ValueAnimator.java revision 66d48566537bd2d037e1eff919542731b93fa85c
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.annotation.CallSuper;
20import android.os.Looper;
21import android.os.Trace;
22import android.util.AndroidRuntimeException;
23import android.util.Log;
24import android.view.animation.AccelerateDecelerateInterpolator;
25import android.view.animation.AnimationUtils;
26import android.view.animation.LinearInterpolator;
27
28import java.util.ArrayList;
29import java.util.HashMap;
30
31/**
32 * This class provides a simple timing engine for running animations
33 * which calculate animated values and set them on target objects.
34 *
35 * <p>There is a single timing pulse that all animations use. It runs in a
36 * custom handler to ensure that property changes happen on the UI thread.</p>
37 *
38 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
39 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
40 * out of an animation. This behavior can be changed by calling
41 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
42 *
43 * <p>Animators can be created from either code or resource files. Here is an example
44 * of a ValueAnimator resource file:</p>
45 *
46 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
47 *
48 * <p>It is also possible to use a combination of {@link PropertyValuesHolder} and
49 * {@link Keyframe} resource tags to create a multi-step animation.
50 * Note that you can specify explicit fractional values (from 0 to 1) for
51 * each keyframe to determine when, in the overall duration, the animation should arrive at that
52 * value. Alternatively, you can leave the fractions off and the keyframes will be equally
53 * distributed within the total duration:</p>
54 *
55 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
56 * ValueAnimatorKeyframeResources}
57 *
58 * <div class="special reference">
59 * <h3>Developer Guides</h3>
60 * <p>For more information about animating with {@code ValueAnimator}, read the
61 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
62 * Animation</a> developer guide.</p>
63 * </div>
64 */
65@SuppressWarnings("unchecked")
66public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
67    private static final String TAG = "ValueAnimator";
68    private static final boolean DEBUG = false;
69
70    /**
71     * Internal constants
72     */
73    private static float sDurationScale = 1.0f;
74
75    /**
76     * Internal variables
77     * NOTE: This object implements the clone() method, making a deep copy of any referenced
78     * objects. As other non-trivial fields are added to this class, make sure to add logic
79     * to clone() to make deep copies of them.
80     */
81
82    /**
83     * The first time that the animation's animateFrame() method is called. This time is used to
84     * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
85     * to animateFrame().
86     *
87     * Whenever mStartTime is set, you must also update mStartTimeCommitted.
88     */
89    long mStartTime;
90
91    /**
92     * When true, the start time has been firmly committed as a chosen reference point in
93     * time by which the progress of the animation will be evaluated.  When false, the
94     * start time may be updated when the first animation frame is committed so as
95     * to compensate for jank that may have occurred between when the start time was
96     * initialized and when the frame was actually drawn.
97     *
98     * This flag is generally set to false during the first frame of the animation
99     * when the animation playing state transitions from STOPPED to RUNNING or
100     * resumes after having been paused.  This flag is set to true when the start time
101     * is firmly committed and should not be further compensated for jank.
102     */
103    boolean mStartTimeCommitted;
104
105    /**
106     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
107     * to a value.
108     */
109    float mSeekFraction = -1;
110
111    /**
112     * Set on the next frame after pause() is called, used to calculate a new startTime
113     * or delayStartTime which allows the animator to continue from the point at which
114     * it was paused. If negative, has not yet been set.
115     */
116    private long mPauseTime;
117
118    /**
119     * Set when an animator is resumed. This triggers logic in the next frame which
120     * actually resumes the animator.
121     */
122    private boolean mResumed = false;
123
124    // The time interpolator to be used if none is set on the animation
125    private static final TimeInterpolator sDefaultInterpolator =
126            new AccelerateDecelerateInterpolator();
127
128    /**
129     * Flag to indicate whether this animator is playing in reverse mode, specifically
130     * by being started or interrupted by a call to reverse(). This flag is different than
131     * mPlayingBackwards, which indicates merely whether the current iteration of the
132     * animator is playing in reverse. It is used in corner cases to determine proper end
133     * behavior.
134     */
135    private boolean mReversing;
136
137    /**
138     * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1
139     */
140    private float mOverallFraction = 0f;
141
142    /**
143     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
144     * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration.
145     */
146    private float mCurrentFraction = 0f;
147
148    /**
149     * Tracks the time (in milliseconds) when the last frame arrived.
150     */
151    private long mLastFrameTime = 0;
152
153    /**
154     * Additional playing state to indicate whether an animator has been start()'d. There is
155     * some lag between a call to start() and the first animation frame. We should still note
156     * that the animation has been started, even if it's first animation frame has not yet
157     * happened, and reflect that state in isRunning().
158     * Note that delayed animations are different: they are not started until their first
159     * animation frame, which occurs after their delay elapses.
160     */
161    private boolean mRunning = false;
162
163    /**
164     * Additional playing state to indicate whether an animator has been start()'d, whether or
165     * not there is a nonzero startDelay.
166     */
167    private boolean mStarted = false;
168
169    /**
170     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
171     * complex to keep track of since we notify listeners at different times depending on
172     * startDelay and whether start() was called before end().
173     */
174    private boolean mStartListenersCalled = false;
175
176    /**
177     * Flag that denotes whether the animation is set up and ready to go. Used to
178     * set up animation that has not yet been started.
179     */
180    boolean mInitialized = false;
181
182    /**
183     * Flag that tracks whether animation has been requested to end.
184     */
185    private boolean mAnimationEndRequested = false;
186
187    //
188    // Backing variables
189    //
190
191    // How long the animation should last in ms
192    private long mDuration = 300;
193
194    // The amount of time in ms to delay starting the animation after start() is called. Note
195    // that this start delay is unscaled. When there is a duration scale set on the animator, the
196    // scaling factor will be applied to this delay.
