ValueAnimator.java revision 1309914ebf21e705fc59d7d44014124d8a21a2d2
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.annotation.CallSuper;
20import android.os.Looper;
21import android.os.Trace;
22import android.util.AndroidRuntimeException;
23import android.util.Log;
24import android.view.Choreographer;
25import android.view.animation.AccelerateDecelerateInterpolator;
26import android.view.animation.AnimationUtils;
27import android.view.animation.LinearInterpolator;
28
29import java.util.ArrayList;
30import java.util.HashMap;
31
32/**
33 * This class provides a simple timing engine for running animations
34 * which calculate animated values and set them on target objects.
35 *
36 * <p>There is a single timing pulse that all animations use. It runs in a
37 * custom handler to ensure that property changes happen on the UI thread.</p>
38 *
39 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
40 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
41 * out of an animation. This behavior can be changed by calling
42 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
43 *
44 * <p>Animators can be created from either code or resource files. Here is an example
45 * of a ValueAnimator resource file:</p>
46 *
47 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
48 *
49 * <p>It is also possible to use a combination of {@link PropertyValuesHolder} and
50 * {@link Keyframe} resource tags to create a multi-step animation.
51 * Note that you can specify explicit fractional values (from 0 to 1) for
52 * each keyframe to determine when, in the overall duration, the animation should arrive at that
53 * value. Alternatively, you can leave the fractions off and the keyframes will be equally
54 * distributed within the total duration:</p>
55 *
56 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
57 * ValueAnimatorKeyframeResources}
58 *
59 * <div class="special reference">
60 * <h3>Developer Guides</h3>
61 * <p>For more information about animating with {@code ValueAnimator}, read the
62 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
63 * Animation</a> developer guide.</p>
64 * </div>
65 */
66@SuppressWarnings("unchecked")
67public class ValueAnimator extends Animator {
68    private static final String TAG = "ValueAnimator";
69    private static final boolean DEBUG = false;
70
71    /**
72     * Internal constants
73     */
74    private static float sDurationScale = 1.0f;
75
76    /**
77     * Values used with internal variable mPlayingState to indicate the current state of an
78     * animation.
79     */
80    static final int STOPPED    = 0; // Not yet playing
81    static final int RUNNING    = 1; // Playing normally
82    static final int SEEKED     = 2; // Seeked to some time value
83
84    /**
85     * Internal variables
86     * NOTE: This object implements the clone() method, making a deep copy of any referenced
87     * objects. As other non-trivial fields are added to this class, make sure to add logic
88     * to clone() to make deep copies of them.
89     */
90
91    /**
92     * The first time that the animation's animateFrame() method is called. This time is used to
93     * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
94     * to animateFrame().
95     *
96     * Whenever mStartTime is set, you must also update mStartTimeCommitted.
97     */
98    long mStartTime;
99
100    /**
101     * When true, the start time has been firmly committed as a chosen reference point in
102     * time by which the progress of the animation will be evaluated.  When false, the
103     * start time may be updated when the first animation frame is committed so as
104     * to compensate for jank that may have occurred between when the start time was
105     * initialized and when the frame was actually drawn.
106     *
107     * This flag is generally set to false during the first frame of the animation
108     * when the animation playing state transitions from STOPPED to RUNNING or
109     * resumes after having been paused.  This flag is set to true when the start time
110     * is firmly committed and should not be further compensated for jank.
111     */
112    boolean mStartTimeCommitted;
113
114    /**
115     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
116     * to a value.
117     */
118    float mSeekFraction = -1;
119
120    /**
121     * Set on the next frame after pause() is called, used to calculate a new startTime
122     * or delayStartTime which allows the animator to continue from the point at which
123     * it was paused. If negative, has not yet been set.
124     */
125    private long mPauseTime;
126
127    /**
128     * Set when an animator is resumed. This triggers logic in the next frame which
129     * actually resumes the animator.
130     */
131    private boolean mResumed = false;
132
133
134    // The static sAnimationHandler processes the internal timing loop on which all animations
135    // are based
136    /**
137     * @hide
138     */
139    protected static ThreadLocal<AnimationHandler> sAnimationHandler =
140            new ThreadLocal<AnimationHandler>();
141
142    // The time interpolator to be used if none is set on the animation
143    private static final TimeInterpolator sDefaultInterpolator =
144            new AccelerateDecelerateInterpolator();
145
146    /**
147     * Used to indicate whether the animation is currently playing in reverse. This causes the
148     * elapsed fraction to be inverted to calculate the appropriate values.
149     */
150    private boolean mPlayingBackwards = false;
151
152    /**
153     * Flag to indicate whether this animator is playing in reverse mode, specifically
154     * by being started or interrupted by a call to reverse(). This flag is different than
155     * mPlayingBackwards, which indicates merely whether the current iteration of the
156     * animator is playing in reverse. It is used in corner cases to determine proper end
157     * behavior.
158     */
159    private boolean mReversing;
160
161    /**
162     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
163     * repeatCount (if repeatCount!=INFINITE), the animation ends
164     */
165    private int mCurrentIteration = 0;
166
167    /**
168     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
169     */
170    private float mCurrentFraction = 0f;
171
172    /**
173     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
174     */
175    private boolean mStartedDelay = false;
176
177    /**
178     * Tracks the time at which the animation began playing through its startDelay. This is
179     * different from the mStartTime variable, which is used to track when the animation became
180     * active (which is when the startDelay expired and the animation was added to the active
181     * animations list).
182     */
183    private long mDelayStartTime;
184
185    /**
186     * Flag that represents the current state of the animation. Used to figure out when to start
187     * an animation (if state == STOPPED). Also used to end an animation that
188     * has been cancel()'d or end()'d since the last animation frame. Possible values are
189     * STOPPED, RUNNING, SEEKED.
190     */
191    int mPlayingState = STOPPED;
192
193    /**
194     * Additional playing state to indicate whether an animator has been start()'d. There is
195     * some lag between a call to start() and the first animation frame. We should still note
196     * that the animation has been started, even if it's first animation frame has not yet
197     * happened, and reflect that state in isRunning().
198     * Note that delayed animations are different: they are not started until their first
199     * animation frame, which occurs after their delay elapses.
200     */
201    private boolean mRunning = false;
202
203    /**
204     * Additional playing state to indicate whether an animator has been start()'d, whether or
205     * not there is a nonzero startDelay.
206     */
207    private boolean mStarted = false;
208
209    /**
210     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
211     * complex to keep track of since we notify listeners at different times depending on
212     * startDelay and whether start() was called before end().
213     */
214    private boolean mStartListenersCalled = false;
215
216    /**
217     * Flag that denotes whether the animation is set up and ready to go. Used to
218     * set up animation that has not yet been started.
