ValueAnimator.java revision 5a25e5bae223bbee56dab75e36d1d947c8c3cb11
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.content.res.ConfigurationBoundResourceCache;
20import android.os.Looper;
21import android.os.Trace;
22import android.util.AndroidRuntimeException;
23import android.view.Choreographer;
24import android.view.animation.AccelerateDecelerateInterpolator;
25import android.view.animation.AnimationUtils;
26import android.view.animation.LinearInterpolator;
27
28import java.util.ArrayList;
29import java.util.HashMap;
30
31/**
32 * This class provides a simple timing engine for running animations
33 * which calculate animated values and set them on target objects.
34 *
35 * <p>There is a single timing pulse that all animations use. It runs in a
36 * custom handler to ensure that property changes happen on the UI thread.</p>
37 *
38 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
39 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
40 * out of an animation. This behavior can be changed by calling
41 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
42 *
43 * <div class="special reference">
44 * <h3>Developer Guides</h3>
45 * <p>For more information about animating with {@code ValueAnimator}, read the
46 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
47 * Animation</a> developer guide.</p>
48 * </div>
49 */
50@SuppressWarnings("unchecked")
51public class ValueAnimator extends Animator {
52
53    /**
54     * Internal constants
55     */
56    private static float sDurationScale = 1.0f;
57
58    /**
59     * Values used with internal variable mPlayingState to indicate the current state of an
60     * animation.
61     */
62    static final int STOPPED    = 0; // Not yet playing
63    static final int RUNNING    = 1; // Playing normally
64    static final int SEEKED     = 2; // Seeked to some time value
65
66    /**
67     * Internal variables
68     * NOTE: This object implements the clone() method, making a deep copy of any referenced
69     * objects. As other non-trivial fields are added to this class, make sure to add logic
70     * to clone() to make deep copies of them.
71     */
72
73    // The first time that the animation's animateFrame() method is called. This time is used to
74    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
75    // to animateFrame()
76    long mStartTime;
77
78    /**
79     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
80     * to a value.
81     */
82    float mSeekFraction = -1;
83
84    /**
85     * Set on the next frame after pause() is called, used to calculate a new startTime
86     * or delayStartTime which allows the animator to continue from the point at which
87     * it was paused. If negative, has not yet been set.
88     */
89    private long mPauseTime;
90
91    /**
92     * Set when an animator is resumed. This triggers logic in the next frame which
93     * actually resumes the animator.
94     */
95    private boolean mResumed = false;
96
97
98    // The static sAnimationHandler processes the internal timing loop on which all animations
99    // are based
100    /**
101     * @hide
102     */
103    protected static ThreadLocal<AnimationHandler> sAnimationHandler =
104            new ThreadLocal<AnimationHandler>();
105
106    // The time interpolator to be used if none is set on the animation
107    private static final TimeInterpolator sDefaultInterpolator =
108            new AccelerateDecelerateInterpolator();
109
110    /**
111     * Used to indicate whether the animation is currently playing in reverse. This causes the
112     * elapsed fraction to be inverted to calculate the appropriate values.
113     */
114    private boolean mPlayingBackwards = false;
115
116    /**
117     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
118     * repeatCount (if repeatCount!=INFINITE), the animation ends
119     */
120    private int mCurrentIteration = 0;
121
122    /**
123     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
124     */
125    private float mCurrentFraction = 0f;
126
127    /**
128     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
129     */
130    private boolean mStartedDelay = false;
131
132    /**
133     * Tracks the time at which the animation began playing through its startDelay. This is
134     * different from the mStartTime variable, which is used to track when the animation became
135     * active (which is when the startDelay expired and the animation was added to the active
136     * animations list).
137     */
138    private long mDelayStartTime;
139
140    /**
141     * Flag that represents the current state of the animation. Used to figure out when to start
142     * an animation (if state == STOPPED). Also used to end an animation that
143     * has been cancel()'d or end()'d since the last animation frame. Possible values are
144     * STOPPED, RUNNING, SEEKED.
145     */
146    int mPlayingState = STOPPED;
147
148    /**
149     * Additional playing state to indicate whether an animator has been start()'d. There is
150     * some lag between a call to start() and the first animation frame. We should still note
151     * that the animation has been started, even if it's first animation frame has not yet
152     * happened, and reflect that state in isRunning().
153     * Note that delayed animations are different: they are not started until their first
154     * animation frame, which occurs after their delay elapses.
155     */
156    private boolean mRunning = false;
157
158    /**
159     * Additional playing state to indicate whether an animator has been start()'d, whether or
160     * not there is a nonzero startDelay.
161     */
162    private boolean mStarted = false;
163
164    /**
165     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
166     * complex to keep track of since we notify listeners at different times depending on
167     * startDelay and whether start() was called before end().
168     */
169    private boolean mStartListenersCalled = false;
170
171    /**
172     * Flag that denotes whether the animation is set up and ready to go. Used to
173     * set up animation that has not yet been started.
174     */
175    boolean mInitialized = false;
176
177    //
178    // Backing variables
179    //
180
181    // How long the animation should last in ms
182    private long mDuration = (long)(300 * sDurationScale);
183    private long mUnscaledDuration = 300;
184
185    // The amount of time in ms to delay starting the animation after start() is called
186    private long mStartDelay = 0;
187    private long mUnscaledStartDelay = 0;
188
189    // The number of times the animation will repeat. The default is 0, which means the animation
190    // will play only once
191    private int mRepeatCount = 0;
192
193    /**
194     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
195     * animation will start from the beginning on every new cycle. REVERSE means the animation
196     * will reverse directions on each iteration.
197     */
198    private int mRepeatMode = RESTART;
199
200    /**
201     * The time interpolator to be used. The elapsed fraction of the animation will be passed
202     * through this interpolator to calculate the interpolated fraction, which is then used to
203     * calculate the animated values.
