ValueAnimator.java revision 61045c518b18a7cee30954fe45f9db8c14e705e1
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.annotation.CallSuper;
20import android.annotation.IntDef;
21import android.os.Looper;
22import android.os.Trace;
23import android.util.AndroidRuntimeException;
24import android.util.Log;
25import android.view.animation.AccelerateDecelerateInterpolator;
26import android.view.animation.AnimationUtils;
27import android.view.animation.LinearInterpolator;
28
29import java.lang.annotation.Retention;
30import java.lang.annotation.RetentionPolicy;
31import java.util.ArrayList;
32import java.util.HashMap;
33
34/**
35 * This class provides a simple timing engine for running animations
36 * which calculate animated values and set them on target objects.
37 *
38 * <p>There is a single timing pulse that all animations use. It runs in a
39 * custom handler to ensure that property changes happen on the UI thread.</p>
40 *
41 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
42 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
43 * out of an animation. This behavior can be changed by calling
44 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
45 *
46 * <p>Animators can be created from either code or resource files. Here is an example
47 * of a ValueAnimator resource file:</p>
48 *
49 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
50 *
51 * <p>It is also possible to use a combination of {@link PropertyValuesHolder} and
52 * {@link Keyframe} resource tags to create a multi-step animation.
53 * Note that you can specify explicit fractional values (from 0 to 1) for
54 * each keyframe to determine when, in the overall duration, the animation should arrive at that
55 * value. Alternatively, you can leave the fractions off and the keyframes will be equally
56 * distributed within the total duration:</p>
57 *
58 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
59 * ValueAnimatorKeyframeResources}
60 *
61 * <div class="special reference">
62 * <h3>Developer Guides</h3>
63 * <p>For more information about animating with {@code ValueAnimator}, read the
64 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
65 * Animation</a> developer guide.</p>
66 * </div>
67 */
68@SuppressWarnings("unchecked")
69public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
70    private static final String TAG = "ValueAnimator";
71    private static final boolean DEBUG = false;
72
73    /**
74     * Internal constants
75     */
76    private static float sDurationScale = 1.0f;
77
78    /**
79     * Internal variables
80     * NOTE: This object implements the clone() method, making a deep copy of any referenced
81     * objects. As other non-trivial fields are added to this class, make sure to add logic
82     * to clone() to make deep copies of them.
83     */
84
85    /**
86     * The first time that the animation's animateFrame() method is called. This time is used to
87     * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
88     * to animateFrame().
89     *
90     * Whenever mStartTime is set, you must also update mStartTimeCommitted.
91     */
92    long mStartTime;
93
94    /**
95     * When true, the start time has been firmly committed as a chosen reference point in
96     * time by which the progress of the animation will be evaluated.  When false, the
97     * start time may be updated when the first animation frame is committed so as
98     * to compensate for jank that may have occurred between when the start time was
99     * initialized and when the frame was actually drawn.
100     *
101     * This flag is generally set to false during the first frame of the animation
102     * when the animation playing state transitions from STOPPED to RUNNING or
103     * resumes after having been paused.  This flag is set to true when the start time
104     * is firmly committed and should not be further compensated for jank.
105     */
106    boolean mStartTimeCommitted;
107
108    /**
109     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
110     * to a value.
111     */
112    float mSeekFraction = -1;
113
114    /**
115     * Set on the next frame after pause() is called, used to calculate a new startTime
116     * or delayStartTime which allows the animator to continue from the point at which
117     * it was paused. If negative, has not yet been set.
118     */
119    private long mPauseTime;
120
121    /**
122     * Set when an animator is resumed. This triggers logic in the next frame which
123     * actually resumes the animator.
124     */
125    private boolean mResumed = false;
126
127    // The time interpolator to be used if none is set on the animation
128    private static final TimeInterpolator sDefaultInterpolator =
129            new AccelerateDecelerateInterpolator();
130
131    /**
132     * Flag to indicate whether this animator is playing in reverse mode, specifically
133     * by being started or interrupted by a call to reverse(). This flag is different than
134     * mPlayingBackwards, which indicates merely whether the current iteration of the
135     * animator is playing in reverse. It is used in corner cases to determine proper end
136     * behavior.
137     */
138    private boolean mReversing;
139
140    /**
141     * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1
142     */
143    private float mOverallFraction = 0f;
144
145    /**
146     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
147     * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration.
148     */
149    private float mCurrentFraction = 0f;
150
151    /**
152     * Tracks the time (in milliseconds) when the last frame arrived.
153     */
154    private long mLastFrameTime = 0;
155
156    /**
157     * Additional playing state to indicate whether an animator has been start()'d. There is
158     * some lag between a call to start() and the first animation frame. We should still note
159     * that the animation has been started, even if it's first animation frame has not yet
160     * happened, and reflect that state in isRunning().
161     * Note that delayed animations are different: they are not started until their first
162     * animation frame, which occurs after their delay elapses.
163     */
164    private boolean mRunning = false;
165
166    /**
167     * Additional playing state to indicate whether an animator has been start()'d, whether or
168     * not there is a nonzero startDelay.
169     */
170    private boolean mStarted = false;
171
172    /**
173     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
174     * complex to keep track of since we notify listeners at different times depending on
175     * startDelay and whether start() was called before end().
176     */
177    private boolean mStartListenersCalled = false;
178
179    /**
180     * Flag that denotes whether the animation is set up and ready to go. Used to
181     * set up animation that has not yet been started.
182     */
183    boolean mInitialized = false;
184
185    /**
186     * Flag that tracks whether animation has been requested to end.
187     */
188    private boolean mAnimationEndRequested = false;
189
190    //
191    // Backing variables
192    //
193
194    // How long the animation should last in ms
195    private long mDuration = 300;
196
197    // The amount of time in ms to delay starting the animation after start() is called. Note
198    // that this start delay is unscaled. When there is a duration scale set on the animator, the
199    // scaling factor will be applied to this delay.
