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
447     * be constructed without values and this method can be called to set the values manually
448     * instead.
449     *
450     * @param values The set of values, per property, being animated between.
451     */
452    public void setValues(PropertyValuesHolder... values) {
453        int numValues = values.length;
454        mValues = values;
455        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
456        for (int i = 0; i < numValues; ++i) {
457            PropertyValuesHolder valuesHolder = values[i];
458            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
459        }
460        // New property/values/target should cause re-initialization prior to starting
461        mInitialized = false;
462    }
463
464    /**
465     * Returns the values that this ValueAnimator animates between. These values are stored in
466     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
467     * of value objects instead.
468     *
469     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
470     * values, per property, that define the animation.
471     */
472    public PropertyValuesHolder[] getValues() {
473        return mValues;
474    }
475
476    /**
477     * This function is called immediately before processing the first animation
478     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
479     * function is called after that delay ends.
480     * It takes care of the final initialization steps for the
481     * animation.
482     *
483     *  <p>Overrides of this method should call the superclass method to ensure
484     *  that internal mechanisms for the animation are set up correctly.</p>
485     */
486    void initAnimation() {
487        if (!mInitialized) {
488            int numValues = mValues.length;
489            for (int i = 0; i < numValues; ++i) {
490                mValues[i].init();
491            }
492            mInitialized = true;
493        }
494    }
495
496
497    /**
498     * Sets the length of the animation. The default duration is 300 milliseconds.
499     *
500     * @param duration The length of the animation, in milliseconds. This value cannot
501     * be negative.
502     * @return ValueAnimator The object called with setDuration(). This return
503     * value makes it easier to compose statements together that construct and then set the
504     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
505     */
506    public ValueAnimator setDuration(long duration) {
507        if (duration < 0) {
508            throw new IllegalArgumentException("Animators cannot have negative duration: " +
509                    duration);
510        }
511        mUnscaledDuration = duration;
512        updateScaledDuration();
513        return this;
514    }
515
516    private void updateScaledDuration() {
517        mDuration = (long)(mUnscaledDuration * sDurationScale);
518    }
519
520    /**
521     * Gets the length of the animation. The default duration is 300 milliseconds.
522     *
523     * @return The length of the animation, in milliseconds.
524     */
525    public long getDuration() {
526        return mUnscaledDuration;
527    }
528
529    /**
530     * Sets the position of the animation to the specified point in time. This time should
531     * be between 0 and the total duration of the animation, including any repetition. If
532     * the animation has not yet been started, then it will not advance forward after it is
533     * set to this time; it will simply set the time to this value and perform any appropriate
534     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
535     * will set the current playing time to this value and continue playing from that point.
536     *
537     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
538     */
539    public void setCurrentPlayTime(long playTime) {
540        float fraction = mUnscaledDuration > 0 ? (float) playTime / mUnscaledDuration :
541                playTime == 0 ? 0 : 1;
542        setCurrentFraction(fraction);
543    }
544
545    /**
546     * Sets the position of the animation to the specified fraction. This fraction should
547     * be between 0 and the total fraction of the animation, including any repetition. That is,
548     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
549     * and a value of 2 at the beginning of a reversing animator that repeats once. If
550     * the animation has not yet been started, then it will not advance forward after it is
551     * set to this fraction; it will simply set the fraction to this value and perform any
552     * appropriate actions based on that fraction. If the animation is already running, then
553     * setCurrentFraction() will set the current fraction to this value and continue
554     * playing from that point.
555     *
556     * @param fraction The fraction to which the animation is advanced or rewound.
557     */
558    public void setCurrentFraction(float fraction) {
559        initAnimation();
560        if (mPlayingState != RUNNING) {
561            mSeekFraction = fraction;
562            mPlayingState = SEEKED;
563        }
564        animateValue(fraction);
565    }
566
567    /**
568     * Gets the current position of the animation in time, which is equal to the current
569     * time minus the time that the animation started. An animation that is not yet started will
570     * return a value of zero.
571     *
572     * @return The current position in time of the animation.
