ValueAnimator.java revision 2970c499388b4dcd1232cd622a9b80b395eeb2b4
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Handler;
20import android.os.Looper;
21import android.os.Message;
22import android.util.AndroidRuntimeException;
23import android.view.animation.AccelerateDecelerateInterpolator;
24import android.view.animation.AnimationUtils;
25
26import java.util.ArrayList;
27import java.util.HashMap;
28
29/**
30 * This class provides a simple timing engine for running animations
31 * which calculate animated values and set them on target objects.
32 *
33 * <p>There is a single timing pulse that all animations use. It runs in a
34 * custom handler to ensure that property changes happen on the UI thread.</p>
35 *
36 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
37 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
38 * out of an animation. This behavior can be changed by calling
39 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
40 */
41public class ValueAnimator extends Animator {
42
43    /**
44     * Internal constants
45     */
46
47    /*
48     * The default amount of time in ms between animation frames
49     */
50    private static final long DEFAULT_FRAME_DELAY = 10;
51
52    /**
53     * Messages sent to timing handler: START is sent when an animation first begins, FRAME is sent
54     * by the handler to itself to process the next animation frame
55     */
56    private static final int ANIMATION_START = 0;
57    private static final int ANIMATION_FRAME = 1;
58
59    /**
60     * Values used with internal variable mPlayingState to indicate the current state of an
61     * animation.
62     */
63    private static final int STOPPED    = 0; // Not yet playing
64    private static final int RUNNING    = 1; // Playing normally
65    private static final int CANCELED   = 2; // cancel() called - need to end it
66    private static final int ENDED      = 3; // end() called - need to end it
67    private static final int SEEKED     = 4; // Seeked to some time value
68
69    /**
70     * Internal variables
71     * NOTE: This object implements the clone() method, making a deep copy of any referenced
72     * objects. As other non-trivial fields are added to this class, make sure to add logic
73     * to clone() to make deep copies of them.
74     */
75
76    // The first time that the animation's animateFrame() method is called. This time is used to
77    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
78    // to animateFrame()
79    private long mStartTime;
80
81    /**
82     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
83     * to a value.
84     */
85    private long mSeekTime = -1;
86
87    // TODO: We access the following ThreadLocal variables often, some of them on every update.
88    // If ThreadLocal access is significantly expensive, we may want to put all of these
89    // fields into a structure sot hat we just access ThreadLocal once to get the reference
90    // to that structure, then access the structure directly for each field.
91
92    // The static sAnimationHandler processes the internal timing loop on which all animations
93    // are based
94    private static ThreadLocal<AnimationHandler> sAnimationHandler =
95            new ThreadLocal<AnimationHandler>();
96
97    // The per-thread list of all active animations
98    private static final ThreadLocal<ArrayList<ValueAnimator>> sAnimations =
99            new ThreadLocal<ArrayList<ValueAnimator>>() {
100                @Override
101                protected ArrayList<ValueAnimator> initialValue() {
102                    return new ArrayList<ValueAnimator>();
103                }
104            };
105
106    // The per-thread set of animations to be started on the next animation frame
107    private static final ThreadLocal<ArrayList<ValueAnimator>> sPendingAnimations =
108            new ThreadLocal<ArrayList<ValueAnimator>>() {
109                @Override
110                protected ArrayList<ValueAnimator> initialValue() {
111                    return new ArrayList<ValueAnimator>();
112                }
113            };
114
115    /**
116     * Internal per-thread collections used to avoid set collisions as animations start and end
117     * while being processed.
118     */
119    private static final ThreadLocal<ArrayList<ValueAnimator>> sDelayedAnims =
120            new ThreadLocal<ArrayList<ValueAnimator>>() {
121                @Override
122                protected ArrayList<ValueAnimator> initialValue() {
123                    return new ArrayList<ValueAnimator>();
124                }
125            };
126
127    private static final ThreadLocal<ArrayList<ValueAnimator>> sEndingAnims =
128            new ThreadLocal<ArrayList<ValueAnimator>>() {
129                @Override
130                protected ArrayList<ValueAnimator> initialValue() {
131                    return new ArrayList<ValueAnimator>();
132                }
133            };
134
135    private static final ThreadLocal<ArrayList<ValueAnimator>> sReadyAnims =
136            new ThreadLocal<ArrayList<ValueAnimator>>() {
137                @Override
138                protected ArrayList<ValueAnimator> initialValue() {
139                    return new ArrayList<ValueAnimator>();
140                }
141            };
142
143    // The time interpolator to be used if none is set on the animation
144    private static final TimeInterpolator sDefaultInterpolator =
145            new AccelerateDecelerateInterpolator();
146
147    // type evaluators for the three primitive types handled by this implementation
148    private static final TypeEvaluator sIntEvaluator = new IntEvaluator();
149    private static final TypeEvaluator sFloatEvaluator = new FloatEvaluator();
150    private static final TypeEvaluator sDoubleEvaluator = new DoubleEvaluator();
151
152    /**
153     * Used to indicate whether the animation is currently playing in reverse. This causes the
154     * elapsed fraction to be inverted to calculate the appropriate values.