197    private long mStartDelay = 0;
198
199    // The number of times the animation will repeat. The default is 0, which means the animation
200    // will play only once
201    private int mRepeatCount = 0;
202
203    /**
204     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
205     * animation will start from the beginning on every new cycle. REVERSE means the animation
206     * will reverse directions on each iteration.
207     */
208    private int mRepeatMode = RESTART;
209
210    /**
211     * The time interpolator to be used. The elapsed fraction of the animation will be passed
212     * through this interpolator to calculate the interpolated fraction, which is then used to
213     * calculate the animated values.
214     */
215    private TimeInterpolator mInterpolator = sDefaultInterpolator;
216
217    /**
218     * The set of listeners to be sent events through the life of an animation.
219     */
220    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
221
222    /**
223     * The property/value sets being animated.
224     */
225    PropertyValuesHolder[] mValues;
226
227    /**
228     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
229     * by property name during calls to getAnimatedValue(String).
230     */
231    HashMap<String, PropertyValuesHolder> mValuesMap;
232
233    /**
234     * Public constants
235     */
236
237    /**
238     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
239     * or a positive value, the animation restarts from the beginning.
240     */
241    public static final int RESTART = 1;
242    /**
243     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
244     * or a positive value, the animation reverses direction on every iteration.
245     */
246    public static final int REVERSE = 2;
247    /**
248     * This value used used with the {@link #setRepeatCount(int)} property to repeat
249     * the animation indefinitely.
250     */
251    public static final int INFINITE = -1;
252
253    /**
254     * @hide
255     */
256    public static void setDurationScale(float durationScale) {
257        sDurationScale = durationScale;
258    }
259
260    /**
261     * @hide
262     */
263    public static float getDurationScale() {
264        return sDurationScale;
265    }
266
267    /**
268     * Creates a new ValueAnimator object. This default constructor is primarily for
269     * use internally; the factory methods which take parameters are more generally
270     * useful.
271     */
272    public ValueAnimator() {
273    }
274
275    /**
276     * Constructs and returns a ValueAnimator that animates between int values. A single
277     * value implies that that value is the one being animated to. However, this is not typically
278     * useful in a ValueAnimator object because there is no way for the object to determine the
279     * starting value for the animation (unlike ObjectAnimator, which can derive that value
280     * from the target object and property being animated). Therefore, there should typically
281     * be two or more values.
282     *
283     * @param values A set of values that the animation will animate between over time.
284     * @return A ValueAnimator object that is set up to animate between the given values.
285     */
286    public static ValueAnimator ofInt(int... values) {
287        ValueAnimator anim = new ValueAnimator();
288        anim.setIntValues(values);
289        return anim;
290    }
291
292    /**
293     * Constructs and returns a ValueAnimator that animates between color values. A single
294     * value implies that that value is the one being animated to. However, this is not typically
295     * useful in a ValueAnimator object because there is no way for the object to determine the
296     * starting value for the animation (unlike ObjectAnimator, which can derive that value
297     * from the target object and property being animated). Therefore, there should typically
298     * be two or more values.
299     *
300     * @param values A set of values that the animation will animate between over time.
301     * @return A ValueAnimator object that is set up to animate between the given values.
302     */
303    public static ValueAnimator ofArgb(int... values) {
304        ValueAnimator anim = new ValueAnimator();
305        anim.setIntValues(values);
306        anim.setEvaluator(ArgbEvaluator.getInstance());
307        return anim;
308    }
309
310    /**
311     * Constructs and returns a ValueAnimator that animates between float values. A single
312     * value implies that that value is the one being animated to. However, this is not typically
313     * useful in a ValueAnimator object because there is no way for the object to determine the
314     * starting value for the animation (unlike ObjectAnimator, which can derive that value
315     * from the target object and property being animated). Therefore, there should typically
316     * be two or more values.
317     *
318     * @param values A set of values that the animation will animate between over time.
319     * @return A ValueAnimator object that is set up to animate between the given values.
320     */
321    public static ValueAnimator ofFloat(float... values) {
322        ValueAnimator anim = new ValueAnimator();
323        anim.setFloatValues(values);
324        return anim;
325    }
326
327    /**
328     * Constructs and returns a ValueAnimator that animates between the values
329     * specified in the PropertyValuesHolder objects.
330     *
331     * @param values A set of PropertyValuesHolder objects whose values will be animated
332     * between over time.
333     * @return A ValueAnimator object that is set up to animate between the given values.
334     */
335    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
336        ValueAnimator anim = new ValueAnimator();
337        anim.setValues(values);
338        return anim;
339    }
340    /**
341     * Constructs and returns a ValueAnimator that animates between Object values. A single
342     * value implies that that value is the one being animated to. However, this is not typically
343     * useful in a ValueAnimator object because there is no way for the object to determine the
344     * starting value for the animation (unlike ObjectAnimator, which can derive that value
345     * from the target object and property being animated). Therefore, there should typically
346     * be two or more values.
347     *
348     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
349     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
350     * to perform that interpolation.
351     *
352     * @param evaluator A TypeEvaluator that will be called on each animation frame to
353     * provide the ncessry interpolation between the Object values to derive the animated
354     * value.
355     * @param values A set of values that the animation will animate between over time.
356     * @return A ValueAnimator object that is set up to animate between the given values.
357     */
358    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
359        ValueAnimator anim = new ValueAnimator();
360        anim.setObjectValues(values);
361        anim.setEvaluator(evaluator);
362        return anim;
363    }
364
365    /**
366     * Sets int values that will be animated between. A single
367     * value implies that that value is the one being animated to. However, this is not typically
368     * useful in a ValueAnimator object because there is no way for the object to determine the
369     * starting value for the animation (unlike ObjectAnimator, which can derive that value
370     * from the target object and property being animated). Therefore, there should typically
371     * be two or more values.
