ValueAnimator.java revision 4365e5a13755ffbdb977586c90b8b515add599aa
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.annotation.CallSuper;
20import android.os.Looper;
21import android.os.Trace;
22import android.util.AndroidRuntimeException;
23import android.util.Log;
24import android.view.animation.AccelerateDecelerateInterpolator;
25import android.view.animation.AnimationUtils;
26import android.view.animation.LinearInterpolator;
27
28import java.util.ArrayList;
29import java.util.HashMap;
30
31/**
32 * This class provides a simple timing engine for running animations
33 * which calculate animated values and set them on target objects.
34 *
35 * <p>There is a single timing pulse that all animations use. It runs in a
36 * custom handler to ensure that property changes happen on the UI thread.</p>
37 *
38 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
39 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
40 * out of an animation. This behavior can be changed by calling
41 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
42 *
43 * <p>Animators can be created from either code or resource files. Here is an example
44 * of a ValueAnimator resource file:</p>
45 *
46 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
47 *
48 * <p>It is also possible to use a combination of {@link PropertyValuesHolder} and
49 * {@link Keyframe} resource tags to create a multi-step animation.
50 * Note that you can specify explicit fractional values (from 0 to 1) for
51 * each keyframe to determine when, in the overall duration, the animation should arrive at that
52 * value. Alternatively, you can leave the fractions off and the keyframes will be equally
53 * distributed within the total duration:</p>
54 *
55 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
56 * ValueAnimatorKeyframeResources}
57 *
58 * <div class="special reference">
59 * <h3>Developer Guides</h3>
60 * <p>For more information about animating with {@code ValueAnimator}, read the
61 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
62 * Animation</a> developer guide.</p>
63 * </div>
64 */
65@SuppressWarnings("unchecked")
66public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
67    private static final String TAG = "ValueAnimator";
68    private static final boolean DEBUG = false;
69
70    /**
71     * Internal constants
72     */
73    private static float sDurationScale = 1.0f;
74
75    /**
76     * Internal variables
77     * NOTE: This object implements the clone() method, making a deep copy of any referenced
78     * objects. As other non-trivial fields are added to this class, make sure to add logic
79     * to clone() to make deep copies of them.
80     */
81
82    /**
83     * The first time that the animation's animateFrame() method is called. This time is used to
84     * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
85     * to animateFrame().
86     *
87     * Whenever mStartTime is set, you must also update mStartTimeCommitted.
88     */
89    long mStartTime;
90
91    /**
92     * When true, the start time has been firmly committed as a chosen reference point in
93     * time by which the progress of the animation will be evaluated.  When false, the
94     * start time may be updated when the first animation frame is committed so as
95     * to compensate for jank that may have occurred between when the start time was
96     * initialized and when the frame was actually drawn.
97     *
98     * This flag is generally set to false during the first frame of the animation
99     * when the animation playing state transitions from STOPPED to RUNNING or
100     * resumes after having been paused.  This flag is set to true when the start time
101     * is firmly committed and should not be further compensated for jank.
102     */
103    boolean mStartTimeCommitted;
104
105    /**
106     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
107     * to a value.
108     */
109    float mSeekFraction = -1;
110
111    /**
112     * Set on the next frame after pause() is called, used to calculate a new startTime
113     * or delayStartTime which allows the animator to continue from the point at which
114     * it was paused. If negative, has not yet been set.
115     */
116    private long mPauseTime;
117
118    /**
119     * Set when an animator is resumed. This triggers logic in the next frame which
120     * actually resumes the animator.
121     */
122    private boolean mResumed = false;
123
124    // The time interpolator to be used if none is set on the animation
125    private static final TimeInterpolator sDefaultInterpolator =
126            new AccelerateDecelerateInterpolator();
127
128    /**
129     * Used to indicate whether the animation is currently playing in reverse. This causes the
130     * elapsed fraction to be inverted to calculate the appropriate values.
131     */
132    private boolean mPlayingBackwards = false;
133
134    /**
135     * Flag to indicate whether this animator is playing in reverse mode, specifically
136     * by being started or interrupted by a call to reverse(). This flag is different than
137     * mPlayingBackwards, which indicates merely whether the current iteration of the
138     * animator is playing in reverse. It is used in corner cases to determine proper end
139     * behavior.
140     */
141    private boolean mReversing;
142
143    /**
144     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
145     * repeatCount (if repeatCount!=INFINITE), the animation ends
146     */
147    private int mCurrentIteration = 0;
148
149    /**
150     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
151     */
152    private float mCurrentFraction = 0f;
153
154    /**
155     * Tracks the time (in milliseconds) when the last frame arrived.
156     */
157    private long mLastFrameTime = 0;
158
159    /**
160     * Additional playing state to indicate whether an animator has been start()'d. There is
161     * some lag between a call to start() and the first animation frame. We should still note
162     * that the animation has been started, even if it's first animation frame has not yet
163     * happened, and reflect that state in isRunning().
164     * Note that delayed animations are different: they are not started until their first
165     * animation frame, which occurs after their delay elapses.
166     */
167    private boolean mRunning = false;
168
169    /**
170     * Additional playing state to indicate whether an animator has been start()'d, whether or
171     * not there is a nonzero startDelay.
172     */
173    private boolean mStarted = false;
174
175    /**
176     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
177     * complex to keep track of since we notify listeners at different times depending on
178     * startDelay and whether start() was called before end().
179     */
180    private boolean mStartListenersCalled = false;
181
182    /**
183     * Flag that denotes whether the animation is set up and ready to go. Used to
184     * set up animation that has not yet been started.
185     */
186    boolean mInitialized = false;
187
188    /**
189     * Flag that tracks whether animation has been requested to end.