573     */
574    public long getCurrentPlayTime() {
575        if (!mInitialized || mPlayingState == STOPPED) {
576            return 0;
577        }
578        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
579    }
580
581    /**
582     * This custom, static handler handles the timing pulse that is shared by
583     * all active animations. This approach ensures that the setting of animation
584     * values will happen on the UI thread and that all animations will share
585     * the same times for calculating their values, which makes synchronizing
586     * animations possible.
587     *
588     * The handler uses the Choreographer for executing periodic callbacks.
589     *
590     * @hide
591     */
592    @SuppressWarnings("unchecked")
593    protected static class AnimationHandler implements Runnable {
594        // The per-thread list of all active animations
595        /** @hide */
596        protected final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
597
598        // Used in doAnimationFrame() to avoid concurrent modifications of mAnimations
599        private final ArrayList<ValueAnimator> mTmpAnimations = new ArrayList<ValueAnimator>();
600
601        // The per-thread set of animations to be started on the next animation frame
602        /** @hide */
603        protected final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
604
605        /**
606         * Internal per-thread collections used to avoid set collisions as animations start and end
607         * while being processed.
608         * @hide
609         */
610        protected final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
611        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
612        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
613
614        private final Choreographer mChoreographer;
615        private boolean mAnimationScheduled;
616
617        private AnimationHandler() {
618            mChoreographer = Choreographer.getInstance();
619        }
620
621        /**
622         * Start animating on the next frame.
623         */
624        public void start() {
625            scheduleAnimation();
626        }
627
628        private void doAnimationFrame(long frameTime) {
629            // mPendingAnimations holds any animations that have requested to be started
630            // We're going to clear mPendingAnimations, but starting animation may
631            // cause more to be added to the pending list (for example, if one animation
632            // starting triggers another starting). So we loop until mPendingAnimations
633            // is empty.
634            while (mPendingAnimations.size() > 0) {
635                ArrayList<ValueAnimator> pendingCopy =
636                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
637                mPendingAnimations.clear();
638                int count = pendingCopy.size();
639                for (int i = 0; i < count; ++i) {
640                    ValueAnimator anim = pendingCopy.get(i);
641                    // If the animation has a startDelay, place it on the delayed list
642                    if (anim.mStartDelay == 0) {
643                        anim.startAnimation(this);
644                    } else {
645                        mDelayedAnims.add(anim);
646                    }
647                }
648            }
649            // Next, process animations currently sitting on the delayed queue, adding
650            // them to the active animations if they are ready
651            int numDelayedAnims = mDelayedAnims.size();
652            for (int i = 0; i < numDelayedAnims; ++i) {
653                ValueAnimator anim = mDelayedAnims.get(i);
654                if (anim.delayedAnimationFrame(frameTime)) {
655                    mReadyAnims.add(anim);
656                }
657            }
658            int numReadyAnims = mReadyAnims.size();
659            if (numReadyAnims > 0) {
660                for (int i = 0; i < numReadyAnims; ++i) {
661                    ValueAnimator anim = mReadyAnims.get(i);
662                    anim.startAnimation(this);
663                    anim.mRunning = true;
664                    mDelayedAnims.remove(anim);
665                }
666                mReadyAnims.clear();
667            }
668
669            // Now process all active animations. The return value from animationFrame()
670            // tells the handler whether it should now be ended
671            int numAnims = mAnimations.size();
672            for (int i = 0; i < numAnims; ++i) {
673                mTmpAnimations.add(mAnimations.get(i));
674            }
675            for (int i = 0; i < numAnims; ++i) {
676                ValueAnimator anim = mTmpAnimations.get(i);
677                if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
678                    mEndingAnims.add(anim);
679                }
680            }
681            mTmpAnimations.clear();
682            if (mEndingAnims.size() > 0) {
683                for (int i = 0; i < mEndingAnims.size(); ++i) {
684                    mEndingAnims.get(i).endAnimation(this);
685                }
686                mEndingAnims.clear();
687            }
688
689            // If there are still active or delayed animations, schedule a future call to
690            // onAnimate to process the next frame of the animations.
