ValueAnimator.java revision 7c608f25d494c8a0a671e7373efbb47ca635367e
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Handler;
20import android.os.Looper;
21import android.os.Message;
22import android.view.animation.AccelerateDecelerateInterpolator;
23import android.view.animation.AnimationUtils;
24
25import java.util.ArrayList;
26import java.util.HashMap;
27
28/**
29 * This class provides a simple timing engine for running animations
30 * which calculate animated values and set them on target objects.
31 *
32 * <p>There is a single timing pulse that all animations use. It runs in a
33 * custom handler to ensure that property changes happen on the UI thread.</p>
34 *
35 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
36 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
37 * out of an animation. This behavior can be changed by calling
38 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
39 */
40public class ValueAnimator extends Animator {
41
42    /**
43     * Internal constants
44     */
45
46    /*
47     * The default amount of time in ms between animation frames
48     */
49    private static final long DEFAULT_FRAME_DELAY = 10;
50
51    /**
52     * Messages sent to timing handler: START is sent when an animation first begins, FRAME is sent
53     * by the handler to itself to process the next animation frame
54     */
55    private static final int ANIMATION_START = 0;
56    private static final int ANIMATION_FRAME = 1;
57
58    /**
59     * Values used with internal variable mPlayingState to indicate the current state of an
60     * animation.
61     */
62    private static final int STOPPED    = 0; // Not yet playing
63    private static final int RUNNING    = 1; // Playing normally
64    private static final int CANCELED   = 2; // cancel() called - need to end it
65    private static final int ENDED      = 3; // end() called - need to end it
66    private static final int SEEKED     = 4; // Seeked to some time value
67
68    /**
69     * Internal variables
70     * NOTE: This object implements the clone() method, making a deep copy of any referenced
71     * objects. As other non-trivial fields are added to this class, make sure to add logic
72     * to clone() to make deep copies of them.
73     */
74
75    // The first time that the animation's animateFrame() method is called. This time is used to
76    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
77    // to animateFrame()
78    private long mStartTime;
79
80    /**
81     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
82     * to a value.
83     */
84    private long mSeekTime = -1;
85
86    // TODO: We access the following ThreadLocal variables often, some of them on every update.
87    // If ThreadLocal access is significantly expensive, we may want to put all of these
88    // fields into a structure sot hat we just access ThreadLocal once to get the reference
89    // to that structure, then access the structure directly for each field.
90
91    // The static sAnimationHandler processes the internal timing loop on which all animations
92    // are based
93    private static ThreadLocal<AnimationHandler> sAnimationHandler =
94            new ThreadLocal<AnimationHandler>();
95
96    // The per-thread list of all active animations
97    private static final ThreadLocal<ArrayList<ValueAnimator>> sAnimations =
98            new ThreadLocal<ArrayList<ValueAnimator>>() {
99                @Override
100                protected ArrayList<ValueAnimator> initialValue() {
101                    return new ArrayList<ValueAnimator>();
102                }
103            };
104
105    // The per-thread set of animations to be started on the next animation frame
106    private static final ThreadLocal<ArrayList<ValueAnimator>> sPendingAnimations =
107            new ThreadLocal<ArrayList<ValueAnimator>>() {
108                @Override
109                protected ArrayList<ValueAnimator> initialValue() {
110                    return new ArrayList<ValueAnimator>();
111                }
112            };
113
114    /**
115     * Internal per-thread collections used to avoid set collisions as animations start and end
116     * while being processed.
117     */
118    private static final ThreadLocal<ArrayList<ValueAnimator>> sDelayedAnims =
119            new ThreadLocal<ArrayList<ValueAnimator>>() {
120                @Override
121                protected ArrayList<ValueAnimator> initialValue() {
122                    return new ArrayList<ValueAnimator>();
123                }
124            };
125
126    private static final ThreadLocal<ArrayList<ValueAnimator>> sEndingAnims =
127            new ThreadLocal<ArrayList<ValueAnimator>>() {
128                @Override
129                protected ArrayList<ValueAnimator> initialValue() {
130                    return new ArrayList<ValueAnimator>();
131                }
132            };
133
134    private static final ThreadLocal<ArrayList<ValueAnimator>> sReadyAnims =
135            new ThreadLocal<ArrayList<ValueAnimator>>() {
136                @Override
137                protected ArrayList<ValueAnimator> initialValue() {
138                    return new ArrayList<ValueAnimator>();
139                }
140            };
141
142    // The time interpolator to be used if none is set on the animation
143    private static final TimeInterpolator sDefaultInterpolator =
144            new AccelerateDecelerateInterpolator();
145
146    // type evaluators for the three primitive types handled by this implementation
147    private static final TypeEvaluator sIntEvaluator = new IntEvaluator();
148    private static final TypeEvaluator sFloatEvaluator = new FloatEvaluator();
149    private static final TypeEvaluator sDoubleEvaluator = new DoubleEvaluator();
150
151    /**
152     * Used to indicate whether the animation is currently playing in reverse. This causes the
153     * elapsed fraction to be inverted to calculate the appropriate values.