190     */
191    private boolean mAnimationEndRequested = false;
192
193    //
194    // Backing variables
195    //
196
197    // How long the animation should last in ms
198    private long mUnscaledDuration = 300;
199    private long mDuration = (long)(mUnscaledDuration * sDurationScale);
200
201    // The amount of time in ms to delay starting the animation after start() is called
202    long mStartDelay = 0;
203    private long mUnscaledStartDelay = 0;
204
205    // The number of times the animation will repeat. The default is 0, which means the animation
206    // will play only once
207    private int mRepeatCount = 0;
208
209    /**
210     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
211     * animation will start from the beginning on every new cycle. REVERSE means the animation
212     * will reverse directions on each iteration.
213     */
214    private int mRepeatMode = RESTART;
215
216    /**
217     * The time interpolator to be used. The elapsed fraction of the animation will be passed
218     * through this interpolator to calculate the interpolated fraction, which is then used to
219     * calculate the animated values.
220     */
221    private TimeInterpolator mInterpolator = sDefaultInterpolator;
222
223    /**
224     * The set of listeners to be sent events through the life of an animation.
225     */
226    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
227
228    /**
229     * The property/value sets being animated.
230     */
231    PropertyValuesHolder[] mValues;
232
233    /**
234     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
235     * by property name during calls to getAnimatedValue(String).
236     */
237    HashMap<String, PropertyValuesHolder> mValuesMap;
238
239    /**
240     * Public constants
241     */
242
243    /**
244     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
245     * or a positive value, the animation restarts from the beginning.
246     */
247    public static final int RESTART = 1;
248    /**
249     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
250     * or a positive value, the animation reverses direction on every iteration.
251     */
252    public static final int REVERSE = 2;
253    /**
254     * This value used used with the {@link #setRepeatCount(int)} property to repeat
255     * the animation indefinitely.
256     */
257    public static final int INFINITE = -1;
258
259    /**
260     * @hide
261     */
262    public static void setDurationScale(float durationScale) {
263        sDurationScale = durationScale;
264    }
265
266    /**
267     * @hide
268     */
269    public static float getDurationScale() {
270        return sDurationScale;
271    }
272
273    /**
274     * Creates a new ValueAnimator object. This default constructor is primarily for
275     * use internally; the factory methods which take parameters are more generally
276     * useful.
277     */
278    public ValueAnimator() {
279    }
280
281    /**
282     * Constructs and returns a ValueAnimator that animates between int values. A single
283     * value implies that that value is the one being animated to. However, this is not typically
284     * useful in a ValueAnimator object because there is no way for the object to determine the
285     * starting value for the animation (unlike ObjectAnimator, which can derive that value
286     * from the target object and property being animated). Therefore, there should typically
287     * be two or more values.
288     *
289     * @param values A set of values that the animation will animate between over time.
290     * @return A ValueAnimator object that is set up to animate between the given values.
291     */
292    public static ValueAnimator ofInt(int... values) {
293        ValueAnimator anim = new ValueAnimator();
294        anim.setIntValues(values);
295        return anim;
296    }
297
298    /**
299     * Constructs and returns a ValueAnimator that animates between color values. A single
300     * value implies that that value is the one being animated to. However, this is not typically
301     * useful in a ValueAnimator object because there is no way for the object to determine the
302     * starting value for the animation (unlike ObjectAnimator, which can derive that value
303     * from the target object and property being animated). Therefore, there should typically
304     * be two or more values.
305     *
306     * @param values A set of values that the animation will animate between over time.
307     * @return A ValueAnimator object that is set up to animate between the given values.
308     */
309    public static ValueAnimator ofArgb(int... values) {
310        ValueAnimator anim = new ValueAnimator();
311        anim.setIntValues(values);
312        anim.setEvaluator(ArgbEvaluator.getInstance());
313        return anim;
314    }
315
316    /**
317     * Constructs and returns a ValueAnimator that animates between float values. A single
318     * value implies that that value is the one being animated to. However, this is not typically
319     * useful in a ValueAnimator object because there is no way for the object to determine the
320     * starting value for the animation (unlike ObjectAnimator, which can derive that value
321     * from the target object and property being animated). Therefore, there should typically
322     * be two or more values.
323     *
324     * @param values A set of values that the animation will animate between over time.
325     * @return A ValueAnimator object that is set up to animate between the given values.
326     */
327    public static ValueAnimator ofFloat(float... values) {
328        ValueAnimator anim = new ValueAnimator();
329        anim.setFloatValues(values);
330        return anim;
331    }
332
333    /**
334     * Constructs and returns a ValueAnimator that animates between the values
335     * specified in the PropertyValuesHolder objects.
336     *
337     * @param values A set of PropertyValuesHolder objects whose values will be animated
338     * between over time.
339     * @return A ValueAnimator object that is set up to animate between the given values.
340     */
341    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
342        ValueAnimator anim = new ValueAnimator();
343        anim.setValues(values);
344        return anim;
345    }
346    /**
347     * Constructs and returns a ValueAnimator that animates between Object values. A single
348     * value implies that that value is the one being animated to. However, this is not typically
349     * useful in a ValueAnimator object because there is no way for the object to determine the
350     * starting value for the animation (unlike ObjectAnimator, which can derive that value
351     * from the target object and property being animated). Therefore, there should typically
352     * be two or more values.
353     *
354     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
355     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
356     * to perform that interpolation.
357     *
358     * @param evaluator A TypeEvaluator that will be called on each animation frame to
359     * provide the ncessry interpolation between the Object values to derive the animated
360     * value.
361     * @param values A set of values that the animation will animate between over time.