372     *
373     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
374     * than one PropertyValuesHolder object, this method will set the values for the first
375     * of those objects.</p>
376     *
377     * @param values A set of values that the animation will animate between over time.
378     */
379    public void setIntValues(int... values) {
380        if (values == null || values.length == 0) {
381            return;
382        }
383        if (mValues == null || mValues.length == 0) {
384            setValues(PropertyValuesHolder.ofInt("", values));
385        } else {
386            PropertyValuesHolder valuesHolder = mValues[0];
387            valuesHolder.setIntValues(values);
388        }
389        // New property/values/target should cause re-initialization prior to starting
390        mInitialized = false;
391    }
392
393    /**
394     * Sets float values that will be animated between. A single
395     * value implies that that value is the one being animated to. However, this is not typically
396     * useful in a ValueAnimator object because there is no way for the object to determine the
397     * starting value for the animation (unlike ObjectAnimator, which can derive that value
398     * from the target object and property being animated). Therefore, there should typically
399     * be two or more values.
400     *
401     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
402     * than one PropertyValuesHolder object, this method will set the values for the first
403     * of those objects.</p>
404     *
405     * @param values A set of values that the animation will animate between over time.
406     */
407    public void setFloatValues(float... values) {
408        if (values == null || values.length == 0) {
409            return;
410        }
411        if (mValues == null || mValues.length == 0) {
412            setValues(PropertyValuesHolder.ofFloat("", values));
413        } else {
414            PropertyValuesHolder valuesHolder = mValues[0];
415            valuesHolder.setFloatValues(values);
416        }
417        // New property/values/target should cause re-initialization prior to starting
418        mInitialized = false;
419    }
420
421    /**
422     * Sets the values to animate between for this animation. A single
423     * value implies that that value is the one being animated to. However, this is not typically
424     * useful in a ValueAnimator object because there is no way for the object to determine the
425     * starting value for the animation (unlike ObjectAnimator, which can derive that value
426     * from the target object and property being animated). Therefore, there should typically
427     * be two or more values.
428     *
429     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
430     * than one PropertyValuesHolder object, this method will set the values for the first
431     * of those objects.</p>
432     *
433     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
434     * between these value objects. ValueAnimator only knows how to interpolate between the
435     * primitive types specified in the other setValues() methods.</p>
436     *
437     * @param values The set of values to animate between.
438     */
439    public void setObjectValues(Object... values) {
440        if (values == null || values.length == 0) {
441            return;
442        }
443        if (mValues == null || mValues.length == 0) {
444            setValues(PropertyValuesHolder.ofObject("", null, values));
445        } else {
446            PropertyValuesHolder valuesHolder = mValues[0];
447            valuesHolder.setObjectValues(values);
448        }
449        // New property/values/target should cause re-initialization prior to starting
450        mInitialized = false;
451    }
452
453    /**
454     * Sets the values, per property, being animated between. This function is called internally
455     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
456     * be constructed without values and this method can be called to set the values manually
457     * instead.
458     *
459     * @param values The set of values, per property, being animated between.
460     */
461    public void setValues(PropertyValuesHolder... values) {
462        int numValues = values.length;
463        mValues = values;
464        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
465        for (int i = 0; i < numValues; ++i) {
466            PropertyValuesHolder valuesHolder = values[i];
467            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
468        }
469        // New property/values/target should cause re-initialization prior to starting
470        mInitialized = false;
471    }
472
473    /**
474     * Returns the values that this ValueAnimator animates between. These values are stored in
475     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
476     * of value objects instead.
477     *
478     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
479     * values, per property, that define the animation.
480     */
481    public PropertyValuesHolder[] getValues() {
482        return mValues;
483    }
484
485    /**
486     * This function is called immediately before processing the first animation
487     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
488     * function is called after that delay ends.
489     * It takes care of the final initialization steps for the
490     * animation.
491     *
492     *  <p>Overrides of this method should call the superclass method to ensure
493     *  that internal mechanisms for the animation are set up correctly.</p>
494     */
495    @CallSuper
496    void initAnimation() {
497        if (!mInitialized) {
498            int numValues = mValues.length;
499            for (int i = 0; i < numValues; ++i) {
500                mValues[i].init();
501            }
502            mInitialized = true;
503        }
504    }
505
506    /**
507     * Sets the length of the animation. The default duration is 300 milliseconds.
508     *
509     * @param duration The length of the animation, in milliseconds. This value cannot
510     * be negative.
511     * @return ValueAnimator The object called with setDuration(). This return
512     * value makes it easier to compose statements together that construct and then set the
513     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
514     */
515    @Override
516    public ValueAnimator setDuration(long duration) {
517        if (duration < 0) {
518            throw new IllegalArgumentException("Animators cannot have negative duration: " +
519                    duration);
520        }
521        mDuration = duration;
522        return this;
523    }
524
525    private long getScaledDuration() {
526        return (long)(mDuration * sDurationScale);
527    }
528
529    /**
530     * Gets the length of the animation. The default duration is 300 milliseconds.
531     *
532     * @return The length of the animation, in milliseconds.
533     */
534    @Override
535    public long getDuration() {
536        return mDuration;
537    }
538
539    @Override
540    public long getTotalDuration() {
541        if (mRepeatCount == INFINITE) {
542            return DURATION_INFINITE;
543        } else {
544            return mStartDelay + (mDuration * (mRepeatCount + 1));
545        }
546    }
547
548    /**
549     * Sets the position of the animation to the specified point in time. This time should
550     * be between 0 and the total duration of the animation, including any repetition. If
551     * the animation has not yet been started, then it will not advance forward after it is
552     * set to this time; it will simply set the time to this value and perform any appropriate
553     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
554     * will set the current playing time to this value and continue playing from that point.