691            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
692                scheduleAnimation();
693            }
694        }
695
696        // Called by the Choreographer.
697        @Override
698        public void run() {
699            mAnimationScheduled = false;
700            doAnimationFrame(mChoreographer.getFrameTime());
701        }
702
703        private void scheduleAnimation() {
704            if (!mAnimationScheduled) {
705                mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, this, null);
706                mAnimationScheduled = true;
707            }
708        }
709    }
710
711    /**
712     * The amount of time, in milliseconds, to delay starting the animation after
713     * {@link #start()} is called.
714     *
715     * @return the number of milliseconds to delay running the animation
716     */
717    public long getStartDelay() {
718        return mUnscaledStartDelay;
719    }
720
721    /**
722     * The amount of time, in milliseconds, to delay starting the animation after
723     * {@link #start()} is called.
724
725     * @param startDelay The amount of the delay, in milliseconds
726     */
727    public void setStartDelay(long startDelay) {
728        this.mStartDelay = (long)(startDelay * sDurationScale);
729        mUnscaledStartDelay = startDelay;
730    }
731
732    /**
733     * The amount of time, in milliseconds, between each frame of the animation. This is a
734     * requested time that the animation will attempt to honor, but the actual delay between
735     * frames may be different, depending on system load and capabilities. This is a static
736     * function because the same delay will be applied to all animations, since they are all
737     * run off of a single timing loop.
738     *
739     * The frame delay may be ignored when the animation system uses an external timing
740     * source, such as the display refresh rate (vsync), to govern animations.
741     *
742     * @return the requested time between frames, in milliseconds
743     */
744    public static long getFrameDelay() {
745        return Choreographer.getFrameDelay();
746    }
747
748    /**
749     * The amount of time, in milliseconds, between each frame of the animation. This is a
750     * requested time that the animation will attempt to honor, but the actual delay between
751     * frames may be different, depending on system load and capabilities. This is a static
752     * function because the same delay will be applied to all animations, since they are all
753     * run off of a single timing loop.
754     *
755     * The frame delay may be ignored when the animation system uses an external timing
756     * source, such as the display refresh rate (vsync), to govern animations.
757     *
758     * @param frameDelay the requested time between frames, in milliseconds
759     */
760    public static void setFrameDelay(long frameDelay) {
761        Choreographer.setFrameDelay(frameDelay);
762    }
763
764    /**
765     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
766     * property being animated. This value is only sensible while the animation is running. The main
767     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
768     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
769     * is called during each animation frame, immediately after the value is calculated.
770     *
771     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
772     * the single property being animated. If there are several properties being animated
773     * (specified by several PropertyValuesHolder objects in the constructor), this function
774     * returns the animated value for the first of those objects.
775     */
776    public Object getAnimatedValue() {
777        if (mValues != null && mValues.length > 0) {
778            return mValues[0].getAnimatedValue();
779        }
780        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
781        return null;
782    }
783
784    /**
785     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
786     * The main purpose for this read-only property is to retrieve the value from the
787     * <code>ValueAnimator</code> during a call to
788     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
789     * is called during each animation frame, immediately after the value is calculated.
790     *
791     * @return animatedValue The value most recently calculated for the named property
792     * by this <code>ValueAnimator</code>.
793     */
794    public Object getAnimatedValue(String propertyName) {
795        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
796        if (valuesHolder != null) {
797            return valuesHolder.getAnimatedValue();
798        } else {
799            // At least avoid crashing if called with bogus propertyName
800            return null;
801        }
802    }
803
804    /**
805     * Sets how many times the animation should be repeated. If the repeat
806     * count is 0, the animation is never repeated. If the repeat count is
807     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
808     * into account. The repeat count is 0 by default.
809     *
810     * @param value the number of times the animation should be repeated
811     */
812    public void setRepeatCount(int value) {
813        mRepeatCount = value;
814    }
815    /**
816     * Defines how many times the animation should repeat. The default value
817     * is 0.