362     * @return A ValueAnimator object that is set up to animate between the given values.
363     */
364    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
365        ValueAnimator anim = new ValueAnimator();
366        anim.setObjectValues(values);
367        anim.setEvaluator(evaluator);
368        return anim;
369    }
370
371    /**
372     * Sets int values that will be animated between. A single
373     * value implies that that value is the one being animated to. However, this is not typically
374     * useful in a ValueAnimator object because there is no way for the object to determine the
375     * starting value for the animation (unlike ObjectAnimator, which can derive that value
376     * from the target object and property being animated). Therefore, there should typically
377     * be two or more values.
378     *
379     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
380     * than one PropertyValuesHolder object, this method will set the values for the first
381     * of those objects.</p>
382     *
383     * @param values A set of values that the animation will animate between over time.
384     */
385    public void setIntValues(int... values) {
386        if (values == null || values.length == 0) {
387            return;
388        }
389        if (mValues == null || mValues.length == 0) {
390            setValues(PropertyValuesHolder.ofInt("", values));
391        } else {
392            PropertyValuesHolder valuesHolder = mValues[0];
393            valuesHolder.setIntValues(values);
394        }
395        // New property/values/target should cause re-initialization prior to starting
396        mInitialized = false;
397    }
398
399    /**
400     * Sets float values that will be animated between. A single
401     * value implies that that value is the one being animated to. However, this is not typically
402     * useful in a ValueAnimator object because there is no way for the object to determine the
403     * starting value for the animation (unlike ObjectAnimator, which can derive that value
404     * from the target object and property being animated). Therefore, there should typically
405     * be two or more values.
406     *
407     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
408     * than one PropertyValuesHolder object, this method will set the values for the first
409     * of those objects.</p>
410     *
411     * @param values A set of values that the animation will animate between over time.
412     */
413    public void setFloatValues(float... values) {
414        if (values == null || values.length == 0) {
415            return;
416        }
417        if (mValues == null || mValues.length == 0) {
418            setValues(PropertyValuesHolder.ofFloat("", values));
419        } else {
420            PropertyValuesHolder valuesHolder = mValues[0];
421            valuesHolder.setFloatValues(values);
422        }
423        // New property/values/target should cause re-initialization prior to starting
424        mInitialized = false;
425    }
426
427    /**
428     * Sets the values to animate between for this animation. A single
429     * value implies that that value is the one being animated to. However, this is not typically
430     * useful in a ValueAnimator object because there is no way for the object to determine the
431     * starting value for the animation (unlike ObjectAnimator, which can derive that value
432     * from the target object and property being animated). Therefore, there should typically
433     * be two or more values.
434     *
435     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
436     * than one PropertyValuesHolder object, this method will set the values for the first
437     * of those objects.</p>
438     *
439     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
440     * between these value objects. ValueAnimator only knows how to interpolate between the
441     * primitive types specified in the other setValues() methods.</p>
442     *
443     * @param values The set of values to animate between.
444     */
445    public void setObjectValues(Object... values) {
446        if (values == null || values.length == 0) {
447            return;
448        }
449        if (mValues == null || mValues.length == 0) {
450            setValues(PropertyValuesHolder.ofObject("", null, values));
451        } else {
452            PropertyValuesHolder valuesHolder = mValues[0];
453            valuesHolder.setObjectValues(values);
454        }
455        // New property/values/target should cause re-initialization prior to starting
456        mInitialized = false;
457    }
458
459    /**
460     * Sets the values, per property, being animated between. This function is called internally
461     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
462     * be constructed without values and this method can be called to set the values manually
463     * instead.
464     *
465     * @param values The set of values, per property, being animated between.
466     */
467    public void setValues(PropertyValuesHolder... values) {
468        int numValues = values.length;
469        mValues = values;
470        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
471        for (int i = 0; i < numValues; ++i) {
472            PropertyValuesHolder valuesHolder = values[i];
473            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
474        }
475        // New property/values/target should cause re-initialization prior to starting
476        mInitialized = false;
477    }
478
479    /**
480     * Returns the values that this ValueAnimator animates between. These values are stored in
481     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
482     * of value objects instead.
483     *
484     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
485     * values, per property, that define the animation.
486     */
487    public PropertyValuesHolder[] getValues() {
488        return mValues;
489    }
490
491    /**
492     * This function is called immediately before processing the first animation
493     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
494     * function is called after that delay ends.
495     * It takes care of the final initialization steps for the
496     * animation.
497     *
498     *  <p>Overrides of this method should call the superclass method to ensure
499     *  that internal mechanisms for the animation are set up correctly.</p>
500     */
501    @CallSuper
502    void initAnimation() {
503        if (!mInitialized) {
504            int numValues = mValues.length;
505            for (int i = 0; i < numValues; ++i) {
506                mValues[i].init();
507            }
508            mInitialized = true;
509        }
510    }
511
512    /**
513     * Sets the length of the animation. The default duration is 300 milliseconds.
514     *
515     * @param duration The length of the animation, in milliseconds. This value cannot
516     * be negative.
517     * @return ValueAnimator The object called with setDuration(). This return
518     * value makes it easier to compose statements together that construct and then set the
519     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
520     */
521    @Override
522    public ValueAnimator setDuration(long duration) {
523        if (duration < 0) {
524            throw new IllegalArgumentException("Animators cannot have negative duration: " +
525                    duration);
526        }
527        mUnscaledDuration = duration;
528        updateScaledDuration();
529        return this;
530    }
531
532    private void updateScaledDuration() {
533        mDuration = (long)(mUnscaledDuration * sDurationScale);
534    }
535
536    /**
537     * Gets the length of the animation. The default duration is 300 milliseconds.
