ValueAnimator.java revision 7a08fe0e09c9bd5b66049738617cc9972651bf5b
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Looper;
20import android.os.Trace;
21import android.util.AndroidRuntimeException;
22import android.view.Choreographer;
23import android.view.animation.AccelerateDecelerateInterpolator;
24import android.view.animation.AnimationUtils;
25import android.view.animation.LinearInterpolator;
26
27import java.util.ArrayList;
28import java.util.HashMap;
29
30/**
31 * This class provides a simple timing engine for running animations
32 * which calculate animated values and set them on target objects.
33 *
34 * <p>There is a single timing pulse that all animations use. It runs in a
35 * custom handler to ensure that property changes happen on the UI thread.</p>
36 *
37 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
38 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
39 * out of an animation. This behavior can be changed by calling
40 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
41 *
42 * <div class="special reference">
43 * <h3>Developer Guides</h3>
44 * <p>For more information about animating with {@code ValueAnimator}, read the
45 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
46 * Animation</a> developer guide.</p>
47 * </div>
48 */
49@SuppressWarnings("unchecked")
50public class ValueAnimator extends Animator {
51
52    /**
53     * Internal constants
54     */
55    private static float sDurationScale = 1.0f;
56
57    /**
58     * Values used with internal variable mPlayingState to indicate the current state of an
59     * animation.
60     */
61    static final int STOPPED    = 0; // Not yet playing
62    static final int RUNNING    = 1; // Playing normally
63    static final int SEEKED     = 2; // Seeked to some time value
64
65    /**
66     * Internal variables
67     * NOTE: This object implements the clone() method, making a deep copy of any referenced
68     * objects. As other non-trivial fields are added to this class, make sure to add logic
69     * to clone() to make deep copies of them.
70     */
71
72    // The first time that the animation's animateFrame() method is called. This time is used to
73    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
74    // to animateFrame()
75    long mStartTime;
76
77    /**
78     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
79     * to a value.
80     */
81    long mSeekTime = -1;
82
83    /**
84     * Set on the next frame after pause() is called, used to calculate a new startTime
85     * or delayStartTime which allows the animator to continue from the point at which
86     * it was paused. If negative, has not yet been set.
87     */
88    private long mPauseTime;
89
90    /**
91     * Set when an animator is resumed. This triggers logic in the next frame which
92     * actually resumes the animator.
93     */
94    private boolean mResumed = false;
95
96
97    // The static sAnimationHandler processes the internal timing loop on which all animations
98    // are based
99    /**
100     * @hide
101     */
102    protected static ThreadLocal<AnimationHandler> sAnimationHandler =
103            new ThreadLocal<AnimationHandler>();
104
105    // The time interpolator to be used if none is set on the animation
106    private static final TimeInterpolator sDefaultInterpolator =
107            new AccelerateDecelerateInterpolator();
108
109    /**
110     * Used to indicate whether the animation is currently playing in reverse. This causes the
111     * elapsed fraction to be inverted to calculate the appropriate values.
112     */
113    private boolean mPlayingBackwards = false;
114
115    /**
116     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
117     * repeatCount (if repeatCount!=INFINITE), the animation ends
118     */
119    private int mCurrentIteration = 0;
120
121    /**
122     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
123     */
124    private float mCurrentFraction = 0f;
125
126    /**
127     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
128     */
129    private boolean mStartedDelay = false;
130
131    /**
132     * Tracks the time at which the animation began playing through its startDelay. This is
133     * different from the mStartTime variable, which is used to track when the animation became
134     * active (which is when the startDelay expired and the animation was added to the active
135     * animations list).
136     */
137    private long mDelayStartTime;
138
139    /**
140     * Flag that represents the current state of the animation. Used to figure out when to start
141     * an animation (if state == STOPPED). Also used to end an animation that
142     * has been cancel()'d or end()'d since the last animation frame. Possible values are
143     * STOPPED, RUNNING, SEEKED.
144     */
145    int mPlayingState = STOPPED;
146
147    /**
148     * Additional playing state to indicate whether an animator has been start()'d. There is
149     * some lag between a call to start() and the first animation frame. We should still note
150     * that the animation has been started, even if it's first animation frame has not yet
151     * happened, and reflect that state in isRunning().
152     * Note that delayed animations are different: they are not started until their first
153     * animation frame, which occurs after their delay elapses.
154     */
155    private boolean mRunning = false;
156
157    /**
158     * Additional playing state to indicate whether an animator has been start()'d, whether or
159     * not there is a nonzero startDelay.
160     */
161    private boolean mStarted = false;
162
163    /**
164     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
165     * complex to keep track of since we notify listeners at different times depending on
166     * startDelay and whether start() was called before end().
167     */
168    private boolean mStartListenersCalled = false;
169
170    /**
171     * Flag that denotes whether the animation is set up and ready to go. Used to
172     * set up animation that has not yet been started.
173     */
174    boolean mInitialized = false;
175
176    //
177    // Backing variables
178    //
179
180    // How long the animation should last in ms
181    private long mDuration = (long)(300 * sDurationScale);
182    private long mUnscaledDuration = 300;
183
184    // The amount of time in ms to delay starting the animation after start() is called
185    private long mStartDelay = 0;
186    private long mUnscaledStartDelay = 0;
187
188    // The number of times the animation will repeat. The default is 0, which means the animation
189    // will play only once
190    private int mRepeatCount = 0;
191
192    /**
193     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
194     * animation will start from the beginning on every new cycle. REVERSE means the animation
195     * will reverse directions on each iteration.
196     */
197    private int mRepeatMode = RESTART;
198
199    /**
200     * The time interpolator to be used. The elapsed fraction of the animation will be passed
201     * through this interpolator to calculate the interpolated fraction, which is then used to
202     * calculate the animated values.