155     */
156    private boolean mPlayingBackwards = false;
157
158    /**
159     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
160     * repeatCount (if repeatCount!=INFINITE), the animation ends
161     */
162    private int mCurrentIteration = 0;
163
164    /**
165     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
166     */
167    private boolean mStartedDelay = false;
168
169    /**
170     * Tracks the time at which the animation began playing through its startDelay. This is
171     * different from the mStartTime variable, which is used to track when the animation became
172     * active (which is when the startDelay expired and the animation was added to the active
173     * animations list).
174     */
175    private long mDelayStartTime;
176
177    /**
178     * Flag that represents the current state of the animation. Used to figure out when to start
179     * an animation (if state == STOPPED). Also used to end an animation that
180     * has been cancel()'d or end()'d since the last animation frame. Possible values are
181     * STOPPED, RUNNING, ENDED, CANCELED.
182     */
183    private int mPlayingState = STOPPED;
184
185    /**
186     * Flag that denotes whether the animation is set up and ready to go. Used to
187     * set up animation that has not yet been started.
188     */
189    boolean mInitialized = false;
190
191    //
192    // Backing variables
193    //
194
195    // How long the animation should last in ms
196    private long mDuration = 300;
197
198    // The amount of time in ms to delay starting the animation after start() is called
199    private long mStartDelay = 0;
200
201    // The number of milliseconds between animation frames
202    private static long sFrameDelay = DEFAULT_FRAME_DELAY;
203
204    // The number of times the animation will repeat. The default is 0, which means the animation
205    // will play only once
206    private int mRepeatCount = 0;
207
208    /**
209     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
210     * animation will start from the beginning on every new cycle. REVERSE means the animation
211     * will reverse directions on each iteration.
212     */
213    private int mRepeatMode = RESTART;
214
215    /**
216     * The time interpolator to be used. The elapsed fraction of the animation will be passed
217     * through this interpolator to calculate the interpolated fraction, which is then used to
218     * calculate the animated values.
219     */
220    private TimeInterpolator mInterpolator = sDefaultInterpolator;
221
222    /**
223     * The set of listeners to be sent events through the life of an animation.
224     */
225    private ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
226
227    /**
228     * The property/value sets being animated.
229     */
230    PropertyValuesHolder[] mValues;
231
232    /**
233     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
234     * by property name during calls to getAnimatedValue(String).
235     */
236    HashMap<String, PropertyValuesHolder> mValuesMap;
237
238    /**
239     * Public constants
240     */
241
242    /**
243     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
244     * or a positive value, the animation restarts from the beginning.
245     */
246    public static final int RESTART = 1;
247    /**
248     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
249     * or a positive value, the animation reverses direction on every iteration.
250     */
251    public static final int REVERSE = 2;
252    /**
253     * This value used used with the {@link #setRepeatCount(int)} property to repeat
254     * the animation indefinitely.
255     */
256    public static final int INFINITE = -1;
257
258    /**
259     * Creates a new ValueAnimator object. This default constructor is primarily for
260     * use internally; the factory methods which take parameters are more generally
261     * useful.
262     */
263    public ValueAnimator() {
264    }
265
266    /**
267     * Constructs and returns a ValueAnimator that animates between int values. A single
268     * value implies that that value is the one being animated to. However, this is not typically
269     * useful in a ValueAnimator object because there is no way for the object to determine the
270     * starting value for the animation (unlike ObjectAnimator, which can derive that value
271     * from the target object and property being animated). Therefore, there should typically
272     * be two or more values.
273     *
274     * @param values A set of values that the animation will animate between over time.
275     * @return A ValueAnimator object that is set up to animate between the given values.
276     */
277    public static ValueAnimator ofInt(int... values) {
278        ValueAnimator anim = new ValueAnimator();
279        anim.setIntValues(values);
280        return anim;
281    }
282
283    /**
284     * Constructs and returns a ValueAnimator that animates between float values. A single
285     * value implies that that value is the one being animated to. However, this is not typically
286     * useful in a ValueAnimator object because there is no way for the object to determine the
287     * starting value for the animation (unlike ObjectAnimator, which can derive that value
288     * from the target object and property being animated). Therefore, there should typically
289     * be two or more values.
290     *
291     * @param values A set of values that the animation will animate between over time.
292     * @return A ValueAnimator object that is set up to animate between the given values.
293     */
294    public static ValueAnimator ofFloat(float... values) {
295        ValueAnimator anim = new ValueAnimator();
296        anim.setFloatValues(values);
297        return anim;
298    }
299
300    /**
301     * Constructs and returns a ValueAnimator that animates between the values
302     * specified in the PropertyValuesHolder objects.
303     *
304     * @param values A set of PropertyValuesHolder objects whose values will be animated
305     * between over time.
306     * @return A ValueAnimator object that is set up to animate between the given values.
307     */
308    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
309        ValueAnimator anim = new ValueAnimator();
310        anim.setValues(values);
311        return anim;
312    }
313    /**
314     * Constructs and returns a ValueAnimator that animates between Object values. A single
315     * value implies that that value is the one being animated to. However, this is not typically
316     * useful in a ValueAnimator object because there is no way for the object to determine the
317     * starting value for the animation (unlike ObjectAnimator, which can derive that value
318     * from the target object and property being animated). Therefore, there should typically
319     * be two or more values.