219     */
220    boolean mInitialized = false;
221
222    //
223    // Backing variables
224    //
225
226    // How long the animation should last in ms
227    private long mDuration = (long)(300 * sDurationScale);
228    private long mUnscaledDuration = 300;
229
230    // The amount of time in ms to delay starting the animation after start() is called
231    private long mStartDelay = 0;
232    private long mUnscaledStartDelay = 0;
233
234    // The number of times the animation will repeat. The default is 0, which means the animation
235    // will play only once
236    private int mRepeatCount = 0;
237
238    /**
239     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
240     * animation will start from the beginning on every new cycle. REVERSE means the animation
241     * will reverse directions on each iteration.
242     */
243    private int mRepeatMode = RESTART;
244
245    /**
246     * The time interpolator to be used. The elapsed fraction of the animation will be passed
247     * through this interpolator to calculate the interpolated fraction, which is then used to
248     * calculate the animated values.
249     */
250    private TimeInterpolator mInterpolator = sDefaultInterpolator;
251
252    /**
253     * The set of listeners to be sent events through the life of an animation.
254     */
255    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
256
257    /**
258     * The property/value sets being animated.
259     */
260    PropertyValuesHolder[] mValues;
261
262    /**
263     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
264     * by property name during calls to getAnimatedValue(String).
265     */
266    HashMap<String, PropertyValuesHolder> mValuesMap;
267
268    /**
269     * Public constants
270     */
271
272    /**
273     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
274     * or a positive value, the animation restarts from the beginning.
275     */
276    public static final int RESTART = 1;
277    /**
278     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
279     * or a positive value, the animation reverses direction on every iteration.
280     */
281    public static final int REVERSE = 2;
282    /**
283     * This value used used with the {@link #setRepeatCount(int)} property to repeat
284     * the animation indefinitely.
285     */
286    public static final int INFINITE = -1;
287
288
289    /**
290     * @hide
291     */
292    public static void setDurationScale(float durationScale) {
293        sDurationScale = durationScale;
294    }
295
296    /**
297     * @hide
298     */
299    public static float getDurationScale() {
300        return sDurationScale;
301    }
302
303    /**
304     * Creates a new ValueAnimator object. This default constructor is primarily for
305     * use internally; the factory methods which take parameters are more generally
306     * useful.
307     */
308    public ValueAnimator() {
309    }
310
311    /**
312     * Constructs and returns a ValueAnimator that animates between int values. A single
313     * value implies that that value is the one being animated to. However, this is not typically
314     * useful in a ValueAnimator object because there is no way for the object to determine the
315     * starting value for the animation (unlike ObjectAnimator, which can derive that value
316     * from the target object and property being animated). Therefore, there should typically
317     * be two or more values.
318     *
319     * @param values A set of values that the animation will animate between over time.
320     * @return A ValueAnimator object that is set up to animate between the given values.
321     */
322    public static ValueAnimator ofInt(int... values) {
323        ValueAnimator anim = new ValueAnimator();
324        anim.setIntValues(values);
325        return anim;
326    }
327
328    /**
329     * Constructs and returns a ValueAnimator that animates between color values. A single
330     * value implies that that value is the one being animated to. However, this is not typically
331     * useful in a ValueAnimator object because there is no way for the object to determine the
332     * starting value for the animation (unlike ObjectAnimator, which can derive that value
333     * from the target object and property being animated). Therefore, there should typically
334     * be two or more values.
335     *
336     * @param values A set of values that the animation will animate between over time.
337     * @return A ValueAnimator object that is set up to animate between the given values.
338     */
339    public static ValueAnimator ofArgb(int... values) {
340        ValueAnimator anim = new ValueAnimator();
341        anim.setIntValues(values);
342        anim.setEvaluator(ArgbEvaluator.getInstance());
343        return anim;
344    }
345
346    /**
347     * Constructs and returns a ValueAnimator that animates between float values. A single
348     * value implies that that value is the one being animated to. However, this is not typically
349     * useful in a ValueAnimator object because there is no way for the object to determine the
350     * starting value for the animation (unlike ObjectAnimator, which can derive that value
351     * from the target object and property being animated). Therefore, there should typically
352     * be two or more values.
353     *
354     * @param values A set of values that the animation will animate between over time.
355     * @return A ValueAnimator object that is set up to animate between the given values.
356     */
357    public static ValueAnimator ofFloat(float... values) {
358        ValueAnimator anim = new ValueAnimator();
359        anim.setFloatValues(values);
360        return anim;
361    }
362
363    /**
364     * Constructs and returns a ValueAnimator that animates between the values
365     * specified in the PropertyValuesHolder objects.
366     *
367     * @param values A set of PropertyValuesHolder objects whose values will be animated
368     * between over time.
369     * @return A ValueAnimator object that is set up to animate between the given values.
370     */
371    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
372        ValueAnimator anim = new ValueAnimator();
373        anim.setValues(values);
374        return anim;
375    }
376    /**
377     * Constructs and returns a ValueAnimator that animates between Object values. A single
378     * value implies that that value is the one being animated to. However, this is not typically
379     * useful in a ValueAnimator object because there is no way for the object to determine the
380     * starting value for the animation (unlike ObjectAnimator, which can derive that value
381     * from the target object and property being animated). Therefore, there should typically
382     * be two or more values.
383     *
384     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
385     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
386     * to perform that interpolation.
387     *
388     * @param evaluator A TypeEvaluator that will be called on each animation frame to
389     * provide the ncessry interpolation between the Object values to derive the animated
390     * value.
391     * @param values A set of values that the animation will animate between over time.
392     * @return A ValueAnimator object that is set up to animate between the given values.
393     */
394    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
395        ValueAnimator anim = new ValueAnimator();
396        anim.setObjectValues(values);
397        anim.setEvaluator(evaluator);
398        return anim;
399    }
400
401    /**
402     * Sets int values that will be animated between. A single
403     * value implies that that value is the one being animated to. However, this is not typically
404     * useful in a ValueAnimator object because there is no way for the object to determine the
405     * starting value for the animation (unlike ObjectAnimator, which can derive that value
406     * from the target object and property being animated). Therefore, there should typically
407     * be two or more values.
408     *
409     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
410     * than one PropertyValuesHolder object, this method will set the values for the first
411     * of those objects.</p>
412     *
413     * @param values A set of values that the animation will animate between over time.