203     */
204    private TimeInterpolator mInterpolator = sDefaultInterpolator;
205
206    /**
207     * The set of listeners to be sent events through the life of an animation.
208     */
209    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
210
211    /**
212     * The property/value sets being animated.
213     */
214    PropertyValuesHolder[] mValues;
215
216    /**
217     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
218     * by property name during calls to getAnimatedValue(String).
219     */
220    HashMap<String, PropertyValuesHolder> mValuesMap;
221
222    /**
223     * Public constants
224     */
225
226    /**
227     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
228     * or a positive value, the animation restarts from the beginning.
229     */
230    public static final int RESTART = 1;
231    /**
232     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
233     * or a positive value, the animation reverses direction on every iteration.
234     */
235    public static final int REVERSE = 2;
236    /**
237     * This value used used with the {@link #setRepeatCount(int)} property to repeat
238     * the animation indefinitely.
239     */
240    public static final int INFINITE = -1;
241
242
243    /**
244     * @hide
245     */
246    public static void setDurationScale(float durationScale) {
247        sDurationScale = durationScale;
248    }
249
250    /**
251     * @hide
252     */
253    public static float getDurationScale() {
254        return sDurationScale;
255    }
256
257    /**
258     * Creates a new ValueAnimator object. This default constructor is primarily for
259     * use internally; the factory methods which take parameters are more generally
260     * useful.
261     */
262    public ValueAnimator() {
263    }
264
265    /**
266     * Constructs and returns a ValueAnimator that animates between int values. A single
267     * value implies that that value is the one being animated to. However, this is not typically
268     * useful in a ValueAnimator object because there is no way for the object to determine the
269     * starting value for the animation (unlike ObjectAnimator, which can derive that value
270     * from the target object and property being animated). Therefore, there should typically
271     * be two or more values.
272     *
273     * @param values A set of values that the animation will animate between over time.
274     * @return A ValueAnimator object that is set up to animate between the given values.
275     */
276    public static ValueAnimator ofInt(int... values) {
277        ValueAnimator anim = new ValueAnimator();
278        anim.setIntValues(values);
279        return anim;
280    }
281
282    /**
283     * Constructs and returns a ValueAnimator that animates between color values. A single
284     * value implies that that value is the one being animated to. However, this is not typically
285     * useful in a ValueAnimator object because there is no way for the object to determine the
286     * starting value for the animation (unlike ObjectAnimator, which can derive that value
287     * from the target object and property being animated). Therefore, there should typically
288     * be two or more values.
289     *
290     * @param values A set of values that the animation will animate between over time.
291     * @return A ValueAnimator object that is set up to animate between the given values.
292     */
293    public static ValueAnimator ofArgb(int... values) {
294        ValueAnimator anim = new ValueAnimator();
295        anim.setIntValues(values);
296        anim.setEvaluator(ArgbEvaluator.getInstance());
297        return anim;
298    }
299
300    /**
301     * Constructs and returns a ValueAnimator that animates between float values. A single
302     * value implies that that value is the one being animated to. However, this is not typically
303     * useful in a ValueAnimator object because there is no way for the object to determine the
304     * starting value for the animation (unlike ObjectAnimator, which can derive that value
305     * from the target object and property being animated). Therefore, there should typically
306     * be two or more values.
307     *
308     * @param values A set of values that the animation will animate between over time.
309     * @return A ValueAnimator object that is set up to animate between the given values.
310     */
311    public static ValueAnimator ofFloat(float... values) {
312        ValueAnimator anim = new ValueAnimator();
313        anim.setFloatValues(values);
314        return anim;
315    }
316
317    /**
318     * Constructs and returns a ValueAnimator that animates between the values
319     * specified in the PropertyValuesHolder objects.
320     *
321     * @param values A set of PropertyValuesHolder objects whose values will be animated
322     * between over time.
323     * @return A ValueAnimator object that is set up to animate between the given values.
324     */
325    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
326        ValueAnimator anim = new ValueAnimator();
327        anim.setValues(values);
328        return anim;
329    }
330    /**
331     * Constructs and returns a ValueAnimator that animates between Object values. A single
332     * value implies that that value is the one being animated to. However, this is not typically
333     * useful in a ValueAnimator object because there is no way for the object to determine the
334     * starting value for the animation (unlike ObjectAnimator, which can derive that value
335     * from the target object and property being animated). Therefore, there should typically
336     * be two or more values.
337     *
338     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
339     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
340     * to perform that interpolation.
341     *
342     * @param evaluator A TypeEvaluator that will be called on each animation frame to
343     * provide the ncessry interpolation between the Object values to derive the animated
344     * value.
345     * @param values A set of values that the animation will animate between over time.
346     * @return A ValueAnimator object that is set up to animate between the given values.
347     */
348    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
349        ValueAnimator anim = new ValueAnimator();
350        anim.setObjectValues(values);
351        anim.setEvaluator(evaluator);
352        return anim;
353    }
354
355    /**
356     * Sets int values that will be animated between. A single
357     * value implies that that value is the one being animated to. However, this is not typically
358     * useful in a ValueAnimator object because there is no way for the object to determine the
359     * starting value for the animation (unlike ObjectAnimator, which can derive that value
360     * from the target object and property being animated). Therefore, there should typically
361     * be two or more values.
362     *
363     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
364     * than one PropertyValuesHolder object, this method will set the values for the first
365     * of those objects.</p>
366     *
367     * @param values A set of values that the animation will animate between over time.