818     *
819     * @return the number of times the animation should repeat, or {@link #INFINITE}
820     */
821    public int getRepeatCount() {
822        return mRepeatCount;
823    }
824
825    /**
826     * Defines what this animation should do when it reaches the end. This
827     * setting is applied only when the repeat count is either greater than
828     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
829     *
830     * @param value {@link #RESTART} or {@link #REVERSE}
831     */
832    public void setRepeatMode(int value) {
833        mRepeatMode = value;
834    }
835
836    /**
837     * Defines what this animation should do when it reaches the end.
838     *
839     * @return either one of {@link #REVERSE} or {@link #RESTART}
840     */
841    public int getRepeatMode() {
842        return mRepeatMode;
843    }
844
845    /**
846     * Adds a listener to the set of listeners that are sent update events through the life of
847     * an animation. This method is called on all listeners for every frame of the animation,
848     * after the values for the animation have been calculated.
849     *
850     * @param listener the listener to be added to the current set of listeners for this animation.
851     */
852    public void addUpdateListener(AnimatorUpdateListener listener) {
853        if (mUpdateListeners == null) {
854            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
855        }
856        mUpdateListeners.add(listener);
857    }
858
859    /**
860     * Removes all listeners from the set listening to frame updates for this animation.
861     */
862    public void removeAllUpdateListeners() {
863        if (mUpdateListeners == null) {
864            return;
865        }
866        mUpdateListeners.clear();
867        mUpdateListeners = null;
868    }
869
870    /**
871     * Removes a listener from the set listening to frame updates for this animation.
872     *
873     * @param listener the listener to be removed from the current set of update listeners
874     * for this animation.
875     */
876    public void removeUpdateListener(AnimatorUpdateListener listener) {
877        if (mUpdateListeners == null) {
878            return;
879        }
880        mUpdateListeners.remove(listener);
881        if (mUpdateListeners.size() == 0) {
882            mUpdateListeners = null;
883        }
884    }
885
886
887    /**
888     * The time interpolator used in calculating the elapsed fraction of this animation. The
889     * interpolator determines whether the animation runs with linear or non-linear motion,
890     * such as acceleration and deceleration. The default value is
891     * {@link android.view.animation.AccelerateDecelerateInterpolator}
892     *
893     * @param value the interpolator to be used by this animation. A value of <code>null</code>
894     * will result in linear interpolation.
895     */
896    @Override
897    public void setInterpolator(TimeInterpolator value) {
898        if (value != null) {
899            mInterpolator = value;
900        } else {
901            mInterpolator = new LinearInterpolator();
902        }
903    }
904
905    /**
906     * Returns the timing interpolator that this ValueAnimator uses.
907     *
908     * @return The timing interpolator for this ValueAnimator.
909     */
910    @Override
911    public TimeInterpolator getInterpolator() {
912        return mInterpolator;
913    }
914
915    /**
916     * The type evaluator to be used when calculating the animated values of this animation.
917     * The system will automatically assign a float or int evaluator based on the type
918     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
919     * are not one of these primitive types, or if different evaluation is desired (such as is
920     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
921     * For example, when running an animation on color values, the {@link ArgbEvaluator}
922     * should be used to get correct RGB color interpolation.
923     *
924     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
925     * will be used for that set. If there are several sets of values being animated, which is
926     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
927     * is assigned just to the first PropertyValuesHolder object.</p>
928     *
929     * @param value the evaluator to be used this animation
930     */
931    public void setEvaluator(TypeEvaluator value) {
932        if (value != null && mValues != null && mValues.length > 0) {
933            mValues[0].setEvaluator(value);
934        }
935    }
936
937    private void notifyStartListeners() {
938        if (mListeners != null && !mStartListenersCalled) {
939            ArrayList<AnimatorListener> tmpListeners =
940                    (ArrayList<AnimatorListener>) mListeners.clone();
941            int numListeners = tmpListeners.size();
942            for (int i = 0; i < numListeners; ++i) {
943                tmpListeners.get(i).onAnimationStart(this);
944            }
945        }
946        mStartListenersCalled = true;
947    }
948
949    /**
950     * Start the animation playing. This version of start() takes a boolean flag that indicates
951     * whether the animation should play in reverse. The flag is usually false, but may be set
952     * to true if called from the reverse() method.