204     */
205    private TimeInterpolator mInterpolator = sDefaultInterpolator;
206
207    /**
208     * The set of listeners to be sent events through the life of an animation.
209     */
210    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
211
212    /**
213     * The property/value sets being animated.
214     */
215    PropertyValuesHolder[] mValues;
216
217    /**
218     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
219     * by property name during calls to getAnimatedValue(String).
220     */
221    HashMap<String, PropertyValuesHolder> mValuesMap;
222
223    /**
224     * Public constants
225     */
226
227    /**
228     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
229     * or a positive value, the animation restarts from the beginning.
230     */
231    public static final int RESTART = 1;
232    /**
233     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
234     * or a positive value, the animation reverses direction on every iteration.
235     */
236    public static final int REVERSE = 2;
237    /**
238     * This value used used with the {@link #setRepeatCount(int)} property to repeat
239     * the animation indefinitely.
240     */
241    public static final int INFINITE = -1;
242
243
244    /**
245     * @hide
246     */
247    public static void setDurationScale(float durationScale) {
248        sDurationScale = durationScale;
249    }
250
251    /**
252     * @hide
253     */
254    public static float getDurationScale() {
255        return sDurationScale;
256    }
257
258    /**
259     * Creates a new ValueAnimator object. This default constructor is primarily for
260     * use internally; the factory methods which take parameters are more generally
261     * useful.
262     */
263    public ValueAnimator() {
264    }
265
266    /**
267     * Constructs and returns a ValueAnimator that animates between int values. A single
268     * value implies that that value is the one being animated to. However, this is not typically
269     * useful in a ValueAnimator object because there is no way for the object to determine the
270     * starting value for the animation (unlike ObjectAnimator, which can derive that value
271     * from the target object and property being animated). Therefore, there should typically
272     * be two or more values.
273     *
274     * @param values A set of values that the animation will animate between over time.
275     * @return A ValueAnimator object that is set up to animate between the given values.
276     */
277    public static ValueAnimator ofInt(int... values) {
278        ValueAnimator anim = new ValueAnimator();
279        anim.setIntValues(values);
280        return anim;
281    }
282
283    /**
284     * Constructs and returns a ValueAnimator that animates between color values. A single
285     * value implies that that value is the one being animated to. However, this is not typically
286     * useful in a ValueAnimator object because there is no way for the object to determine the
287     * starting value for the animation (unlike ObjectAnimator, which can derive that value
288     * from the target object and property being animated). Therefore, there should typically
289     * be two or more values.
290     *
291     * @param values A set of values that the animation will animate between over time.
292     * @return A ValueAnimator object that is set up to animate between the given values.
293     */
294    public static ValueAnimator ofArgb(int... values) {
295        ValueAnimator anim = new ValueAnimator();
296        anim.setIntValues(values);
297        anim.setEvaluator(ArgbEvaluator.getInstance());
298        return anim;
299    }
300
301    /**
302     * Constructs and returns a ValueAnimator that animates between float values. A single
303     * value implies that that value is the one being animated to. However, this is not typically
304     * useful in a ValueAnimator object because there is no way for the object to determine the
305     * starting value for the animation (unlike ObjectAnimator, which can derive that value
306     * from the target object and property being animated). Therefore, there should typically
307     * be two or more values.
308     *
309     * @param values A set of values that the animation will animate between over time.
310     * @return A ValueAnimator object that is set up to animate between the given values.
311     */
312    public static ValueAnimator ofFloat(float... values) {
313        ValueAnimator anim = new ValueAnimator();
314        anim.setFloatValues(values);
315        return anim;
316    }
317
318    /**
319     * Constructs and returns a ValueAnimator that animates between the values
320     * specified in the PropertyValuesHolder objects.
321     *
322     * @param values A set of PropertyValuesHolder objects whose values will be animated
323     * between over time.
324     * @return A ValueAnimator object that is set up to animate between the given values.
325     */
326    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
327        ValueAnimator anim = new ValueAnimator();
328        anim.setValues(values);
329        return anim;
330    }
331    /**
332     * Constructs and returns a ValueAnimator that animates between Object values. A single
333     * value implies that that value is the one being animated to. However, this is not typically
334     * useful in a ValueAnimator object because there is no way for the object to determine the
335     * starting value for the animation (unlike ObjectAnimator, which can derive that value
336     * from the target object and property being animated). Therefore, there should typically
337     * be two or more values.
338     *
339     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
340     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
341     * to perform that interpolation.
342     *
343     * @param evaluator A TypeEvaluator that will be called on each animation frame to
344     * provide the ncessry interpolation between the Object values to derive the animated
345     * value.
346     * @param values A set of values that the animation will animate between over time.
347     * @return A ValueAnimator object that is set up to animate between the given values.
348     */
349    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
350        ValueAnimator anim = new ValueAnimator();
351        anim.setObjectValues(values);
352        anim.setEvaluator(evaluator);
353        return anim;
354    }
355
356    /**
357     * Sets int values that will be animated between. A single
358     * value implies that that value is the one being animated to. However, this is not typically
359     * useful in a ValueAnimator object because there is no way for the object to determine the
360     * starting value for the animation (unlike ObjectAnimator, which can derive that value
361     * from the target object and property being animated). Therefore, there should typically
362     * be two or more values.
363     *
364     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
365     * than one PropertyValuesHolder object, this method will set the values for the first
366     * of those objects.</p>
367     *
368     * @param values A set of values that the animation will animate between over time.