320     *
321     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
322     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
323     * to perform that interpolation.
324     *
325     * @param evaluator A TypeEvaluator that will be called on each animation frame to
326     * provide the ncessry interpolation between the Object values to derive the animated
327     * value.
328     * @param values A set of values that the animation will animate between over time.
329     * @return A ValueAnimator object that is set up to animate between the given values.
330     */
331    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
332        ValueAnimator anim = new ValueAnimator();
333        anim.setObjectValues(values);
334        anim.setEvaluator(evaluator);
335        return anim;
336    }
337
338    /**
339     * Sets int values that will be animated between. A single
340     * value implies that that value is the one being animated to. However, this is not typically
341     * useful in a ValueAnimator object because there is no way for the object to determine the
342     * starting value for the animation (unlike ObjectAnimator, which can derive that value
343     * from the target object and property being animated). Therefore, there should typically
344     * be two or more values.
345     *
346     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
347     * than one PropertyValuesHolder object, this method will set the values for the first
348     * of those objects.</p>
349     *
350     * @param values A set of values that the animation will animate between over time.
351     */
352    public void setIntValues(int... values) {
353        if (values == null || values.length == 0) {
354            return;
355        }
356        if (mValues == null || mValues.length == 0) {
357            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofInt("", values)});
358        } else {
359            PropertyValuesHolder valuesHolder = mValues[0];
360            valuesHolder.setIntValues(values);
361        }
362        // New property/values/target should cause re-initialization prior to starting
363        mInitialized = false;
364    }
365
366    /**
367     * Sets float values that will be animated between. A single
368     * value implies that that value is the one being animated to. However, this is not typically
369     * useful in a ValueAnimator object because there is no way for the object to determine the
370     * starting value for the animation (unlike ObjectAnimator, which can derive that value
371     * from the target object and property being animated). Therefore, there should typically
372     * be two or more values.
373     *
374     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
375     * than one PropertyValuesHolder object, this method will set the values for the first
376     * of those objects.</p>
377     *
378     * @param values A set of values that the animation will animate between over time.
379     */
380    public void setFloatValues(float... values) {
381        if (values == null || values.length == 0) {
382            return;
383        }
384        if (mValues == null || mValues.length == 0) {
385            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofFloat("", values)});
386        } else {
387            PropertyValuesHolder valuesHolder = mValues[0];
388            valuesHolder.setFloatValues(values);
389        }
390        // New property/values/target should cause re-initialization prior to starting
391        mInitialized = false;
392    }
393
394    /**
395     * Sets the values to animate between for this animation. A single
396     * value implies that that value is the one being animated to. However, this is not typically
397     * useful in a ValueAnimator object because there is no way for the object to determine the
398     * starting value for the animation (unlike ObjectAnimator, which can derive that value
399     * from the target object and property being animated). Therefore, there should typically
400     * be two or more values.
401     *
402     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
403     * than one PropertyValuesHolder object, this method will set the values for the first
404     * of those objects.</p>
405     *
406     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
407     * between these value objects. ValueAnimator only knows how to interpolate between the
408     * primitive types specified in the other setValues() methods.</p>
409     *
410     * @param values The set of values to animate between.
411     */
412    public void setObjectValues(Object... values) {
413        if (values == null || values.length == 0) {
414            return;
415        }
416        if (mValues == null || mValues.length == 0) {
417            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofObject("",
418                    (TypeEvaluator)null, values)});
419        } else {
420            PropertyValuesHolder valuesHolder = mValues[0];
421            valuesHolder.setObjectValues(values);
422        }
423        // New property/values/target should cause re-initialization prior to starting
424        mInitialized = false;
425    }
426
427    /**
428     * Sets the values, per property, being animated between. This function is called internally
429     * by the constructors of ValueAnimator that take a list of values. But an ValueAnimator can
430     * be constructed without values and this method can be called to set the values manually
431     * instead.
432     *
433     * @param values The set of values, per property, being animated between.
434     */
435    public void setValues(PropertyValuesHolder... values) {
436        int numValues = values.length;
437        mValues = values;
438        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
439        for (int i = 0; i < numValues; ++i) {
440            PropertyValuesHolder valuesHolder = (PropertyValuesHolder) values[i];
441            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
442        }
443        // New property/values/target should cause re-initialization prior to starting
444        mInitialized = false;
445    }
446
447    /**
448     * Returns the values that this ValueAnimator animates between. These values are stored in
449     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
450     * of value objects instead.
451     *
452     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
453     * values, per property, that define the animation.
454     */
455    public PropertyValuesHolder[] getValues() {
456        return mValues;
457    }
458
459    /**
460     * This function is called immediately before processing the first animation
461     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
462     * function is called after that delay ends.
463     * It takes care of the final initialization steps for the
464     * animation.