200    private long mStartDelay = 0;
201
202    // The number of times the animation will repeat. The default is 0, which means the animation
203    // will play only once
204    private int mRepeatCount = 0;
205
206    /**
207     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
208     * animation will start from the beginning on every new cycle. REVERSE means the animation
209     * will reverse directions on each iteration.
210     */
211    private int mRepeatMode = RESTART;
212
213    /**
214     * The time interpolator to be used. The elapsed fraction of the animation will be passed
215     * through this interpolator to calculate the interpolated fraction, which is then used to
216     * calculate the animated values.
217     */
218    private TimeInterpolator mInterpolator = sDefaultInterpolator;
219
220    /**
221     * The set of listeners to be sent events through the life of an animation.
222     */
223    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
224
225    /**
226     * The property/value sets being animated.
227     */
228    PropertyValuesHolder[] mValues;
229
230    /**
231     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
232     * by property name during calls to getAnimatedValue(String).
233     */
234    HashMap<String, PropertyValuesHolder> mValuesMap;
235
236    /**
237     * Public constants
238     */
239
240    /** @hide */
241    @IntDef({RESTART, REVERSE})
242    @Retention(RetentionPolicy.SOURCE)
243    public @interface RepeatMode {}
244
245    /**
246     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
247     * or a positive value, the animation restarts from the beginning.
248     */
249    public static final int RESTART = 1;
250    /**
251     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
252     * or a positive value, the animation reverses direction on every iteration.
253     */
254    public static final int REVERSE = 2;
255    /**
256     * This value used used with the {@link #setRepeatCount(int)} property to repeat
257     * the animation indefinitely.
258     */
259    public static final int INFINITE = -1;
260
261    /**
262     * @hide
263     */
264    public static void setDurationScale(float durationScale) {
265        sDurationScale = durationScale;
266    }
267
268    /**
269     * @hide
270     */
271    public static float getDurationScale() {
272        return sDurationScale;
273    }
274
275    /**
276     * Creates a new ValueAnimator object. This default constructor is primarily for
277     * use internally; the factory methods which take parameters are more generally
278     * useful.
279     */
280    public ValueAnimator() {
281    }
282
283    /**
284     * Constructs and returns a ValueAnimator that animates between int values. A single
285     * value implies that that value is the one being animated to. However, this is not typically
286     * useful in a ValueAnimator object because there is no way for the object to determine the
287     * starting value for the animation (unlike ObjectAnimator, which can derive that value
288     * from the target object and property being animated). Therefore, there should typically
289     * be two or more values.
290     *
291     * @param values A set of values that the animation will animate between over time.
292     * @return A ValueAnimator object that is set up to animate between the given values.
293     */
294    public static ValueAnimator ofInt(int... values) {
295        ValueAnimator anim = new ValueAnimator();
296        anim.setIntValues(values);
297        return anim;
298    }
299
300    /**
301     * Constructs and returns a ValueAnimator that animates between color values. A single
302     * value implies that that value is the one being animated to. However, this is not typically
303     * useful in a ValueAnimator object because there is no way for the object to determine the
304     * starting value for the animation (unlike ObjectAnimator, which can derive that value
305     * from the target object and property being animated). Therefore, there should typically
306     * be two or more values.
307     *
308     * @param values A set of values that the animation will animate between over time.
309     * @return A ValueAnimator object that is set up to animate between the given values.
310     */
311    public static ValueAnimator ofArgb(int... values) {
312        ValueAnimator anim = new ValueAnimator();
313        anim.setIntValues(values);
314        anim.setEvaluator(ArgbEvaluator.getInstance());
315        return anim;
316    }
317
318    /**
319     * Constructs and returns a ValueAnimator that animates between float values. A single
320     * value implies that that value is the one being animated to. However, this is not typically
321     * useful in a ValueAnimator object because there is no way for the object to determine the
322     * starting value for the animation (unlike ObjectAnimator, which can derive that value
323     * from the target object and property being animated). Therefore, there should typically
324     * be two or more values.
325     *
326     * @param values A set of values that the animation will animate between over time.
327     * @return A ValueAnimator object that is set up to animate between the given values.
328     */
329    public static ValueAnimator ofFloat(float... values) {
330        ValueAnimator anim = new ValueAnimator();
331        anim.setFloatValues(values);
332        return anim;
333    }
334
335    /**
336     * Constructs and returns a ValueAnimator that animates between the values
337     * specified in the PropertyValuesHolder objects.
338     *
339     * @param values A set of PropertyValuesHolder objects whose values will be animated
340     * between over time.
341     * @return A ValueAnimator object that is set up to animate between the given values.
342     */
343    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
344        ValueAnimator anim = new ValueAnimator();
345        anim.setValues(values);
346        return anim;
347    }
348    /**
349     * Constructs and returns a ValueAnimator that animates between Object values. A single
350     * value implies that that value is the one being animated to. However, this is not typically
351     * useful in a ValueAnimator object because there is no way for the object to determine the
352     * starting value for the animation (unlike ObjectAnimator, which can derive that value
353     * from the target object and property being animated). Therefore, there should typically
354     * be two or more values.
355     *
356     * <p><strong>Note:</strong> The Object values are stored as references to the original
357     * objects, which means that changes to those objects after this method is called will
358     * affect the values on the animator. If the objects will be mutated externally after
359     * this method is called, callers should pass a copy of those objects instead.
360     *
361     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
362     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
363     * to perform that interpolation.
364     *
365     * @param evaluator A TypeEvaluator that will be called on each animation frame to
366     * provide the ncessry interpolation between the Object values to derive the animated
367     * value.
368     * @param values A set of values that the animation will animate between over time.
369     * @return A ValueAnimator object that is set up to animate between the given values.