369     */
370    public void setIntValues(int... values) {
371        if (values == null || values.length == 0) {
372            return;
373        }
374        if (mValues == null || mValues.length == 0) {
375            setValues(PropertyValuesHolder.ofInt("", values));
376        } else {
377            PropertyValuesHolder valuesHolder = mValues[0];
378            valuesHolder.setIntValues(values);
379        }
380        // New property/values/target should cause re-initialization prior to starting
381        mInitialized = false;
382    }
383
384    /**
385     * Sets float values that will be animated between. A single
386     * value implies that that value is the one being animated to. However, this is not typically
387     * useful in a ValueAnimator object because there is no way for the object to determine the
388     * starting value for the animation (unlike ObjectAnimator, which can derive that value
389     * from the target object and property being animated). Therefore, there should typically
390     * be two or more values.
391     *
392     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
393     * than one PropertyValuesHolder object, this method will set the values for the first
394     * of those objects.</p>
395     *
396     * @param values A set of values that the animation will animate between over time.
397     */
398    public void setFloatValues(float... values) {
399        if (values == null || values.length == 0) {
400            return;
401        }
402        if (mValues == null || mValues.length == 0) {
403            setValues(PropertyValuesHolder.ofFloat("", values));
404        } else {
405            PropertyValuesHolder valuesHolder = mValues[0];
406            valuesHolder.setFloatValues(values);
407        }
408        // New property/values/target should cause re-initialization prior to starting
409        mInitialized = false;
410    }
411
412    /**
413     * Sets the values to animate between for this animation. A single
414     * value implies that that value is the one being animated to. However, this is not typically
415     * useful in a ValueAnimator object because there is no way for the object to determine the
416     * starting value for the animation (unlike ObjectAnimator, which can derive that value
417     * from the target object and property being animated). Therefore, there should typically
418     * be two or more values.
419     *
420     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
421     * than one PropertyValuesHolder object, this method will set the values for the first
422     * of those objects.</p>
423     *
424     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
425     * between these value objects. ValueAnimator only knows how to interpolate between the
426     * primitive types specified in the other setValues() methods.</p>
427     *
428     * @param values The set of values to animate between.
429     */
430    public void setObjectValues(Object... values) {
431        if (values == null || values.length == 0) {
432            return;
433        }
434        if (mValues == null || mValues.length == 0) {
435            setValues(PropertyValuesHolder.ofObject("", null, values));
436        } else {
437            PropertyValuesHolder valuesHolder = mValues[0];
438            valuesHolder.setObjectValues(values);
439        }
440        // New property/values/target should cause re-initialization prior to starting
441        mInitialized = false;
442    }
443
444    /**
445     * Sets the values, per property, being animated between. This function is called internally
446     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
447     * be constructed without values and this method can be called to set the values manually
448     * instead.
449     *
450     * @param values The set of values, per property, being animated between.
451     */
452    public void setValues(PropertyValuesHolder... values) {
453        int numValues = values.length;
454        mValues = values;
455        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
456        for (int i = 0; i < numValues; ++i) {
457            PropertyValuesHolder valuesHolder = values[i];
458            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
459        }
460        // New property/values/target should cause re-initialization prior to starting
461        mInitialized = false;
462    }
463
464    /**
465     * Returns the values that this ValueAnimator animates between. These values are stored in
466     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
467     * of value objects instead.
468     *
469     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
470     * values, per property, that define the animation.
471     */
472    public PropertyValuesHolder[] getValues() {
473        return mValues;
474    }
475
476    /**
477     * This function is called immediately before processing the first animation
478     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
479     * function is called after that delay ends.
480     * It takes care of the final initialization steps for the
481     * animation.
482     *
483     *  <p>Overrides of this method should call the superclass method to ensure
484     *  that internal mechanisms for the animation are set up correctly.</p>
485     */
486    void initAnimation() {
487        if (!mInitialized) {
488            int numValues = mValues.length;
489            for (int i = 0; i < numValues; ++i) {
490                mValues[i].init();
491            }
492            mInitialized = true;
493        }
494    }
495
496
497    /**
498     * Sets the length of the animation. The default duration is 300 milliseconds.
499     *
500     * @param duration The length of the animation, in milliseconds. This value cannot
501     * be negative.
502     * @return ValueAnimator The object called with setDuration(). This return
503     * value makes it easier to compose statements together that construct and then set the
504     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
505     */
506    public ValueAnimator setDuration(long duration) {
507        if (duration < 0) {
508            throw new IllegalArgumentException("Animators cannot have negative duration: " +
509                    duration);
510        }
511        mUnscaledDuration = duration;
512        updateScaledDuration();
513        return this;
514    }
515
516    private void updateScaledDuration() {
517        mDuration = (long)(mUnscaledDuration * sDurationScale);
518    }
519
520    /**
521     * Gets the length of the animation. The default duration is 300 milliseconds.
522     *
523     * @return The length of the animation, in milliseconds.
524     */
525    public long getDuration() {
526        return mUnscaledDuration;
527    }
528
529    /**
530     * Sets the position of the animation to the specified point in time. This time should
531     * be between 0 and the total duration of the animation, including any repetition. If
532     * the animation has not yet been started, then it will not advance forward after it is
533     * set to this time; it will simply set the time to this value and perform any appropriate
534     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
535     * will set the current playing time to this value and continue playing from that point.
536     *
537     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
538     */
539    public void setCurrentPlayTime(long playTime) {
540        float fraction = mUnscaledDuration > 0 ? (float) playTime / mUnscaledDuration : 1;
541        setCurrentFraction(fraction);
542    }
543
544    /**
545     * Sets the position of the animation to the specified fraction. This fraction should
546     * be between 0 and the total fraction of the animation, including any repetition. That is,
547     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
548     * and a value of 2 at the beginning of a reversing animator that repeats once. If
549     * the animation has not yet been started, then it will not advance forward after it is
550     * set to this fraction; it will simply set the fraction to this value and perform any
551     * appropriate actions based on that fraction. If the animation is already running, then
552     * setCurrentFraction() will set the current fraction to this value and continue
553     * playing from that point.