555     *
556     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
557     */
558    public void setCurrentPlayTime(long playTime) {
559        float fraction = mDuration > 0 ? (float) playTime / mDuration : 1;
560        setCurrentFraction(fraction);
561    }
562
563    /**
564     * Sets the position of the animation to the specified fraction. This fraction should
565     * be between 0 and the total fraction of the animation, including any repetition. That is,
566     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
567     * and a value of 2 at the end of a reversing animator that repeats once. If
568     * the animation has not yet been started, then it will not advance forward after it is
569     * set to this fraction; it will simply set the fraction to this value and perform any
570     * appropriate actions based on that fraction. If the animation is already running, then
571     * setCurrentFraction() will set the current fraction to this value and continue
572     * playing from that point. {@link Animator.AnimatorListener} events are not called
573     * due to changing the fraction; those events are only processed while the animation
574     * is running.
575     *
576     * @param fraction The fraction to which the animation is advanced or rewound. Values
577     * outside the range of 0 to the maximum fraction for the animator will be clamped to
578     * the correct range.
579     */
580    public void setCurrentFraction(float fraction) {
581        initAnimation();
582        fraction = clampFraction(fraction);
583        long seekTime = (long) (getScaledDuration() * fraction);
584        long currentTime = AnimationUtils.currentAnimationTimeMillis();
585        mStartTime = currentTime - seekTime;
586        mStartTimeCommitted = true; // do not allow start time to be compensated for jank
587        if (!mRunning) {
588            mSeekFraction = fraction;
589        }
590        mOverallFraction = fraction;
591        final float currentIterationFraction = getCurrentIterationFraction(fraction);
592        animateValue(currentIterationFraction);
593    }
594
595    /**
596     * Calculates current iteration based on the overall fraction. The overall fraction will be
597     * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current
598     * iteration can be derived from it.
599     */
600    private int getCurrentIteration(float fraction) {
601        fraction = clampFraction(fraction);
602        // If the overall fraction is a positive integer, we consider the current iteration to be
603        // complete. In other words, the fraction for the current iteration would be 1, and the
604        // current iteration would be overall fraction - 1.
605        double iteration = Math.floor(fraction);
606        if (fraction == iteration && fraction > 0) {
607            iteration--;
608        }
609        return (int) iteration;
610    }
611
612    /**
613     * Calculates the fraction of the current iteration, taking into account whether the animation
614     * should be played backwards. E.g. When the animation is played backwards in an iteration,
615     * the fraction for that iteration will go from 1f to 0f.
616     */
617    private float getCurrentIterationFraction(float fraction) {
618        fraction = clampFraction(fraction);
619        int iteration = getCurrentIteration(fraction);
620        float currentFraction = fraction - iteration;
621        return shouldPlayBackward(iteration) ? 1f - currentFraction : currentFraction;
622    }
623
624    /**
625     * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite,
626     * no upper bound will be set for the fraction.
627     *
628     * @param fraction fraction to be clamped
629     * @return fraction clamped into the range of [0, mRepeatCount + 1]
630     */
631    private float clampFraction(float fraction) {
632        if (fraction < 0) {
633            fraction = 0;
634        } else if (mRepeatCount != INFINITE) {
635            fraction = Math.min(fraction, mRepeatCount + 1);
636        }
637        return fraction;
638    }
639
640    /**
641     * Calculates the direction of animation playing (i.e. forward or backward), based on 1)
642     * whether the entire animation is being reversed, 2) repeat mode applied to the current
643     * iteration.
644     */
645    private boolean shouldPlayBackward(int iteration) {
646        if (iteration > 0 && mRepeatMode == REVERSE &&
647                (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
648            // if we were seeked to some other iteration in a reversing animator,
649            // figure out the correct direction to start playing based on the iteration
650            if (mReversing) {
651                return (iteration % 2) == 0;
652            } else {
653                return (iteration % 2) != 0;
654            }
655        } else {
656            return mReversing;
657        }
658    }
659
660    /**
661     * Gets the current position of the animation in time, which is equal to the current
662     * time minus the time that the animation started. An animation that is not yet started will
663     * return a value of zero, unless the animation has has its play time set via
664     * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
665     * it will return the time that was set.
666     *
667     * @return The current position in time of the animation.
668     */
669    public long getCurrentPlayTime() {
670        if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
671            return 0;
672        }
673        if (mSeekFraction >= 0) {
674            return (long) (mDuration * mSeekFraction);
675        }
676        float durationScale = sDurationScale == 0 ? 1 : sDurationScale;
677        return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale);
678    }
679
680    /**
681     * The amount of time, in milliseconds, to delay starting the animation after
682     * {@link #start()} is called.
683     *
684     * @return the number of milliseconds to delay running the animation
685     */
686    @Override
687    public long getStartDelay() {
688        return mStartDelay;
689    }
690
691    /**
692     * The amount of time, in milliseconds, to delay starting the animation after
693     * {@link #start()} is called.
694
695     * @param startDelay The amount of the delay, in milliseconds
696     */
697    @Override
698    public void setStartDelay(long startDelay) {
699        mStartDelay = startDelay;
700    }
701
702    /**
703     * The amount of time, in milliseconds, between each frame of the animation. This is a
704     * requested time that the animation will attempt to honor, but the actual delay between
705     * frames may be different, depending on system load and capabilities. This is a static
706     * function because the same delay will be applied to all animations, since they are all
707     * run off of a single timing loop.