953     *
954     * <p>The animation started by calling this method will be run on the thread that called
955     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
956     * this is not the case). Also, if the animation will animate
957     * properties of objects in the view hierarchy, then the calling thread should be the UI
958     * thread for that view hierarchy.</p>
959     *
960     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
961     */
962    private void start(boolean playBackwards) {
963        if (Looper.myLooper() == null) {
964            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
965        }
966        mPlayingBackwards = playBackwards;
967        mCurrentIteration = 0;
968        int prevPlayingState = mPlayingState;
969        mPlayingState = STOPPED;
970        mStarted = true;
971        mStartedDelay = false;
972        mPaused = false;
973        updateScaledDuration(); // in case the scale factor has changed since creation time
974        AnimationHandler animationHandler = getOrCreateAnimationHandler();
975        animationHandler.mPendingAnimations.add(this);
976        if (mStartDelay == 0) {
977            // This sets the initial value of the animation, prior to actually starting it running
978            if (prevPlayingState != SEEKED) {
979                setCurrentPlayTime(0);
980            }
981            mPlayingState = STOPPED;
982            mRunning = true;
983            notifyStartListeners();
984        }
985        animationHandler.start();
986    }
987
988    @Override
989    public void start() {
990        start(false);
991    }
992
993    @Override
994    public void cancel() {
995        // Only cancel if the animation is actually running or has been started and is about
996        // to run
997        AnimationHandler handler = getOrCreateAnimationHandler();
998        if (mPlayingState != STOPPED
999                || handler.mPendingAnimations.contains(this)
1000                || handler.mDelayedAnims.contains(this)) {
1001            // Only notify listeners if the animator has actually started
1002            if ((mStarted || mRunning) && mListeners != null) {
1003                if (!mRunning) {
1004                    // If it's not yet running, then start listeners weren't called. Call them now.
1005                    notifyStartListeners();
1006                }
1007                ArrayList<AnimatorListener> tmpListeners =
1008                        (ArrayList<AnimatorListener>) mListeners.clone();
1009                for (AnimatorListener listener : tmpListeners) {
1010                    listener.onAnimationCancel(this);
1011                }
1012            }
1013            endAnimation(handler);
1014        }
1015    }
1016
1017    @Override
1018    public void end() {
1019        AnimationHandler handler = getOrCreateAnimationHandler();
1020        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
1021            // Special case if the animation has not yet started; get it ready for ending
1022            mStartedDelay = false;
1023            startAnimation(handler);
1024            mStarted = true;
1025        } else if (!mInitialized) {
1026            initAnimation();
1027        }
1028        animateValue(mPlayingBackwards ? 0f : 1f);
1029        endAnimation(handler);
1030    }
1031
1032    @Override
1033    public void resume() {
1034        if (mPaused) {
1035            mResumed = true;
1036        }
1037        super.resume();
1038    }
1039
1040    @Override
1041    public void pause() {
1042        boolean previouslyPaused = mPaused;
1043        super.pause();
1044        if (!previouslyPaused && mPaused) {
1045            mPauseTime = -1;
1046            mResumed = false;
1047        }
1048    }
1049
1050    @Override
1051    public boolean isRunning() {
1052        return (mPlayingState == RUNNING || mRunning);
1053    }
1054
1055    @Override
1056    public boolean isStarted() {
1057        return mStarted;
1058    }
1059
1060    /**
1061     * Plays the ValueAnimator in reverse. If the animation is already running,
1062     * it will stop itself and play backwards from the point reached when reverse was called.
1063     * If the animation is not currently running, then it will start from the end and
1064     * play backwards. This behavior is only set for the current animation; future playing
1065     * of the animation will use the default behavior of playing forward.