368     */
369    public void setIntValues(int... values) {
370        if (values == null || values.length == 0) {
371            return;
372        }
373        if (mValues == null || mValues.length == 0) {
374            setValues(PropertyValuesHolder.ofInt("", values));
375        } else {
376            PropertyValuesHolder valuesHolder = mValues[0];
377            valuesHolder.setIntValues(values);
378        }
379        // New property/values/target should cause re-initialization prior to starting
380        mInitialized = false;
381    }
382
383    /**
384     * Sets float values that will be animated between. A single
385     * value implies that that value is the one being animated to. However, this is not typically
386     * useful in a ValueAnimator object because there is no way for the object to determine the
387     * starting value for the animation (unlike ObjectAnimator, which can derive that value
388     * from the target object and property being animated). Therefore, there should typically
389     * be two or more values.
390     *
391     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
392     * than one PropertyValuesHolder object, this method will set the values for the first
393     * of those objects.</p>
394     *
395     * @param values A set of values that the animation will animate between over time.
396     */
397    public void setFloatValues(float... values) {
398        if (values == null || values.length == 0) {
399            return;
400        }
401        if (mValues == null || mValues.length == 0) {
402            setValues(PropertyValuesHolder.ofFloat("", values));
403        } else {
404            PropertyValuesHolder valuesHolder = mValues[0];
405            valuesHolder.setFloatValues(values);
406        }
407        // New property/values/target should cause re-initialization prior to starting
408        mInitialized = false;
409    }
410
411    /**
412     * Sets the values to animate between for this animation. A single
413     * value implies that that value is the one being animated to. However, this is not typically
414     * useful in a ValueAnimator object because there is no way for the object to determine the
415     * starting value for the animation (unlike ObjectAnimator, which can derive that value
416     * from the target object and property being animated). Therefore, there should typically
417     * be two or more values.
418     *
419     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
420     * than one PropertyValuesHolder object, this method will set the values for the first
421     * of those objects.</p>
422     *
423     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
424     * between these value objects. ValueAnimator only knows how to interpolate between the
425     * primitive types specified in the other setValues() methods.</p>
426     *
427     * @param values The set of values to animate between.
428     */
429    public void setObjectValues(Object... values) {
430        if (values == null || values.length == 0) {
431            return;
432        }
433        if (mValues == null || mValues.length == 0) {
434            setValues(PropertyValuesHolder.ofObject("", null, values));
435        } else {
436            PropertyValuesHolder valuesHolder = mValues[0];
437            valuesHolder.setObjectValues(values);
438        }
439        // New property/values/target should cause re-initialization prior to starting
440        mInitialized = false;
441    }
442
443    /**
444     * Sets the values, per property, being animated between. This function is called internally
445     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
446     * be constructed without values and this method can be called to set the values manually
447     * instead.
448     *
449     * @param values The set of values, per property, being animated between.
450     */
451    public void setValues(PropertyValuesHolder... values) {
452        int numValues = values.length;
453        mValues = values;
454        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
455        for (int i = 0; i < numValues; ++i) {
456            PropertyValuesHolder valuesHolder = values[i];
457            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
458        }
459        // New property/values/target should cause re-initialization prior to starting
460        mInitialized = false;
461    }
462
463    /**
464     * Returns the values that this ValueAnimator animates between. These values are stored in
465     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
466     * of value objects instead.
467     *
468     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
469     * values, per property, that define the animation.
470     */
471    public PropertyValuesHolder[] getValues() {
472        return mValues;
473    }
474
475    /**
476     * This function is called immediately before processing the first animation
477     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
478     * function is called after that delay ends.
479     * It takes care of the final initialization steps for the
480     * animation.
481     *
482     *  <p>Overrides of this method should call the superclass method to ensure
483     *  that internal mechanisms for the animation are set up correctly.</p>
484     */
485    void initAnimation() {
486        if (!mInitialized) {
487            int numValues = mValues.length;
488            for (int i = 0; i < numValues; ++i) {
489                mValues[i].init();
490            }
491            mInitialized = true;
492        }
493    }
494
495
496    /**
497     * Sets the length of the animation. The default duration is 300 milliseconds.
498     *
499     * @param duration The length of the animation, in milliseconds. This value cannot
500     * be negative.
501     * @return ValueAnimator The object called with setDuration(). This return
502     * value makes it easier to compose statements together that construct and then set the
503     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
504     */
505    public ValueAnimator setDuration(long duration) {
506        if (duration < 0) {
507            throw new IllegalArgumentException("Animators cannot have negative duration: " +
508                    duration);
509        }
510        mUnscaledDuration = duration;
511        updateScaledDuration();
512        return this;
513    }
514
515    private void updateScaledDuration() {
516        mDuration = (long)(mUnscaledDuration * sDurationScale);
517    }
518
519    /**
520     * Gets the length of the animation. The default duration is 300 milliseconds.
521     *
522     * @return The length of the animation, in milliseconds.
523     */
524    public long getDuration() {
525        return mUnscaledDuration;
526    }
527
528    /**
529     * Sets the position of the animation to the specified point in time. This time should
530     * be between 0 and the total duration of the animation, including any repetition. If
531     * the animation has not yet been started, then it will not advance forward after it is
532     * set to this time; it will simply set the time to this value and perform any appropriate
533     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
534     * will set the current playing time to this value and continue playing from that point.
535     *
536     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
537     */
538    public void setCurrentPlayTime(long playTime) {
539        initAnimation();
540        long currentTime = AnimationUtils.currentAnimationTimeMillis();
541        if (mPlayingState != RUNNING) {
542            mSeekTime = playTime;
543            mPlayingState = SEEKED;
544        }
545        mStartTime = currentTime - playTime;
546        doAnimationFrame(currentTime);
547    }
548
549    /**
550     * Gets the current position of the animation in time, which is equal to the current
551     * time minus the time that the animation started. An animation that is not yet started will
552     * return a value of zero.