708     *
709     * The frame delay may be ignored when the animation system uses an external timing
710     * source, such as the display refresh rate (vsync), to govern animations.
711     *
712     * Note that this method should be called from the same thread that {@link #start()} is
713     * called in order to check the frame delay for that animation. A runtime exception will be
714     * thrown if the calling thread does not have a Looper.
715     *
716     * @return the requested time between frames, in milliseconds
717     */
718    public static long getFrameDelay() {
719        return AnimationHandler.getInstance().getFrameDelay();
720    }
721
722    /**
723     * The amount of time, in milliseconds, between each frame of the animation. This is a
724     * requested time that the animation will attempt to honor, but the actual delay between
725     * frames may be different, depending on system load and capabilities. This is a static
726     * function because the same delay will be applied to all animations, since they are all
727     * run off of a single timing loop.
728     *
729     * The frame delay may be ignored when the animation system uses an external timing
730     * source, such as the display refresh rate (vsync), to govern animations.
731     *
732     * Note that this method should be called from the same thread that {@link #start()} is
733     * called in order to have the new frame delay take effect on that animation. A runtime
734     * exception will be thrown if the calling thread does not have a Looper.
735     *
736     * @param frameDelay the requested time between frames, in milliseconds
737     */
738    public static void setFrameDelay(long frameDelay) {
739        AnimationHandler.getInstance().setFrameDelay(frameDelay);
740    }
741
742    /**
743     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
744     * property being animated. This value is only sensible while the animation is running. The main
745     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
746     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
747     * is called during each animation frame, immediately after the value is calculated.
748     *
749     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
750     * the single property being animated. If there are several properties being animated
751     * (specified by several PropertyValuesHolder objects in the constructor), this function
752     * returns the animated value for the first of those objects.
753     */
754    public Object getAnimatedValue() {
755        if (mValues != null && mValues.length > 0) {
756            return mValues[0].getAnimatedValue();
757        }
758        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
759        return null;
760    }
761
762    /**
763     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
764     * The main purpose for this read-only property is to retrieve the value from the
765     * <code>ValueAnimator</code> during a call to
766     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
767     * is called during each animation frame, immediately after the value is calculated.
768     *
769     * @return animatedValue The value most recently calculated for the named property
770     * by this <code>ValueAnimator</code>.
771     */
772    public Object getAnimatedValue(String propertyName) {
773        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
774        if (valuesHolder != null) {
775            return valuesHolder.getAnimatedValue();
776        } else {
777            // At least avoid crashing if called with bogus propertyName
778            return null;
779        }
780    }
781
782    /**
783     * Sets how many times the animation should be repeated. If the repeat
784     * count is 0, the animation is never repeated. If the repeat count is
785     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
786     * into account. The repeat count is 0 by default.
787     *
788     * @param value the number of times the animation should be repeated
789     */
790    public void setRepeatCount(int value) {
791        mRepeatCount = value;
792    }
793    /**
794     * Defines how many times the animation should repeat. The default value
795     * is 0.
796     *
797     * @return the number of times the animation should repeat, or {@link #INFINITE}
798     */
799    public int getRepeatCount() {
800        return mRepeatCount;
801    }
802
803    /**
804     * Defines what this animation should do when it reaches the end. This
805     * setting is applied only when the repeat count is either greater than
806     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
807     *
808     * @param value {@link #RESTART} or {@link #REVERSE}
809     */
810    public void setRepeatMode(int value) {
811        mRepeatMode = value;
812    }
813
814    /**
815     * Defines what this animation should do when it reaches the end.
816     *
817     * @return either one of {@link #REVERSE} or {@link #RESTART}
818     */
819    public int getRepeatMode() {
820        return mRepeatMode;
821    }
822
823    /**
824     * Adds a listener to the set of listeners that are sent update events through the life of
825     * an animation. This method is called on all listeners for every frame of the animation,
826     * after the values for the animation have been calculated.
827     *
828     * @param listener the listener to be added to the current set of listeners for this animation.
829     */
830    public void addUpdateListener(AnimatorUpdateListener listener) {
831        if (mUpdateListeners == null) {
832            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
833        }
834        mUpdateListeners.add(listener);
835    }
836
837    /**
838     * Removes all listeners from the set listening to frame updates for this animation.
839     */
840    public void removeAllUpdateListeners() {
841        if (mUpdateListeners == null) {
842            return;
843        }
844        mUpdateListeners.clear();
845        mUpdateListeners = null;
846    }
847
848    /**
849     * Removes a listener from the set listening to frame updates for this animation.
850     *
851     * @param listener the listener to be removed from the current set of update listeners
852     * for this animation.
853     */
854    public void removeUpdateListener(AnimatorUpdateListener listener) {
855        if (mUpdateListeners == null) {
856            return;
857        }
858        mUpdateListeners.remove(listener);
859        if (mUpdateListeners.size() == 0) {
860            mUpdateListeners = null;
861        }
862    }
863
864
865    /**
866     * The time interpolator used in calculating the elapsed fraction of this animation. The
867     * interpolator determines whether the animation runs with linear or non-linear motion,
868     * such as acceleration and deceleration. The default value is
869     * {@link android.view.animation.AccelerateDecelerateInterpolator}
870     *
871     * @param value the interpolator to be used by this animation. A value of <code>null</code>
872     * will result in linear interpolation.
873     */
874    @Override
875    public void setInterpolator(TimeInterpolator value) {
876        if (value != null) {
877            mInterpolator = value;
878        } else {
879            mInterpolator = new LinearInterpolator();
880        }
881    }
882
883    /**
884     * Returns the timing interpolator that this ValueAnimator uses.
885     *
886     * @return The timing interpolator for this ValueAnimator.