154     */
155    private boolean mPlayingBackwards = false;
156
157    /**
158     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
159     * repeatCount (if repeatCount!=INFINITE), the animation ends
160     */
161    private int mCurrentIteration = 0;
162
163    /**
164     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
165     */
166    private boolean mStartedDelay = false;
167
168    /**
169     * Tracks the time at which the animation began playing through its startDelay. This is
170     * different from the mStartTime variable, which is used to track when the animation became
171     * active (which is when the startDelay expired and the animation was added to the active
172     * animations list).
173     */
174    private long mDelayStartTime;
175
176    /**
177     * Flag that represents the current state of the animation. Used to figure out when to start
178     * an animation (if state == STOPPED). Also used to end an animation that
179     * has been cancel()'d or end()'d since the last animation frame. Possible values are
180     * STOPPED, RUNNING, ENDED, CANCELED.
181     */
182    private int mPlayingState = STOPPED;
183
184    /**
185     * Flag that denotes whether the animation is set up and ready to go. Used to
186     * set up animation that has not yet been started.
187     */
188    boolean mInitialized = false;
189
190    //
191    // Backing variables
192    //
193
194    // How long the animation should last in ms
195    private long mDuration = 300;
196
197    // The amount of time in ms to delay starting the animation after start() is called
198    private long mStartDelay = 0;
199
200    // The number of milliseconds between animation frames
201    private static long sFrameDelay = DEFAULT_FRAME_DELAY;
202
203    // The number of times the animation will repeat. The default is 0, which means the animation
204    // will play only once
205    private int mRepeatCount = 0;
206
207    /**
208     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
209     * animation will start from the beginning on every new cycle. REVERSE means the animation
210     * will reverse directions on each iteration.
211     */
212    private int mRepeatMode = RESTART;
213
214    /**
215     * The time interpolator to be used. The elapsed fraction of the animation will be passed
216     * through this interpolator to calculate the interpolated fraction, which is then used to
217     * calculate the animated values.
218     */
219    private TimeInterpolator mInterpolator = sDefaultInterpolator;
220
221    /**
222     * The set of listeners to be sent events through the life of an animation.
223     */
224    private ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
225
226    /**
227     * The property/value sets being animated.
228     */
229    PropertyValuesHolder[] mValues;
230
231    /**
232     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
233     * by property name during calls to getAnimatedValue(String).
234     */
235    HashMap<String, PropertyValuesHolder> mValuesMap;
236
237    /**
238     * Public constants
239     */
240
241    /**
242     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
243     * or a positive value, the animation restarts from the beginning.
244     */
245    public static final int RESTART = 1;
246    /**
247     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
248     * or a positive value, the animation reverses direction on every iteration.
249     */
250    public static final int REVERSE = 2;
251    /**
252     * This value used used with the {@link #setRepeatCount(int)} property to repeat
253     * the animation indefinitely.
254     */
255    public static final int INFINITE = -1;
256
257    /**
258     * Creates a new ValueAnimator object. This default constructor is primarily for
259     * use internally; the factory methods which take parameters are more generally
260     * useful.
261     */
262    public ValueAnimator() {
263    }
264
265    /**
266     * Constructs and returns a ValueAnimator that animates between int values. A single
267     * value implies that that value is the one being animated to. However, this is not typically
268     * useful in a ValueAnimator object because there is no way for the object to determine the
269     * starting value for the animation (unlike ObjectAnimator, which can derive that value
270     * from the target object and property being animated). Therefore, there should typically
271     * be two or more values.
272     *
273     * @param values A set of values that the animation will animate between over time.
274     * @return A ValueAnimator object that is set up to animate between the given values.
275     */
276    public static ValueAnimator ofInt(int... values) {
277        ValueAnimator anim = new ValueAnimator();
278        anim.setIntValues(values);
279        return anim;
280    }
281
282    /**
283     * Constructs and returns a ValueAnimator that animates between float values. A single
284     * value implies that that value is the one being animated to. However, this is not typically
285     * useful in a ValueAnimator object because there is no way for the object to determine the
286     * starting value for the animation (unlike ObjectAnimator, which can derive that value
287     * from the target object and property being animated). Therefore, there should typically
288     * be two or more values.
289     *
290     * @param values A set of values that the animation will animate between over time.
291     * @return A ValueAnimator object that is set up to animate between the given values.
292     */
293    public static ValueAnimator ofFloat(float... values) {
294        ValueAnimator anim = new ValueAnimator();
295        anim.setFloatValues(values);
296        return anim;
297    }
298
299    /**
300     * Constructs and returns a ValueAnimator that animates between the values
301     * specified in the PropertyValuesHolder objects.
302     *
303     * @param values A set of PropertyValuesHolder objects whose values will be animated
304     * between over time.
305     * @return A ValueAnimator object that is set up to animate between the given values.