370     */
371    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
372        ValueAnimator anim = new ValueAnimator();
373        anim.setObjectValues(values);
374        anim.setEvaluator(evaluator);
375        return anim;
376    }
377
378    /**
379     * Sets int values that will be animated between. A single
380     * value implies that that value is the one being animated to. However, this is not typically
381     * useful in a ValueAnimator object because there is no way for the object to determine the
382     * starting value for the animation (unlike ObjectAnimator, which can derive that value
383     * from the target object and property being animated). Therefore, there should typically
384     * be two or more values.
385     *
386     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
387     * than one PropertyValuesHolder object, this method will set the values for the first
388     * of those objects.</p>
389     *
390     * @param values A set of values that the animation will animate between over time.
391     */
392    public void setIntValues(int... values) {
393        if (values == null || values.length == 0) {
394            return;
395        }
396        if (mValues == null || mValues.length == 0) {
397            setValues(PropertyValuesHolder.ofInt("", values));
398        } else {
399            PropertyValuesHolder valuesHolder = mValues[0];
400            valuesHolder.setIntValues(values);
401        }
402        // New property/values/target should cause re-initialization prior to starting
403        mInitialized = false;
404    }
405
406    /**
407     * Sets float values that will be animated between. A single
408     * value implies that that value is the one being animated to. However, this is not typically
409     * useful in a ValueAnimator object because there is no way for the object to determine the
410     * starting value for the animation (unlike ObjectAnimator, which can derive that value
411     * from the target object and property being animated). Therefore, there should typically
412     * be two or more values.
413     *
414     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
415     * than one PropertyValuesHolder object, this method will set the values for the first
416     * of those objects.</p>
417     *
418     * @param values A set of values that the animation will animate between over time.
419     */
420    public void setFloatValues(float... values) {
421        if (values == null || values.length == 0) {
422            return;
423        }
424        if (mValues == null || mValues.length == 0) {
425            setValues(PropertyValuesHolder.ofFloat("", values));
426        } else {
427            PropertyValuesHolder valuesHolder = mValues[0];
428            valuesHolder.setFloatValues(values);
429        }
430        // New property/values/target should cause re-initialization prior to starting
431        mInitialized = false;
432    }
433
434    /**
435     * Sets the values to animate between for this animation. A single
436     * value implies that that value is the one being animated to. However, this is not typically
437     * useful in a ValueAnimator object because there is no way for the object to determine the
438     * starting value for the animation (unlike ObjectAnimator, which can derive that value
439     * from the target object and property being animated). Therefore, there should typically
440     * be two or more values.
441     *
442     * <p><strong>Note:</strong> The Object values are stored as references to the original
443     * objects, which means that changes to those objects after this method is called will
444     * affect the values on the animator. If the objects will be mutated externally after
445     * this method is called, callers should pass a copy of those objects instead.
446     *
447     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
448     * than one PropertyValuesHolder object, this method will set the values for the first
449     * of those objects.</p>
450     *
451     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
452     * between these value objects. ValueAnimator only knows how to interpolate between the
453     * primitive types specified in the other setValues() methods.</p>
454     *
455     * @param values The set of values to animate between.
456     */
457    public void setObjectValues(Object... values) {
458        if (values == null || values.length == 0) {
459            return;
460        }
461        if (mValues == null || mValues.length == 0) {
462            setValues(PropertyValuesHolder.ofObject("", null, values));
463        } else {
464            PropertyValuesHolder valuesHolder = mValues[0];
465            valuesHolder.setObjectValues(values);
466        }
467        // New property/values/target should cause re-initialization prior to starting
468        mInitialized = false;
469    }
470
471    /**
472     * Sets the values, per property, being animated between. This function is called internally
473     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
474     * be constructed without values and this method can be called to set the values manually
475     * instead.
476     *
477     * @param values The set of values, per property, being animated between.
478     */
479    public void setValues(PropertyValuesHolder... values) {
480        int numValues = values.length;
481        mValues = values;
482        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
483        for (int i = 0; i < numValues; ++i) {
484            PropertyValuesHolder valuesHolder = values[i];
485            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
486        }
487        // New property/values/target should cause re-initialization prior to starting
488        mInitialized = false;
489    }
490
491    /**
492     * Returns the values that this ValueAnimator animates between. These values are stored in
493     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
494     * of value objects instead.
495     *
496     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
497     * values, per property, that define the animation.
498     */
499    public PropertyValuesHolder[] getValues() {
500        return mValues;
501    }
502
503    /**
504     * This function is called immediately before processing the first animation
505     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
506     * function is called after that delay ends.
507     * It takes care of the final initialization steps for the
508     * animation.
509     *
510     *  <p>Overrides of this method should call the superclass method to ensure
511     *  that internal mechanisms for the animation are set up correctly.</p>
512     */
513    @CallSuper
514    void initAnimation() {
515        if (!mInitialized) {
516            int numValues = mValues.length;
517            for (int i = 0; i < numValues; ++i) {
518                mValues[i].init();
519            }
520            mInitialized = true;
521        }
522    }
523
524    /**
525     * Sets the length of the animation. The default duration is 300 milliseconds.
526     *
527     * @param duration The length of the animation, in milliseconds. This value cannot
528     * be negative.
529     * @return ValueAnimator The object called with setDuration(). This return
530     * value makes it easier to compose statements together that construct and then set the
531     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
532     */
533    @Override
534    public ValueAnimator setDuration(long duration) {
535        if (duration < 0) {
536            throw new IllegalArgumentException("Animators cannot have negative duration: " +
537                    duration);
538        }
539        mDuration = duration;
540        return this;
541    }
542
543    private long getScaledDuration() {
544        return (long)(mDuration * sDurationScale);
545    }
546
547    /**
548     * Gets the length of the animation. The default duration is 300 milliseconds.
549     *
550     * @return The length of the animation, in milliseconds.