414     */
415    public void setIntValues(int... values) {
416        if (values == null || values.length == 0) {
417            return;
418        }
419        if (mValues == null || mValues.length == 0) {
420            setValues(PropertyValuesHolder.ofInt("", values));
421        } else {
422            PropertyValuesHolder valuesHolder = mValues[0];
423            valuesHolder.setIntValues(values);
424        }
425        // New property/values/target should cause re-initialization prior to starting
426        mInitialized = false;
427    }
428
429    /**
430     * Sets float values that will be animated between. A single
431     * value implies that that value is the one being animated to. However, this is not typically
432     * useful in a ValueAnimator object because there is no way for the object to determine the
433     * starting value for the animation (unlike ObjectAnimator, which can derive that value
434     * from the target object and property being animated). Therefore, there should typically
435     * be two or more values.
436     *
437     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
438     * than one PropertyValuesHolder object, this method will set the values for the first
439     * of those objects.</p>
440     *
441     * @param values A set of values that the animation will animate between over time.
442     */
443    public void setFloatValues(float... values) {
444        if (values == null || values.length == 0) {
445            return;
446        }
447        if (mValues == null || mValues.length == 0) {
448            setValues(PropertyValuesHolder.ofFloat("", values));
449        } else {
450            PropertyValuesHolder valuesHolder = mValues[0];
451            valuesHolder.setFloatValues(values);
452        }
453        // New property/values/target should cause re-initialization prior to starting
454        mInitialized = false;
455    }
456
457    /**
458     * Sets the values to animate between for this animation. A single
459     * value implies that that value is the one being animated to. However, this is not typically
460     * useful in a ValueAnimator object because there is no way for the object to determine the
461     * starting value for the animation (unlike ObjectAnimator, which can derive that value
462     * from the target object and property being animated). Therefore, there should typically
463     * be two or more values.
464     *
465     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
466     * than one PropertyValuesHolder object, this method will set the values for the first
467     * of those objects.</p>
468     *
469     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
470     * between these value objects. ValueAnimator only knows how to interpolate between the
471     * primitive types specified in the other setValues() methods.</p>
472     *
473     * @param values The set of values to animate between.
474     */
475    public void setObjectValues(Object... values) {
476        if (values == null || values.length == 0) {
477            return;
478        }
479        if (mValues == null || mValues.length == 0) {
480            setValues(PropertyValuesHolder.ofObject("", null, values));
481        } else {
482            PropertyValuesHolder valuesHolder = mValues[0];
483            valuesHolder.setObjectValues(values);
484        }
485        // New property/values/target should cause re-initialization prior to starting
486        mInitialized = false;
487    }
488
489    /**
490     * Sets the values, per property, being animated between. This function is called internally
491     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
492     * be constructed without values and this method can be called to set the values manually
493     * instead.
494     *
495     * @param values The set of values, per property, being animated between.
496     */
497    public void setValues(PropertyValuesHolder... values) {
498        int numValues = values.length;
499        mValues = values;
500        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
501        for (int i = 0; i < numValues; ++i) {
502            PropertyValuesHolder valuesHolder = values[i];
503            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
504        }
505        // New property/values/target should cause re-initialization prior to starting
506        mInitialized = false;
507    }
508
509    /**
510     * Returns the values that this ValueAnimator animates between. These values are stored in
511     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
512     * of value objects instead.
513     *
514     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
515     * values, per property, that define the animation.
516     */
517    public PropertyValuesHolder[] getValues() {
518        return mValues;
519    }
520
521    /**
522     * This function is called immediately before processing the first animation
523     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
524     * function is called after that delay ends.
525     * It takes care of the final initialization steps for the
526     * animation.
527     *
528     *  <p>Overrides of this method should call the superclass method to ensure
529     *  that internal mechanisms for the animation are set up correctly.</p>
530     */
531    @CallSuper
532    void initAnimation() {
533        if (!mInitialized) {
534            int numValues = mValues.length;
535            for (int i = 0; i < numValues; ++i) {
536                mValues[i].init();
537            }
538            mInitialized = true;
539        }
540    }
541
542
543    /**
544     * Sets the length of the animation. The default duration is 300 milliseconds.
545     *
546     * @param duration The length of the animation, in milliseconds. This value cannot
547     * be negative.
548     * @return ValueAnimator The object called with setDuration(). This return
549     * value makes it easier to compose statements together that construct and then set the
550     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
551     */
552    @Override
553    public ValueAnimator setDuration(long duration) {
554        if (duration < 0) {
555            throw new IllegalArgumentException("Animators cannot have negative duration: " +
556                    duration);
557        }
558        mUnscaledDuration = duration;
559        updateScaledDuration();
560        return this;
561    }
562
563    private void updateScaledDuration() {
564        mDuration = (long)(mUnscaledDuration * sDurationScale);
565    }
566
567    /**
568     * Gets the length of the animation. The default duration is 300 milliseconds.
569     *
570     * @return The length of the animation, in milliseconds.
571     */
572    @Override
573    public long getDuration() {
574        return mUnscaledDuration;
575    }
576
577    /**
578     * @hide
579     */
580    @Override
581    public long getTotalDuration() {
582        if (mRepeatCount == INFINITE) {
583            return DURATION_INFINITE;
584        } else {
585            return mUnscaledStartDelay + (mUnscaledDuration * (mRepeatCount + 1));
586        }
587    }
588
589    /**
590     * Sets the position of the animation to the specified point in time. This time should
591     * be between 0 and the total duration of the animation, including any repetition. If
592     * the animation has not yet been started, then it will not advance forward after it is
593     * set to this time; it will simply set the time to this value and perform any appropriate
594     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
595     * will set the current playing time to this value and continue playing from that point.
596     *
597     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
598     */
599    public void setCurrentPlayTime(long playTime) {
600        float fraction = mUnscaledDuration > 0 ? (float) playTime / mUnscaledDuration : 1;
601        setCurrentFraction(fraction);
602    }
603
604    /**
605     * Sets the position of the animation to the specified fraction. This fraction should
606     * be between 0 and the total fraction of the animation, including any repetition. That is,
607     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
608     * and a value of 2 at the end of a reversing animator that repeats once. If
609     * the animation has not yet been started, then it will not advance forward after it is
610     * set to this fraction; it will simply set the fraction to this value and perform any
611     * appropriate actions based on that fraction. If the animation is already running, then
612     * setCurrentFraction() will set the current fraction to this value and continue
613     * playing from that point. {@link Animator.AnimatorListener} events are not called
614     * due to changing the fraction; those events are only processed while the animation
615     * is running.
616     *
617     * @param fraction The fraction to which the animation is advanced or rewound. Values
618     * outside the range of 0 to the maximum fraction for the animator will be clamped to
619     * the correct range.