306     */
307    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
308        ValueAnimator anim = new ValueAnimator();
309        anim.setValues(values);
310        return anim;
311    }
312    /**
313     * Constructs and returns a ValueAnimator that animates between Object values. A single
314     * value implies that that value is the one being animated to. However, this is not typically
315     * useful in a ValueAnimator object because there is no way for the object to determine the
316     * starting value for the animation (unlike ObjectAnimator, which can derive that value
317     * from the target object and property being animated). Therefore, there should typically
318     * be two or more values.
319     *
320     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
321     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
322     * to perform that interpolation.
323     *
324     * @param evaluator A TypeEvaluator that will be called on each animation frame to
325     * provide the ncessry interpolation between the Object values to derive the animated
326     * value.
327     * @param values A set of values that the animation will animate between over time.
328     * @return A ValueAnimator object that is set up to animate between the given values.
329     */
330    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
331        ValueAnimator anim = new ValueAnimator();
332        anim.setObjectValues(values);
333        anim.setEvaluator(evaluator);
334        return anim;
335    }
336
337    /**
338     * Sets int values that will be animated between. A single
339     * value implies that that value is the one being animated to. However, this is not typically
340     * useful in a ValueAnimator object because there is no way for the object to determine the
341     * starting value for the animation (unlike ObjectAnimator, which can derive that value
342     * from the target object and property being animated). Therefore, there should typically
343     * be two or more values.
344     *
345     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
346     * than one PropertyValuesHolder object, this method will set the values for the first
347     * of those objects.</p>
348     *
349     * @param values A set of values that the animation will animate between over time.
350     */
351    public void setIntValues(int... values) {
352        if (values == null || values.length == 0) {
353            return;
354        }
355        if (mValues == null || mValues.length == 0) {
356            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofInt("", values)});
357        } else {
358            PropertyValuesHolder valuesHolder = mValues[0];
359            valuesHolder.setIntValues(values);
360        }
361        // New property/values/target should cause re-initialization prior to starting
362        mInitialized = false;
363    }
364
365    /**
366     * Sets float values that will be animated between. A single
367     * value implies that that value is the one being animated to. However, this is not typically
368     * useful in a ValueAnimator object because there is no way for the object to determine the
369     * starting value for the animation (unlike ObjectAnimator, which can derive that value
370     * from the target object and property being animated). Therefore, there should typically
371     * be two or more values.
372     *
373     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
374     * than one PropertyValuesHolder object, this method will set the values for the first
375     * of those objects.</p>
376     *
377     * @param values A set of values that the animation will animate between over time.
378     */
379    public void setFloatValues(float... values) {
380        if (values == null || values.length == 0) {
381            return;
382        }
383        if (mValues == null || mValues.length == 0) {
384            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofFloat("", values)});
385        } else {
386            PropertyValuesHolder valuesHolder = mValues[0];
387            valuesHolder.setFloatValues(values);
388        }
389        // New property/values/target should cause re-initialization prior to starting
390        mInitialized = false;
391    }
392
393    /**
394     * Sets the values to animate between for this animation. A single
395     * value implies that that value is the one being animated to. However, this is not typically
396     * useful in a ValueAnimator object because there is no way for the object to determine the
397     * starting value for the animation (unlike ObjectAnimator, which can derive that value
398     * from the target object and property being animated). Therefore, there should typically
399     * be two or more values.
400     *
401     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
402     * than one PropertyValuesHolder object, this method will set the values for the first
403     * of those objects.</p>
404     *
405     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
406     * between these value objects. ValueAnimator only knows how to interpolate between the
407     * primitive types specified in the other setValues() methods.</p>
408     *
409     * @param values The set of values to animate between.
410     */
411    public void setObjectValues(Object... values) {
412        if (values == null || values.length == 0) {
413            return;
414        }
415        if (mValues == null || mValues.length == 0) {
416            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofObject("",
417                    (TypeEvaluator)null, values)});
418        } else {
419            PropertyValuesHolder valuesHolder = mValues[0];
420            valuesHolder.setObjectValues(values);
421        }
422        // New property/values/target should cause re-initialization prior to starting
423        mInitialized = false;
424    }
425
426    /**
427     * Sets the values, per property, being animated between. This function is called internally
428     * by the constructors of ValueAnimator that take a list of values. But an ValueAnimator can
429     * be constructed without values and this method can be called to set the values manually
430     * instead.
431     *
432     * @param values The set of values, per property, being animated between.
433     */
434    public void setValues(PropertyValuesHolder... values) {
435        int numValues = values.length;
436        mValues = values;
437        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
438        for (int i = 0; i < numValues; ++i) {
439            PropertyValuesHolder valuesHolder = (PropertyValuesHolder) values[i];
440            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
441        }
442        // New property/values/target should cause re-initialization prior to starting
443        mInitialized = false;
444    }
445
446    /**
447     * Returns the values that this ValueAnimator animates between. These values are stored in
448     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
449     * of value objects instead.
450     *
451     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
452     * values, per property, that define the animation.
453     */
454    public PropertyValuesHolder[] getValues() {
455        return mValues;
456    }
457
458    /**
459     * This function is called immediately before processing the first animation
460     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
461     * function is called after that delay ends.
462     * It takes care of the final initialization steps for the
463     * animation.