538     *
539     * @return The length of the animation, in milliseconds.
540     */
541    @Override
542    public long getDuration() {
543        return mUnscaledDuration;
544    }
545
546    /**
547     * @hide
548     */
549    @Override
550    public long getTotalDuration() {
551        if (mRepeatCount == INFINITE) {
552            return DURATION_INFINITE;
553        } else {
554            return mUnscaledStartDelay + (mUnscaledDuration * (mRepeatCount + 1));
555        }
556    }
557
558    /**
559     * Sets the position of the animation to the specified point in time. This time should
560     * be between 0 and the total duration of the animation, including any repetition. If
561     * the animation has not yet been started, then it will not advance forward after it is
562     * set to this time; it will simply set the time to this value and perform any appropriate
563     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
564     * will set the current playing time to this value and continue playing from that point.
565     *
566     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
567     */
568    public void setCurrentPlayTime(long playTime) {
569        float fraction = mUnscaledDuration > 0 ? (float) playTime / mUnscaledDuration : 1;
570        setCurrentFraction(fraction);
571    }
572
573    /**
574     * Sets the position of the animation to the specified fraction. This fraction should
575     * be between 0 and the total fraction of the animation, including any repetition. That is,
576     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
577     * and a value of 2 at the end of a reversing animator that repeats once. If
578     * the animation has not yet been started, then it will not advance forward after it is
579     * set to this fraction; it will simply set the fraction to this value and perform any
580     * appropriate actions based on that fraction. If the animation is already running, then
581     * setCurrentFraction() will set the current fraction to this value and continue
582     * playing from that point. {@link Animator.AnimatorListener} events are not called
583     * due to changing the fraction; those events are only processed while the animation
584     * is running.
585     *
586     * @param fraction The fraction to which the animation is advanced or rewound. Values
587     * outside the range of 0 to the maximum fraction for the animator will be clamped to
588     * the correct range.
589     */
590    public void setCurrentFraction(float fraction) {
591        initAnimation();
592        if (fraction < 0) {
593            fraction = 0;
594        }
595        int iteration = (int) fraction;
596        if (fraction == 1) {
597            iteration -= 1;
598        } else if (fraction > 1) {
599            if (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE) {
600                if (mRepeatMode == REVERSE) {
601                    mPlayingBackwards = (iteration % 2) != 0;
602                }
603                fraction = fraction % 1f;
604            } else {
605                fraction = 1;
606                iteration -= 1;
607            }
608        } else {
609            mPlayingBackwards = mReversing;
610        }
611        mCurrentIteration = iteration;
612        long seekTime = (long) (mDuration * fraction);
613        long currentTime = AnimationUtils.currentAnimationTimeMillis();
614        mStartTime = currentTime - seekTime;
615        mStartTimeCommitted = true; // do not allow start time to be compensated for jank
616        if (!mRunning) {
617            mSeekFraction = fraction;
618        }
619        if (mPlayingBackwards) {
620            fraction = 1f - fraction;
621        }
622        animateValue(fraction);
623    }
624
625    /**
626     * Gets the current position of the animation in time, which is equal to the current
627     * time minus the time that the animation started. An animation that is not yet started will
628     * return a value of zero, unless the animation has has its play time set via
629     * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
630     * it will return the time that was set.
631     *
632     * @return The current position in time of the animation.
633     */
634    public long getCurrentPlayTime() {
635        if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
636            return 0;
637        }
638        if (mSeekFraction >= 0) {
639            return (long) (mUnscaledDuration * mSeekFraction);
640        }
641        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
642    }
643
644    /**
645     * The amount of time, in milliseconds, to delay starting the animation after
646     * {@link #start()} is called.
647     *
648     * @return the number of milliseconds to delay running the animation
649     */
650    @Override
651    public long getStartDelay() {
652        return mUnscaledStartDelay;
653    }
654
655    /**
656     * The amount of time, in milliseconds, to delay starting the animation after
657     * {@link #start()} is called.
658
659     * @param startDelay The amount of the delay, in milliseconds
660     */
661    @Override
662    public void setStartDelay(long startDelay) {
663        this.mStartDelay = (long)(startDelay * sDurationScale);
664        mUnscaledStartDelay = startDelay;
665    }
666
667    /**
668     * The amount of time, in milliseconds, between each frame of the animation. This is a
669     * requested time that the animation will attempt to honor, but the actual delay between
670     * frames may be different, depending on system load and capabilities. This is a static
671     * function because the same delay will be applied to all animations, since they are all
672     * run off of a single timing loop.
673     *
674     * The frame delay may be ignored when the animation system uses an external timing
675     * source, such as the display refresh rate (vsync), to govern animations.
676     *
677     * Note that this method should be called from the same thread that {@link #start()} is
678     * called in order to check the frame delay for that animation. A runtime exception will be
679     * thrown if the calling thread does not have a Looper.
680     *
681     * @return the requested time between frames, in milliseconds
682     */
683    public static long getFrameDelay() {
684        return AnimationHandler.getInstance().getFrameDelay();
685    }
686
687    /**
688     * The amount of time, in milliseconds, between each frame of the animation. This is a
689     * requested time that the animation will attempt to honor, but the actual delay between
690     * frames may be different, depending on system load and capabilities. This is a static
691     * function because the same delay will be applied to all animations, since they are all
692     * run off of a single timing loop.
693     *
694     * The frame delay may be ignored when the animation system uses an external timing
695     * source, such as the display refresh rate (vsync), to govern animations.
696     *
697     * Note that this method should be called from the same thread that {@link #start()} is
698     * called in order to have the new frame delay take effect on that animation. A runtime
699     * exception will be thrown if the calling thread does not have a Looper.