554     *
555     * @param fraction The fraction to which the animation is advanced or rewound.
556     */
557    public void setCurrentFraction(float fraction) {
558        initAnimation();
559        if (mPlayingState != RUNNING) {
560            mSeekFraction = fraction;
561            mPlayingState = SEEKED;
562        }
563        animateValue(fraction);
564    }
565
566    /**
567     * Gets the current position of the animation in time, which is equal to the current
568     * time minus the time that the animation started. An animation that is not yet started will
569     * return a value of zero.
570     *
571     * @return The current position in time of the animation.
572     */
573    public long getCurrentPlayTime() {
574        if (!mInitialized || mPlayingState == STOPPED) {
575            return 0;
576        }
577        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
578    }
579
580    /**
581     * This custom, static handler handles the timing pulse that is shared by
582     * all active animations. This approach ensures that the setting of animation
583     * values will happen on the UI thread and that all animations will share
584     * the same times for calculating their values, which makes synchronizing
585     * animations possible.
586     *
587     * The handler uses the Choreographer for executing periodic callbacks.
588     *
589     * @hide
590     */
591    @SuppressWarnings("unchecked")
592    protected static class AnimationHandler implements Runnable {
593        // The per-thread list of all active animations
594        /** @hide */
595        protected final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
596
597        // Used in doAnimationFrame() to avoid concurrent modifications of mAnimations
598        private final ArrayList<ValueAnimator> mTmpAnimations = new ArrayList<ValueAnimator>();
599
600        // The per-thread set of animations to be started on the next animation frame
601        /** @hide */
602        protected final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
603
604        /**
605         * Internal per-thread collections used to avoid set collisions as animations start and end
606         * while being processed.
607         * @hide
608         */
609        protected final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
610        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
611        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
612
613        private final Choreographer mChoreographer;
614        private boolean mAnimationScheduled;
615
616        private AnimationHandler() {
617            mChoreographer = Choreographer.getInstance();
618        }
619
620        /**
621         * Start animating on the next frame.
622         */
623        public void start() {
624            scheduleAnimation();
625        }
626
627        private void doAnimationFrame(long frameTime) {
628            // mPendingAnimations holds any animations that have requested to be started
629            // We're going to clear mPendingAnimations, but starting animation may
630            // cause more to be added to the pending list (for example, if one animation
631            // starting triggers another starting). So we loop until mPendingAnimations
632            // is empty.
633            while (mPendingAnimations.size() > 0) {
634                ArrayList<ValueAnimator> pendingCopy =
635                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
636                mPendingAnimations.clear();
637                int count = pendingCopy.size();
638                for (int i = 0; i < count; ++i) {
639                    ValueAnimator anim = pendingCopy.get(i);
640                    // If the animation has a startDelay, place it on the delayed list
641                    if (anim.mStartDelay == 0) {
642                        anim.startAnimation(this);
643                    } else {
644                        mDelayedAnims.add(anim);
645                    }
646                }
647            }
648            // Next, process animations currently sitting on the delayed queue, adding
649            // them to the active animations if they are ready
650            int numDelayedAnims = mDelayedAnims.size();
651            for (int i = 0; i < numDelayedAnims; ++i) {
652                ValueAnimator anim = mDelayedAnims.get(i);
653                if (anim.delayedAnimationFrame(frameTime)) {
654                    mReadyAnims.add(anim);
655                }
656            }
657            int numReadyAnims = mReadyAnims.size();
658            if (numReadyAnims > 0) {
659                for (int i = 0; i < numReadyAnims; ++i) {
660                    ValueAnimator anim = mReadyAnims.get(i);
661                    anim.startAnimation(this);
662                    anim.mRunning = true;
663                    mDelayedAnims.remove(anim);
664                }
665                mReadyAnims.clear();
666            }
667
668            // Now process all active animations. The return value from animationFrame()
669            // tells the handler whether it should now be ended
670            int numAnims = mAnimations.size();
671            for (int i = 0; i < numAnims; ++i) {
672                mTmpAnimations.add(mAnimations.get(i));
673            }
674            for (int i = 0; i < numAnims; ++i) {
675                ValueAnimator anim = mTmpAnimations.get(i);
676                if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
677                    mEndingAnims.add(anim);
678                }
679            }
680            mTmpAnimations.clear();
681            if (mEndingAnims.size() > 0) {
682                for (int i = 0; i < mEndingAnims.size(); ++i) {
683                    mEndingAnims.get(i).endAnimation(this);
684                }
685                mEndingAnims.clear();
686            }
687
688            // If there are still active or delayed animations, schedule a future call to
689            // onAnimate to process the next frame of the animations.
690            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
691                scheduleAnimation();
692            }
693        }
694
695        // Called by the Choreographer.
696        @Override
697        public void run() {
698            mAnimationScheduled = false;
699            doAnimationFrame(mChoreographer.getFrameTime());
700        }
701
702        private void scheduleAnimation() {
703            if (!mAnimationScheduled) {
704                mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, this, null);
705                mAnimationScheduled = true;
706            }
707        }
708    }
709
710    /**
711     * The amount of time, in milliseconds, to delay starting the animation after
712     * {@link #start()} is called.
713     *
714     * @return the number of milliseconds to delay running the animation
715     */
716    public long getStartDelay() {
717        return mUnscaledStartDelay;
718    }
719
720    /**
721     * The amount of time, in milliseconds, to delay starting the animation after
722     * {@link #start()} is called.
723
724     * @param startDelay The amount of the delay, in milliseconds
725     */
726    public void setStartDelay(long startDelay) {
727        this.mStartDelay = (long)(startDelay * sDurationScale);
728        mUnscaledStartDelay = startDelay;
729    }
730
731    /**
732     * The amount of time, in milliseconds, between each frame of the animation. This is a
733     * requested time that the animation will attempt to honor, but the actual delay between
734     * frames may be different, depending on system load and capabilities. This is a static
735     * function because the same delay will be applied to all animations, since they are all
736     * run off of a single timing loop.