464     *
465     *  <p>Overrides of this method should call the superclass method to ensure
466     *  that internal mechanisms for the animation are set up correctly.</p>
467     */
468    void initAnimation() {
469        if (!mInitialized) {
470            int numValues = mValues.length;
471            for (int i = 0; i < numValues; ++i) {
472                mValues[i].init();
473            }
474            mInitialized = true;
475        }
476    }
477
478
479    /**
480     * Sets the length of the animation. The default duration is 300 milliseconds.
481     *
482     * @param duration The length of the animation, in milliseconds.
483     * @return ValueAnimator The object called with setDuration(). This return
484     * value makes it easier to compose statements together that construct and then set the
485     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
486     */
487    public ValueAnimator setDuration(long duration) {
488        mDuration = duration;
489        return this;
490    }
491
492    /**
493     * Gets the length of the animation. The default duration is 300 milliseconds.
494     *
495     * @return The length of the animation, in milliseconds.
496     */
497    public long getDuration() {
498        return mDuration;
499    }
500
501    /**
502     * Sets the position of the animation to the specified point in time. This time should
503     * be between 0 and the total duration of the animation, including any repetition. If
504     * the animation has not yet been started, then it will not advance forward after it is
505     * set to this time; it will simply set the time to this value and perform any appropriate
506     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
507     * will set the current playing time to this value and continue playing from that point.
508     *
509     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
510     */
511    public void setCurrentPlayTime(long playTime) {
512        initAnimation();
513        long currentTime = AnimationUtils.currentAnimationTimeMillis();
514        if (mPlayingState != RUNNING) {
515            mSeekTime = playTime;
516            mPlayingState = SEEKED;
517        }
518        mStartTime = currentTime - playTime;
519        animationFrame(currentTime);
520    }
521
522    /**
523     * Gets the current position of the animation in time, which is equal to the current
524     * time minus the time that the animation started. An animation that is not yet started will
525     * return a value of zero.
526     *
527     * @return The current position in time of the animation.
528     */
529    public long getCurrentPlayTime() {
530        if (!mInitialized || mPlayingState == STOPPED) {
531            return 0;
532        }
533        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
534    }
535
536    /**
537     * This custom, static handler handles the timing pulse that is shared by
538     * all active animations. This approach ensures that the setting of animation
539     * values will happen on the UI thread and that all animations will share
540     * the same times for calculating their values, which makes synchronizing
541     * animations possible.
542     *
543     */
544    private static class AnimationHandler extends Handler {
545        /**
546         * There are only two messages that we care about: ANIMATION_START and
547         * ANIMATION_FRAME. The START message is sent when an animation's start()
548         * method is called. It cannot start synchronously when start() is called
549         * because the call may be on the wrong thread, and it would also not be
550         * synchronized with other animations because it would not start on a common
551         * timing pulse. So each animation sends a START message to the handler, which
552         * causes the handler to place the animation on the active animations queue and
553         * start processing frames for that animation.
554         * The FRAME message is the one that is sent over and over while there are any
555         * active animations to process.
556         */
557        @Override
558        public void handleMessage(Message msg) {
559            boolean callAgain = true;
560            ArrayList<ValueAnimator> animations = sAnimations.get();
561            ArrayList<ValueAnimator> delayedAnims = sDelayedAnims.get();
562            switch (msg.what) {
563                // TODO: should we avoid sending frame message when starting if we
564                // were already running?
565                case ANIMATION_START:
566                    ArrayList<ValueAnimator> pendingAnimations = sPendingAnimations.get();
567                    if (animations.size() > 0 || delayedAnims.size() > 0) {
568                        callAgain = false;
569                    }
570                    // pendingAnims holds any animations that have requested to be started
571                    // We're going to clear sPendingAnimations, but starting animation may
572                    // cause more to be added to the pending list (for example, if one animation
573                    // starting triggers another starting). So we loop until sPendingAnimations
574                    // is empty.