887     */
888    @Override
889    public TimeInterpolator getInterpolator() {
890        return mInterpolator;
891    }
892
893    /**
894     * The type evaluator to be used when calculating the animated values of this animation.
895     * The system will automatically assign a float or int evaluator based on the type
896     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
897     * are not one of these primitive types, or if different evaluation is desired (such as is
898     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
899     * For example, when running an animation on color values, the {@link ArgbEvaluator}
900     * should be used to get correct RGB color interpolation.
901     *
902     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
903     * will be used for that set. If there are several sets of values being animated, which is
904     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
905     * is assigned just to the first PropertyValuesHolder object.</p>
906     *
907     * @param value the evaluator to be used this animation
908     */
909    public void setEvaluator(TypeEvaluator value) {
910        if (value != null && mValues != null && mValues.length > 0) {
911            mValues[0].setEvaluator(value);
912        }
913    }
914
915    private void notifyStartListeners() {
916        if (mListeners != null && !mStartListenersCalled) {
917            ArrayList<AnimatorListener> tmpListeners =
918                    (ArrayList<AnimatorListener>) mListeners.clone();
919            int numListeners = tmpListeners.size();
920            for (int i = 0; i < numListeners; ++i) {
921                tmpListeners.get(i).onAnimationStart(this);
922            }
923        }
924        mStartListenersCalled = true;
925    }
926
927    /**
928     * Start the animation playing. This version of start() takes a boolean flag that indicates
929     * whether the animation should play in reverse. The flag is usually false, but may be set
930     * to true if called from the reverse() method.
931     *
932     * <p>The animation started by calling this method will be run on the thread that called
933     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
934     * this is not the case). Also, if the animation will animate
935     * properties of objects in the view hierarchy, then the calling thread should be the UI
936     * thread for that view hierarchy.</p>
937     *
938     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
939     */
940    private void start(boolean playBackwards) {
941        if (Looper.myLooper() == null) {
942            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
943        }
944        mReversing = playBackwards;
945        // Special case: reversing from seek-to-0 should act as if not seeked at all.
946        if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) {
947            if (mRepeatCount == INFINITE) {
948                // Calculate the fraction of the current iteration.
949                float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction));
950                mSeekFraction = 1 - fraction;
951            } else {
952                mSeekFraction = 1 + mRepeatCount - mSeekFraction;
953            }
954        }
955        mStarted = true;
956        mPaused = false;
957        mRunning = false;
958        AnimationHandler animationHandler = AnimationHandler.getInstance();
959        animationHandler.addAnimationFrameCallback(this, (long) (mStartDelay * sDurationScale));
960
961        if (mStartDelay == 0) {
962            // If there's no start delay, init the animation and notify start listeners right away
963            // to be consistent with the previous behavior. Otherwise, postpone this until the first
964            // frame after the start delay.
965            startAnimation();
966            setCurrentFraction(mSeekFraction == -1 ? 0 : mSeekFraction);
967        }
968    }
969
970    @Override
971    public void start() {
972        start(false);
973    }
974
975    @Override
976    public void cancel() {
977        if (Looper.myLooper() == null) {
978            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
979        }
980
981        // If end has already been requested, through a previous end() or cancel() call, no-op
982        // until animation starts again.
983        if (mAnimationEndRequested) {
984            return;
985        }
986
987        // Only cancel if the animation is actually running or has been started and is about
988        // to run
989        // Only notify listeners if the animator has actually started
990        if ((mStarted || mRunning) && mListeners != null) {
991            if (!mRunning) {
992                // If it's not yet running, then start listeners weren't called. Call them now.
993                notifyStartListeners();
994            }
995            ArrayList<AnimatorListener> tmpListeners =
996                    (ArrayList<AnimatorListener>) mListeners.clone();
997            for (AnimatorListener listener : tmpListeners) {
998                listener.onAnimationCancel(this);
999            }
1000        }
1001        endAnimation();
1002
1003    }
1004
1005    @Override
1006    public void end() {
1007        if (Looper.myLooper() == null) {
1008            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1009        }
1010        if (!mRunning) {
1011            // Special case if the animation has not yet started; get it ready for ending
1012            startAnimation();
1013            mStarted = true;
1014        } else if (!mInitialized) {
1015            initAnimation();
1016        }
1017        animateValue(shouldPlayBackward(mRepeatCount) ? 0f : 1f);
1018        endAnimation();
1019    }
1020
1021    @Override
1022    public void resume() {
1023        if (mPaused) {
1024            mResumed = true;
1025        }
1026        super.resume();
1027    }
1028
1029    @Override
1030    public void pause() {
1031        boolean previouslyPaused = mPaused;
1032        super.pause();
1033        if (!previouslyPaused && mPaused) {
1034            mPauseTime = -1;
1035            mResumed = false;
1036        }
1037    }
1038
1039    @Override
1040    public boolean isRunning() {
1041        return mRunning;
1042    }
1043
1044    @Override
1045    public boolean isStarted() {
1046        return mStarted;
1047    }
1048
1049    /**
1050     * Plays the ValueAnimator in reverse. If the animation is already running,
1051     * it will stop itself and play backwards from the point reached when reverse was called.
1052     * If the animation is not currently running, then it will start from the end and
1053     * play backwards. This behavior is only set for the current animation; future playing
1054     * of the animation will use the default behavior of playing forward.