737     *
738     * The frame delay may be ignored when the animation system uses an external timing
739     * source, such as the display refresh rate (vsync), to govern animations.
740     *
741     * @return the requested time between frames, in milliseconds
742     */
743    public static long getFrameDelay() {
744        return Choreographer.getFrameDelay();
745    }
746
747    /**
748     * The amount of time, in milliseconds, between each frame of the animation. This is a
749     * requested time that the animation will attempt to honor, but the actual delay between
750     * frames may be different, depending on system load and capabilities. This is a static
751     * function because the same delay will be applied to all animations, since they are all
752     * run off of a single timing loop.
753     *
754     * The frame delay may be ignored when the animation system uses an external timing
755     * source, such as the display refresh rate (vsync), to govern animations.
756     *
757     * @param frameDelay the requested time between frames, in milliseconds
758     */
759    public static void setFrameDelay(long frameDelay) {
760        Choreographer.setFrameDelay(frameDelay);
761    }
762
763    /**
764     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
765     * property being animated. This value is only sensible while the animation is running. The main
766     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
767     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
768     * is called during each animation frame, immediately after the value is calculated.
769     *
770     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
771     * the single property being animated. If there are several properties being animated
772     * (specified by several PropertyValuesHolder objects in the constructor), this function
773     * returns the animated value for the first of those objects.
774     */
775    public Object getAnimatedValue() {
776        if (mValues != null && mValues.length > 0) {
777            return mValues[0].getAnimatedValue();
778        }
779        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
780        return null;
781    }
782
783    /**
784     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
785     * The main purpose for this read-only property is to retrieve the value from the
786     * <code>ValueAnimator</code> during a call to
787     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
788     * is called during each animation frame, immediately after the value is calculated.
789     *
790     * @return animatedValue The value most recently calculated for the named property
791     * by this <code>ValueAnimator</code>.
792     */
793    public Object getAnimatedValue(String propertyName) {
794        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
795        if (valuesHolder != null) {
796            return valuesHolder.getAnimatedValue();
797        } else {
798            // At least avoid crashing if called with bogus propertyName
799            return null;
800        }
801    }
802
803    /**
804     * Sets how many times the animation should be repeated. If the repeat
805     * count is 0, the animation is never repeated. If the repeat count is
806     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
807     * into account. The repeat count is 0 by default.
808     *
809     * @param value the number of times the animation should be repeated
810     */
811    public void setRepeatCount(int value) {
812        mRepeatCount = value;
813    }
814    /**
815     * Defines how many times the animation should repeat. The default value
816     * is 0.
817     *
818     * @return the number of times the animation should repeat, or {@link #INFINITE}
819     */
820    public int getRepeatCount() {
821        return mRepeatCount;
822    }
823
824    /**
825     * Defines what this animation should do when it reaches the end. This
826     * setting is applied only when the repeat count is either greater than
827     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
828     *
829     * @param value {@link #RESTART} or {@link #REVERSE}
830     */
831    public void setRepeatMode(int value) {
832        mRepeatMode = value;
833    }
834
835    /**
836     * Defines what this animation should do when it reaches the end.
837     *
838     * @return either one of {@link #REVERSE} or {@link #RESTART}
839     */
840    public int getRepeatMode() {
841        return mRepeatMode;
842    }
843
844    /**
845     * Adds a listener to the set of listeners that are sent update events through the life of
846     * an animation. This method is called on all listeners for every frame of the animation,
847     * after the values for the animation have been calculated.
848     *
849     * @param listener the listener to be added to the current set of listeners for this animation.
850     */
851    public void addUpdateListener(AnimatorUpdateListener listener) {
852        if (mUpdateListeners == null) {
853            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
854        }
855        mUpdateListeners.add(listener);
856    }
857
858    /**
859     * Removes all listeners from the set listening to frame updates for this animation.
860     */
861    public void removeAllUpdateListeners() {
862        if (mUpdateListeners == null) {
863            return;
864        }
865        mUpdateListeners.clear();
866        mUpdateListeners = null;
867    }
868
869    /**
870     * Removes a listener from the set listening to frame updates for this animation.
871     *
872     * @param listener the listener to be removed from the current set of update listeners
873     * for this animation.
874     */
875    public void removeUpdateListener(AnimatorUpdateListener listener) {
876        if (mUpdateListeners == null) {
877            return;
878        }
879        mUpdateListeners.remove(listener);
880        if (mUpdateListeners.size() == 0) {
881            mUpdateListeners = null;
882        }
883    }
884
885
886    /**
887     * The time interpolator used in calculating the elapsed fraction of this animation. The
888     * interpolator determines whether the animation runs with linear or non-linear motion,
889     * such as acceleration and deceleration. The default value is
890     * {@link android.view.animation.AccelerateDecelerateInterpolator}
891     *
892     * @param value the interpolator to be used by this animation. A value of <code>null</code>
893     * will result in linear interpolation.
894     */
895    @Override
896    public void setInterpolator(TimeInterpolator value) {
897        if (value != null) {
898            mInterpolator = value;
899        } else {
900            mInterpolator = new LinearInterpolator();
901        }
902    }
903
904    /**
905     * Returns the timing interpolator that this ValueAnimator uses.
906     *
907     * @return The timing interpolator for this ValueAnimator.
908     */
909    @Override
910    public TimeInterpolator getInterpolator() {
911        return mInterpolator;
912    }
913
914    /**
915     * The type evaluator to be used when calculating the animated values of this animation.