575                    while (pendingAnimations.size() > 0) {
576                        ArrayList<ValueAnimator> pendingCopy =
577                                (ArrayList<ValueAnimator>) pendingAnimations.clone();
578                        pendingAnimations.clear();
579                        int count = pendingCopy.size();
580                        for (int i = 0; i < count; ++i) {
581                            ValueAnimator anim = pendingCopy.get(i);
582                            // If the animation has a startDelay, place it on the delayed list
583                            if (anim.mStartDelay == 0 || anim.mPlayingState == ENDED ||
584                                    anim.mPlayingState == CANCELED) {
585                                anim.startAnimation();
586                            } else {
587                                delayedAnims.add(anim);
588                            }
589                        }
590                    }
591                    // fall through to process first frame of new animations
592                case ANIMATION_FRAME:
593                    // currentTime holds the common time for all animations processed
594                    // during this frame
595                    long currentTime = AnimationUtils.currentAnimationTimeMillis();
596                    ArrayList<ValueAnimator> readyAnims = sReadyAnims.get();
597                    ArrayList<ValueAnimator> endingAnims = sEndingAnims.get();
598
599                    // First, process animations currently sitting on the delayed queue, adding
600                    // them to the active animations if they are ready
601                    int numDelayedAnims = delayedAnims.size();
602                    for (int i = 0; i < numDelayedAnims; ++i) {
603                        ValueAnimator anim = delayedAnims.get(i);
604                        if (anim.delayedAnimationFrame(currentTime)) {
605                            readyAnims.add(anim);
606                        }
607                    }
608                    int numReadyAnims = readyAnims.size();
609                    if (numReadyAnims > 0) {
610                        for (int i = 0; i < numReadyAnims; ++i) {
611                            ValueAnimator anim = readyAnims.get(i);
612                            anim.startAnimation();
613                            delayedAnims.remove(anim);
614                        }
615                        readyAnims.clear();
616                    }
617
618                    // Now process all active animations. The return value from animationFrame()
619                    // tells the handler whether it should now be ended
620                    int numAnims = animations.size();
621                    for (int i = 0; i < numAnims; ++i) {
622                        ValueAnimator anim = animations.get(i);
623                        if (anim.animationFrame(currentTime)) {
624                            endingAnims.add(anim);
625                        }
626                    }
627                    if (endingAnims.size() > 0) {
628                        for (int i = 0; i < endingAnims.size(); ++i) {
629                            endingAnims.get(i).endAnimation();
630                        }
631                        endingAnims.clear();
632                    }
633
634                    // If there are still active or delayed animations, call the handler again
635                    // after the frameDelay
636                    if (callAgain && (!animations.isEmpty() || !delayedAnims.isEmpty())) {
637                        sendEmptyMessageDelayed(ANIMATION_FRAME, Math.max(0, sFrameDelay -
638                            (AnimationUtils.currentAnimationTimeMillis() - currentTime)));
639                    }
640                    break;
641            }
642        }
643    }
644
645    /**
646     * The amount of time, in milliseconds, to delay starting the animation after
647     * {@link #start()} is called.
648     *
649     * @return the number of milliseconds to delay running the animation
650     */
651    public long getStartDelay() {
652        return mStartDelay;
653    }
654
655    /**
656     * The amount of time, in milliseconds, to delay starting the animation after
657     * {@link #start()} is called.
658
659     * @param startDelay The amount of the delay, in milliseconds
660     */
661    public void setStartDelay(long startDelay) {
662        this.mStartDelay = startDelay;
663    }
664
665    /**
666     * The amount of time, in milliseconds, between each frame of the animation. This is a
667     * requested time that the animation will attempt to honor, but the actual delay between
668     * frames may be different, depending on system load and capabilities. This is a static
669     * function because the same delay will be applied to all animations, since they are all
670     * run off of a single timing loop.
671     *
672     * @return the requested time between frames, in milliseconds
673     */
674    public static long getFrameDelay() {
675        return sFrameDelay;
676    }
677
678    /**
679     * The amount of time, in milliseconds, between each frame of the animation. This is a
680     * requested time that the animation will attempt to honor, but the actual delay between
681     * frames may be different, depending on system load and capabilities. This is a static
682     * function because the same delay will be applied to all animations, since they are all
683     * run off of a single timing loop.
684     *
685     * @param frameDelay the requested time between frames, in milliseconds
686     */
687    public static void setFrameDelay(long frameDelay) {
688        sFrameDelay = frameDelay;
689    }
690
691    /**
692     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
693     * property being animated. This value is only sensible while the animation is running. The main
694     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
695     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
696     * is called during each animation frame, immediately after the value is calculated.
697     *
698     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
699     * the single property being animated. If there are several properties being animated
700     * (specified by several PropertyValuesHolder objects in the constructor), this function
701     * returns the animated value for the first of those objects.
702     */
703    public Object getAnimatedValue() {
704        if (mValues != null && mValues.length > 0) {
705            return mValues[0].getAnimatedValue();
706        }
707        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
708        return null;
709    }
710
711    /**
712     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
713     * The main purpose for this read-only property is to retrieve the value from the
714     * <code>ValueAnimator</code> during a call to
715     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
716     * is called during each animation frame, immediately after the value is calculated.
717     *
718     * @return animatedValue The value most recently calculated for the named property
719     * by this <code>ValueAnimator</code>.
720     */
721    public Object getAnimatedValue(String propertyName) {
722        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
723        if (valuesHolder != null) {
724            return valuesHolder.getAnimatedValue();
725        } else {
726            // At least avoid crashing if called with bogus propertyName
727            return null;
728        }
729    }
730
731    /**
732     * Sets how many times the animation should be repeated. If the repeat
733     * count is 0, the animation is never repeated. If the repeat count is
734     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
735     * into account. The repeat count is 0 by default.
736     *
737     * @param value the number of times the animation should be repeated
738     */
739    public void setRepeatCount(int value) {
740        mRepeatCount = value;
741    }
742    /**
743     * Defines how many times the animation should repeat. The default value
744     * is 0.