465     *
466     *  <p>Overrides of this method should call the superclass method to ensure
467     *  that internal mechanisms for the animation are set up correctly.</p>
468     */
469    void initAnimation() {
470        if (!mInitialized) {
471            int numValues = mValues.length;
472            for (int i = 0; i < numValues; ++i) {
473                mValues[i].init();
474            }
475            mInitialized = true;
476        }
477    }
478
479
480    /**
481     * Sets the length of the animation. The default duration is 300 milliseconds.
482     *
483     * @param duration The length of the animation, in milliseconds.
484     * @return ValueAnimator The object called with setDuration(). This return
485     * value makes it easier to compose statements together that construct and then set the
486     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
487     */
488    public ValueAnimator setDuration(long duration) {
489        mDuration = duration;
490        return this;
491    }
492
493    /**
494     * Gets the length of the animation. The default duration is 300 milliseconds.
495     *
496     * @return The length of the animation, in milliseconds.
497     */
498    public long getDuration() {
499        return mDuration;
500    }
501
502    /**
503     * Sets the position of the animation to the specified point in time. This time should
504     * be between 0 and the total duration of the animation, including any repetition. If
505     * the animation has not yet been started, then it will not advance forward after it is
506     * set to this time; it will simply set the time to this value and perform any appropriate
507     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
508     * will set the current playing time to this value and continue playing from that point.
509     *
510     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
511     */
512    public void setCurrentPlayTime(long playTime) {
513        initAnimation();
514        long currentTime = AnimationUtils.currentAnimationTimeMillis();
515        if (mPlayingState != RUNNING) {
516            mSeekTime = playTime;
517            mPlayingState = SEEKED;
518        }
519        mStartTime = currentTime - playTime;
520        animationFrame(currentTime);
521    }
522
523    /**
524     * Gets the current position of the animation in time, which is equal to the current
525     * time minus the time that the animation started. An animation that is not yet started will
526     * return a value of zero.
527     *
528     * @return The current position in time of the animation.
529     */
530    public long getCurrentPlayTime() {
531        if (!mInitialized || mPlayingState == STOPPED) {
532            return 0;
533        }
534        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
535    }
536
537    /**
538     * This custom, static handler handles the timing pulse that is shared by
539     * all active animations. This approach ensures that the setting of animation
540     * values will happen on the UI thread and that all animations will share
541     * the same times for calculating their values, which makes synchronizing
542     * animations possible.
543     *
544     */
545    private static class AnimationHandler extends Handler {
546        /**
547         * There are only two messages that we care about: ANIMATION_START and
548         * ANIMATION_FRAME. The START message is sent when an animation's start()
549         * method is called. It cannot start synchronously when start() is called
550         * because the call may be on the wrong thread, and it would also not be
551         * synchronized with other animations because it would not start on a common
552         * timing pulse. So each animation sends a START message to the handler, which
553         * causes the handler to place the animation on the active animations queue and
554         * start processing frames for that animation.
555         * The FRAME message is the one that is sent over and over while there are any
556         * active animations to process.
557         */
558        @Override
559        public void handleMessage(Message msg) {
560            boolean callAgain = true;
561            ArrayList<ValueAnimator> animations = sAnimations.get();
562            ArrayList<ValueAnimator> delayedAnims = sDelayedAnims.get();
563            switch (msg.what) {
564                // TODO: should we avoid sending frame message when starting if we
565                // were already running?
566                case ANIMATION_START:
567                    ArrayList<ValueAnimator> pendingAnimations = sPendingAnimations.get();
568                    if (animations.size() > 0 || delayedAnims.size() > 0) {
569                        callAgain = false;
570                    }
571                    // pendingAnims holds any animations that have requested to be started
572                    // We're going to clear sPendingAnimations, but starting animation may
573                    // cause more to be added to the pending list (for example, if one animation
574                    // starting triggers another starting). So we loop until sPendingAnimations
575                    // is empty.