916     * The system will automatically assign a float or int evaluator based on the type
917     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
918     * are not one of these primitive types, or if different evaluation is desired (such as is
919     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
920     * For example, when running an animation on color values, the {@link ArgbEvaluator}
921     * should be used to get correct RGB color interpolation.
922     *
923     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
924     * will be used for that set. If there are several sets of values being animated, which is
925     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
926     * is assigned just to the first PropertyValuesHolder object.</p>
927     *
928     * @param value the evaluator to be used this animation
929     */
930    public void setEvaluator(TypeEvaluator value) {
931        if (value != null && mValues != null && mValues.length > 0) {
932            mValues[0].setEvaluator(value);
933        }
934    }
935
936    private void notifyStartListeners() {
937        if (mListeners != null && !mStartListenersCalled) {
938            ArrayList<AnimatorListener> tmpListeners =
939                    (ArrayList<AnimatorListener>) mListeners.clone();
940            int numListeners = tmpListeners.size();
941            for (int i = 0; i < numListeners; ++i) {
942                tmpListeners.get(i).onAnimationStart(this);
943            }
944        }
945        mStartListenersCalled = true;
946    }
947
948    /**
949     * Start the animation playing. This version of start() takes a boolean flag that indicates
950     * whether the animation should play in reverse. The flag is usually false, but may be set
951     * to true if called from the reverse() method.
952     *
953     * <p>The animation started by calling this method will be run on the thread that called
954     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
955     * this is not the case). Also, if the animation will animate
956     * properties of objects in the view hierarchy, then the calling thread should be the UI
957     * thread for that view hierarchy.</p>
958     *
959     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
960     */
961    private void start(boolean playBackwards) {
962        if (Looper.myLooper() == null) {
963            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
964        }
965        mPlayingBackwards = playBackwards;
966        mCurrentIteration = 0;
967        int prevPlayingState = mPlayingState;
968        mPlayingState = STOPPED;
969        mStarted = true;
970        mStartedDelay = false;
971        mPaused = false;
972        updateScaledDuration(); // in case the scale factor has changed since creation time
973        AnimationHandler animationHandler = getOrCreateAnimationHandler();
974        animationHandler.mPendingAnimations.add(this);
975        if (mStartDelay == 0) {
976            // This sets the initial value of the animation, prior to actually starting it running
977            if (prevPlayingState != SEEKED) {
978                setCurrentPlayTime(0);
979            }
980            mPlayingState = STOPPED;
981            mRunning = true;
982            notifyStartListeners();
983        }
984        animationHandler.start();
985    }
986
987    @Override
988    public void start() {
989        start(false);
990    }
991
992    @Override
993    public void cancel() {
994        // Only cancel if the animation is actually running or has been started and is about
995        // to run
996        AnimationHandler handler = getOrCreateAnimationHandler();
997        if (mPlayingState != STOPPED
998                || handler.mPendingAnimations.contains(this)
999                || handler.mDelayedAnims.contains(this)) {
1000            // Only notify listeners if the animator has actually started
1001            if ((mStarted || mRunning) && mListeners != null) {
1002                if (!mRunning) {
1003                    // If it's not yet running, then start listeners weren't called. Call them now.
1004                    notifyStartListeners();
1005                }
1006                ArrayList<AnimatorListener> tmpListeners =
1007                        (ArrayList<AnimatorListener>) mListeners.clone();
1008                for (AnimatorListener listener : tmpListeners) {
1009                    listener.onAnimationCancel(this);
1010                }
1011            }
1012            endAnimation(handler);
1013        }
1014    }
1015
1016    @Override
1017    public void end() {
1018        AnimationHandler handler = getOrCreateAnimationHandler();
1019        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
1020            // Special case if the animation has not yet started; get it ready for ending
1021            mStartedDelay = false;
1022            startAnimation(handler);
1023            mStarted = true;
1024        } else if (!mInitialized) {
1025            initAnimation();
1026        }
1027        animateValue(mPlayingBackwards ? 0f : 1f);
1028        endAnimation(handler);
1029    }
1030
1031    @Override
1032    public void resume() {
1033        if (mPaused) {
1034            mResumed = true;
1035        }
1036        super.resume();
1037    }
1038
1039    @Override
1040    public void pause() {
1041        boolean previouslyPaused = mPaused;
1042        super.pause();
1043        if (!previouslyPaused && mPaused) {
1044            mPauseTime = -1;
1045            mResumed = false;
1046        }
1047    }
1048
1049    @Override
1050    public boolean isRunning() {
1051        return (mPlayingState == RUNNING || mRunning);
1052    }
1053
1054    @Override
1055    public boolean isStarted() {
1056        return mStarted;
1057    }
1058
1059    /**
1060     * Plays the ValueAnimator in reverse. If the animation is already running,
1061     * it will stop itself and play backwards from the point reached when reverse was called.
1062     * If the animation is not currently running, then it will start from the end and
1063     * play backwards. This behavior is only set for the current animation; future playing
1064     * of the animation will use the default behavior of playing forward.
1065     */
1066    @Override
1067    public void reverse() {
1068        mPlayingBackwards = !mPlayingBackwards;
1069        if (mPlayingState == RUNNING) {
1070            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1071            long currentPlayTime = currentTime - mStartTime;
1072            long timeLeft = mDuration - currentPlayTime;
1073            mStartTime = currentTime - timeLeft;
1074        } else if (mStarted) {
1075            end();
1076        } else {
1077            start(true);
1078        }
1079    }
1080
1081    /**
1082     * @hide
1083     */
1084    @Override
1085    public boolean canReverse() {
1086        return true;
1087    }
1088
1089    /**
1090     * Called internally to end an animation by removing it from the animations list. Must be
1091     * called on the UI thread.