620     */
621    public void setCurrentFraction(float fraction) {
622        initAnimation();
623        if (fraction < 0) {
624            fraction = 0;
625        }
626        int iteration = (int) fraction;
627        if (fraction == 1) {
628            iteration -= 1;
629        } else if (fraction > 1) {
630            if (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE) {
631                if (mRepeatMode == REVERSE) {
632                    mPlayingBackwards = (iteration % 2) != 0;
633                }
634                fraction = fraction % 1f;
635            } else {
636                fraction = 1;
637                iteration -= 1;
638            }
639        } else {
640            mPlayingBackwards = mReversing;
641        }
642        mCurrentIteration = iteration;
643        long seekTime = (long) (mDuration * fraction);
644        long currentTime = AnimationUtils.currentAnimationTimeMillis();
645        mStartTime = currentTime - seekTime;
646        mStartTimeCommitted = true; // do not allow start time to be compensated for jank
647        if (mPlayingState != RUNNING) {
648            mSeekFraction = fraction;
649            mPlayingState = SEEKED;
650        }
651        if (mPlayingBackwards) {
652            fraction = 1f - fraction;
653        }
654        animateValue(fraction);
655    }
656
657    /**
658     * Gets the current position of the animation in time, which is equal to the current
659     * time minus the time that the animation started. An animation that is not yet started will
660     * return a value of zero.
661     *
662     * @return The current position in time of the animation.
663     */
664    public long getCurrentPlayTime() {
665        if (!mInitialized || mPlayingState == STOPPED) {
666            return 0;
667        }
668        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
669    }
670
671    /**
672     * This custom, static handler handles the timing pulse that is shared by
673     * all active animations. This approach ensures that the setting of animation
674     * values will happen on the UI thread and that all animations will share
675     * the same times for calculating their values, which makes synchronizing
676     * animations possible.
677     *
678     * The handler uses the Choreographer for executing periodic callbacks.
679     *
680     * @hide
681     */
682    @SuppressWarnings("unchecked")
683    protected static class AnimationHandler {
684        // The per-thread list of all active animations
685        /** @hide */
686        protected final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
687
688        // Used in doAnimationFrame() to avoid concurrent modifications of mAnimations
689        private final ArrayList<ValueAnimator> mTmpAnimations = new ArrayList<ValueAnimator>();
690
691        // The per-thread set of animations to be started on the next animation frame
692        /** @hide */
693        protected final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
694
695        /**
696         * Internal per-thread collections used to avoid set collisions as animations start and end
697         * while being processed.
698         * @hide
699         */
700        protected final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
701        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
702        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
703
704        private final Choreographer mChoreographer;
705        private boolean mAnimationScheduled;
706        private long mLastFrameTime;
707
708        private AnimationHandler() {
709            mChoreographer = Choreographer.getInstance();
710        }
711
712        /**
713         * Start animating on the next frame.
714         */
715        public void start() {
716            scheduleAnimation();
717        }
718
719        void doAnimationFrame(long frameTime) {
720            mLastFrameTime = frameTime;
721
722            // mPendingAnimations holds any animations that have requested to be started
723            // We're going to clear mPendingAnimations, but starting animation may
724            // cause more to be added to the pending list (for example, if one animation
725            // starting triggers another starting). So we loop until mPendingAnimations
726            // is empty.
727            while (mPendingAnimations.size() > 0) {
728                ArrayList<ValueAnimator> pendingCopy =
729                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
730                mPendingAnimations.clear();
731                int count = pendingCopy.size();
732                for (int i = 0; i < count; ++i) {
733                    ValueAnimator anim = pendingCopy.get(i);
734                    // If the animation has a startDelay, place it on the delayed list
735                    if (anim.mStartDelay == 0) {
736                        anim.startAnimation(this);
737                    } else {
738                        mDelayedAnims.add(anim);
739                    }
740                }
741            }
742
743            // Next, process animations currently sitting on the delayed queue, adding
744            // them to the active animations if they are ready
745            int numDelayedAnims = mDelayedAnims.size();
746            for (int i = 0; i < numDelayedAnims; ++i) {
747                ValueAnimator anim = mDelayedAnims.get(i);
748                if (anim.delayedAnimationFrame(frameTime)) {
749                    mReadyAnims.add(anim);
750                }
751            }
752            int numReadyAnims = mReadyAnims.size();
753            if (numReadyAnims > 0) {
754                for (int i = 0; i < numReadyAnims; ++i) {
755                    ValueAnimator anim = mReadyAnims.get(i);
756                    anim.startAnimation(this);
757                    anim.mRunning = true;
758                    mDelayedAnims.remove(anim);
759                }
760                mReadyAnims.clear();
761            }
762
763            // Now process all active animations. The return value from animationFrame()
764            // tells the handler whether it should now be ended
765            int numAnims = mAnimations.size();
766            for (int i = 0; i < numAnims; ++i) {
767                mTmpAnimations.add(mAnimations.get(i));
768            }
769            for (int i = 0; i < numAnims; ++i) {
770                ValueAnimator anim = mTmpAnimations.get(i);
771                if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
772                    mEndingAnims.add(anim);
773                }
774            }
775            mTmpAnimations.clear();
776            if (mEndingAnims.size() > 0) {
777                for (int i = 0; i < mEndingAnims.size(); ++i) {
778                    mEndingAnims.get(i).endAnimation(this);
779                }
780                mEndingAnims.clear();
781            }
782
783            // Schedule final commit for the frame.
784            mChoreographer.postCallback(Choreographer.CALLBACK_COMMIT, mCommit, null);
785
786            // If there are still active or delayed animations, schedule a future call to
787            // onAnimate to process the next frame of the animations.
788            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
789                scheduleAnimation();
790            }
791        }
792
793        void commitAnimationFrame(long frameTime) {
794            final long adjustment = frameTime - mLastFrameTime;
795            final int numAnims = mAnimations.size();
796            for (int i = 0; i < numAnims; ++i) {
797                mAnimations.get(i).commitAnimationFrame(adjustment);
798            }
799        }
800
801        private void scheduleAnimation() {
802            if (!mAnimationScheduled) {
803                mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, mAnimate, null);
804                mAnimationScheduled = true;
805            }
806        }
807
808        // Called by the Choreographer.
809        final Runnable mAnimate = new Runnable() {
810            @Override
811            public void run() {
812                mAnimationScheduled = false;
813                doAnimationFrame(mChoreographer.getFrameTime());
814            }
815        };
816
817        // Called by the Choreographer.
818        final Runnable mCommit = new Runnable() {
819            @Override
820            public void run() {
821                commitAnimationFrame(mChoreographer.getFrameTime());
822            }
823        };
824    }
825
826    /**
827     * The amount of time, in milliseconds, to delay starting the animation after
828     * {@link #start()} is called.