1055     */
1056    @Override
1057    public void reverse() {
1058        if (mRunning) {
1059            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1060            long currentPlayTime = currentTime - mStartTime;
1061            long timeLeft = getScaledDuration() - currentPlayTime;
1062            mStartTime = currentTime - timeLeft;
1063            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1064            mReversing = !mReversing;
1065        } else if (mStarted) {
1066            end();
1067        } else {
1068            start(true);
1069        }
1070    }
1071
1072    /**
1073     * @hide
1074     */
1075    @Override
1076    public boolean canReverse() {
1077        return true;
1078    }
1079
1080    /**
1081     * Called internally to end an animation by removing it from the animations list. Must be
1082     * called on the UI thread.
1083     */
1084    private void endAnimation() {
1085        if (mAnimationEndRequested) {
1086            return;
1087        }
1088        AnimationHandler handler = AnimationHandler.getInstance();
1089        handler.removeCallback(this);
1090
1091        mAnimationEndRequested = true;
1092        mPaused = false;
1093        if ((mStarted || mRunning) && mListeners != null) {
1094            if (!mRunning) {
1095                // If it's not yet running, then start listeners weren't called. Call them now.
1096                notifyStartListeners();
1097             }
1098            ArrayList<AnimatorListener> tmpListeners =
1099                    (ArrayList<AnimatorListener>) mListeners.clone();
1100            int numListeners = tmpListeners.size();
1101            for (int i = 0; i < numListeners; ++i) {
1102                tmpListeners.get(i).onAnimationEnd(this);
1103            }
1104        }
1105        mRunning = false;
1106        mStarted = false;
1107        mStartListenersCalled = false;
1108        mReversing = false;
1109        mLastFrameTime = 0;
1110        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1111            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1112                    System.identityHashCode(this));
1113        }
1114    }
1115
1116    /**
1117     * Called internally to start an animation by adding it to the active animations list. Must be
1118     * called on the UI thread.
1119     */
1120    private void startAnimation() {
1121        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1122            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1123                    System.identityHashCode(this));
1124        }
1125
1126        mAnimationEndRequested = false;
1127        initAnimation();
1128        mRunning = true;
1129        if (mSeekFraction >= 0) {
1130            mOverallFraction = mSeekFraction;
1131        } else {
1132            mOverallFraction = 0f;
1133        }
1134        if (mListeners != null) {
1135            notifyStartListeners();
1136        }
1137    }
1138
1139    /**
1140     * Returns the name of this animator for debugging purposes.
1141     */
1142    String getNameForTrace() {
1143        return "animator";
1144    }
1145
1146    /**
1147     * Applies an adjustment to the animation to compensate for jank between when
1148     * the animation first ran and when the frame was drawn.
1149     * @hide
1150     */
1151    public void commitAnimationFrame(long frameTime) {
1152        if (!mStartTimeCommitted) {
1153            mStartTimeCommitted = true;
1154            long adjustment = frameTime - mLastFrameTime;
1155            if (adjustment > 0) {
1156                mStartTime += adjustment;
1157                if (DEBUG) {
1158                    Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1159                }
1160            }
1161        }
1162    }
1163
1164    /**
1165     * This internal function processes a single animation frame for a given animation. The
1166     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1167     * elapsed duration, and therefore
1168     * the elapsed fraction, of the animation. The return value indicates whether the animation
1169     * should be ended (which happens when the elapsed time of the animation exceeds the
1170     * animation's duration, including the repeatCount).
1171     *
1172     * @param currentTime The current time, as tracked by the static timing handler
1173     * @return true if the animation's duration, including any repetitions due to
1174     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1175     */
1176    boolean animateBasedOnTime(long currentTime) {
1177        boolean done = false;
1178        if (mRunning) {
1179            final float fraction = getScaledDuration() > 0 ?
1180                    (float)(currentTime - mStartTime) / getScaledDuration() : 1f;
1181            final float lastFraction = mOverallFraction;
1182            final boolean newIteration = (int) fraction > (int) lastFraction;
1183            final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) &&
1184                    (mRepeatCount != INFINITE);
1185            if (newIteration && !lastIterationFinished) {
1186                // Time to repeat
1187                if (mListeners != null) {
1188                    int numListeners = mListeners.size();
1189                    for (int i = 0; i < numListeners; ++i) {
1190                        mListeners.get(i).onAnimationRepeat(this);
1191                    }
1192                }
1193            } else if (lastIterationFinished) {
1194                done = true;
1195            }
1196            mOverallFraction = clampFraction(fraction);
1197            float currentIterationFraction = getCurrentIterationFraction(mOverallFraction);
1198            animateValue(currentIterationFraction);
1199        }
1200        return done;
1201    }
1202
1203    /**
1204     * Processes a frame of the animation, adjusting the start time if needed.
1205     *
1206     * @param frameTime The frame time.
1207     * @return true if the animation has ended.
1208     * @hide
1209     */
1210    public final void doAnimationFrame(long frameTime) {
1211        AnimationHandler handler = AnimationHandler.getInstance();
1212        if (mLastFrameTime == 0) {
1213            // First frame
1214            handler.addOneShotCommitCallback(this);
1215            if (mStartDelay > 0) {
1216                startAnimation();
1217            }
1218            if (mSeekFraction < 0) {
1219                mStartTime = frameTime;
1220            } else {
1221                long seekTime = (long) (getScaledDuration() * mSeekFraction);
1222                mStartTime = frameTime - seekTime;
1223                mSeekFraction = -1;
1224            }
1225            mStartTimeCommitted = false; // allow start time to be compensated for jank
1226        }
1227        mLastFrameTime = frameTime;
1228        if (mPaused) {
1229            if (mPauseTime < 0) {
1230                mPauseTime = frameTime;
1231            }
1232            return;
1233        } else if (mResumed) {
1234            mResumed = false;
1235            if (mPauseTime > 0) {
1236                // Offset by the duration that the animation was paused
1237                mStartTime += (frameTime - mPauseTime);
1238                mStartTimeCommitted = false; // allow start time to be compensated for jank
1239            }
1240            handler.addOneShotCommitCallback(this);
1241        }
1242        // The frame time might be before the start time during the first frame of
1243        // an animation.  The "current time" must always be on or after the start
1244        // time to avoid animating frames at negative time intervals.  In practice, this
1245        // is very rare and only happens when seeking backwards.