1066     */
1067    @Override
1068    public void reverse() {
1069        mPlayingBackwards = !mPlayingBackwards;
1070        if (mPlayingState == RUNNING) {
1071            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1072            long currentPlayTime = currentTime - mStartTime;
1073            long timeLeft = mDuration - currentPlayTime;
1074            mStartTime = currentTime - timeLeft;
1075        } else if (mStarted) {
1076            end();
1077        } else {
1078            start(true);
1079        }
1080    }
1081
1082    /**
1083     * @hide
1084     */
1085    @Override
1086    public boolean canReverse() {
1087        return true;
1088    }
1089
1090    /**
1091     * Called internally to end an animation by removing it from the animations list. Must be
1092     * called on the UI thread.
1093     * @hide
1094     */
1095    protected void endAnimation(AnimationHandler handler) {
1096        handler.mAnimations.remove(this);
1097        handler.mPendingAnimations.remove(this);
1098        handler.mDelayedAnims.remove(this);
1099        mPlayingState = STOPPED;
1100        mPaused = false;
1101        if ((mStarted || mRunning) && mListeners != null) {
1102            if (!mRunning) {
1103                // If it's not yet running, then start listeners weren't called. Call them now.
1104                notifyStartListeners();
1105             }
1106            ArrayList<AnimatorListener> tmpListeners =
1107                    (ArrayList<AnimatorListener>) mListeners.clone();
1108            int numListeners = tmpListeners.size();
1109            for (int i = 0; i < numListeners; ++i) {
1110                tmpListeners.get(i).onAnimationEnd(this);
1111            }
1112        }
1113        mRunning = false;
1114        mStarted = false;
1115        mStartListenersCalled = false;
1116        mPlayingBackwards = false;
1117        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1118            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1119                    System.identityHashCode(this));
1120        }
1121    }
1122
1123    /**
1124     * Called internally to start an animation by adding it to the active animations list. Must be
1125     * called on the UI thread.
1126     */
1127    private void startAnimation(AnimationHandler handler) {
1128        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1129            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1130                    System.identityHashCode(this));
1131        }
1132        initAnimation();
1133        handler.mAnimations.add(this);
1134        if (mStartDelay > 0 && mListeners != null) {
1135            // Listeners were already notified in start() if startDelay is 0; this is
1136            // just for delayed animations
1137            notifyStartListeners();
1138        }
1139    }
1140
1141    /**
1142     * Returns the name of this animator for debugging purposes.
1143     */
1144    String getNameForTrace() {
1145        return "animator";
1146    }
1147
1148
1149    /**
1150     * Internal function called to process an animation frame on an animation that is currently
1151     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1152     * should be woken up and put on the active animations queue.
1153     *
1154     * @param currentTime The current animation time, used to calculate whether the animation
1155     * has exceeded its <code>startDelay</code> and should be started.
1156     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1157     * should be added to the set of active animations.
1158     */
1159    private boolean delayedAnimationFrame(long currentTime) {
1160        if (!mStartedDelay) {
1161            mStartedDelay = true;
1162            mDelayStartTime = currentTime;
1163        }
1164        if (mPaused) {
1165            if (mPauseTime < 0) {
1166                mPauseTime = currentTime;
1167            }
1168            return false;
1169        } else if (mResumed) {
1170            mResumed = false;
1171            if (mPauseTime > 0) {
1172                // Offset by the duration that the animation was paused
1173                mDelayStartTime += (currentTime - mPauseTime);
1174            }
1175        }
1176        long deltaTime = currentTime - mDelayStartTime;
1177        if (deltaTime > mStartDelay) {
1178            // startDelay ended - start the anim and record the
1179            // mStartTime appropriately
1180            mStartTime = currentTime - (deltaTime - mStartDelay);
1181            mPlayingState = RUNNING;
1182            return true;
1183        }
1184        return false;
1185    }
1186
1187    /**
1188     * This internal function processes a single animation frame for a given animation. The
1189     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1190     * elapsed duration, and therefore
1191     * the elapsed fraction, of the animation. The return value indicates whether the animation
1192     * should be ended (which happens when the elapsed time of the animation exceeds the
1193     * animation's duration, including the repeatCount).
1194     *
1195     * @param currentTime The current time, as tracked by the static timing handler
1196     * @return true if the animation's duration, including any repetitions due to
1197     * <code>repeatCount</code>, has been exceeded and the animation should be ended.