553     *
554     * @return The current position in time of the animation.
555     */
556    public long getCurrentPlayTime() {
557        if (!mInitialized || mPlayingState == STOPPED) {
558            return 0;
559        }
560        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
561    }
562
563    /**
564     * This custom, static handler handles the timing pulse that is shared by
565     * all active animations. This approach ensures that the setting of animation
566     * values will happen on the UI thread and that all animations will share
567     * the same times for calculating their values, which makes synchronizing
568     * animations possible.
569     *
570     * The handler uses the Choreographer for executing periodic callbacks.
571     *
572     * @hide
573     */
574    @SuppressWarnings("unchecked")
575    protected static class AnimationHandler implements Runnable {
576        // The per-thread list of all active animations
577        /** @hide */
578        protected final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
579
580        // Used in doAnimationFrame() to avoid concurrent modifications of mAnimations
581        private final ArrayList<ValueAnimator> mTmpAnimations = new ArrayList<ValueAnimator>();
582
583        // The per-thread set of animations to be started on the next animation frame
584        /** @hide */
585        protected final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
586
587        /**
588         * Internal per-thread collections used to avoid set collisions as animations start and end
589         * while being processed.
590         * @hide
591         */
592        protected final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
593        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
594        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
595
596        private final Choreographer mChoreographer;
597        private boolean mAnimationScheduled;
598
599        private AnimationHandler() {
600            mChoreographer = Choreographer.getInstance();
601        }
602
603        /**
604         * Start animating on the next frame.
605         */
606        public void start() {
607            scheduleAnimation();
608        }
609
610        private void doAnimationFrame(long frameTime) {
611            // mPendingAnimations holds any animations that have requested to be started
612            // We're going to clear mPendingAnimations, but starting animation may
613            // cause more to be added to the pending list (for example, if one animation
614            // starting triggers another starting). So we loop until mPendingAnimations
615            // is empty.
616            while (mPendingAnimations.size() > 0) {
617                ArrayList<ValueAnimator> pendingCopy =
618                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
619                mPendingAnimations.clear();
620                int count = pendingCopy.size();
621                for (int i = 0; i < count; ++i) {
622                    ValueAnimator anim = pendingCopy.get(i);
623                    // If the animation has a startDelay, place it on the delayed list
624                    if (anim.mStartDelay == 0) {
625                        anim.startAnimation(this);
626                    } else {
627                        mDelayedAnims.add(anim);
628                    }
629                }
630            }
631            // Next, process animations currently sitting on the delayed queue, adding
632            // them to the active animations if they are ready
633            int numDelayedAnims = mDelayedAnims.size();
634            for (int i = 0; i < numDelayedAnims; ++i) {
635                ValueAnimator anim = mDelayedAnims.get(i);
636                if (anim.delayedAnimationFrame(frameTime)) {
637                    mReadyAnims.add(anim);
638                }
639            }
640            int numReadyAnims = mReadyAnims.size();
641            if (numReadyAnims > 0) {
642                for (int i = 0; i < numReadyAnims; ++i) {
643                    ValueAnimator anim = mReadyAnims.get(i);
644                    anim.startAnimation(this);
645                    anim.mRunning = true;
646                    mDelayedAnims.remove(anim);
647                }
648                mReadyAnims.clear();
649            }
650
651            // Now process all active animations. The return value from animationFrame()
652            // tells the handler whether it should now be ended
653            int numAnims = mAnimations.size();
654            for (int i = 0; i < numAnims; ++i) {
655                mTmpAnimations.add(mAnimations.get(i));
656            }
657            for (int i = 0; i < numAnims; ++i) {
658                ValueAnimator anim = mTmpAnimations.get(i);
659                if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
660                    mEndingAnims.add(anim);
661                }
662            }
663            mTmpAnimations.clear();
664            if (mEndingAnims.size() > 0) {
665                for (int i = 0; i < mEndingAnims.size(); ++i) {
666                    mEndingAnims.get(i).endAnimation(this);
667                }
668                mEndingAnims.clear();
669            }
670
671            // If there are still active or delayed animations, schedule a future call to
672            // onAnimate to process the next frame of the animations.
673            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
674                scheduleAnimation();
675            }
676        }
677
678        // Called by the Choreographer.
679        @Override
680        public void run() {
681            mAnimationScheduled = false;
682            doAnimationFrame(mChoreographer.getFrameTime());
683        }
684
685        private void scheduleAnimation() {
686            if (!mAnimationScheduled) {
687                mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, this, null);
688                mAnimationScheduled = true;
689            }
690        }
691    }
692
693    /**
694     * The amount of time, in milliseconds, to delay starting the animation after
695     * {@link #start()} is called.
696     *
697     * @return the number of milliseconds to delay running the animation
698     */
699    public long getStartDelay() {
700        return mUnscaledStartDelay;
701    }
702
703    /**
704     * The amount of time, in milliseconds, to delay starting the animation after
705     * {@link #start()} is called.
706
707     * @param startDelay The amount of the delay, in milliseconds
708     */
709    public void setStartDelay(long startDelay) {
710        this.mStartDelay = (long)(startDelay * sDurationScale);
711        mUnscaledStartDelay = startDelay;
712    }
713
714    /**
715     * The amount of time, in milliseconds, between each frame of the animation. This is a
716     * requested time that the animation will attempt to honor, but the actual delay between
717     * frames may be different, depending on system load and capabilities. This is a static
718     * function because the same delay will be applied to all animations, since they are all
719     * run off of a single timing loop.
720     *
721     * The frame delay may be ignored when the animation system uses an external timing
722     * source, such as the display refresh rate (vsync), to govern animations.