700     *
701     * @param frameDelay the requested time between frames, in milliseconds
702     */
703    public static void setFrameDelay(long frameDelay) {
704        AnimationHandler.getInstance().setFrameDelay(frameDelay);
705    }
706
707    /**
708     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
709     * property being animated. This value is only sensible while the animation is running. The main
710     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
711     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
712     * is called during each animation frame, immediately after the value is calculated.
713     *
714     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
715     * the single property being animated. If there are several properties being animated
716     * (specified by several PropertyValuesHolder objects in the constructor), this function
717     * returns the animated value for the first of those objects.
718     */
719    public Object getAnimatedValue() {
720        if (mValues != null && mValues.length > 0) {
721            return mValues[0].getAnimatedValue();
722        }
723        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
724        return null;
725    }
726
727    /**
728     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
729     * The main purpose for this read-only property is to retrieve the value from the
730     * <code>ValueAnimator</code> during a call to
731     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
732     * is called during each animation frame, immediately after the value is calculated.
733     *
734     * @return animatedValue The value most recently calculated for the named property
735     * by this <code>ValueAnimator</code>.
736     */
737    public Object getAnimatedValue(String propertyName) {
738        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
739        if (valuesHolder != null) {
740            return valuesHolder.getAnimatedValue();
741        } else {
742            // At least avoid crashing if called with bogus propertyName
743            return null;
744        }
745    }
746
747    /**
748     * Sets how many times the animation should be repeated. If the repeat
749     * count is 0, the animation is never repeated. If the repeat count is
750     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
751     * into account. The repeat count is 0 by default.
752     *
753     * @param value the number of times the animation should be repeated
754     */
755    public void setRepeatCount(int value) {
756        mRepeatCount = value;
757    }
758    /**
759     * Defines how many times the animation should repeat. The default value
760     * is 0.
761     *
762     * @return the number of times the animation should repeat, or {@link #INFINITE}
763     */
764    public int getRepeatCount() {
765        return mRepeatCount;
766    }
767
768    /**
769     * Defines what this animation should do when it reaches the end. This
770     * setting is applied only when the repeat count is either greater than
771     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
772     *
773     * @param value {@link #RESTART} or {@link #REVERSE}
774     */
775    public void setRepeatMode(int value) {
776        mRepeatMode = value;
777    }
778
779    /**
780     * Defines what this animation should do when it reaches the end.
781     *
782     * @return either one of {@link #REVERSE} or {@link #RESTART}
783     */
784    public int getRepeatMode() {
785        return mRepeatMode;
786    }
787
788    /**
789     * Adds a listener to the set of listeners that are sent update events through the life of
790     * an animation. This method is called on all listeners for every frame of the animation,
791     * after the values for the animation have been calculated.
792     *
793     * @param listener the listener to be added to the current set of listeners for this animation.
794     */
795    public void addUpdateListener(AnimatorUpdateListener listener) {
796        if (mUpdateListeners == null) {
797            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
798        }
799        mUpdateListeners.add(listener);
800    }
801
802    /**
803     * Removes all listeners from the set listening to frame updates for this animation.
804     */
805    public void removeAllUpdateListeners() {
806        if (mUpdateListeners == null) {
807            return;
808        }
809        mUpdateListeners.clear();
810        mUpdateListeners = null;
811    }
812
813    /**
814     * Removes a listener from the set listening to frame updates for this animation.
815     *
816     * @param listener the listener to be removed from the current set of update listeners
817     * for this animation.
818     */
819    public void removeUpdateListener(AnimatorUpdateListener listener) {
820        if (mUpdateListeners == null) {
821            return;
822        }
823        mUpdateListeners.remove(listener);
824        if (mUpdateListeners.size() == 0) {
825            mUpdateListeners = null;
826        }
827    }
828
829
830    /**
831     * The time interpolator used in calculating the elapsed fraction of this animation. The
832     * interpolator determines whether the animation runs with linear or non-linear motion,
833     * such as acceleration and deceleration. The default value is
834     * {@link android.view.animation.AccelerateDecelerateInterpolator}
835     *
836     * @param value the interpolator to be used by this animation. A value of <code>null</code>
837     * will result in linear interpolation.
838     */
839    @Override
840    public void setInterpolator(TimeInterpolator value) {
841        if (value != null) {
842            mInterpolator = value;
843        } else {
844            mInterpolator = new LinearInterpolator();
845        }
846    }
847
848    /**
849     * Returns the timing interpolator that this ValueAnimator uses.
850     *
851     * @return The timing interpolator for this ValueAnimator.
852     */
853    @Override
854    public TimeInterpolator getInterpolator() {
855        return mInterpolator;
856    }
857
858    /**
859     * The type evaluator to be used when calculating the animated values of this animation.
860     * The system will automatically assign a float or int evaluator based on the type
861     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
862     * are not one of these primitive types, or if different evaluation is desired (such as is
863     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
864     * For example, when running an animation on color values, the {@link ArgbEvaluator}
865     * should be used to get correct RGB color interpolation.
866     *
867     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
868     * will be used for that set. If there are several sets of values being animated, which is
869     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
870     * is assigned just to the first PropertyValuesHolder object.</p>
871     *
872     * @param value the evaluator to be used this animation
873     */
874    public void setEvaluator(TypeEvaluator value) {
875        if (value != null && mValues != null && mValues.length > 0) {
876            mValues[0].setEvaluator(value);
877        }
878    }
879
880    private void notifyStartListeners() {
881        if (mListeners != null && !mStartListenersCalled) {
882            ArrayList<AnimatorListener> tmpListeners =
883                    (ArrayList<AnimatorListener>) mListeners.clone();
884            int numListeners = tmpListeners.size();
885            for (int i = 0; i < numListeners; ++i) {
886                tmpListeners.get(i).onAnimationStart(this);
887            }
888        }
889        mStartListenersCalled = true;
890    }
891
892    /**
893     * Start the animation playing. This version of start() takes a boolean flag that indicates
894     * whether the animation should play in reverse. The flag is usually false, but may be set
895     * to true if called from the reverse() method.