551     */
552    @Override
553    public long getDuration() {
554        return mDuration;
555    }
556
557    @Override
558    public long getTotalDuration() {
559        if (mRepeatCount == INFINITE) {
560            return DURATION_INFINITE;
561        } else {
562            return mStartDelay + (mDuration * (mRepeatCount + 1));
563        }
564    }
565
566    /**
567     * Sets the position of the animation to the specified point in time. This time should
568     * be between 0 and the total duration of the animation, including any repetition. If
569     * the animation has not yet been started, then it will not advance forward after it is
570     * set to this time; it will simply set the time to this value and perform any appropriate
571     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
572     * will set the current playing time to this value and continue playing from that point.
573     *
574     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
575     */
576    public void setCurrentPlayTime(long playTime) {
577        float fraction = mDuration > 0 ? (float) playTime / mDuration : 1;
578        setCurrentFraction(fraction);
579    }
580
581    /**
582     * Sets the position of the animation to the specified fraction. This fraction should
583     * be between 0 and the total fraction of the animation, including any repetition. That is,
584     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
585     * and a value of 2 at the end of a reversing animator that repeats once. If
586     * the animation has not yet been started, then it will not advance forward after it is
587     * set to this fraction; it will simply set the fraction to this value and perform any
588     * appropriate actions based on that fraction. If the animation is already running, then
589     * setCurrentFraction() will set the current fraction to this value and continue
590     * playing from that point. {@link Animator.AnimatorListener} events are not called
591     * due to changing the fraction; those events are only processed while the animation
592     * is running.
593     *
594     * @param fraction The fraction to which the animation is advanced or rewound. Values
595     * outside the range of 0 to the maximum fraction for the animator will be clamped to
596     * the correct range.
597     */
598    public void setCurrentFraction(float fraction) {
599        initAnimation();
600        fraction = clampFraction(fraction);
601        long seekTime = (long) (getScaledDuration() * fraction);
602        long currentTime = AnimationUtils.currentAnimationTimeMillis();
603        mStartTime = currentTime - seekTime;
604        mStartTimeCommitted = true; // do not allow start time to be compensated for jank
605        if (!mRunning) {
606            mSeekFraction = fraction;
607        }
608        mOverallFraction = fraction;
609        final float currentIterationFraction = getCurrentIterationFraction(fraction);
610        animateValue(currentIterationFraction);
611    }
612
613    /**
614     * Calculates current iteration based on the overall fraction. The overall fraction will be
615     * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current
616     * iteration can be derived from it.
617     */
618    private int getCurrentIteration(float fraction) {
619        fraction = clampFraction(fraction);
620        // If the overall fraction is a positive integer, we consider the current iteration to be
621        // complete. In other words, the fraction for the current iteration would be 1, and the
622        // current iteration would be overall fraction - 1.
623        double iteration = Math.floor(fraction);
624        if (fraction == iteration && fraction > 0) {
625            iteration--;
626        }
627        return (int) iteration;
628    }
629
630    /**
631     * Calculates the fraction of the current iteration, taking into account whether the animation
632     * should be played backwards. E.g. When the animation is played backwards in an iteration,
633     * the fraction for that iteration will go from 1f to 0f.
634     */
635    private float getCurrentIterationFraction(float fraction) {
636        fraction = clampFraction(fraction);
637        int iteration = getCurrentIteration(fraction);
638        float currentFraction = fraction - iteration;
639        return shouldPlayBackward(iteration) ? 1f - currentFraction : currentFraction;
640    }
641
642    /**
643     * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite,
644     * no upper bound will be set for the fraction.
645     *
646     * @param fraction fraction to be clamped
647     * @return fraction clamped into the range of [0, mRepeatCount + 1]
648     */
649    private float clampFraction(float fraction) {
650        if (fraction < 0) {
651            fraction = 0;
652        } else if (mRepeatCount != INFINITE) {
653            fraction = Math.min(fraction, mRepeatCount + 1);
654        }
655        return fraction;
656    }
657
658    /**
659     * Calculates the direction of animation playing (i.e. forward or backward), based on 1)
660     * whether the entire animation is being reversed, 2) repeat mode applied to the current
661     * iteration.
662     */
663    private boolean shouldPlayBackward(int iteration) {
664        if (iteration > 0 && mRepeatMode == REVERSE &&
665                (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
666            // if we were seeked to some other iteration in a reversing animator,
667            // figure out the correct direction to start playing based on the iteration
668            if (mReversing) {
669                return (iteration % 2) == 0;
670            } else {
671                return (iteration % 2) != 0;
672            }
673        } else {
674            return mReversing;
675        }
676    }
677
678    /**
679     * Gets the current position of the animation in time, which is equal to the current
680     * time minus the time that the animation started. An animation that is not yet started will
681     * return a value of zero, unless the animation has has its play time set via
682     * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
683     * it will return the time that was set.
684     *
685     * @return The current position in time of the animation.
686     */
687    public long getCurrentPlayTime() {
688        if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
689            return 0;
690        }
691        if (mSeekFraction >= 0) {
692            return (long) (mDuration * mSeekFraction);
693        }
694        float durationScale = sDurationScale == 0 ? 1 : sDurationScale;
695        return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale);
696    }
697
698    /**
699     * The amount of time, in milliseconds, to delay starting the animation after
700     * {@link #start()} is called.
701     *
702     * @return the number of milliseconds to delay running the animation
703     */
704    @Override
705    public long getStartDelay() {
706        return mStartDelay;
707    }
708
709    /**
710     * The amount of time, in milliseconds, to delay starting the animation after
711     * {@link #start()} is called. Note that the start delay should always be non-negative. Any
712     * negative start delay will be clamped to 0 on N and above.
713     *
714     * @param startDelay The amount of the delay, in milliseconds
715     */
716    @Override
717    public void setStartDelay(long startDelay) {
718        // Clamp start delay to non-negative range.
719        if (startDelay < 0) {
720            Log.w(TAG, "Start delay should always be non-negative");
721            startDelay = 0;
722        }
723        mStartDelay = startDelay;
724    }
725
726    /**
727     * The amount of time, in milliseconds, between each frame of the animation. This is a
728     * requested time that the animation will attempt to honor, but the actual delay between
729     * frames may be different, depending on system load and capabilities. This is a static
730     * function because the same delay will be applied to all animations, since they are all
731     * run off of a single timing loop.