723     *
724     * @return the requested time between frames, in milliseconds
725     */
726    public static long getFrameDelay() {
727        return Choreographer.getFrameDelay();
728    }
729
730    /**
731     * The amount of time, in milliseconds, between each frame of the animation. This is a
732     * requested time that the animation will attempt to honor, but the actual delay between
733     * frames may be different, depending on system load and capabilities. This is a static
734     * function because the same delay will be applied to all animations, since they are all
735     * run off of a single timing loop.
736     *
737     * The frame delay may be ignored when the animation system uses an external timing
738     * source, such as the display refresh rate (vsync), to govern animations.
739     *
740     * @param frameDelay the requested time between frames, in milliseconds
741     */
742    public static void setFrameDelay(long frameDelay) {
743        Choreographer.setFrameDelay(frameDelay);
744    }
745
746    /**
747     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
748     * property being animated. This value is only sensible while the animation is running. The main
749     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
750     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
751     * is called during each animation frame, immediately after the value is calculated.
752     *
753     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
754     * the single property being animated. If there are several properties being animated
755     * (specified by several PropertyValuesHolder objects in the constructor), this function
756     * returns the animated value for the first of those objects.
757     */
758    public Object getAnimatedValue() {
759        if (mValues != null && mValues.length > 0) {
760            return mValues[0].getAnimatedValue();
761        }
762        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
763        return null;
764    }
765
766    /**
767     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
768     * The main purpose for this read-only property is to retrieve the value from the
769     * <code>ValueAnimator</code> during a call to
770     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
771     * is called during each animation frame, immediately after the value is calculated.
772     *
773     * @return animatedValue The value most recently calculated for the named property
774     * by this <code>ValueAnimator</code>.
775     */
776    public Object getAnimatedValue(String propertyName) {
777        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
778        if (valuesHolder != null) {
779            return valuesHolder.getAnimatedValue();
780        } else {
781            // At least avoid crashing if called with bogus propertyName
782            return null;
783        }
784    }
785
786    /**
787     * Sets how many times the animation should be repeated. If the repeat
788     * count is 0, the animation is never repeated. If the repeat count is
789     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
790     * into account. The repeat count is 0 by default.
791     *
792     * @param value the number of times the animation should be repeated
793     */
794    public void setRepeatCount(int value) {
795        mRepeatCount = value;
796    }
797    /**
798     * Defines how many times the animation should repeat. The default value
799     * is 0.
800     *
801     * @return the number of times the animation should repeat, or {@link #INFINITE}
802     */
803    public int getRepeatCount() {
804        return mRepeatCount;
805    }
806
807    /**
808     * Defines what this animation should do when it reaches the end. This
809     * setting is applied only when the repeat count is either greater than
810     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
811     *
812     * @param value {@link #RESTART} or {@link #REVERSE}
813     */
814    public void setRepeatMode(int value) {
815        mRepeatMode = value;
816    }
817
818    /**
819     * Defines what this animation should do when it reaches the end.
820     *
821     * @return either one of {@link #REVERSE} or {@link #RESTART}
822     */
823    public int getRepeatMode() {
824        return mRepeatMode;
825    }
826
827    /**
828     * Adds a listener to the set of listeners that are sent update events through the life of
829     * an animation. This method is called on all listeners for every frame of the animation,
830     * after the values for the animation have been calculated.
831     *
832     * @param listener the listener to be added to the current set of listeners for this animation.
833     */
834    public void addUpdateListener(AnimatorUpdateListener listener) {
835        if (mUpdateListeners == null) {
836            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
837        }
838        mUpdateListeners.add(listener);
839    }
840
841    /**
842     * Removes all listeners from the set listening to frame updates for this animation.
843     */
844    public void removeAllUpdateListeners() {
845        if (mUpdateListeners == null) {
846            return;
847        }
848        mUpdateListeners.clear();
849        mUpdateListeners = null;
850    }
851
852    /**
853     * Removes a listener from the set listening to frame updates for this animation.
854     *
855     * @param listener the listener to be removed from the current set of update listeners
856     * for this animation.
857     */
858    public void removeUpdateListener(AnimatorUpdateListener listener) {
859        if (mUpdateListeners == null) {
860            return;
861        }
862        mUpdateListeners.remove(listener);
863        if (mUpdateListeners.size() == 0) {
864            mUpdateListeners = null;
865        }
866    }
867
868
869    /**
870     * The time interpolator used in calculating the elapsed fraction of this animation. The
871     * interpolator determines whether the animation runs with linear or non-linear motion,
872     * such as acceleration and deceleration. The default value is
873     * {@link android.view.animation.AccelerateDecelerateInterpolator}
874     *
875     * @param value the interpolator to be used by this animation. A value of <code>null</code>
876     * will result in linear interpolation.
877     */
878    @Override
879    public void setInterpolator(TimeInterpolator value) {
880        if (value != null) {
881            mInterpolator = value;
882        } else {
883            mInterpolator = new LinearInterpolator();
884        }
885    }
886
887    /**
888     * Returns the timing interpolator that this ValueAnimator uses.
889     *
890     * @return The timing interpolator for this ValueAnimator.
891     */
892    @Override
893    public TimeInterpolator getInterpolator() {
894        return mInterpolator;
895    }
896
897    /**
898     * The type evaluator to be used when calculating the animated values of this animation.
899     * The system will automatically assign a float or int evaluator based on the type
900     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
901     * are not one of these primitive types, or if different evaluation is desired (such as is
902     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
903     * For example, when running an animation on color values, the {@link ArgbEvaluator}
904     * should be used to get correct RGB color interpolation.