576                    while (pendingAnimations.size() > 0) {
577                        ArrayList<ValueAnimator> pendingCopy =
578                                (ArrayList<ValueAnimator>) pendingAnimations.clone();
579                        pendingAnimations.clear();
580                        int count = pendingCopy.size();
581                        for (int i = 0; i < count; ++i) {
582                            ValueAnimator anim = pendingCopy.get(i);
583                            // If the animation has a startDelay, place it on the delayed list
584                            if (anim.mStartDelay == 0 || anim.mPlayingState == ENDED ||
585                                    anim.mPlayingState == CANCELED) {
586                                anim.startAnimation();
587                            } else {
588                                delayedAnims.add(anim);
589                            }
590                        }
591                    }
592                    // fall through to process first frame of new animations
593                case ANIMATION_FRAME:
594                    // currentTime holds the common time for all animations processed
595                    // during this frame
596                    long currentTime = AnimationUtils.currentAnimationTimeMillis();
597                    ArrayList<ValueAnimator> readyAnims = sReadyAnims.get();
598                    ArrayList<ValueAnimator> endingAnims = sEndingAnims.get();
599
600                    // First, process animations currently sitting on the delayed queue, adding
601                    // them to the active animations if they are ready
602                    int numDelayedAnims = delayedAnims.size();
603                    for (int i = 0; i < numDelayedAnims; ++i) {
604                        ValueAnimator anim = delayedAnims.get(i);
605                        if (anim.delayedAnimationFrame(currentTime)) {
606                            readyAnims.add(anim);
607                        }
608                    }
609                    int numReadyAnims = readyAnims.size();
610                    if (numReadyAnims > 0) {
611                        for (int i = 0; i < numReadyAnims; ++i) {
612                            ValueAnimator anim = readyAnims.get(i);
613                            anim.startAnimation();
614                            delayedAnims.remove(anim);
615                        }
616                        readyAnims.clear();
617                    }
618
619                    // Now process all active animations. The return value from animationFrame()
620                    // tells the handler whether it should now be ended
621                    int numAnims = animations.size();
622                    for (int i = 0; i < numAnims; ++i) {
623                        ValueAnimator anim = animations.get(i);
624                        if (anim.animationFrame(currentTime)) {
625                            endingAnims.add(anim);
626                        }
627                    }
628                    if (endingAnims.size() > 0) {
629                        for (int i = 0; i < endingAnims.size(); ++i) {
630                            endingAnims.get(i).endAnimation();
631                        }
632                        endingAnims.clear();
633                    }
634
635                    // If there are still active or delayed animations, call the handler again
636                    // after the frameDelay
637                    if (callAgain && (!animations.isEmpty() || !delayedAnims.isEmpty())) {
638                        sendEmptyMessageDelayed(ANIMATION_FRAME, Math.max(0, sFrameDelay -
639                            (AnimationUtils.currentAnimationTimeMillis() - currentTime)));
640                    }
641                    break;
642            }
643        }
644    }
645
646    /**
647     * The amount of time, in milliseconds, to delay starting the animation after
648     * {@link #start()} is called.
649     *
650     * @return the number of milliseconds to delay running the animation
651     */
652    public long getStartDelay() {
653        return mStartDelay;
654    }
655
656    /**
657     * The amount of time, in milliseconds, to delay starting the animation after
658     * {@link #start()} is called.
659
660     * @param startDelay The amount of the delay, in milliseconds
661     */
662    public void setStartDelay(long startDelay) {
663        this.mStartDelay = startDelay;
664    }
665
666    /**
667     * The amount of time, in milliseconds, between each frame of the animation. This is a
668     * requested time that the animation will attempt to honor, but the actual delay between
669     * frames may be different, depending on system load and capabilities. This is a static
670     * function because the same delay will be applied to all animations, since they are all
671     * run off of a single timing loop.
672     *
673     * @return the requested time between frames, in milliseconds
674     */
675    public static long getFrameDelay() {
676        return sFrameDelay;
677    }
678
679    /**
680     * The amount of time, in milliseconds, between each frame of the animation. This is a
681     * requested time that the animation will attempt to honor, but the actual delay between
682     * frames may be different, depending on system load and capabilities. This is a static
683     * function because the same delay will be applied to all animations, since they are all
684     * run off of a single timing loop.
685     *
686     * @param frameDelay the requested time between frames, in milliseconds
687     */
688    public static void setFrameDelay(long frameDelay) {
689        sFrameDelay = frameDelay;
690    }
691
692    /**
693     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
694     * property being animated. This value is only sensible while the animation is running. The main
695     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
696     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
697     * is called during each animation frame, immediately after the value is calculated.
698     *
699     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
700     * the single property being animated. If there are several properties being animated
701     * (specified by several PropertyValuesHolder objects in the constructor), this function
702     * returns the animated value for the first of those objects.
703     */
704    public Object getAnimatedValue() {
705        if (mValues != null && mValues.length > 0) {
706            return mValues[0].getAnimatedValue();
707        }
708        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
709        return null;
710    }
711
712    /**
713     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
714     * The main purpose for this read-only property is to retrieve the value from the
715     * <code>ValueAnimator</code> during a call to
716     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
717     * is called during each animation frame, immediately after the value is calculated.
718     *
719     * @return animatedValue The value most recently calculated for the named property
720     * by this <code>ValueAnimator</code>.
721     */
722    public Object getAnimatedValue(String propertyName) {
723        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
724        if (valuesHolder != null) {
725            return valuesHolder.getAnimatedValue();
726        } else {
727            // At least avoid crashing if called with bogus propertyName
728            return null;
729        }
730    }
731
732    /**
733     * Sets how many times the animation should be repeated. If the repeat
734     * count is 0, the animation is never repeated. If the repeat count is
735     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
736     * into account. The repeat count is 0 by default.
737     *
738     * @param value the number of times the animation should be repeated
739     */
740    public void setRepeatCount(int value) {
741        mRepeatCount = value;
742    }
743    /**
744     * Defines how many times the animation should repeat. The default value
745     * is 0.
746     *
747     * @return the number of times the animation should repeat, or {@link #INFINITE}
748     */
749    public int getRepeatCount() {
750        return mRepeatCount;
751    }
752
753    /**
754     * Defines what this animation should do when it reaches the end. This
755     * setting is applied only when the repeat count is either greater than
756     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
757     *
758     * @param value {@link #RESTART} or {@link #REVERSE}
759     */
760    public void setRepeatMode(int value) {
761        mRepeatMode = value;
762    }
763
764    /**
765     * Defines what this animation should do when it reaches the end.