896     *
897     * <p>The animation started by calling this method will be run on the thread that called
898     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
899     * this is not the case). Also, if the animation will animate
900     * properties of objects in the view hierarchy, then the calling thread should be the UI
901     * thread for that view hierarchy.</p>
902     *
903     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
904     */
905    private void start(boolean playBackwards) {
906        if (Looper.myLooper() == null) {
907            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
908        }
909        mReversing = playBackwards;
910        mPlayingBackwards = playBackwards;
911        if (playBackwards && mSeekFraction != -1) {
912            if (mSeekFraction == 0 && mCurrentIteration == 0) {
913                // special case: reversing from seek-to-0 should act as if not seeked at all
914                mSeekFraction = 0;
915            } else if (mRepeatCount == INFINITE) {
916                mSeekFraction = 1 - (mSeekFraction % 1);
917            } else {
918                mSeekFraction = 1 + mRepeatCount - (mCurrentIteration + mSeekFraction);
919            }
920            mCurrentIteration = (int) mSeekFraction;
921            mSeekFraction = mSeekFraction % 1;
922        }
923        if (mCurrentIteration > 0 && mRepeatMode == REVERSE &&
924                (mCurrentIteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
925            // if we were seeked to some other iteration in a reversing animator,
926            // figure out the correct direction to start playing based on the iteration
927            if (playBackwards) {
928                mPlayingBackwards = (mCurrentIteration % 2) == 0;
929            } else {
930                mPlayingBackwards = (mCurrentIteration % 2) != 0;
931            }
932        }
933        mStarted = true;
934        mPaused = false;
935        mRunning = false;
936        mAnimationEndRequested = false;
937        updateScaledDuration(); // in case the scale factor has changed since creation time
938        AnimationHandler animationHandler = AnimationHandler.getInstance();
939        animationHandler.addAnimationFrameCallback(this, mStartDelay);
940
941        if (mStartDelay == 0) {
942            // If there's no start delay, init the animation and notify start listeners right away
943            // Otherwise, postpone this until the first frame after the start delay.
944            startAnimation();
945            setCurrentFraction(mSeekFraction == -1 ? 0 : mSeekFraction);
946        }
947    }
948
949    @Override
950    public void start() {
951        start(false);
952    }
953
954    @Override
955    public void cancel() {
956        if (Looper.myLooper() == null) {
957            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
958        }
959
960        // If end has already been requested, through a previous end() or cancel() call, no-op
961        // until animation starts again.
962        if (mAnimationEndRequested) {
963            return;
964        }
965
966        // Only cancel if the animation is actually running or has been started and is about
967        // to run
968        // Only notify listeners if the animator has actually started
969        if ((mStarted || mRunning) && mListeners != null) {
970            if (!mRunning) {
971                // If it's not yet running, then start listeners weren't called. Call them now.
972                notifyStartListeners();
973            }
974            ArrayList<AnimatorListener> tmpListeners =
975                    (ArrayList<AnimatorListener>) mListeners.clone();
976            for (AnimatorListener listener : tmpListeners) {
977                listener.onAnimationCancel(this);
978            }
979        }
980        endAnimation();
981
982    }
983
984    @Override
985    public void end() {
986        if (Looper.myLooper() == null) {
987            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
988        }
989        if (!mRunning) {
990            // Special case if the animation has not yet started; get it ready for ending
991            startAnimation();
992            mStarted = true;
993        } else if (!mInitialized) {
994            initAnimation();
995        }
996        animateValue(mPlayingBackwards ? 0f : 1f);
997        endAnimation();
998    }
999
1000    @Override
1001    public void resume() {
1002        if (mPaused) {
1003            mResumed = true;
1004        }
1005        super.resume();
1006    }
1007
1008    @Override
1009    public void pause() {
1010        boolean previouslyPaused = mPaused;
1011        super.pause();
1012        if (!previouslyPaused && mPaused) {
1013            mPauseTime = -1;
1014            mResumed = false;
1015        }
1016    }
1017
1018    @Override
1019    public boolean isRunning() {
1020        return mRunning;
1021    }
1022
1023    @Override
1024    public boolean isStarted() {
1025        return mStarted;
1026    }
1027
1028    /**
1029     * Plays the ValueAnimator in reverse. If the animation is already running,
1030     * it will stop itself and play backwards from the point reached when reverse was called.
1031     * If the animation is not currently running, then it will start from the end and
1032     * play backwards. This behavior is only set for the current animation; future playing
1033     * of the animation will use the default behavior of playing forward.
1034     */
1035    @Override
1036    public void reverse() {
1037        mPlayingBackwards = !mPlayingBackwards;
1038        if (mRunning) {
1039            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1040            long currentPlayTime = currentTime - mStartTime;
1041            long timeLeft = mDuration - currentPlayTime;
1042            mStartTime = currentTime - timeLeft;
1043            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1044            mReversing = !mReversing;
1045        } else if (mStarted) {
1046            end();
1047        } else {
1048            start(true);
1049        }
1050    }
1051
1052    /**
1053     * @hide
1054     */
1055    @Override
1056    public boolean canReverse() {
1057        return true;
1058    }
1059
1060    /**
1061     * Called internally to end an animation by removing it from the animations list. Must be
1062     * called on the UI thread.