745     *
746     * @return the number of times the animation should repeat, or {@link #INFINITE}
747     */
748    public int getRepeatCount() {
749        return mRepeatCount;
750    }
751
752    /**
753     * Defines what this animation should do when it reaches the end. This
754     * setting is applied only when the repeat count is either greater than
755     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
756     *
757     * @param value {@link #RESTART} or {@link #REVERSE}
758     */
759    public void setRepeatMode(int value) {
760        mRepeatMode = value;
761    }
762
763    /**
764     * Defines what this animation should do when it reaches the end.
765     *
766     * @return either one of {@link #REVERSE} or {@link #RESTART}
767     */
768    public int getRepeatMode() {
769        return mRepeatMode;
770    }
771
772    /**
773     * Adds a listener to the set of listeners that are sent update events through the life of
774     * an animation. This method is called on all listeners for every frame of the animation,
775     * after the values for the animation have been calculated.
776     *
777     * @param listener the listener to be added to the current set of listeners for this animation.
778     */
779    public void addUpdateListener(AnimatorUpdateListener listener) {
780        if (mUpdateListeners == null) {
781            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
782        }
783        mUpdateListeners.add(listener);
784    }
785
786    /**
787     * Removes all listeners from the set listening to frame updates for this animation.
788     */
789    public void removeAllUpdateListeners() {
790        if (mUpdateListeners == null) {
791            return;
792        }
793        mUpdateListeners.clear();
794        mUpdateListeners = null;
795    }
796
797    /**
798     * Removes a listener from the set listening to frame updates for this animation.
799     *
800     * @param listener the listener to be removed from the current set of update listeners
801     * for this animation.
802     */
803    public void removeUpdateListener(AnimatorUpdateListener listener) {
804        if (mUpdateListeners == null) {
805            return;
806        }
807        mUpdateListeners.remove(listener);
808        if (mUpdateListeners.size() == 0) {
809            mUpdateListeners = null;
810        }
811    }
812
813
814    /**
815     * The time interpolator used in calculating the elapsed fraction of this animation. The
816     * interpolator determines whether the animation runs with linear or non-linear motion,
817     * such as acceleration and deceleration. The default value is
818     * {@link android.view.animation.AccelerateDecelerateInterpolator}
819     *
820     * @param value the interpolator to be used by this animation
821     */
822    @Override
823    public void setInterpolator(TimeInterpolator value) {
824        if (value != null) {
825            mInterpolator = value;
826        }
827    }
828
829    /**
830     * Returns the timing interpolator that this ValueAnimator uses.
831     *
832     * @return The timing interpolator for this ValueAnimator.
833     */
834    public TimeInterpolator getInterpolator() {
835        return mInterpolator;
836    }
837
838    /**
839     * The type evaluator to be used when calculating the animated values of this animation.
840     * The system will automatically assign a float, int, or double evaluator based on the type
841     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
842     * are not one of these primitive types, or if different evaluation is desired (such as is
843     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
844     * For example, when running an animation on color values, the {@link RGBEvaluator}
845     * should be used to get correct RGB color interpolation.
846     *
847     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
848     * will be used for that set. If there are several sets of values being animated, which is
849     * the case if PropertyValuesHOlder objects were set on the ValueAnimator, then the evaluator
850     * is assigned just to the first PropertyValuesHolder object.</p>
851     *
852     * @param value the evaluator to be used this animation
853     */
854    public void setEvaluator(TypeEvaluator value) {
855        if (value != null && mValues != null && mValues.length > 0) {
856            mValues[0].setEvaluator(value);
857        }
858    }
859
860    /**
861     * Start the animation playing. This version of start() takes a boolean flag that indicates
862     * whether the animation should play in reverse. The flag is usually false, but may be set
863     * to true if called from the reverse() method/
864     *
865     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
866     */
867    private void start(boolean playBackwards) {
868        mPlayingBackwards = playBackwards;
869        Looper looper = Looper.getMainLooper();
870        final boolean isUiThread;
871        if (looper != null) {
872            isUiThread = Thread.currentThread() == looper.getThread();
873        } else {
874            // ignore check if we don't have a Looper (this isn't an Activity)
875            isUiThread = true;
876        }
877        if ((mStartDelay == 0) && isUiThread) {
878            if (mListeners != null) {
879                ArrayList<AnimatorListener> tmpListeners =
880                        (ArrayList<AnimatorListener>) mListeners.clone();
881                int numListeners = tmpListeners.size();
882                for (int i = 0; i < numListeners; ++i) {
883                    tmpListeners.get(i).onAnimationStart(this);
884                }
885            }
886            // This sets the initial value of the animation, prior to actually starting it running
887            setCurrentPlayTime(getCurrentPlayTime());
888        }
889        mCurrentIteration = 0;
890        mPlayingState = STOPPED;
891        mStartedDelay = false;
892        sPendingAnimations.get().add(this);
893        AnimationHandler animationHandler = sAnimationHandler.get();
894        if (animationHandler == null) {
895            animationHandler = new AnimationHandler();
896            sAnimationHandler.set(animationHandler);
897        }
898        animationHandler.sendEmptyMessage(ANIMATION_START);
899    }
900
901    @Override
902    public void start() {
903        start(false);
904    }
905
906    @Override
907    public void cancel() {
908        if (mListeners != null) {
909            ArrayList<AnimatorListener> tmpListeners =
910                    (ArrayList<AnimatorListener>) mListeners.clone();
911            for (AnimatorListener listener : tmpListeners) {
912                listener.onAnimationCancel(this);
913            }
914        }
915        // Just set the CANCELED flag - this causes the animation to end the next time a frame
916        // is processed.