829     *
830     * @return the number of milliseconds to delay running the animation
831     */
832    @Override
833    public long getStartDelay() {
834        return mUnscaledStartDelay;
835    }
836
837    /**
838     * The amount of time, in milliseconds, to delay starting the animation after
839     * {@link #start()} is called.
840
841     * @param startDelay The amount of the delay, in milliseconds
842     */
843    @Override
844    public void setStartDelay(long startDelay) {
845        this.mStartDelay = (long)(startDelay * sDurationScale);
846        mUnscaledStartDelay = startDelay;
847    }
848
849    /**
850     * The amount of time, in milliseconds, between each frame of the animation. This is a
851     * requested time that the animation will attempt to honor, but the actual delay between
852     * frames may be different, depending on system load and capabilities. This is a static
853     * function because the same delay will be applied to all animations, since they are all
854     * run off of a single timing loop.
855     *
856     * The frame delay may be ignored when the animation system uses an external timing
857     * source, such as the display refresh rate (vsync), to govern animations.
858     *
859     * @return the requested time between frames, in milliseconds
860     */
861    public static long getFrameDelay() {
862        return Choreographer.getFrameDelay();
863    }
864
865    /**
866     * The amount of time, in milliseconds, between each frame of the animation. This is a
867     * requested time that the animation will attempt to honor, but the actual delay between
868     * frames may be different, depending on system load and capabilities. This is a static
869     * function because the same delay will be applied to all animations, since they are all
870     * run off of a single timing loop.
871     *
872     * The frame delay may be ignored when the animation system uses an external timing
873     * source, such as the display refresh rate (vsync), to govern animations.
874     *
875     * @param frameDelay the requested time between frames, in milliseconds
876     */
877    public static void setFrameDelay(long frameDelay) {
878        Choreographer.setFrameDelay(frameDelay);
879    }
880
881    /**
882     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
883     * property being animated. This value is only sensible while the animation is running. The main
884     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
885     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
886     * is called during each animation frame, immediately after the value is calculated.
887     *
888     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
889     * the single property being animated. If there are several properties being animated
890     * (specified by several PropertyValuesHolder objects in the constructor), this function
891     * returns the animated value for the first of those objects.
892     */
893    public Object getAnimatedValue() {
894        if (mValues != null && mValues.length > 0) {
895            return mValues[0].getAnimatedValue();
896        }
897        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
898        return null;
899    }
900
901    /**
902     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
903     * The main purpose for this read-only property is to retrieve the value from the
904     * <code>ValueAnimator</code> during a call to
905     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
906     * is called during each animation frame, immediately after the value is calculated.
907     *
908     * @return animatedValue The value most recently calculated for the named property
909     * by this <code>ValueAnimator</code>.
910     */
911    public Object getAnimatedValue(String propertyName) {
912        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
913        if (valuesHolder != null) {
914            return valuesHolder.getAnimatedValue();
915        } else {
916            // At least avoid crashing if called with bogus propertyName
917            return null;
918        }
919    }
920
921    /**
922     * Sets how many times the animation should be repeated. If the repeat
923     * count is 0, the animation is never repeated. If the repeat count is
924     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
925     * into account. The repeat count is 0 by default.
926     *
927     * @param value the number of times the animation should be repeated
928     */
929    public void setRepeatCount(int value) {
930        mRepeatCount = value;
931    }
932    /**
933     * Defines how many times the animation should repeat. The default value
934     * is 0.
935     *
936     * @return the number of times the animation should repeat, or {@link #INFINITE}
937     */
938    public int getRepeatCount() {
939        return mRepeatCount;
940    }
941
942    /**
943     * Defines what this animation should do when it reaches the end. This
944     * setting is applied only when the repeat count is either greater than
945     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
946     *
947     * @param value {@link #RESTART} or {@link #REVERSE}
948     */
949    public void setRepeatMode(int value) {
950        mRepeatMode = value;
951    }
952
953    /**
954     * Defines what this animation should do when it reaches the end.
955     *
956     * @return either one of {@link #REVERSE} or {@link #RESTART}
957     */
958    public int getRepeatMode() {
959        return mRepeatMode;
960    }
961
962    /**
963     * Adds a listener to the set of listeners that are sent update events through the life of
964     * an animation. This method is called on all listeners for every frame of the animation,
965     * after the values for the animation have been calculated.
966     *
967     * @param listener the listener to be added to the current set of listeners for this animation.
968     */
969    public void addUpdateListener(AnimatorUpdateListener listener) {
970        if (mUpdateListeners == null) {
971            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
972        }
973        mUpdateListeners.add(listener);
974    }
975
976    /**
977     * Removes all listeners from the set listening to frame updates for this animation.
978     */
979    public void removeAllUpdateListeners() {
980        if (mUpdateListeners == null) {
981            return;
982        }
983        mUpdateListeners.clear();
984        mUpdateListeners = null;
985    }
986
987    /**
988     * Removes a listener from the set listening to frame updates for this animation.
989     *
990     * @param listener the listener to be removed from the current set of update listeners
991     * for this animation.
992     */
993    public void removeUpdateListener(AnimatorUpdateListener listener) {
994        if (mUpdateListeners == null) {
995            return;
996        }
997        mUpdateListeners.remove(listener);
998        if (mUpdateListeners.size() == 0) {
999            mUpdateListeners = null;
1000        }
1001    }
1002
1003
1004    /**
1005     * The time interpolator used in calculating the elapsed fraction of this animation. The
1006     * interpolator determines whether the animation runs with linear or non-linear motion,
1007     * such as acceleration and deceleration. The default value is
1008     * {@link android.view.animation.AccelerateDecelerateInterpolator}
1009     *
1010     * @param value the interpolator to be used by this animation. A value of <code>null</code>
1011     * will result in linear interpolation.
1012     */
1013    @Override
1014    public void setInterpolator(TimeInterpolator value) {
1015        if (value != null) {
1016            mInterpolator = value;
1017        } else {
1018            mInterpolator = new LinearInterpolator();
1019        }
1020    }
1021
1022    /**
1023     * Returns the timing interpolator that this ValueAnimator uses.
1024     *
1025     * @return The timing interpolator for this ValueAnimator.
1026     */
1027    @Override
1028    public TimeInterpolator getInterpolator() {
1029        return mInterpolator;
1030    }
1031
1032    /**
1033     * The type evaluator to be used when calculating the animated values of this animation.
1034     * The system will automatically assign a float or int evaluator based on the type
1035     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
1036     * are not one of these primitive types, or if different evaluation is desired (such as is
1037     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
1038     * For example, when running an animation on color values, the {@link ArgbEvaluator}
1039     * should be used to get correct RGB color interpolation.