766     *
767     * @return either one of {@link #REVERSE} or {@link #RESTART}
768     */
769    public int getRepeatMode() {
770        return mRepeatMode;
771    }
772
773    /**
774     * Adds a listener to the set of listeners that are sent update events through the life of
775     * an animation. This method is called on all listeners for every frame of the animation,
776     * after the values for the animation have been calculated.
777     *
778     * @param listener the listener to be added to the current set of listeners for this animation.
779     */
780    public void addUpdateListener(AnimatorUpdateListener listener) {
781        if (mUpdateListeners == null) {
782            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
783        }
784        mUpdateListeners.add(listener);
785    }
786
787    /**
788     * Removes all listeners from the set listening to frame updates for this animation.
789     */
790    public void removeAllUpdateListeners() {
791        if (mUpdateListeners == null) {
792            return;
793        }
794        mUpdateListeners.clear();
795        mUpdateListeners = null;
796    }
797
798    /**
799     * Removes a listener from the set listening to frame updates for this animation.
800     *
801     * @param listener the listener to be removed from the current set of update listeners
802     * for this animation.
803     */
804    public void removeUpdateListener(AnimatorUpdateListener listener) {
805        if (mUpdateListeners == null) {
806            return;
807        }
808        mUpdateListeners.remove(listener);
809        if (mUpdateListeners.size() == 0) {
810            mUpdateListeners = null;
811        }
812    }
813
814
815    /**
816     * The time interpolator used in calculating the elapsed fraction of this animation. The
817     * interpolator determines whether the animation runs with linear or non-linear motion,
818     * such as acceleration and deceleration. The default value is
819     * {@link android.view.animation.AccelerateDecelerateInterpolator}
820     *
821     * @param value the interpolator to be used by this animation
822     */
823    @Override
824    public void setInterpolator(TimeInterpolator value) {
825        if (value != null) {
826            mInterpolator = value;
827        }
828    }
829
830    /**
831     * Returns the timing interpolator that this ValueAnimator uses.
832     *
833     * @return The timing interpolator for this ValueAnimator.
834     */
835    public TimeInterpolator getInterpolator() {
836        return mInterpolator;
837    }
838
839    /**
840     * The type evaluator to be used when calculating the animated values of this animation.
841     * The system will automatically assign a float, int, or double evaluator based on the type
842     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
843     * are not one of these primitive types, or if different evaluation is desired (such as is
844     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
845     * For example, when running an animation on color values, the {@link RGBEvaluator}
846     * should be used to get correct RGB color interpolation.
847     *
848     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
849     * will be used for that set. If there are several sets of values being animated, which is
850     * the case if PropertyValuesHOlder objects were set on the ValueAnimator, then the evaluator
851     * is assigned just to the first PropertyValuesHolder object.</p>
852     *
853     * @param value the evaluator to be used this animation
854     */
855    public void setEvaluator(TypeEvaluator value) {
856        if (value != null && mValues != null && mValues.length > 0) {
857            mValues[0].setEvaluator(value);
858        }
859    }
860
861    /**
862     * Start the animation playing. This version of start() takes a boolean flag that indicates
863     * whether the animation should play in reverse. The flag is usually false, but may be set
864     * to true if called from the reverse() method.
865     *
866     * <p>The animation started by calling this method will be run on the thread that called
867     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
868     * this is not the case). Also, if the animation will animate
869     * properties of objects in the view hierarchy, then the calling thread should be the UI
870     * thread for that view hierarchy.</p>
871     *
872     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
873     */
874    private void start(boolean playBackwards) {
875        if (Looper.myLooper() == null) {
876            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
877        }
878        mPlayingBackwards = playBackwards;
879        if (mStartDelay == 0) {
880            if (mListeners != null) {
881                ArrayList<AnimatorListener> tmpListeners =
882                        (ArrayList<AnimatorListener>) mListeners.clone();
883                int numListeners = tmpListeners.size();
884                for (int i = 0; i < numListeners; ++i) {
885                    tmpListeners.get(i).onAnimationStart(this);
886                }
887            }
888            // This sets the initial value of the animation, prior to actually starting it running
889            setCurrentPlayTime(getCurrentPlayTime());
890        }
891        mCurrentIteration = 0;
892        mPlayingState = STOPPED;
893        mStartedDelay = false;
894        sPendingAnimations.get().add(this);
895        AnimationHandler animationHandler = sAnimationHandler.get();
896        if (animationHandler == null) {
897            animationHandler = new AnimationHandler();
898            sAnimationHandler.set(animationHandler);
899        }
900        animationHandler.sendEmptyMessage(ANIMATION_START);
901    }
902
903    @Override
904    public void start() {
905        start(false);
906    }
907
908    @Override
909    public void cancel() {
910        if (mListeners != null) {
911            ArrayList<AnimatorListener> tmpListeners =
912                    (ArrayList<AnimatorListener>) mListeners.clone();
913            for (AnimatorListener listener : tmpListeners) {
914                listener.onAnimationCancel(this);
915            }
916        }
917        // Only cancel if the animation is actually running or has been started and is about
918        // to run
919        if (mPlayingState != STOPPED || sPendingAnimations.get().contains(this) ||
920                sDelayedAnims.get().contains(this)) {
921            // Just set the CANCELED flag - this causes the animation to end the next time a frame
922            // is processed.