732     *
733     * The frame delay may be ignored when the animation system uses an external timing
734     * source, such as the display refresh rate (vsync), to govern animations.
735     *
736     * Note that this method should be called from the same thread that {@link #start()} is
737     * called in order to check the frame delay for that animation. A runtime exception will be
738     * thrown if the calling thread does not have a Looper.
739     *
740     * @return the requested time between frames, in milliseconds
741     */
742    public static long getFrameDelay() {
743        return AnimationHandler.getInstance().getFrameDelay();
744    }
745
746    /**
747     * The amount of time, in milliseconds, between each frame of the animation. This is a
748     * requested time that the animation will attempt to honor, but the actual delay between
749     * frames may be different, depending on system load and capabilities. This is a static
750     * function because the same delay will be applied to all animations, since they are all
751     * run off of a single timing loop.
752     *
753     * The frame delay may be ignored when the animation system uses an external timing
754     * source, such as the display refresh rate (vsync), to govern animations.
755     *
756     * Note that this method should be called from the same thread that {@link #start()} is
757     * called in order to have the new frame delay take effect on that animation. A runtime
758     * exception will be thrown if the calling thread does not have a Looper.
759     *
760     * @param frameDelay the requested time between frames, in milliseconds
761     */
762    public static void setFrameDelay(long frameDelay) {
763        AnimationHandler.getInstance().setFrameDelay(frameDelay);
764    }
765
766    /**
767     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
768     * property being animated. This value is only sensible while the animation is running. The main
769     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
770     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
771     * is called during each animation frame, immediately after the value is calculated.
772     *
773     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
774     * the single property being animated. If there are several properties being animated
775     * (specified by several PropertyValuesHolder objects in the constructor), this function
776     * returns the animated value for the first of those objects.
777     */
778    public Object getAnimatedValue() {
779        if (mValues != null && mValues.length > 0) {
780            return mValues[0].getAnimatedValue();
781        }
782        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
783        return null;
784    }
785
786    /**
787     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
788     * The main purpose for this read-only property is to retrieve the value from the
789     * <code>ValueAnimator</code> during a call to
790     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
791     * is called during each animation frame, immediately after the value is calculated.
792     *
793     * @return animatedValue The value most recently calculated for the named property
794     * by this <code>ValueAnimator</code>.
795     */
796    public Object getAnimatedValue(String propertyName) {
797        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
798        if (valuesHolder != null) {
799            return valuesHolder.getAnimatedValue();
800        } else {
801            // At least avoid crashing if called with bogus propertyName
802            return null;
803        }
804    }
805
806    /**
807     * Sets how many times the animation should be repeated. If the repeat
808     * count is 0, the animation is never repeated. If the repeat count is
809     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
810     * into account. The repeat count is 0 by default.
811     *
812     * @param value the number of times the animation should be repeated
813     */
814    public void setRepeatCount(int value) {
815        mRepeatCount = value;
816    }
817    /**
818     * Defines how many times the animation should repeat. The default value
819     * is 0.
820     *
821     * @return the number of times the animation should repeat, or {@link #INFINITE}
822     */
823    public int getRepeatCount() {
824        return mRepeatCount;
825    }
826
827    /**
828     * Defines what this animation should do when it reaches the end. This
829     * setting is applied only when the repeat count is either greater than
830     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
831     *
832     * @param value {@link #RESTART} or {@link #REVERSE}
833     */
834    public void setRepeatMode(@RepeatMode int value) {
835        mRepeatMode = value;
836    }
837
838    /**
839     * Defines what this animation should do when it reaches the end.
840     *
841     * @return either one of {@link #REVERSE} or {@link #RESTART}
842     */
843    @RepeatMode
844    public int getRepeatMode() {
845        return mRepeatMode;
846    }
847
848    /**
849     * Adds a listener to the set of listeners that are sent update events through the life of
850     * an animation. This method is called on all listeners for every frame of the animation,
851     * after the values for the animation have been calculated.
852     *
853     * @param listener the listener to be added to the current set of listeners for this animation.
854     */
855    public void addUpdateListener(AnimatorUpdateListener listener) {
856        if (mUpdateListeners == null) {
857            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
858        }
859        mUpdateListeners.add(listener);
860    }
861
862    /**
863     * Removes all listeners from the set listening to frame updates for this animation.
864     */
865    public void removeAllUpdateListeners() {
866        if (mUpdateListeners == null) {
867            return;
868        }
869        mUpdateListeners.clear();
870        mUpdateListeners = null;
871    }
872
873    /**
874     * Removes a listener from the set listening to frame updates for this animation.
875     *
876     * @param listener the listener to be removed from the current set of update listeners
877     * for this animation.
878     */
879    public void removeUpdateListener(AnimatorUpdateListener listener) {
880        if (mUpdateListeners == null) {
881            return;
882        }
883        mUpdateListeners.remove(listener);
884        if (mUpdateListeners.size() == 0) {
885            mUpdateListeners = null;
886        }
887    }
888
889
890    /**
891     * The time interpolator used in calculating the elapsed fraction of this animation. The
892     * interpolator determines whether the animation runs with linear or non-linear motion,
893     * such as acceleration and deceleration. The default value is
894     * {@link android.view.animation.AccelerateDecelerateInterpolator}
895     *
896     * @param value the interpolator to be used by this animation. A value of <code>null</code>
897     * will result in linear interpolation.
898     */
899    @Override
900    public void setInterpolator(TimeInterpolator value) {
901        if (value != null) {
902            mInterpolator = value;
903        } else {
904            mInterpolator = new LinearInterpolator();
905        }
906    }
907
908    /**
909     * Returns the timing interpolator that this ValueAnimator uses.
910     *
911     * @return The timing interpolator for this ValueAnimator.
912     */
913    @Override
914    public TimeInterpolator getInterpolator() {
915        return mInterpolator;
916    }
917
918    /**
919     * The type evaluator to be used when calculating the animated values of this animation.