1040     *
1041     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
1042     * will be used for that set. If there are several sets of values being animated, which is
1043     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
1044     * is assigned just to the first PropertyValuesHolder object.</p>
1045     *
1046     * @param value the evaluator to be used this animation
1047     */
1048    public void setEvaluator(TypeEvaluator value) {
1049        if (value != null && mValues != null && mValues.length > 0) {
1050            mValues[0].setEvaluator(value);
1051        }
1052    }
1053
1054    private void notifyStartListeners() {
1055        if (mListeners != null && !mStartListenersCalled) {
1056            ArrayList<AnimatorListener> tmpListeners =
1057                    (ArrayList<AnimatorListener>) mListeners.clone();
1058            int numListeners = tmpListeners.size();
1059            for (int i = 0; i < numListeners; ++i) {
1060                tmpListeners.get(i).onAnimationStart(this);
1061            }
1062        }
1063        mStartListenersCalled = true;
1064    }
1065
1066    /**
1067     * Start the animation playing. This version of start() takes a boolean flag that indicates
1068     * whether the animation should play in reverse. The flag is usually false, but may be set
1069     * to true if called from the reverse() method.
1070     *
1071     * <p>The animation started by calling this method will be run on the thread that called
1072     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
1073     * this is not the case). Also, if the animation will animate
1074     * properties of objects in the view hierarchy, then the calling thread should be the UI
1075     * thread for that view hierarchy.</p>
1076     *
1077     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
1078     */
1079    private void start(boolean playBackwards) {
1080        if (Looper.myLooper() == null) {
1081            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1082        }
1083        mReversing = playBackwards;
1084        mPlayingBackwards = playBackwards;
1085        if (playBackwards && mSeekFraction != -1) {
1086            if (mSeekFraction == 0 && mCurrentIteration == 0) {
1087                // special case: reversing from seek-to-0 should act as if not seeked at all
1088                mSeekFraction = 0;
1089            } else if (mRepeatCount == INFINITE) {
1090                mSeekFraction = 1 - (mSeekFraction % 1);
1091            } else {
1092                mSeekFraction = 1 + mRepeatCount - (mCurrentIteration + mSeekFraction);
1093            }
1094            mCurrentIteration = (int) mSeekFraction;
1095            mSeekFraction = mSeekFraction % 1;
1096        }
1097        if (mCurrentIteration > 0 && mRepeatMode == REVERSE &&
1098                (mCurrentIteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
1099            // if we were seeked to some other iteration in a reversing animator,
1100            // figure out the correct direction to start playing based on the iteration
1101            if (playBackwards) {
1102                mPlayingBackwards = (mCurrentIteration % 2) == 0;
1103            } else {
1104                mPlayingBackwards = (mCurrentIteration % 2) != 0;
1105            }
1106        }
1107        int prevPlayingState = mPlayingState;
1108        mPlayingState = STOPPED;
1109        mStarted = true;
1110        mStartedDelay = false;
1111        mPaused = false;
1112        updateScaledDuration(); // in case the scale factor has changed since creation time
1113        AnimationHandler animationHandler = getOrCreateAnimationHandler();
1114        animationHandler.mPendingAnimations.add(this);
1115        if (mStartDelay == 0) {
1116            // This sets the initial value of the animation, prior to actually starting it running
1117            if (prevPlayingState != SEEKED) {
1118                setCurrentPlayTime(0);
1119            }
1120            mPlayingState = STOPPED;
1121            mRunning = true;
1122            notifyStartListeners();
1123        }
1124        animationHandler.start();
1125    }
1126
1127    @Override
1128    public void start() {
1129        start(false);
1130    }
1131
1132    @Override
1133    public void cancel() {
1134        // Only cancel if the animation is actually running or has been started and is about
1135        // to run
1136        AnimationHandler handler = getOrCreateAnimationHandler();
1137        if (mPlayingState != STOPPED
1138                || handler.mPendingAnimations.contains(this)
1139                || handler.mDelayedAnims.contains(this)) {
1140            // Only notify listeners if the animator has actually started
1141            if ((mStarted || mRunning) && mListeners != null) {
1142                if (!mRunning) {
1143                    // If it's not yet running, then start listeners weren't called. Call them now.
1144                    notifyStartListeners();
1145                }
1146                ArrayList<AnimatorListener> tmpListeners =
1147                        (ArrayList<AnimatorListener>) mListeners.clone();
1148                for (AnimatorListener listener : tmpListeners) {
1149                    listener.onAnimationCancel(this);
1150                }
1151            }
1152            endAnimation(handler);
1153        }
1154    }
1155
1156    @Override
1157    public void end() {
1158        AnimationHandler handler = getOrCreateAnimationHandler();
1159        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
1160            // Special case if the animation has not yet started; get it ready for ending
1161            mStartedDelay = false;
1162            startAnimation(handler);
1163            mStarted = true;
1164        } else if (!mInitialized) {
1165            initAnimation();
1166        }
1167        animateValue(mPlayingBackwards ? 0f : 1f);
1168        endAnimation(handler);
1169    }
1170
1171    @Override
1172    public void resume() {
1173        if (mPaused) {
1174            mResumed = true;
1175        }
1176        super.resume();
1177    }
1178
1179    @Override
1180    public void pause() {
1181        boolean previouslyPaused = mPaused;
1182        super.pause();
1183        if (!previouslyPaused && mPaused) {
1184            mPauseTime = -1;
1185            mResumed = false;
1186        }
1187    }
1188
1189    @Override
1190    public boolean isRunning() {
1191        return (mPlayingState == RUNNING || mRunning);
1192    }
1193
1194    @Override
1195    public boolean isStarted() {
1196        return mStarted;
1197    }
1198
1199    /**
1200     * Plays the ValueAnimator in reverse. If the animation is already running,
1201     * it will stop itself and play backwards from the point reached when reverse was called.
1202     * If the animation is not currently running, then it will start from the end and
1203     * play backwards. This behavior is only set for the current animation; future playing
1204     * of the animation will use the default behavior of playing forward.
1205     */
1206    @Override
1207    public void reverse() {
1208        mPlayingBackwards = !mPlayingBackwards;
1209        if (mPlayingState == RUNNING) {
1210            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1211            long currentPlayTime = currentTime - mStartTime;
1212            long timeLeft = mDuration - currentPlayTime;
1213            mStartTime = currentTime - timeLeft;
1214            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1215            mReversing = !mReversing;
1216        } else if (mStarted) {
1217            end();
1218        } else {
1219            start(true);
1220        }
1221    }
1222
1223    /**
1224     * @hide
1225     */
1226    @Override
1227    public boolean canReverse() {
1228        return true;
1229    }
1230
1231    /**
1232     * Called internally to end an animation by removing it from the animations list. Must be
1233     * called on the UI thread.