905     *
906     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
907     * will be used for that set. If there are several sets of values being animated, which is
908     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
909     * is assigned just to the first PropertyValuesHolder object.</p>
910     *
911     * @param value the evaluator to be used this animation
912     */
913    public void setEvaluator(TypeEvaluator value) {
914        if (value != null && mValues != null && mValues.length > 0) {
915            mValues[0].setEvaluator(value);
916        }
917    }
918
919    private void notifyStartListeners() {
920        if (mListeners != null && !mStartListenersCalled) {
921            ArrayList<AnimatorListener> tmpListeners =
922                    (ArrayList<AnimatorListener>) mListeners.clone();
923            int numListeners = tmpListeners.size();
924            for (int i = 0; i < numListeners; ++i) {
925                tmpListeners.get(i).onAnimationStart(this);
926            }
927        }
928        mStartListenersCalled = true;
929    }
930
931    /**
932     * Start the animation playing. This version of start() takes a boolean flag that indicates
933     * whether the animation should play in reverse. The flag is usually false, but may be set
934     * to true if called from the reverse() method.
935     *
936     * <p>The animation started by calling this method will be run on the thread that called
937     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
938     * this is not the case). Also, if the animation will animate
939     * properties of objects in the view hierarchy, then the calling thread should be the UI
940     * thread for that view hierarchy.</p>
941     *
942     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
943     */
944    private void start(boolean playBackwards) {
945        if (Looper.myLooper() == null) {
946            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
947        }
948        mPlayingBackwards = playBackwards;
949        mCurrentIteration = 0;
950        mPlayingState = STOPPED;
951        mStarted = true;
952        mStartedDelay = false;
953        mPaused = false;
954        updateScaledDuration(); // in case the scale factor has changed since creation time
955        AnimationHandler animationHandler = getOrCreateAnimationHandler();
956        animationHandler.mPendingAnimations.add(this);
957        if (mStartDelay == 0) {
958            // This sets the initial value of the animation, prior to actually starting it running
959            setCurrentPlayTime(0);
960            mPlayingState = STOPPED;
961            mRunning = true;
962            notifyStartListeners();
963        }
964        animationHandler.start();
965    }
966
967    @Override
968    public void start() {
969        start(false);
970    }
971
972    @Override
973    public void cancel() {
974        // Only cancel if the animation is actually running or has been started and is about
975        // to run
976        AnimationHandler handler = getOrCreateAnimationHandler();
977        if (mPlayingState != STOPPED
978                || handler.mPendingAnimations.contains(this)
979                || handler.mDelayedAnims.contains(this)) {
980            // Only notify listeners if the animator has actually started
981            if ((mStarted || mRunning) && mListeners != null) {
982                if (!mRunning) {
983                    // If it's not yet running, then start listeners weren't called. Call them now.
984                    notifyStartListeners();
985                }
986                ArrayList<AnimatorListener> tmpListeners =
987                        (ArrayList<AnimatorListener>) mListeners.clone();
988                for (AnimatorListener listener : tmpListeners) {
989                    listener.onAnimationCancel(this);
990                }
991            }
992            endAnimation(handler);
993        }
994    }
995
996    @Override
997    public void end() {
998        AnimationHandler handler = getOrCreateAnimationHandler();
999        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
1000            // Special case if the animation has not yet started; get it ready for ending
1001            mStartedDelay = false;
1002            startAnimation(handler);
1003            mStarted = true;
1004        } else if (!mInitialized) {
1005            initAnimation();
1006        }
1007        animateValue(mPlayingBackwards ? 0f : 1f);
1008        endAnimation(handler);
1009    }
1010
1011    @Override
1012    public void resume() {
1013        if (mPaused) {
1014            mResumed = true;
1015        }
1016        super.resume();
1017    }
1018
1019    @Override
1020    public void pause() {
1021        boolean previouslyPaused = mPaused;
1022        super.pause();
1023        if (!previouslyPaused && mPaused) {
1024            mPauseTime = -1;
1025            mResumed = false;
1026        }
1027    }
1028
1029    @Override
1030    public boolean isRunning() {
1031        return (mPlayingState == RUNNING || mRunning);
1032    }
1033
1034    @Override
1035    public boolean isStarted() {
1036        return mStarted;
1037    }
1038
1039    /**
1040     * Plays the ValueAnimator in reverse. If the animation is already running,
1041     * it will stop itself and play backwards from the point reached when reverse was called.
1042     * If the animation is not currently running, then it will start from the end and
1043     * play backwards. This behavior is only set for the current animation; future playing
1044     * of the animation will use the default behavior of playing forward.
1045     */
1046    @Override
1047    public void reverse() {
1048        mPlayingBackwards = !mPlayingBackwards;
1049        if (mPlayingState == RUNNING) {
1050            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1051            long currentPlayTime = currentTime - mStartTime;
1052            long timeLeft = mDuration - currentPlayTime;
1053            mStartTime = currentTime - timeLeft;
1054        } else if (mStarted) {
1055            end();
1056        } else {
1057            start(true);
1058        }
1059    }
1060
1061    /**
1062     * @hide
1063     */
1064    @Override
1065    public boolean canReverse() {
1066        return true;
1067    }
1068
1069    /**
1070     * Called internally to end an animation by removing it from the animations list. Must be
1071     * called on the UI thread.
1072     * @hide
1073     */
1074    protected void endAnimation(AnimationHandler handler) {
1075        handler.mAnimations.remove(this);
1076        handler.mPendingAnimations.remove(this);
1077        handler.mDelayedAnims.remove(this);
1078        mPlayingState = STOPPED;
1079        mPaused = false;
1080        if ((mStarted || mRunning) && mListeners != null) {
1081            if (!mRunning) {
1082                // If it's not yet running, then start listeners weren't called. Call them now.