923            mPlayingState = CANCELED;
924        }
925    }
926
927    @Override
928    public void end() {
929        if (!sAnimations.get().contains(this) && !sPendingAnimations.get().contains(this)) {
930            // Special case if the animation has not yet started; get it ready for ending
931            mStartedDelay = false;
932            sPendingAnimations.get().add(this);
933            AnimationHandler animationHandler = sAnimationHandler.get();
934            if (animationHandler == null) {
935                animationHandler = new AnimationHandler();
936                sAnimationHandler.set(animationHandler);
937            }
938            animationHandler.sendEmptyMessage(ANIMATION_START);
939        }
940        // Just set the ENDED flag - this causes the animation to end the next time a frame
941        // is processed.
942        mPlayingState = ENDED;
943    }
944
945    @Override
946    public boolean isRunning() {
947        // ENDED or CANCELED indicate that it has been ended or canceled, but not processed yet
948        return (mPlayingState == RUNNING || mPlayingState == ENDED || mPlayingState == CANCELED);
949    }
950
951    /**
952     * Plays the ValueAnimator in reverse. If the animation is already running,
953     * it will stop itself and play backwards from the point reached when reverse was called.
954     * If the animation is not currently running, then it will start from the end and
955     * play backwards. This behavior is only set for the current animation; future playing
956     * of the animation will use the default behavior of playing forward.
957     */
958    public void reverse() {
959        mPlayingBackwards = !mPlayingBackwards;
960        if (mPlayingState == RUNNING) {
961            long currentTime = AnimationUtils.currentAnimationTimeMillis();
962            long currentPlayTime = currentTime - mStartTime;
963            long timeLeft = mDuration - currentPlayTime;
964            mStartTime = currentTime - timeLeft;
965        } else {
966            start(true);
967        }
968    }
969
970    /**
971     * Called internally to end an animation by removing it from the animations list. Must be
972     * called on the UI thread.
973     */
974    private void endAnimation() {
975        sAnimations.get().remove(this);
976        mPlayingState = STOPPED;
977        if (mListeners != null) {
978            ArrayList<AnimatorListener> tmpListeners =
979                    (ArrayList<AnimatorListener>) mListeners.clone();
980            int numListeners = tmpListeners.size();
981            for (int i = 0; i < numListeners; ++i) {
982                tmpListeners.get(i).onAnimationEnd(this);
983            }
984        }
985    }
986
987    /**
988     * Called internally to start an animation by adding it to the active animations list. Must be
989     * called on the UI thread.
990     */
991    private void startAnimation() {
992        initAnimation();
993        sAnimations.get().add(this);
994        if (mStartDelay > 0 && mListeners != null) {
995            // Listeners were already notified in start() if startDelay is 0; this is
996            // just for delayed animations
997            ArrayList<AnimatorListener> tmpListeners =
998                    (ArrayList<AnimatorListener>) mListeners.clone();
999            int numListeners = tmpListeners.size();
1000            for (int i = 0; i < numListeners; ++i) {
1001                tmpListeners.get(i).onAnimationStart(this);
1002            }
1003        }
1004    }
1005
1006    /**
1007     * Internal function called to process an animation frame on an animation that is currently
1008     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1009     * should be woken up and put on the active animations queue.
1010     *
1011     * @param currentTime The current animation time, used to calculate whether the animation
1012     * has exceeded its <code>startDelay</code> and should be started.
1013     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1014     * should be added to the set of active animations.
1015     */
1016    private boolean delayedAnimationFrame(long currentTime) {
1017        if (mPlayingState == CANCELED || mPlayingState == ENDED) {
1018            // end the delay, process an animation frame to actually cancel it
1019            return true;
1020        }
1021        if (!mStartedDelay) {
1022            mStartedDelay = true;
1023            mDelayStartTime = currentTime;
1024        } else {
1025            long deltaTime = currentTime - mDelayStartTime;
1026            if (deltaTime > mStartDelay) {
1027                // startDelay ended - start the anim and record the
1028                // mStartTime appropriately
1029                mStartTime = currentTime - (deltaTime - mStartDelay);
1030                mPlayingState = RUNNING;
1031                return true;
1032            }
1033        }
1034        return false;
1035    }
1036
1037    /**
1038     * This internal function processes a single animation frame for a given animation. The
1039     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1040     * elapsed duration, and therefore
1041     * the elapsed fraction, of the animation. The return value indicates whether the animation
1042     * should be ended (which happens when the elapsed time of the animation exceeds the
1043     * animation's duration, including the repeatCount).