1063     */
1064    private void endAnimation() {
1065        if (mAnimationEndRequested) {
1066            return;
1067        }
1068        AnimationHandler handler = AnimationHandler.getInstance();
1069        handler.removeCallback(this);
1070
1071        mAnimationEndRequested = true;
1072        mPaused = false;
1073        if ((mStarted || mRunning) && mListeners != null) {
1074            if (!mRunning) {
1075                // If it's not yet running, then start listeners weren't called. Call them now.
1076                notifyStartListeners();
1077             }
1078            ArrayList<AnimatorListener> tmpListeners =
1079                    (ArrayList<AnimatorListener>) mListeners.clone();
1080            int numListeners = tmpListeners.size();
1081            for (int i = 0; i < numListeners; ++i) {
1082                tmpListeners.get(i).onAnimationEnd(this);
1083            }
1084        }
1085        mRunning = false;
1086        mStarted = false;
1087        mStartListenersCalled = false;
1088        mPlayingBackwards = false;
1089        mReversing = false;
1090        mLastFrameTime = 0;
1091        mCurrentIteration = 0;
1092        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1093            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1094                    System.identityHashCode(this));
1095        }
1096    }
1097
1098    /**
1099     * Called internally to start an animation by adding it to the active animations list. Must be
1100     * called on the UI thread.
1101     */
1102    private void startAnimation() {
1103        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1104            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1105                    System.identityHashCode(this));
1106        }
1107        initAnimation();
1108        mRunning = true;
1109        if (mListeners != null) {
1110            notifyStartListeners();
1111        }
1112    }
1113
1114    /**
1115     * Returns the name of this animator for debugging purposes.
1116     */
1117    String getNameForTrace() {
1118        return "animator";
1119    }
1120
1121    /**
1122     * Applies an adjustment to the animation to compensate for jank between when
1123     * the animation first ran and when the frame was drawn.
1124     * @hide
1125     */
1126    public void commitAnimationFrame(long frameTime) {
1127        if (!mStartTimeCommitted) {
1128            mStartTimeCommitted = true;
1129            long adjustment = frameTime - mLastFrameTime;
1130            if (adjustment > 0) {
1131                mStartTime += adjustment;
1132                if (DEBUG) {
1133                    Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1134                }
1135            }
1136        }
1137    }
1138
1139    /**
1140     * This internal function processes a single animation frame for a given animation. The
1141     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1142     * elapsed duration, and therefore
1143     * the elapsed fraction, of the animation. The return value indicates whether the animation
1144     * should be ended (which happens when the elapsed time of the animation exceeds the
1145     * animation's duration, including the repeatCount).
1146     *
1147     * @param currentTime The current time, as tracked by the static timing handler
1148     * @return true if the animation's duration, including any repetitions due to
1149     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1150     */
1151    boolean animateBasedOnTime(long currentTime) {
1152        boolean done = false;
1153        if (mRunning) {
1154            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1155            if (mDuration == 0 && mRepeatCount != INFINITE) {
1156                // Skip to the end
1157                mCurrentIteration = mRepeatCount;
1158                if (!mReversing) {
1159                    mPlayingBackwards = false;
1160                }
1161            }
1162            if (fraction >= 1f) {
1163                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1164                    // Time to repeat
1165                    if (mListeners != null) {
1166                        int numListeners = mListeners.size();
1167                        for (int i = 0; i < numListeners; ++i) {
1168                            mListeners.get(i).onAnimationRepeat(this);
1169                        }
1170                    }
1171                    if (mRepeatMode == REVERSE) {
1172                        mPlayingBackwards = !mPlayingBackwards;
1173                    }
1174                    mCurrentIteration += (int) fraction;
1175                    fraction = fraction % 1f;
1176                    mStartTime += mDuration;
1177                    // Note: We do not need to update the value of mStartTimeCommitted here
1178                    // since we just added a duration offset.
1179                } else {
1180                    done = true;
1181                    fraction = Math.min(fraction, 1.0f);
1182                }
1183            }
1184            if (mPlayingBackwards) {
1185                fraction = 1f - fraction;
1186            }
1187            animateValue(fraction);
1188        }
1189        return done;
1190    }
1191
1192    /**
1193     * Processes a frame of the animation, adjusting the start time if needed.
1194     *
1195     * @param frameTime The frame time.
1196     * @return true if the animation has ended.
1197     * @hide
1198     */
1199    public final void doAnimationFrame(long frameTime) {
1200        AnimationHandler handler = AnimationHandler.getInstance();
1201        if (mLastFrameTime == 0) {
1202            // First frame
1203            handler.addOneShotCommitCallback(this);
1204            if (mStartDelay > 0) {
1205                startAnimation();
1206            }
1207            if (mSeekFraction < 0) {
1208                mStartTime = frameTime;
1209            } else {
1210                long seekTime = (long) (mDuration * mSeekFraction);
1211                mStartTime = frameTime - seekTime;
1212                mSeekFraction = -1;
1213            }
1214            mStartTimeCommitted = false; // allow start time to be compensated for jank
1215        }
1216        mLastFrameTime = frameTime;
1217        if (mPaused) {
1218            if (mPauseTime < 0) {
1219                mPauseTime = frameTime;
1220            }
1221            return;
1222        } else if (mResumed) {
1223            mResumed = false;
1224            if (mPauseTime > 0) {
1225                // Offset by the duration that the animation was paused
1226                mStartTime += (frameTime - mPauseTime);
1227                mStartTimeCommitted = false; // allow start time to be compensated for jank
1228            }
1229            handler.addOneShotCommitCallback(this);
1230        }
1231        // The frame time might be before the start time during the first frame of
1232        // an animation.  The "current time" must always be on or after the start
1233        // time to avoid animating frames at negative time intervals.  In practice, this
1234        // is very rare and only happens when seeking backwards.