1083                notifyStartListeners();
1084             }
1085            ArrayList<AnimatorListener> tmpListeners =
1086                    (ArrayList<AnimatorListener>) mListeners.clone();
1087            int numListeners = tmpListeners.size();
1088            for (int i = 0; i < numListeners; ++i) {
1089                tmpListeners.get(i).onAnimationEnd(this);
1090            }
1091        }
1092        mRunning = false;
1093        mStarted = false;
1094        mStartListenersCalled = false;
1095        mPlayingBackwards = false;
1096        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1097            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1098                    System.identityHashCode(this));
1099        }
1100    }
1101
1102    /**
1103     * Called internally to start an animation by adding it to the active animations list. Must be
1104     * called on the UI thread.
1105     */
1106    private void startAnimation(AnimationHandler handler) {
1107        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1108            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1109                    System.identityHashCode(this));
1110        }
1111        initAnimation();
1112        handler.mAnimations.add(this);
1113        if (mStartDelay > 0 && mListeners != null) {
1114            // Listeners were already notified in start() if startDelay is 0; this is
1115            // just for delayed animations
1116            notifyStartListeners();
1117        }
1118    }
1119
1120    /**
1121     * Returns the name of this animator for debugging purposes.
1122     */
1123    String getNameForTrace() {
1124        return "animator";
1125    }
1126
1127
1128    /**
1129     * Internal function called to process an animation frame on an animation that is currently
1130     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1131     * should be woken up and put on the active animations queue.
1132     *
1133     * @param currentTime The current animation time, used to calculate whether the animation
1134     * has exceeded its <code>startDelay</code> and should be started.
1135     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1136     * should be added to the set of active animations.
1137     */
1138    private boolean delayedAnimationFrame(long currentTime) {
1139        if (!mStartedDelay) {
1140            mStartedDelay = true;
1141            mDelayStartTime = currentTime;
1142        }
1143        if (mPaused) {
1144            if (mPauseTime < 0) {
1145                mPauseTime = currentTime;
1146            }
1147            return false;
1148        } else if (mResumed) {
1149            mResumed = false;
1150            if (mPauseTime > 0) {
1151                // Offset by the duration that the animation was paused
1152                mDelayStartTime += (currentTime - mPauseTime);
1153            }
1154        }
1155        long deltaTime = currentTime - mDelayStartTime;
1156        if (deltaTime > mStartDelay) {
1157            // startDelay ended - start the anim and record the
1158            // mStartTime appropriately
1159            mStartTime = currentTime - (deltaTime - mStartDelay);
1160            mPlayingState = RUNNING;
1161            return true;
1162        }
1163        return false;
1164    }
1165
1166    /**
1167     * This internal function processes a single animation frame for a given animation. The
1168     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1169     * elapsed duration, and therefore
1170     * the elapsed fraction, of the animation. The return value indicates whether the animation
1171     * should be ended (which happens when the elapsed time of the animation exceeds the
1172     * animation's duration, including the repeatCount).
1173     *
1174     * @param currentTime The current time, as tracked by the static timing handler
1175     * @return true if the animation's duration, including any repetitions due to
1176     * <code>repeatCount</code>, has been exceeded and the animation should be ended.
1177     */
1178    boolean animationFrame(long currentTime) {
1179        boolean done = false;
1180        switch (mPlayingState) {
1181        case RUNNING:
1182        case SEEKED:
1183            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1184            if (fraction >= 1f) {
1185                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1186                    // Time to repeat
1187                    if (mListeners != null) {
1188                        int numListeners = mListeners.size();
1189                        for (int i = 0; i < numListeners; ++i) {
1190                            mListeners.get(i).onAnimationRepeat(this);
1191                        }
1192                    }
1193                    if (mRepeatMode == REVERSE) {
1194                        mPlayingBackwards = !mPlayingBackwards;
1195                    }
1196                    mCurrentIteration += (int)fraction;
1197                    fraction = fraction % 1f;
1198                    mStartTime += mDuration;
1199                } else {
1200                    done = true;
1201                    fraction = Math.min(fraction, 1.0f);
1202                }
1203            }
1204            if (mPlayingBackwards) {
1205                fraction = 1f - fraction;
1206            }
1207            animateValue(fraction);
1208            break;
1209        }
1210
1211        return done;
1212    }
1213
1214    /**
1215     * Processes a frame of the animation, adjusting the start time if needed.
1216     *
1217     * @param frameTime The frame time.
1218     * @return true if the animation has ended.
1219     */
1220    final boolean doAnimationFrame(long frameTime) {
1221        if (mPlayingState == STOPPED) {
1222            mPlayingState = RUNNING;
1223            if (mSeekTime < 0) {
1224                mStartTime = frameTime;
1225            } else {
1226                mStartTime = frameTime - mSeekTime;
1227                // Now that we're playing, reset the seek time
1228                mSeekTime = -1;
1229            }
1230        }
1231        if (mPaused) {
1232            if (mPauseTime < 0) {
1233                mPauseTime = frameTime;
1234            }
1235            return false;
1236        } else if (mResumed) {
1237            mResumed = false;
1238            if (mPauseTime > 0) {
1239                // Offset by the duration that the animation was paused
1240                mStartTime += (frameTime - mPauseTime);
1241            }
1242        }
1243        // The frame time might be before the start time during the first frame of
1244        // an animation.  The "current time" must always be on or after the start
1245        // time to avoid animating frames at negative time intervals.  In practice, this
1246        // is very rare and only happens when seeking backwards.
1247        final long currentTime = Math.max(frameTime, mStartTime);
1248        return animationFrame(currentTime);
1249    }
1250
1251    /**
1252     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1253     * the most recent frame update on the animation.