917        mPlayingState = CANCELED;
918    }
919
920    @Override
921    public void end() {
922        if (!sAnimations.get().contains(this) && !sPendingAnimations.get().contains(this)) {
923            // Special case if the animation has not yet started; get it ready for ending
924            mStartedDelay = false;
925            sPendingAnimations.get().add(this);
926            AnimationHandler animationHandler = sAnimationHandler.get();
927            if (animationHandler == null) {
928                animationHandler = new AnimationHandler();
929                sAnimationHandler.set(animationHandler);
930            }
931            animationHandler.sendEmptyMessage(ANIMATION_START);
932        }
933        // Just set the ENDED flag - this causes the animation to end the next time a frame
934        // is processed.
935        mPlayingState = ENDED;
936    }
937
938    @Override
939    public boolean isRunning() {
940        // ENDED or CANCELED indicate that it has been ended or canceled, but not processed yet
941        return (mPlayingState == RUNNING || mPlayingState == ENDED || mPlayingState == CANCELED);
942    }
943
944    /**
945     * Plays the ValueAnimator in reverse. If the animation is already running,
946     * it will stop itself and play backwards from the point reached when reverse was called.
947     * If the animation is not currently running, then it will start from the end and
948     * play backwards. This behavior is only set for the current animation; future playing
949     * of the animation will use the default behavior of playing forward.
950     */
951    public void reverse() {
952        mPlayingBackwards = !mPlayingBackwards;
953        if (mPlayingState == RUNNING) {
954            long currentTime = AnimationUtils.currentAnimationTimeMillis();
955            long currentPlayTime = currentTime - mStartTime;
956            long timeLeft = mDuration - currentPlayTime;
957            mStartTime = currentTime - timeLeft;
958        } else {
959            start(true);
960        }
961    }
962
963    /**
964     * Called internally to end an animation by removing it from the animations list. Must be
965     * called on the UI thread.
966     */
967    private void endAnimation() {
968        sAnimations.get().remove(this);
969        mPlayingState = STOPPED;
970        if (mListeners != null) {
971            ArrayList<AnimatorListener> tmpListeners =
972                    (ArrayList<AnimatorListener>) mListeners.clone();
973            int numListeners = tmpListeners.size();
974            for (int i = 0; i < numListeners; ++i) {
975                tmpListeners.get(i).onAnimationEnd(this);
976            }
977        }
978    }
979
980    /**
981     * Called internally to start an animation by adding it to the active animations list. Must be
982     * called on the UI thread.
983     */
984    private void startAnimation() {
985        initAnimation();
986        sAnimations.get().add(this);
987        if (mStartDelay > 0 && mListeners != null) {
988            // Listeners were already notified in start() if startDelay is 0; this is
989            // just for delayed animations
990            ArrayList<AnimatorListener> tmpListeners =
991                    (ArrayList<AnimatorListener>) mListeners.clone();
992            int numListeners = tmpListeners.size();
993            for (int i = 0; i < numListeners; ++i) {
994                tmpListeners.get(i).onAnimationStart(this);
995            }
996        }
997    }
998
999    /**
1000     * Internal function called to process an animation frame on an animation that is currently
1001     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1002     * should be woken up and put on the active animations queue.
1003     *
1004     * @param currentTime The current animation time, used to calculate whether the animation
1005     * has exceeded its <code>startDelay</code> and should be started.
1006     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1007     * should be added to the set of active animations.
1008     */
1009    private boolean delayedAnimationFrame(long currentTime) {
1010        if (mPlayingState == CANCELED || mPlayingState == ENDED) {
1011            // end the delay, process an animation frame to actually cancel it
1012            return true;
1013        }
1014        if (!mStartedDelay) {
1015            mStartedDelay = true;
1016            mDelayStartTime = currentTime;
1017        } else {
1018            long deltaTime = currentTime - mDelayStartTime;
1019            if (deltaTime > mStartDelay) {
1020                // startDelay ended - start the anim and record the
1021                // mStartTime appropriately
1022                mStartTime = currentTime - (deltaTime - mStartDelay);
1023                mPlayingState = RUNNING;
1024                return true;
1025            }
1026        }
1027        return false;
1028    }
1029
1030    /**
1031     * This internal function processes a single animation frame for a given animation. The
1032     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1033     * elapsed duration, and therefore
1034     * the elapsed fraction, of the animation. The return value indicates whether the animation
1035     * should be ended (which happens when the elapsed time of the animation exceeds the
1036     * animation's duration, including the repeatCount).