1234     * @hide
1235     */
1236    protected void endAnimation(AnimationHandler handler) {
1237        handler.mAnimations.remove(this);
1238        handler.mPendingAnimations.remove(this);
1239        handler.mDelayedAnims.remove(this);
1240        mPlayingState = STOPPED;
1241        mPaused = false;
1242        if ((mStarted || mRunning) && mListeners != null) {
1243            if (!mRunning) {
1244                // If it's not yet running, then start listeners weren't called. Call them now.
1245                notifyStartListeners();
1246             }
1247            ArrayList<AnimatorListener> tmpListeners =
1248                    (ArrayList<AnimatorListener>) mListeners.clone();
1249            int numListeners = tmpListeners.size();
1250            for (int i = 0; i < numListeners; ++i) {
1251                tmpListeners.get(i).onAnimationEnd(this);
1252            }
1253        }
1254        mRunning = false;
1255        mStarted = false;
1256        mStartListenersCalled = false;
1257        mPlayingBackwards = false;
1258        mReversing = false;
1259        mCurrentIteration = 0;
1260        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1261            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1262                    System.identityHashCode(this));
1263        }
1264    }
1265
1266    /**
1267     * Called internally to start an animation by adding it to the active animations list. Must be
1268     * called on the UI thread.
1269     */
1270    private void startAnimation(AnimationHandler handler) {
1271        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1272            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1273                    System.identityHashCode(this));
1274        }
1275        initAnimation();
1276        handler.mAnimations.add(this);
1277        if (mStartDelay > 0 && mListeners != null) {
1278            // Listeners were already notified in start() if startDelay is 0; this is
1279            // just for delayed animations
1280            notifyStartListeners();
1281        }
1282    }
1283
1284    /**
1285     * Returns the name of this animator for debugging purposes.
1286     */
1287    String getNameForTrace() {
1288        return "animator";
1289    }
1290
1291
1292    /**
1293     * Internal function called to process an animation frame on an animation that is currently
1294     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1295     * should be woken up and put on the active animations queue.
1296     *
1297     * @param currentTime The current animation time, used to calculate whether the animation
1298     * has exceeded its <code>startDelay</code> and should be started.
1299     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1300     * should be added to the set of active animations.
1301     */
1302    private boolean delayedAnimationFrame(long currentTime) {
1303        if (!mStartedDelay) {
1304            mStartedDelay = true;
1305            mDelayStartTime = currentTime;
1306        }
1307        if (mPaused) {
1308            if (mPauseTime < 0) {
1309                mPauseTime = currentTime;
1310            }
1311            return false;
1312        } else if (mResumed) {
1313            mResumed = false;
1314            if (mPauseTime > 0) {
1315                // Offset by the duration that the animation was paused
1316                mDelayStartTime += (currentTime - mPauseTime);
1317            }
1318        }
1319        long deltaTime = currentTime - mDelayStartTime;
1320        if (deltaTime > mStartDelay) {
1321            // startDelay ended - start the anim and record the mStartTime appropriately
1322            mStartTime = mDelayStartTime + mStartDelay;
1323            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1324            mPlayingState = RUNNING;
1325            return true;
1326        }
1327        return false;
1328    }
1329
1330    /**
1331     * Applies an adjustment to the animation to compensate for jank between when
1332     * the animation first ran and when the frame was drawn.
1333     */
1334    void commitAnimationFrame(long adjustment) {
1335        if (!mStartTimeCommitted) {
1336            mStartTimeCommitted = true;
1337            if (mPlayingState == RUNNING && adjustment > 0) {
1338                mStartTime += adjustment;
1339                if (DEBUG) {
1340                    Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1341                }
1342            }
1343        }
1344    }
1345
1346    /**
1347     * This internal function processes a single animation frame for a given animation. The
1348     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1349     * elapsed duration, and therefore
1350     * the elapsed fraction, of the animation. The return value indicates whether the animation
1351     * should be ended (which happens when the elapsed time of the animation exceeds the
1352     * animation's duration, including the repeatCount).
1353     *
1354     * @param currentTime The current time, as tracked by the static timing handler
1355     * @return true if the animation's duration, including any repetitions due to
1356     * <code>repeatCount</code>, has been exceeded and the animation should be ended.
1357     */
1358    boolean animationFrame(long currentTime) {
1359        boolean done = false;
1360        switch (mPlayingState) {
1361        case RUNNING:
1362        case SEEKED:
1363            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1364            if (mDuration == 0 && mRepeatCount != INFINITE) {
1365                // Skip to the end
1366                mCurrentIteration = mRepeatCount;
1367                if (!mReversing) {
1368                    mPlayingBackwards = false;
1369                }
1370            }
1371            if (fraction >= 1f) {
1372                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1373                    // Time to repeat
1374                    if (mListeners != null) {
1375                        int numListeners = mListeners.size();
1376                        for (int i = 0; i < numListeners; ++i) {
1377                            mListeners.get(i).onAnimationRepeat(this);
1378                        }
1379                    }
1380                    if (mRepeatMode == REVERSE) {
1381                        mPlayingBackwards = !mPlayingBackwards;
1382                    }
1383                    mCurrentIteration += (int) fraction;
1384                    fraction = fraction % 1f;
1385                    mStartTime += mDuration;
1386                    // Note: We do not need to update the value of mStartTimeCommitted here
1387                    // since we just added a duration offset.
1388                } else {
1389                    done = true;
1390                    fraction = Math.min(fraction, 1.0f);
1391                }
1392            }
1393            if (mPlayingBackwards) {
1394                fraction = 1f - fraction;
1395            }
1396            animateValue(fraction);
1397            break;
1398        }
1399
1400        return done;
1401    }
1402
1403    /**
1404     * Processes a frame of the animation, adjusting the start time if needed.
1405     *
1406     * @param frameTime The frame time.
1407     * @return true if the animation has ended.
1408     */
1409    final boolean doAnimationFrame(long frameTime) {
1410        if (mPlayingState == STOPPED) {
1411            mPlayingState = RUNNING;
1412            if (mSeekFraction < 0) {
1413                mStartTime = frameTime;
1414            } else {
1415                long seekTime = (long) (mDuration * mSeekFraction);
1416                mStartTime = frameTime - seekTime;
1417                mSeekFraction = -1;
1418            }
1419            mStartTimeCommitted = false; // allow start time to be compensated for jank
1420        }
1421        if (mPaused) {
1422            if (mPauseTime < 0) {
1423                mPauseTime = frameTime;
1424            }
1425            return false;
1426        } else if (mResumed) {
1427            mResumed = false;
1428            if (mPauseTime > 0) {
1429                // Offset by the duration that the animation was paused
1430                mStartTime += (frameTime - mPauseTime);
1431                mStartTimeCommitted = false; // allow start time to be compensated for jank
1432            }
1433        }
1434        // The frame time might be before the start time during the first frame of
1435        // an animation.  The "current time" must always be on or after the start
1436        // time to avoid animating frames at negative time intervals.  In practice, this
1437        // is very rare and only happens when seeking backwards.