1092     * @hide
1093     */
1094    protected void endAnimation(AnimationHandler handler) {
1095        handler.mAnimations.remove(this);
1096        handler.mPendingAnimations.remove(this);
1097        handler.mDelayedAnims.remove(this);
1098        mPlayingState = STOPPED;
1099        mPaused = false;
1100        if ((mStarted || mRunning) && mListeners != null) {
1101            if (!mRunning) {
1102                // If it's not yet running, then start listeners weren't called. Call them now.
1103                notifyStartListeners();
1104             }
1105            ArrayList<AnimatorListener> tmpListeners =
1106                    (ArrayList<AnimatorListener>) mListeners.clone();
1107            int numListeners = tmpListeners.size();
1108            for (int i = 0; i < numListeners; ++i) {
1109                tmpListeners.get(i).onAnimationEnd(this);
1110            }
1111        }
1112        mRunning = false;
1113        mStarted = false;
1114        mStartListenersCalled = false;
1115        mPlayingBackwards = false;
1116        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1117            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1118                    System.identityHashCode(this));
1119        }
1120    }
1121
1122    /**
1123     * Called internally to start an animation by adding it to the active animations list. Must be
1124     * called on the UI thread.
1125     */
1126    private void startAnimation(AnimationHandler handler) {
1127        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1128            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1129                    System.identityHashCode(this));
1130        }
1131        initAnimation();
1132        handler.mAnimations.add(this);
1133        if (mStartDelay > 0 && mListeners != null) {
1134            // Listeners were already notified in start() if startDelay is 0; this is
1135            // just for delayed animations
1136            notifyStartListeners();
1137        }
1138    }
1139
1140    /**
1141     * Returns the name of this animator for debugging purposes.
1142     */
1143    String getNameForTrace() {
1144        return "animator";
1145    }
1146
1147
1148    /**
1149     * Internal function called to process an animation frame on an animation that is currently
1150     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1151     * should be woken up and put on the active animations queue.
1152     *
1153     * @param currentTime The current animation time, used to calculate whether the animation
1154     * has exceeded its <code>startDelay</code> and should be started.
1155     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1156     * should be added to the set of active animations.
1157     */
1158    private boolean delayedAnimationFrame(long currentTime) {
1159        if (!mStartedDelay) {
1160            mStartedDelay = true;
1161            mDelayStartTime = currentTime;
1162        }
1163        if (mPaused) {
1164            if (mPauseTime < 0) {
1165                mPauseTime = currentTime;
1166            }
1167            return false;
1168        } else if (mResumed) {
1169            mResumed = false;
1170            if (mPauseTime > 0) {
1171                // Offset by the duration that the animation was paused
1172                mDelayStartTime += (currentTime - mPauseTime);
1173            }
1174        }
1175        long deltaTime = currentTime - mDelayStartTime;
1176        if (deltaTime > mStartDelay) {
1177            // startDelay ended - start the anim and record the
1178            // mStartTime appropriately
1179            mStartTime = currentTime - (deltaTime - mStartDelay);
1180            mPlayingState = RUNNING;
1181            return true;
1182        }
1183        return false;
1184    }
1185
1186    /**
1187     * This internal function processes a single animation frame for a given animation. The
1188     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1189     * elapsed duration, and therefore
1190     * the elapsed fraction, of the animation. The return value indicates whether the animation
1191     * should be ended (which happens when the elapsed time of the animation exceeds the
1192     * animation's duration, including the repeatCount).
1193     *
1194     * @param currentTime The current time, as tracked by the static timing handler
1195     * @return true if the animation's duration, including any repetitions due to
1196     * <code>repeatCount</code>, has been exceeded and the animation should be ended.
1197     */
1198    boolean animationFrame(long currentTime) {
1199        boolean done = false;
1200        switch (mPlayingState) {
1201        case RUNNING:
1202        case SEEKED:
1203            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1204            if (fraction >= 1f) {
1205                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1206                    // Time to repeat
1207                    if (mListeners != null) {
1208                        int numListeners = mListeners.size();
1209                        for (int i = 0; i < numListeners; ++i) {
1210                            mListeners.get(i).onAnimationRepeat(this);
1211                        }
1212                    }
1213                    if (mRepeatMode == REVERSE) {
1214                        mPlayingBackwards = !mPlayingBackwards;
1215                    }
1216                    mCurrentIteration += (int)fraction;
1217                    fraction = fraction % 1f;
1218                    mStartTime += mDuration;
1219                } else {
1220                    done = true;
1221                    fraction = Math.min(fraction, 1.0f);
1222                }
1223            }
1224            if (mPlayingBackwards) {
1225                fraction = 1f - fraction;
1226            }
1227            animateValue(fraction);
1228            break;
1229        }
1230
1231        return done;
1232    }
1233
1234    /**
1235     * Processes a frame of the animation, adjusting the start time if needed.
1236     *
1237     * @param frameTime The frame time.
1238     * @return true if the animation has ended.
1239     */
1240    final boolean doAnimationFrame(long frameTime) {
1241        if (mPlayingState == STOPPED) {
1242            mPlayingState = RUNNING;
1243            if (mSeekFraction < 0) {
1244                mStartTime = frameTime;
1245            } else {
1246                long seekTime = (long) (mDuration * mSeekFraction);
1247                mStartTime = frameTime - seekTime;
1248                mSeekFraction = -1;
1249            }
1250        }
1251        if (mPaused) {
1252            if (mPauseTime < 0) {
1253                mPauseTime = frameTime;
1254            }
1255            return false;
1256        } else if (mResumed) {
1257            mResumed = false;
1258            if (mPauseTime > 0) {
1259                // Offset by the duration that the animation was paused
1260                mStartTime += (frameTime - mPauseTime);
1261            }
1262        }
1263        // The frame time might be before the start time during the first frame of
1264        // an animation.  The "current time" must always be on or after the start
1265        // time to avoid animating frames at negative time intervals.  In practice, this
1266        // is very rare and only happens when seeking backwards.