920     * The system will automatically assign a float or int evaluator based on the type
921     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
922     * are not one of these primitive types, or if different evaluation is desired (such as is
923     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
924     * For example, when running an animation on color values, the {@link ArgbEvaluator}
925     * should be used to get correct RGB color interpolation.
926     *
927     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
928     * will be used for that set. If there are several sets of values being animated, which is
929     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
930     * is assigned just to the first PropertyValuesHolder object.</p>
931     *
932     * @param value the evaluator to be used this animation
933     */
934    public void setEvaluator(TypeEvaluator value) {
935        if (value != null && mValues != null && mValues.length > 0) {
936            mValues[0].setEvaluator(value);
937        }
938    }
939
940    private void notifyStartListeners() {
941        if (mListeners != null && !mStartListenersCalled) {
942            ArrayList<AnimatorListener> tmpListeners =
943                    (ArrayList<AnimatorListener>) mListeners.clone();
944            int numListeners = tmpListeners.size();
945            for (int i = 0; i < numListeners; ++i) {
946                tmpListeners.get(i).onAnimationStart(this);
947            }
948        }
949        mStartListenersCalled = true;
950    }
951
952    /**
953     * Start the animation playing. This version of start() takes a boolean flag that indicates
954     * whether the animation should play in reverse. The flag is usually false, but may be set
955     * to true if called from the reverse() method.
956     *
957     * <p>The animation started by calling this method will be run on the thread that called
958     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
959     * this is not the case). Also, if the animation will animate
960     * properties of objects in the view hierarchy, then the calling thread should be the UI
961     * thread for that view hierarchy.</p>
962     *
963     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
964     */
965    private void start(boolean playBackwards) {
966        if (Looper.myLooper() == null) {
967            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
968        }
969        mReversing = playBackwards;
970        // Special case: reversing from seek-to-0 should act as if not seeked at all.
971        if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) {
972            if (mRepeatCount == INFINITE) {
973                // Calculate the fraction of the current iteration.
974                float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction));
975                mSeekFraction = 1 - fraction;
976            } else {
977                mSeekFraction = 1 + mRepeatCount - mSeekFraction;
978            }
979        }
980        mStarted = true;
981        mPaused = false;
982        mRunning = false;
983        AnimationHandler animationHandler = AnimationHandler.getInstance();
984        animationHandler.addAnimationFrameCallback(this, (long) (mStartDelay * sDurationScale));
985
986        if (mStartDelay == 0 || mSeekFraction >= 0) {
987            // If there's no start delay, init the animation and notify start listeners right away
988            // to be consistent with the previous behavior. Otherwise, postpone this until the first
989            // frame after the start delay.
990            startAnimation();
991            if (mSeekFraction == -1) {
992                // No seek, start at play time 0. Note that the reason we are not using fraction 0
993                // is because for animations with 0 duration, we want to be consistent with pre-N
994                // behavior: skip to the final value immediately.
995                setCurrentPlayTime(0);
996            } else {
997                setCurrentFraction(mSeekFraction);
998            }
999        }
1000    }
1001
1002    @Override
1003    public void start() {
1004        start(false);
1005    }
1006
1007    @Override
1008    public void cancel() {
1009        if (Looper.myLooper() == null) {
1010            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1011        }
1012
1013        // If end has already been requested, through a previous end() or cancel() call, no-op
1014        // until animation starts again.
1015        if (mAnimationEndRequested) {
1016            return;
1017        }
1018
1019        // Only cancel if the animation is actually running or has been started and is about
1020        // to run
1021        // Only notify listeners if the animator has actually started
1022        if ((mStarted || mRunning) && mListeners != null) {
1023            if (!mRunning) {
1024                // If it's not yet running, then start listeners weren't called. Call them now.
1025                notifyStartListeners();
1026            }
1027            ArrayList<AnimatorListener> tmpListeners =
1028                    (ArrayList<AnimatorListener>) mListeners.clone();
1029            for (AnimatorListener listener : tmpListeners) {
1030                listener.onAnimationCancel(this);
1031            }
1032        }
1033        endAnimation();
1034
1035    }
1036
1037    @Override
1038    public void end() {
1039        if (Looper.myLooper() == null) {
1040            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1041        }
1042        if (!mRunning) {
1043            // Special case if the animation has not yet started; get it ready for ending
1044            startAnimation();
1045            mStarted = true;
1046        } else if (!mInitialized) {
1047            initAnimation();
1048        }
1049        animateValue(shouldPlayBackward(mRepeatCount) ? 0f : 1f);
1050        endAnimation();
1051    }
1052
1053    @Override
1054    public void resume() {
1055        if (Looper.myLooper() == null) {
1056            throw new AndroidRuntimeException("Animators may only be resumed from the same " +
1057                    "thread that the animator was started on");
1058        }
1059        if (mPaused && !mResumed) {
1060            mResumed = true;
1061            if (mPauseTime > 0) {
1062                AnimationHandler handler = AnimationHandler.getInstance();
1063                handler.addAnimationFrameCallback(this, 0);
1064            }
1065        }
1066        super.resume();
1067    }
1068
1069    @Override
1070    public void pause() {
1071        boolean previouslyPaused = mPaused;
1072        super.pause();
1073        if (!previouslyPaused && mPaused) {
1074            mPauseTime = -1;
1075            mResumed = false;
1076        }
1077    }
1078
1079    @Override
1080    public boolean isRunning() {
1081        return mRunning;
1082    }
1083
1084    @Override
1085    public boolean isStarted() {
1086        return mStarted;
1087    }
1088
1089    /**
1090     * Plays the ValueAnimator in reverse. If the animation is already running,
1091     * it will stop itself and play backwards from the point reached when reverse was called.
1092     * If the animation is not currently running, then it will start from the end and
1093     * play backwards. This behavior is only set for the current animation; future playing
1094     * of the animation will use the default behavior of playing forward.