1246        final long currentTime = Math.max(frameTime, mStartTime);
1247        boolean finished = animateBasedOnTime(currentTime);
1248
1249        if (finished) {
1250            endAnimation();
1251        }
1252    }
1253
1254    /**
1255     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1256     * the most recent frame update on the animation.
1257     *
1258     * @return Elapsed/interpolated fraction of the animation.
1259     */
1260    public float getAnimatedFraction() {
1261        return mCurrentFraction;
1262    }
1263
1264    /**
1265     * This method is called with the elapsed fraction of the animation during every
1266     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1267     * and then into an animated value (from the evaluator. The function is called mostly during
1268     * animation updates, but it is also called when the <code>end()</code>
1269     * function is called, to set the final value on the property.
1270     *
1271     * <p>Overrides of this method must call the superclass to perform the calculation
1272     * of the animated value.</p>
1273     *
1274     * @param fraction The elapsed fraction of the animation.
1275     */
1276    @CallSuper
1277    void animateValue(float fraction) {
1278        fraction = mInterpolator.getInterpolation(fraction);
1279        mCurrentFraction = fraction;
1280        int numValues = mValues.length;
1281        for (int i = 0; i < numValues; ++i) {
1282            mValues[i].calculateValue(fraction);
1283        }
1284        if (mUpdateListeners != null) {
1285            int numListeners = mUpdateListeners.size();
1286            for (int i = 0; i < numListeners; ++i) {
1287                mUpdateListeners.get(i).onAnimationUpdate(this);
1288            }
1289        }
1290    }
1291
1292    @Override
1293    public ValueAnimator clone() {
1294        final ValueAnimator anim = (ValueAnimator) super.clone();
1295        if (mUpdateListeners != null) {
1296            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1297        }
1298        anim.mSeekFraction = -1;
1299        anim.mReversing = false;
1300        anim.mInitialized = false;
1301        anim.mStarted = false;
1302        anim.mRunning = false;
1303        anim.mPaused = false;
1304        anim.mResumed = false;
1305        anim.mStartListenersCalled = false;
1306        anim.mStartTime = 0;
1307        anim.mStartTimeCommitted = false;
1308        anim.mAnimationEndRequested = false;
1309        anim.mPauseTime = 0;
1310        anim.mLastFrameTime = 0;
1311        anim.mOverallFraction = 0;
1312        anim.mCurrentFraction = 0;
1313
1314        PropertyValuesHolder[] oldValues = mValues;
1315        if (oldValues != null) {
1316            int numValues = oldValues.length;
1317            anim.mValues = new PropertyValuesHolder[numValues];
1318            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1319            for (int i = 0; i < numValues; ++i) {
1320                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1321                anim.mValues[i] = newValuesHolder;
1322                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1323            }
1324        }
1325        return anim;
1326    }
1327
1328    /**
1329     * Implementors of this interface can add themselves as update listeners
1330     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1331     * frame, after the current frame's values have been calculated for that
1332     * <code>ValueAnimator</code>.
1333     */
1334    public static interface AnimatorUpdateListener {
1335        /**
1336         * <p>Notifies the occurrence of another frame of the animation.</p>
1337         *
1338         * @param animation The animation which was repeated.
1339         */
1340        void onAnimationUpdate(ValueAnimator animation);
1341
1342    }
1343
1344    /**
1345     * Return the number of animations currently running.
1346     *
1347     * Used by StrictMode internally to annotate violations.
1348     * May be called on arbitrary threads!
1349     *
1350     * @hide
1351     */
1352    public static int getCurrentAnimationsCount() {
1353        return AnimationHandler.getAnimationCount();
1354    }
1355
1356    @Override
1357    public String toString() {
1358        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1359        if (mValues != null) {
1360            for (int i = 0; i < mValues.length; ++i) {
1361                returnVal += "\n    " + mValues[i].toString();
1362            }
1363        }
1364        return returnVal;
1365    }
1366
1367    /**
1368     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1369     * the UI thread. This is a hint that informs the ValueAnimator that it is
1370     * OK to run the animation off-thread, however ValueAnimator may decide
1371     * that it must run the animation on the UI thread anyway. For example if there
1372     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1373     * regardless of the value of this hint.</p>
1374     *
1375     * <p>Regardless of whether or not the animation runs asynchronously, all
1376     * listener callbacks will be called on the UI thread.</p>
1377     *
1378     * <p>To be able to use this hint the following must be true:</p>
1379     * <ol>
1380     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1381     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1382     *    to change values, duration, delay, etc... may be ignored.</li>
1383     * <li>Lifecycle callback events may be asynchronous. Events such as
1384     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1385     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1386     *    as they must be posted back to the UI thread, and any actions performed
1387     *    by those callbacks (such as starting new animations) will not happen
1388     *    in the same frame.</li>
1389     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1390     *    may be asynchronous. It is guaranteed that all state changes that are
1391     *    performed on the UI thread in the same frame will be applied as a single
1392     *    atomic update, however that frame may be the current frame,
1393     *    the next frame, or some future frame. This will also impact the observed
1394     *    state of the Animator. For example, {@link #isStarted()} may still return true
1395     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1396     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1397     *    for this reason.</li>
1398     * </ol>
1399     * @hide
1400     */
1401    @Override
1402    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1403        // It is up to subclasses to support this, if they can.
1404    }
1405}
1406