1267        final long currentTime = Math.max(frameTime, mStartTime);
1268        return animationFrame(currentTime);
1269    }
1270
1271    /**
1272     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1273     * the most recent frame update on the animation.
1274     *
1275     * @return Elapsed/interpolated fraction of the animation.
1276     */
1277    public float getAnimatedFraction() {
1278        return mCurrentFraction;
1279    }
1280
1281    /**
1282     * This method is called with the elapsed fraction of the animation during every
1283     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1284     * and then into an animated value (from the evaluator. The function is called mostly during
1285     * animation updates, but it is also called when the <code>end()</code>
1286     * function is called, to set the final value on the property.
1287     *
1288     * <p>Overrides of this method must call the superclass to perform the calculation
1289     * of the animated value.</p>
1290     *
1291     * @param fraction The elapsed fraction of the animation.
1292     */
1293    void animateValue(float fraction) {
1294        fraction = mInterpolator.getInterpolation(fraction);
1295        mCurrentFraction = fraction;
1296        int numValues = mValues.length;
1297        for (int i = 0; i < numValues; ++i) {
1298            mValues[i].calculateValue(fraction);
1299        }
1300        if (mUpdateListeners != null) {
1301            int numListeners = mUpdateListeners.size();
1302            for (int i = 0; i < numListeners; ++i) {
1303                mUpdateListeners.get(i).onAnimationUpdate(this);
1304            }
1305        }
1306    }
1307
1308    @Override
1309    public ValueAnimator clone() {
1310        final ValueAnimator anim = (ValueAnimator) super.clone();
1311        if (mUpdateListeners != null) {
1312            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1313        }
1314        anim.mSeekFraction = -1;
1315        anim.mPlayingBackwards = false;
1316        anim.mCurrentIteration = 0;
1317        anim.mInitialized = false;
1318        anim.mPlayingState = STOPPED;
1319        anim.mStartedDelay = false;
1320        PropertyValuesHolder[] oldValues = mValues;
1321        if (oldValues != null) {
1322            int numValues = oldValues.length;
1323            anim.mValues = new PropertyValuesHolder[numValues];
1324            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1325            for (int i = 0; i < numValues; ++i) {
1326                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1327                anim.mValues[i] = newValuesHolder;
1328                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1329            }
1330        }
1331        return anim;
1332    }
1333
1334    /**
1335     * Implementors of this interface can add themselves as update listeners
1336     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1337     * frame, after the current frame's values have been calculated for that
1338     * <code>ValueAnimator</code>.
1339     */
1340    public static interface AnimatorUpdateListener {
1341        /**
1342         * <p>Notifies the occurrence of another frame of the animation.</p>
1343         *
1344         * @param animation The animation which was repeated.
1345         */
1346        void onAnimationUpdate(ValueAnimator animation);
1347
1348    }
1349
1350    /**
1351     * Return the number of animations currently running.
1352     *
1353     * Used by StrictMode internally to annotate violations.
1354     * May be called on arbitrary threads!
1355     *
1356     * @hide
1357     */
1358    public static int getCurrentAnimationsCount() {
1359        AnimationHandler handler = sAnimationHandler.get();
1360        return handler != null ? handler.mAnimations.size() : 0;
1361    }
1362
1363    /**
1364     * Clear all animations on this thread, without canceling or ending them.
1365     * This should be used with caution.
1366     *
1367     * @hide
1368     */
1369    public static void clearAllAnimations() {
1370        AnimationHandler handler = sAnimationHandler.get();
1371        if (handler != null) {
1372            handler.mAnimations.clear();
1373            handler.mPendingAnimations.clear();
1374            handler.mDelayedAnims.clear();
1375        }
1376    }
1377
1378    private static AnimationHandler getOrCreateAnimationHandler() {
1379        AnimationHandler handler = sAnimationHandler.get();
1380        if (handler == null) {
1381            handler = new AnimationHandler();
1382            sAnimationHandler.set(handler);
1383        }
1384        return handler;
1385    }
1386
1387    @Override
1388    public String toString() {
1389        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1390        if (mValues != null) {
1391            for (int i = 0; i < mValues.length; ++i) {
1392                returnVal += "\n    " + mValues[i].toString();
1393            }
1394        }
1395        return returnVal;
1396    }
1397
1398    /**
1399     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1400     * the UI thread. This is a hint that informs the ValueAnimator that it is
1401     * OK to run the animation off-thread, however ValueAnimator may decide
1402     * that it must run the animation on the UI thread anyway. For example if there
1403     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1404     * regardless of the value of this hint.</p>
1405     *
1406     * <p>Regardless of whether or not the animation runs asynchronously, all
1407     * listener callbacks will be called on the UI thread.</p>
1408     *
1409     * <p>To be able to use this hint the following must be true:</p>
1410     * <ol>
1411     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1412     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1413     *    to change values, duration, delay, etc... may be ignored.</li>
1414     * <li>Lifecycle callback events may be asynchronous. Events such as
1415     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1416     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1417     *    as they must be posted back to the UI thread, and any actions performed
1418     *    by those callbacks (such as starting new animations) will not happen
1419     *    in the same frame.</li>
1420     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1421     *    may be asynchronous. It is guaranteed that all state changes that are
1422     *    performed on the UI thread in the same frame will be applied as a single
1423     *    atomic update, however that frame may be the current frame,
1424     *    the next frame, or some future frame. This will also impact the observed
1425     *    state of the Animator. For example, {@link #isStarted()} may still return true
1426     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1427     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1428     *    for this reason.</li>
1429     * </ol>
1430     * @hide
1431     */
1432    @Override
1433    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1434        // It is up to subclasses to support this, if they can.
1435    }
1436}
1437