1095     */
1096    @Override
1097    public void reverse() {
1098        if (mRunning) {
1099            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1100            long currentPlayTime = currentTime - mStartTime;
1101            long timeLeft = getScaledDuration() - currentPlayTime;
1102            mStartTime = currentTime - timeLeft;
1103            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1104            mReversing = !mReversing;
1105        } else if (mStarted) {
1106            end();
1107        } else {
1108            start(true);
1109        }
1110    }
1111
1112    /**
1113     * @hide
1114     */
1115    @Override
1116    public boolean canReverse() {
1117        return true;
1118    }
1119
1120    /**
1121     * Called internally to end an animation by removing it from the animations list. Must be
1122     * called on the UI thread.
1123     */
1124    private void endAnimation() {
1125        if (mAnimationEndRequested) {
1126            return;
1127        }
1128        AnimationHandler handler = AnimationHandler.getInstance();
1129        handler.removeCallback(this);
1130
1131        mAnimationEndRequested = true;
1132        mPaused = false;
1133        if ((mStarted || mRunning) && mListeners != null) {
1134            if (!mRunning) {
1135                // If it's not yet running, then start listeners weren't called. Call them now.
1136                notifyStartListeners();
1137             }
1138            ArrayList<AnimatorListener> tmpListeners =
1139                    (ArrayList<AnimatorListener>) mListeners.clone();
1140            int numListeners = tmpListeners.size();
1141            for (int i = 0; i < numListeners; ++i) {
1142                tmpListeners.get(i).onAnimationEnd(this);
1143            }
1144        }
1145        mRunning = false;
1146        mStarted = false;
1147        mStartListenersCalled = false;
1148        mReversing = false;
1149        mLastFrameTime = 0;
1150        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1151            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1152                    System.identityHashCode(this));
1153        }
1154    }
1155
1156    /**
1157     * Called internally to start an animation by adding it to the active animations list. Must be
1158     * called on the UI thread.
1159     */
1160    private void startAnimation() {
1161        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1162            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1163                    System.identityHashCode(this));
1164        }
1165
1166        mAnimationEndRequested = false;
1167        initAnimation();
1168        mRunning = true;
1169        if (mSeekFraction >= 0) {
1170            mOverallFraction = mSeekFraction;
1171        } else {
1172            mOverallFraction = 0f;
1173        }
1174        if (mListeners != null) {
1175            notifyStartListeners();
1176        }
1177    }
1178
1179    /**
1180     * Returns the name of this animator for debugging purposes.
1181     */
1182    String getNameForTrace() {
1183        return "animator";
1184    }
1185
1186    /**
1187     * Applies an adjustment to the animation to compensate for jank between when
1188     * the animation first ran and when the frame was drawn.
1189     * @hide
1190     */
1191    public void commitAnimationFrame(long frameTime) {
1192        if (!mStartTimeCommitted) {
1193            mStartTimeCommitted = true;
1194            long adjustment = frameTime - mLastFrameTime;
1195            if (adjustment > 0) {
1196                mStartTime += adjustment;
1197                if (DEBUG) {
1198                    Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1199                }
1200            }
1201        }
1202    }
1203
1204    /**
1205     * This internal function processes a single animation frame for a given animation. The
1206     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1207     * elapsed duration, and therefore
1208     * the elapsed fraction, of the animation. The return value indicates whether the animation
1209     * should be ended (which happens when the elapsed time of the animation exceeds the
1210     * animation's duration, including the repeatCount).
1211     *
1212     * @param currentTime The current time, as tracked by the static timing handler
1213     * @return true if the animation's duration, including any repetitions due to
1214     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1215     */
1216    boolean animateBasedOnTime(long currentTime) {
1217        boolean done = false;
1218        if (mRunning) {
1219            final long scaledDuration = getScaledDuration();
1220            final float fraction = scaledDuration > 0 ?
1221                    (float)(currentTime - mStartTime) / scaledDuration : 1f;
1222            final float lastFraction = mOverallFraction;
1223            final boolean newIteration = (int) fraction > (int) lastFraction;
1224            final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) &&
1225                    (mRepeatCount != INFINITE);
1226            if (scaledDuration == 0) {
1227                // 0 duration animator, ignore the repeat count and skip to the end
1228                done = true;
1229            } else if (newIteration && !lastIterationFinished) {
1230                // Time to repeat
1231                if (mListeners != null) {
1232                    int numListeners = mListeners.size();
1233                    for (int i = 0; i < numListeners; ++i) {
1234                        mListeners.get(i).onAnimationRepeat(this);
1235                    }
1236                }
1237            } else if (lastIterationFinished) {
1238                done = true;
1239            }
1240            mOverallFraction = clampFraction(fraction);
1241            float currentIterationFraction = getCurrentIterationFraction(mOverallFraction);
1242            animateValue(currentIterationFraction);
1243        }
1244        return done;
1245    }
1246
1247    /**
1248     * Processes a frame of the animation, adjusting the start time if needed.
1249     *
1250     * @param frameTime The frame time.
1251     * @return true if the animation has ended.
1252     * @hide
1253     */
1254    public final void doAnimationFrame(long frameTime) {
1255        AnimationHandler handler = AnimationHandler.getInstance();
1256        if (mLastFrameTime == 0) {
1257            // First frame
1258            handler.addOneShotCommitCallback(this);
1259            if (mStartDelay > 0) {
1260                startAnimation();
1261            }
1262            if (mSeekFraction < 0) {
1263                mStartTime = frameTime;
1264            } else {
1265                long seekTime = (long) (getScaledDuration() * mSeekFraction);
1266                mStartTime = frameTime - seekTime;
1267                mSeekFraction = -1;
1268            }
1269            mStartTimeCommitted = false; // allow start time to be compensated for jank
1270        }
1271        mLastFrameTime = frameTime;
1272        if (mPaused) {
1273            mPauseTime = frameTime;
1274            handler.removeCallback(this);
1275            return;
1276        } else if (mResumed) {
1277            mResumed = false;
1278            if (mPauseTime > 0) {
1279                // Offset by the duration that the animation was paused
1280                mStartTime += (frameTime - mPauseTime);
1281                mStartTimeCommitted = false; // allow start time to be compensated for jank
1282            }
1283            handler.addOneShotCommitCallback(this);
1284        }
1285        // The frame time might be before the start time during the first frame of
1286        // an animation.  The "current time" must always be on or after the start
1287        // time to avoid animating frames at negative time intervals.  In practice, this
1288        // is very rare and only happens when seeking backwards.