1198     */
1199    boolean animationFrame(long currentTime) {
1200        boolean done = false;
1201        switch (mPlayingState) {
1202        case RUNNING:
1203        case SEEKED:
1204            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1205            if (fraction >= 1f) {
1206                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1207                    // Time to repeat
1208                    if (mListeners != null) {
1209                        int numListeners = mListeners.size();
1210                        for (int i = 0; i < numListeners; ++i) {
1211                            mListeners.get(i).onAnimationRepeat(this);
1212                        }
1213                    }
1214                    if (mRepeatMode == REVERSE) {
1215                        mPlayingBackwards = !mPlayingBackwards;
1216                    }
1217                    mCurrentIteration += (int)fraction;
1218                    fraction = fraction % 1f;
1219                    mStartTime += mDuration;
1220                } else {
1221                    done = true;
1222                    fraction = Math.min(fraction, 1.0f);
1223                }
1224            }
1225            if (mPlayingBackwards) {
1226                fraction = 1f - fraction;
1227            }
1228            animateValue(fraction);
1229            break;
1230        }
1231
1232        return done;
1233    }
1234
1235    /**
1236     * Processes a frame of the animation, adjusting the start time if needed.
1237     *
1238     * @param frameTime The frame time.
1239     * @return true if the animation has ended.
1240     */
1241    final boolean doAnimationFrame(long frameTime) {
1242        if (mPlayingState == STOPPED) {
1243            mPlayingState = RUNNING;
1244            if (mSeekFraction < 0) {
1245                mStartTime = frameTime;
1246            } else {
1247                long seekTime = (long) (mDuration * mSeekFraction);
1248                mStartTime = frameTime - seekTime;
1249                mSeekFraction = -1;
1250            }
1251        }
1252        if (mPaused) {
1253            if (mPauseTime < 0) {
1254                mPauseTime = frameTime;
1255            }
1256            return false;
1257        } else if (mResumed) {
1258            mResumed = false;
1259            if (mPauseTime > 0) {
1260                // Offset by the duration that the animation was paused
1261                mStartTime += (frameTime - mPauseTime);
1262            }
1263        }
1264        // The frame time might be before the start time during the first frame of
1265        // an animation.  The "current time" must always be on or after the start
1266        // time to avoid animating frames at negative time intervals.  In practice, this
1267        // is very rare and only happens when seeking backwards.
1268        final long currentTime = Math.max(frameTime, mStartTime);
1269        return animationFrame(currentTime);
1270    }
1271
1272    /**
1273     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1274     * the most recent frame update on the animation.
1275     *
1276     * @return Elapsed/interpolated fraction of the animation.
1277     */
1278    public float getAnimatedFraction() {
1279        return mCurrentFraction;
1280    }
1281
1282    /**
1283     * This method is called with the elapsed fraction of the animation during every
1284     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1285     * and then into an animated value (from the evaluator. The function is called mostly during
1286     * animation updates, but it is also called when the <code>end()</code>
1287     * function is called, to set the final value on the property.
1288     *
1289     * <p>Overrides of this method must call the superclass to perform the calculation
1290     * of the animated value.</p>
1291     *
1292     * @param fraction The elapsed fraction of the animation.