1235        final long currentTime = Math.max(frameTime, mStartTime);
1236        boolean finished = animateBasedOnTime(currentTime);
1237
1238        if (finished) {
1239            endAnimation();
1240        }
1241    }
1242
1243    /**
1244     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1245     * the most recent frame update on the animation.
1246     *
1247     * @return Elapsed/interpolated fraction of the animation.
1248     */
1249    public float getAnimatedFraction() {
1250        return mCurrentFraction;
1251    }
1252
1253    /**
1254     * This method is called with the elapsed fraction of the animation during every
1255     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1256     * and then into an animated value (from the evaluator. The function is called mostly during
1257     * animation updates, but it is also called when the <code>end()</code>
1258     * function is called, to set the final value on the property.
1259     *
1260     * <p>Overrides of this method must call the superclass to perform the calculation
1261     * of the animated value.</p>
1262     *
1263     * @param fraction The elapsed fraction of the animation.
1264     */
1265    @CallSuper
1266    void animateValue(float fraction) {
1267        fraction = mInterpolator.getInterpolation(fraction);
1268        mCurrentFraction = fraction;
1269        int numValues = mValues.length;
1270        for (int i = 0; i < numValues; ++i) {
1271            mValues[i].calculateValue(fraction);
1272        }
1273        if (mUpdateListeners != null) {
1274            int numListeners = mUpdateListeners.size();
1275            for (int i = 0; i < numListeners; ++i) {
1276                mUpdateListeners.get(i).onAnimationUpdate(this);
1277            }
1278        }
1279    }
1280
1281    @Override
1282    public ValueAnimator clone() {
1283        final ValueAnimator anim = (ValueAnimator) super.clone();
1284        if (mUpdateListeners != null) {
1285            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1286        }
1287        anim.mSeekFraction = -1;
1288        anim.mPlayingBackwards = false;
1289        anim.mReversing = false;
1290        anim.mCurrentIteration = 0;
1291        anim.mInitialized = false;
1292        anim.mStarted = false;
1293        anim.mRunning = false;
1294        anim.mPaused = false;
1295        anim.mResumed = false;
1296        anim.mStartListenersCalled = false;
1297        anim.mStartTime = 0;
1298        anim.mStartTimeCommitted = false;
1299        anim.mAnimationEndRequested = false;
1300        anim.mPauseTime = 0;
1301        anim.mLastFrameTime = 0;
1302        anim.mCurrentFraction = 0;
1303
1304        PropertyValuesHolder[] oldValues = mValues;
1305        if (oldValues != null) {
1306            int numValues = oldValues.length;
1307            anim.mValues = new PropertyValuesHolder[numValues];
1308            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1309            for (int i = 0; i < numValues; ++i) {
1310                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1311                anim.mValues[i] = newValuesHolder;
1312                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1313            }
1314        }
1315        return anim;
1316    }
1317
1318    /**
1319     * Implementors of this interface can add themselves as update listeners
1320     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1321     * frame, after the current frame's values have been calculated for that
1322     * <code>ValueAnimator</code>.
1323     */
1324    public static interface AnimatorUpdateListener {
1325        /**
1326         * <p>Notifies the occurrence of another frame of the animation.</p>
1327         *
1328         * @param animation The animation which was repeated.
1329         */
1330        void onAnimationUpdate(ValueAnimator animation);
1331
1332    }
1333
1334    /**
1335     * Return the number of animations currently running.
1336     *
1337     * Used by StrictMode internally to annotate violations.
1338     * May be called on arbitrary threads!
1339     *
1340     * @hide
1341     */
1342    public static int getCurrentAnimationsCount() {
1343        return AnimationHandler.getAnimationCount();
1344    }
1345
1346    @Override
1347    public String toString() {
1348        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1349        if (mValues != null) {
1350            for (int i = 0; i < mValues.length; ++i) {
1351                returnVal += "\n    " + mValues[i].toString();
1352            }
1353        }
1354        return returnVal;
1355    }
1356
1357    /**
1358     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1359     * the UI thread. This is a hint that informs the ValueAnimator that it is
1360     * OK to run the animation off-thread, however ValueAnimator may decide
1361     * that it must run the animation on the UI thread anyway. For example if there
1362     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1363     * regardless of the value of this hint.</p>
1364     *
1365     * <p>Regardless of whether or not the animation runs asynchronously, all
1366     * listener callbacks will be called on the UI thread.</p>
1367     *
1368     * <p>To be able to use this hint the following must be true:</p>
1369     * <ol>
1370     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1371     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1372     *    to change values, duration, delay, etc... may be ignored.</li>
1373     * <li>Lifecycle callback events may be asynchronous. Events such as
1374     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1375     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1376     *    as they must be posted back to the UI thread, and any actions performed
1377     *    by those callbacks (such as starting new animations) will not happen
1378     *    in the same frame.</li>
1379     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1380     *    may be asynchronous. It is guaranteed that all state changes that are
1381     *    performed on the UI thread in the same frame will be applied as a single
1382     *    atomic update, however that frame may be the current frame,
1383     *    the next frame, or some future frame. This will also impact the observed
1384     *    state of the Animator. For example, {@link #isStarted()} may still return true
1385     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1386     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1387     *    for this reason.</li>
1388     * </ol>
1389     * @hide
1390     */
1391    @Override
1392    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1393        // It is up to subclasses to support this, if they can.
1394    }
1395}
1396