1438        final long currentTime = Math.max(frameTime, mStartTime);
1439        return animationFrame(currentTime);
1440    }
1441
1442    /**
1443     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1444     * the most recent frame update on the animation.
1445     *
1446     * @return Elapsed/interpolated fraction of the animation.
1447     */
1448    public float getAnimatedFraction() {
1449        return mCurrentFraction;
1450    }
1451
1452    /**
1453     * This method is called with the elapsed fraction of the animation during every
1454     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1455     * and then into an animated value (from the evaluator. The function is called mostly during
1456     * animation updates, but it is also called when the <code>end()</code>
1457     * function is called, to set the final value on the property.
1458     *
1459     * <p>Overrides of this method must call the superclass to perform the calculation
1460     * of the animated value.</p>
1461     *
1462     * @param fraction The elapsed fraction of the animation.
1463     */
1464    @CallSuper
1465    void animateValue(float fraction) {
1466        fraction = mInterpolator.getInterpolation(fraction);
1467        mCurrentFraction = fraction;
1468        int numValues = mValues.length;
1469        for (int i = 0; i < numValues; ++i) {
1470            mValues[i].calculateValue(fraction);
1471        }
1472        if (mUpdateListeners != null) {
1473            int numListeners = mUpdateListeners.size();
1474            for (int i = 0; i < numListeners; ++i) {
1475                mUpdateListeners.get(i).onAnimationUpdate(this);
1476            }
1477        }
1478    }
1479
1480    @Override
1481    public ValueAnimator clone() {
1482        final ValueAnimator anim = (ValueAnimator) super.clone();
1483        if (mUpdateListeners != null) {
1484            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1485        }
1486        anim.mSeekFraction = -1;
1487        anim.mPlayingBackwards = false;
1488        anim.mReversing = false;
1489        anim.mCurrentIteration = 0;
1490        anim.mInitialized = false;
1491        anim.mPlayingState = STOPPED;
1492        anim.mStartedDelay = false;
1493        anim.mStarted = false;
1494        anim.mRunning = false;
1495        anim.mPaused = false;
1496        anim.mResumed = false;
1497        anim.mStartListenersCalled = false;
1498        anim.mStartTime = 0;
1499        anim.mStartTimeCommitted = false;
1500        anim.mPauseTime = 0;
1501        anim.mCurrentFraction = 0;
1502        anim.mDelayStartTime = 0;
1503
1504        PropertyValuesHolder[] oldValues = mValues;
1505        if (oldValues != null) {
1506            int numValues = oldValues.length;
1507            anim.mValues = new PropertyValuesHolder[numValues];
1508            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1509            for (int i = 0; i < numValues; ++i) {
1510                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1511                anim.mValues[i] = newValuesHolder;
1512                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1513            }
1514        }
1515        return anim;
1516    }
1517
1518    /**
1519     * Implementors of this interface can add themselves as update listeners
1520     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1521     * frame, after the current frame's values have been calculated for that
1522     * <code>ValueAnimator</code>.
1523     */
1524    public static interface AnimatorUpdateListener {
1525        /**
1526         * <p>Notifies the occurrence of another frame of the animation.</p>
1527         *
1528         * @param animation The animation which was repeated.
1529         */
1530        void onAnimationUpdate(ValueAnimator animation);
1531
1532    }
1533
1534    /**
1535     * Return the number of animations currently running.
1536     *
1537     * Used by StrictMode internally to annotate violations.
1538     * May be called on arbitrary threads!
1539     *
1540     * @hide
1541     */
1542    public static int getCurrentAnimationsCount() {
1543        AnimationHandler handler = sAnimationHandler.get();
1544        return handler != null ? handler.mAnimations.size() : 0;
1545    }
1546
1547    /**
1548     * Clear all animations on this thread, without canceling or ending them.
1549     * This should be used with caution.
1550     *
1551     * @hide
1552     */
1553    public static void clearAllAnimations() {
1554        AnimationHandler handler = sAnimationHandler.get();
1555        if (handler != null) {
1556            handler.mAnimations.clear();
1557            handler.mPendingAnimations.clear();
1558            handler.mDelayedAnims.clear();
1559        }
1560    }
1561
1562    private static AnimationHandler getOrCreateAnimationHandler() {
1563        AnimationHandler handler = sAnimationHandler.get();
1564        if (handler == null) {
1565            handler = new AnimationHandler();
1566            sAnimationHandler.set(handler);
1567        }
1568        return handler;
1569    }
1570
1571    @Override
1572    public String toString() {
1573        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1574        if (mValues != null) {
1575            for (int i = 0; i < mValues.length; ++i) {
1576                returnVal += "\n    " + mValues[i].toString();
1577            }
1578        }
1579        return returnVal;
1580    }
1581
1582    /**
1583     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1584     * the UI thread. This is a hint that informs the ValueAnimator that it is
1585     * OK to run the animation off-thread, however ValueAnimator may decide
1586     * that it must run the animation on the UI thread anyway. For example if there
1587     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1588     * regardless of the value of this hint.</p>
1589     *
1590     * <p>Regardless of whether or not the animation runs asynchronously, all
1591     * listener callbacks will be called on the UI thread.</p>
1592     *
1593     * <p>To be able to use this hint the following must be true:</p>
1594     * <ol>
1595     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1596     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1597     *    to change values, duration, delay, etc... may be ignored.</li>
1598     * <li>Lifecycle callback events may be asynchronous. Events such as
1599     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1600     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1601     *    as they must be posted back to the UI thread, and any actions performed
1602     *    by those callbacks (such as starting new animations) will not happen
1603     *    in the same frame.</li>
1604     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1605     *    may be asynchronous. It is guaranteed that all state changes that are
1606     *    performed on the UI thread in the same frame will be applied as a single
1607     *    atomic update, however that frame may be the current frame,
1608     *    the next frame, or some future frame. This will also impact the observed
1609     *    state of the Animator. For example, {@link #isStarted()} may still return true
1610     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1611     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1612     *    for this reason.</li>
1613     * </ol>
1614     * @hide
1615     */
1616    @Override
1617    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1618        // It is up to subclasses to support this, if they can.
1619    }
1620}
1621