1293     */
1294    void animateValue(float fraction) {
1295        fraction = mInterpolator.getInterpolation(fraction);
1296        mCurrentFraction = fraction;
1297        int numValues = mValues.length;
1298        for (int i = 0; i < numValues; ++i) {
1299            mValues[i].calculateValue(fraction);
1300        }
1301        if (mUpdateListeners != null) {
1302            int numListeners = mUpdateListeners.size();
1303            for (int i = 0; i < numListeners; ++i) {
1304                mUpdateListeners.get(i).onAnimationUpdate(this);
1305            }
1306        }
1307    }
1308
1309    @Override
1310    public ValueAnimator clone() {
1311        final ValueAnimator anim = (ValueAnimator) super.clone();
1312        if (mUpdateListeners != null) {
1313            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1314        }
1315        anim.mSeekFraction = -1;
1316        anim.mPlayingBackwards = false;
1317        anim.mCurrentIteration = 0;
1318        anim.mInitialized = false;
1319        anim.mPlayingState = STOPPED;
1320        anim.mStartedDelay = false;
1321        PropertyValuesHolder[] oldValues = mValues;
1322        if (oldValues != null) {
1323            int numValues = oldValues.length;
1324            anim.mValues = new PropertyValuesHolder[numValues];
1325            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1326            for (int i = 0; i < numValues; ++i) {
1327                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1328                anim.mValues[i] = newValuesHolder;
1329                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1330            }
1331        }
1332        return anim;
1333    }
1334
1335    /**
1336     * Implementors of this interface can add themselves as update listeners
1337     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1338     * frame, after the current frame's values have been calculated for that
1339     * <code>ValueAnimator</code>.
1340     */
1341    public static interface AnimatorUpdateListener {
1342        /**
1343         * <p>Notifies the occurrence of another frame of the animation.</p>
1344         *
1345         * @param animation The animation which was repeated.
1346         */
1347        void onAnimationUpdate(ValueAnimator animation);
1348
1349    }
1350
1351    /**
1352     * Return the number of animations currently running.
1353     *
1354     * Used by StrictMode internally to annotate violations.
1355     * May be called on arbitrary threads!
1356     *
1357     * @hide
1358     */
1359    public static int getCurrentAnimationsCount() {
1360        AnimationHandler handler = sAnimationHandler.get();
1361        return handler != null ? handler.mAnimations.size() : 0;
1362    }
1363
1364    /**
1365     * Clear all animations on this thread, without canceling or ending them.
1366     * This should be used with caution.
1367     *
1368     * @hide
1369     */
1370    public static void clearAllAnimations() {
1371        AnimationHandler handler = sAnimationHandler.get();
1372        if (handler != null) {
1373            handler.mAnimations.clear();
1374            handler.mPendingAnimations.clear();
1375            handler.mDelayedAnims.clear();
1376        }
1377    }
1378
1379    private static AnimationHandler getOrCreateAnimationHandler() {
1380        AnimationHandler handler = sAnimationHandler.get();
1381        if (handler == null) {
1382            handler = new AnimationHandler();
1383            sAnimationHandler.set(handler);
1384        }
1385        return handler;
1386    }
1387
1388    @Override
1389    public String toString() {
1390        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1391        if (mValues != null) {
1392            for (int i = 0; i < mValues.length; ++i) {
1393                returnVal += "\n    " + mValues[i].toString();
1394            }
1395        }
1396        return returnVal;
1397    }
1398
1399    /**
1400     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1401     * the UI thread. This is a hint that informs the ValueAnimator that it is
1402     * OK to run the animation off-thread, however ValueAnimator may decide
1403     * that it must run the animation on the UI thread anyway. For example if there
1404     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1405     * regardless of the value of this hint.</p>
1406     *
1407     * <p>Regardless of whether or not the animation runs asynchronously, all
1408     * listener callbacks will be called on the UI thread.</p>
1409     *
1410     * <p>To be able to use this hint the following must be true:</p>
1411     * <ol>
1412     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1413     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1414     *    to change values, duration, delay, etc... may be ignored.</li>
1415     * <li>Lifecycle callback events may be asynchronous. Events such as
1416     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1417     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1418     *    as they must be posted back to the UI thread, and any actions performed
1419     *    by those callbacks (such as starting new animations) will not happen
1420     *    in the same frame.</li>
1421     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1422     *    may be asynchronous. It is guaranteed that all state changes that are
1423     *    performed on the UI thread in the same frame will be applied as a single
1424     *    atomic update, however that frame may be the current frame,
1425     *    the next frame, or some future frame. This will also impact the observed
1426     *    state of the Animator. For example, {@link #isStarted()} may still return true
1427     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1428     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1429     *    for this reason.</li>
1430     * </ol>
1431     * @hide
1432     */
1433    @Override
1434    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1435        // It is up to subclasses to support this, if they can.
1436    }
1437}
1438