1254     *
1255     * @return Elapsed/interpolated fraction of the animation.
1256     */
1257    public float getAnimatedFraction() {
1258        return mCurrentFraction;
1259    }
1260
1261    /**
1262     * This method is called with the elapsed fraction of the animation during every
1263     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1264     * and then into an animated value (from the evaluator. The function is called mostly during
1265     * animation updates, but it is also called when the <code>end()</code>
1266     * function is called, to set the final value on the property.
1267     *
1268     * <p>Overrides of this method must call the superclass to perform the calculation
1269     * of the animated value.</p>
1270     *
1271     * @param fraction The elapsed fraction of the animation.
1272     */
1273    void animateValue(float fraction) {
1274        fraction = mInterpolator.getInterpolation(fraction);
1275        mCurrentFraction = fraction;
1276        int numValues = mValues.length;
1277        for (int i = 0; i < numValues; ++i) {
1278            mValues[i].calculateValue(fraction);
1279        }
1280        if (mUpdateListeners != null) {
1281            int numListeners = mUpdateListeners.size();
1282            for (int i = 0; i < numListeners; ++i) {
1283                mUpdateListeners.get(i).onAnimationUpdate(this);
1284            }
1285        }
1286    }
1287
1288    @Override
1289    public ValueAnimator clone() {
1290        final ValueAnimator anim = (ValueAnimator) super.clone();
1291        if (mUpdateListeners != null) {
1292            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1293            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1294            int numListeners = oldListeners.size();
1295            for (int i = 0; i < numListeners; ++i) {
1296                anim.mUpdateListeners.add(oldListeners.get(i));
1297            }
1298        }
1299        anim.mSeekTime = -1;
1300        anim.mPlayingBackwards = false;
1301        anim.mCurrentIteration = 0;
1302        anim.mInitialized = false;
1303        anim.mPlayingState = STOPPED;
1304        anim.mStartedDelay = false;
1305        PropertyValuesHolder[] oldValues = mValues;
1306        if (oldValues != null) {
1307            int numValues = oldValues.length;
1308            anim.mValues = new PropertyValuesHolder[numValues];
1309            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1310            for (int i = 0; i < numValues; ++i) {
1311                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1312                anim.mValues[i] = newValuesHolder;
1313                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1314            }
1315        }
1316        return anim;
1317    }
1318
1319    /**
1320     * Implementors of this interface can add themselves as update listeners
1321     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1322     * frame, after the current frame's values have been calculated for that
1323     * <code>ValueAnimator</code>.
1324     */
1325    public static interface AnimatorUpdateListener {
1326        /**
1327         * <p>Notifies the occurrence of another frame of the animation.</p>
1328         *
1329         * @param animation The animation which was repeated.
1330         */
1331        void onAnimationUpdate(ValueAnimator animation);
1332
1333    }
1334
1335    /**
1336     * Return the number of animations currently running.
1337     *
1338     * Used by StrictMode internally to annotate violations.
1339     * May be called on arbitrary threads!
1340     *
1341     * @hide
1342     */
1343    public static int getCurrentAnimationsCount() {
1344        AnimationHandler handler = sAnimationHandler.get();
1345        return handler != null ? handler.mAnimations.size() : 0;
1346    }
1347
1348    /**
1349     * Clear all animations on this thread, without canceling or ending them.
1350     * This should be used with caution.
1351     *
1352     * @hide
1353     */
1354    public static void clearAllAnimations() {
1355        AnimationHandler handler = sAnimationHandler.get();
1356        if (handler != null) {
1357            handler.mAnimations.clear();
1358            handler.mPendingAnimations.clear();
1359            handler.mDelayedAnims.clear();
1360        }
1361    }
1362
1363    private static AnimationHandler getOrCreateAnimationHandler() {
1364        AnimationHandler handler = sAnimationHandler.get();
1365        if (handler == null) {
1366            handler = new AnimationHandler();
1367            sAnimationHandler.set(handler);
1368        }
1369        return handler;
1370    }
1371
1372    @Override
1373    public String toString() {
1374        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1375        if (mValues != null) {
1376            for (int i = 0; i < mValues.length; ++i) {
1377                returnVal += "\n    " + mValues[i].toString();
1378            }
1379        }
1380        return returnVal;
1381    }
1382
1383    /**
1384     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1385     * the UI thread. This is a hint that informs the ValueAnimator that it is
1386     * OK to run the animation off-thread, however ValueAnimator may decide
1387     * that it must run the animation on the UI thread anyway. For example if there
1388     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1389     * regardless of the value of this hint.</p>
1390     *
1391     * <p>Regardless of whether or not the animation runs asynchronously, all
1392     * listener callbacks will be called on the UI thread.</p>
1393     *
1394     * <p>To be able to use this hint the following must be true:</p>
1395     * <ol>
1396     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1397     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1398     *    to change values, duration, delay, etc... may be ignored.</li>
1399     * <li>Lifecycle callback events may be asynchronous. Events such as
1400     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1401     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1402     *    as they must be posted back to the UI thread, and any actions performed
1403     *    by those callbacks (such as starting new animations) will not happen
1404     *    in the same frame.</li>
1405     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1406     *    may be asynchronous. It is guaranteed that all state changes that are
1407     *    performed on the UI thread in the same frame will be applied as a single
1408     *    atomic update, however that frame may be the current frame,
1409     *    the next frame, or some future frame. This will also impact the observed
1410     *    state of the Animator. For example, {@link #isStarted()} may still return true
1411     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1412     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1413     *    for this reason.</li>
1414     * </ol>
1415     * @hide
1416     */
1417    @Override
1418    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1419        // It is up to subclasses to support this, if they can.
1420    }
1421}
1422