1037     *
1038     * @param currentTime The current time, as tracked by the static timing handler
1039     * @return true if the animation's duration, including any repetitions due to
1040     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1041     */
1042    private boolean animationFrame(long currentTime) {
1043        boolean done = false;
1044
1045        if (mPlayingState == STOPPED) {
1046            mPlayingState = RUNNING;
1047            if (mSeekTime < 0) {
1048                mStartTime = currentTime;
1049            } else {
1050                mStartTime = currentTime - mSeekTime;
1051                // Now that we're playing, reset the seek time
1052                mSeekTime = -1;
1053            }
1054        }
1055        switch (mPlayingState) {
1056        case RUNNING:
1057        case SEEKED:
1058            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1059            if (fraction >= 1f) {
1060                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1061                    // Time to repeat
1062                    if (mListeners != null) {
1063                        int numListeners = mListeners.size();
1064                        for (int i = 0; i < numListeners; ++i) {
1065                            mListeners.get(i).onAnimationRepeat(this);
1066                        }
1067                    }
1068                    ++mCurrentIteration;
1069                    if (mRepeatMode == REVERSE) {
1070                        mPlayingBackwards = mPlayingBackwards ? false : true;
1071                    }
1072                    // TODO: doesn't account for fraction going Wayyyyy over 1, like 2+
1073                    fraction = fraction - 1f;
1074                    mStartTime += mDuration;
1075                } else {
1076                    done = true;
1077                    fraction = Math.min(fraction, 1.0f);
1078                }
1079            }
1080            if (mPlayingBackwards) {
1081                fraction = 1f - fraction;
1082            }
1083            animateValue(fraction);
1084            break;
1085        case ENDED:
1086            // The final value set on the target varies, depending on whether the animation
1087            // was supposed to repeat an odd number of times
1088            if (mRepeatCount > 0 && (mRepeatCount & 0x01) == 1) {
1089                animateValue(0f);
1090            } else {
1091                animateValue(1f);
1092            }
1093            // Fall through to set done flag
1094        case CANCELED:
1095            done = true;
1096            mPlayingState = STOPPED;
1097            break;
1098        }
1099
1100        return done;
1101    }
1102
1103    /**
1104     * This method is called with the elapsed fraction of the animation during every
1105     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1106     * and then into an animated value (from the evaluator. The function is called mostly during
1107     * animation updates, but it is also called when the <code>end()</code>
1108     * function is called, to set the final value on the property.
1109     *
1110     * <p>Overrides of this method must call the superclass to perform the calculation
1111     * of the animated value.</p>
1112     *
1113     * @param fraction The elapsed fraction of the animation.
1114     */
1115    void animateValue(float fraction) {
1116        fraction = mInterpolator.getInterpolation(fraction);
1117        int numValues = mValues.length;
1118        for (int i = 0; i < numValues; ++i) {
1119            mValues[i].calculateValue(fraction);
1120        }
1121        if (mUpdateListeners != null) {
1122            int numListeners = mUpdateListeners.size();
1123            for (int i = 0; i < numListeners; ++i) {
1124                mUpdateListeners.get(i).onAnimationUpdate(this);
1125            }
1126        }
1127    }
1128
1129    @Override
1130    public ValueAnimator clone() {
1131        final ValueAnimator anim = (ValueAnimator) super.clone();
1132        if (mUpdateListeners != null) {
1133            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1134            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1135            int numListeners = oldListeners.size();
1136            for (int i = 0; i < numListeners; ++i) {
1137                anim.mUpdateListeners.add(oldListeners.get(i));
1138            }
1139        }
1140        anim.mSeekTime = -1;
1141        anim.mPlayingBackwards = false;
1142        anim.mCurrentIteration = 0;
1143        anim.mInitialized = false;
1144        anim.mPlayingState = STOPPED;
1145        anim.mStartedDelay = false;
1146        PropertyValuesHolder[] oldValues = mValues;
1147        if (oldValues != null) {
1148            int numValues = oldValues.length;
1149            anim.mValues = new PropertyValuesHolder[numValues];
1150            for (int i = 0; i < numValues; ++i) {
1151                anim.mValues[i] = oldValues[i].clone();
1152            }
1153            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1154            for (int i = 0; i < numValues; ++i) {
1155                PropertyValuesHolder valuesHolder = mValues[i];
1156                anim.mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
1157            }
1158        }
1159        return anim;
1160    }
1161
1162    /**
1163     * Implementors of this interface can add themselves as update listeners
1164     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1165     * frame, after the current frame's values have been calculated for that
1166     * <code>ValueAnimator</code>.
1167     */
1168    public static interface AnimatorUpdateListener {
1169        /**
1170         * <p>Notifies the occurrence of another frame of the animation.</p>
1171         *
1172         * @param animation The animation which was repeated.
1173         */
1174        void onAnimationUpdate(ValueAnimator animation);
1175
1176    }
1177
1178    /**
1179     * Return the number of animations currently running.
1180     *
1181     * Used by StrictMode internally to annotate violations.  Only
1182     * called on the main thread.
1183     *
1184     * @hide
1185     */
1186    public static int getCurrentAnimationsCount() {
1187        return sAnimations.get().size();
1188    }
1189}
1190