1289        final long currentTime = Math.max(frameTime, mStartTime);
1290        boolean finished = animateBasedOnTime(currentTime);
1291
1292        if (finished) {
1293            endAnimation();
1294        }
1295    }
1296
1297    /**
1298     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1299     * the most recent frame update on the animation.
1300     *
1301     * @return Elapsed/interpolated fraction of the animation.
1302     */
1303    public float getAnimatedFraction() {
1304        return mCurrentFraction;
1305    }
1306
1307    /**
1308     * This method is called with the elapsed fraction of the animation during every
1309     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1310     * and then into an animated value (from the evaluator. The function is called mostly during
1311     * animation updates, but it is also called when the <code>end()</code>
1312     * function is called, to set the final value on the property.
1313     *
1314     * <p>Overrides of this method must call the superclass to perform the calculation
1315     * of the animated value.</p>
1316     *
1317     * @param fraction The elapsed fraction of the animation.
1318     */
1319    @CallSuper
1320    void animateValue(float fraction) {
1321        fraction = mInterpolator.getInterpolation(fraction);
1322        mCurrentFraction = fraction;
1323        int numValues = mValues.length;
1324        for (int i = 0; i < numValues; ++i) {
1325            mValues[i].calculateValue(fraction);
1326        }
1327        if (mUpdateListeners != null) {
1328            int numListeners = mUpdateListeners.size();
1329            for (int i = 0; i < numListeners; ++i) {
1330                mUpdateListeners.get(i).onAnimationUpdate(this);
1331            }
1332        }
1333    }
1334
1335    @Override
1336    public ValueAnimator clone() {
1337        final ValueAnimator anim = (ValueAnimator) super.clone();
1338        if (mUpdateListeners != null) {
1339            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1340        }
1341        anim.mSeekFraction = -1;
1342        anim.mReversing = false;
1343        anim.mInitialized = false;
1344        anim.mStarted = false;
1345        anim.mRunning = false;
1346        anim.mPaused = false;
1347        anim.mResumed = false;
1348        anim.mStartListenersCalled = false;
1349        anim.mStartTime = 0;
1350        anim.mStartTimeCommitted = false;
1351        anim.mAnimationEndRequested = false;
1352        anim.mPauseTime = 0;
1353        anim.mLastFrameTime = 0;
1354        anim.mOverallFraction = 0;
1355        anim.mCurrentFraction = 0;
1356
1357        PropertyValuesHolder[] oldValues = mValues;
1358        if (oldValues != null) {
1359            int numValues = oldValues.length;
1360            anim.mValues = new PropertyValuesHolder[numValues];
1361            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1362            for (int i = 0; i < numValues; ++i) {
1363                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1364                anim.mValues[i] = newValuesHolder;
1365                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1366            }
1367        }
1368        return anim;
1369    }
1370
1371    /**
1372     * Implementors of this interface can add themselves as update listeners
1373     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1374     * frame, after the current frame's values have been calculated for that
1375     * <code>ValueAnimator</code>.
1376     */
1377    public static interface AnimatorUpdateListener {
1378        /**
1379         * <p>Notifies the occurrence of another frame of the animation.</p>
1380         *
1381         * @param animation The animation which was repeated.
1382         */
1383        void onAnimationUpdate(ValueAnimator animation);
1384
1385    }
1386
1387    /**
1388     * Return the number of animations currently running.
1389     *
1390     * Used by StrictMode internally to annotate violations.
1391     * May be called on arbitrary threads!
1392     *
1393     * @hide
1394     */
1395    public static int getCurrentAnimationsCount() {
1396        return AnimationHandler.getAnimationCount();
1397    }
1398
1399    @Override
1400    public String toString() {
1401        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1402        if (mValues != null) {
1403            for (int i = 0; i < mValues.length; ++i) {
1404                returnVal += "\n    " + mValues[i].toString();
1405            }
1406        }
1407        return returnVal;
1408    }
1409
1410    /**
1411     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1412     * the UI thread. This is a hint that informs the ValueAnimator that it is
1413     * OK to run the animation off-thread, however ValueAnimator may decide
1414     * that it must run the animation on the UI thread anyway. For example if there
1415     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1416     * regardless of the value of this hint.</p>
1417     *
1418     * <p>Regardless of whether or not the animation runs asynchronously, all
1419     * listener callbacks will be called on the UI thread.</p>
1420     *
1421     * <p>To be able to use this hint the following must be true:</p>
1422     * <ol>
1423     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1424     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1425     *    to change values, duration, delay, etc... may be ignored.</li>
1426     * <li>Lifecycle callback events may be asynchronous. Events such as
1427     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1428     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1429     *    as they must be posted back to the UI thread, and any actions performed
1430     *    by those callbacks (such as starting new animations) will not happen
1431     *    in the same frame.</li>
1432     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1433     *    may be asynchronous. It is guaranteed that all state changes that are
1434     *    performed on the UI thread in the same frame will be applied as a single
1435     *    atomic update, however that frame may be the current frame,
1436     *    the next frame, or some future frame. This will also impact the observed
1437     *    state of the Animator. For example, {@link #isStarted()} may still return true
1438     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1439     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1440     *    for this reason.</li>
1441     * </ol>
1442     * @hide
1443     */
1444    @Override
1445    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1446        // It is up to subclasses to support this, if they can.
1447    }
1448}
1449