1044     *
1045     * @param currentTime The current time, as tracked by the static timing handler
1046     * @return true if the animation's duration, including any repetitions due to
1047     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1048     */
1049    private boolean animationFrame(long currentTime) {
1050        boolean done = false;
1051
1052        if (mPlayingState == STOPPED) {
1053            mPlayingState = RUNNING;
1054            if (mSeekTime < 0) {
1055                mStartTime = currentTime;
1056            } else {
1057                mStartTime = currentTime - mSeekTime;
1058                // Now that we're playing, reset the seek time
1059                mSeekTime = -1;
1060            }
1061        }
1062        switch (mPlayingState) {
1063        case RUNNING:
1064        case SEEKED:
1065            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1066            if (fraction >= 1f) {
1067                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1068                    // Time to repeat
1069                    if (mListeners != null) {
1070                        int numListeners = mListeners.size();
1071                        for (int i = 0; i < numListeners; ++i) {
1072                            mListeners.get(i).onAnimationRepeat(this);
1073                        }
1074                    }
1075                    ++mCurrentIteration;
1076                    if (mRepeatMode == REVERSE) {
1077                        mPlayingBackwards = mPlayingBackwards ? false : true;
1078                    }
1079                    // TODO: doesn't account for fraction going Wayyyyy over 1, like 2+
1080                    fraction = fraction - 1f;
1081                    mStartTime += mDuration;
1082                } else {
1083                    done = true;
1084                    fraction = Math.min(fraction, 1.0f);
1085                }
1086            }
1087            if (mPlayingBackwards) {
1088                fraction = 1f - fraction;
1089            }
1090            animateValue(fraction);
1091            break;
1092        case ENDED:
1093            // The final value set on the target varies, depending on whether the animation
1094            // was supposed to repeat an odd number of times
1095            if (mRepeatCount > 0 && (mRepeatCount & 0x01) == 1) {
1096                animateValue(0f);
1097            } else {
1098                animateValue(1f);
1099            }
1100            // Fall through to set done flag
1101        case CANCELED:
1102            done = true;
1103            mPlayingState = STOPPED;
1104            break;
1105        }
1106
1107        return done;
1108    }
1109
1110    /**
1111     * This method is called with the elapsed fraction of the animation during every
1112     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1113     * and then into an animated value (from the evaluator. The function is called mostly during
1114     * animation updates, but it is also called when the <code>end()</code>
1115     * function is called, to set the final value on the property.
1116     *
1117     * <p>Overrides of this method must call the superclass to perform the calculation
1118     * of the animated value.</p>
1119     *
1120     * @param fraction The elapsed fraction of the animation.
1121     */
1122    void animateValue(float fraction) {
1123        fraction = mInterpolator.getInterpolation(fraction);
1124        int numValues = mValues.length;
1125        for (int i = 0; i < numValues; ++i) {
1126            mValues[i].calculateValue(fraction);
1127        }
1128        if (mUpdateListeners != null) {
1129            int numListeners = mUpdateListeners.size();
1130            for (int i = 0; i < numListeners; ++i) {
1131                mUpdateListeners.get(i).onAnimationUpdate(this);
1132            }
1133        }
1134    }
1135
1136    @Override
1137    public ValueAnimator clone() {
1138        final ValueAnimator anim = (ValueAnimator) super.clone();
1139        if (mUpdateListeners != null) {
1140            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1141            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1142            int numListeners = oldListeners.size();
1143            for (int i = 0; i < numListeners; ++i) {
1144                anim.mUpdateListeners.add(oldListeners.get(i));
1145            }
1146        }
1147        anim.mSeekTime = -1;
1148        anim.mPlayingBackwards = false;
1149        anim.mCurrentIteration = 0;
1150        anim.mInitialized = false;
1151        anim.mPlayingState = STOPPED;
1152        anim.mStartedDelay = false;
1153        PropertyValuesHolder[] oldValues = mValues;
1154        if (oldValues != null) {
1155            int numValues = oldValues.length;
1156            anim.mValues = new PropertyValuesHolder[numValues];
1157            for (int i = 0; i < numValues; ++i) {
1158                anim.mValues[i] = oldValues[i].clone();
1159            }
1160            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1161            for (int i = 0; i < numValues; ++i) {
1162                PropertyValuesHolder valuesHolder = mValues[i];
1163                anim.mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
1164            }
1165        }
1166        return anim;
1167    }
1168
1169    /**
1170     * Implementors of this interface can add themselves as update listeners
1171     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1172     * frame, after the current frame's values have been calculated for that
1173     * <code>ValueAnimator</code>.
1174     */
1175    public static interface AnimatorUpdateListener {
1176        /**
1177         * <p>Notifies the occurrence of another frame of the animation.</p>
1178         *
1179         * @param animation The animation which was repeated.
1180         */
1181        void onAnimationUpdate(ValueAnimator animation);
1182
1183    }
1184
1185    /**
1186     * Return the number of animations currently running.
1187     *
1188     * Used by StrictMode internally to annotate violations.  Only
1189     * called on the main thread.
1190     *
1191     * @hide
1192     */
1193    public static int getCurrentAnimationsCount() {
1194        return sAnimations.get().size();
1195    }
1196}
1197