ValueAnimator.java revision 8b699792b677bd4dd8442b32641ac09d48fdd79c
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Handler;
20import android.os.Looper;
21import android.os.Message;
22import android.util.AndroidRuntimeException;
23import android.view.animation.AccelerateDecelerateInterpolator;
24import android.view.animation.AnimationUtils;
25import android.view.animation.LinearInterpolator;
26
27import java.util.ArrayList;
28import java.util.HashMap;
29
30/**
31 * This class provides a simple timing engine for running animations
32 * which calculate animated values and set them on target objects.
33 *
34 * <p>There is a single timing pulse that all animations use. It runs in a
35 * custom handler to ensure that property changes happen on the UI thread.</p>
36 *
37 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
38 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
39 * out of an animation. This behavior can be changed by calling
40 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
41 */
42public class ValueAnimator extends Animator {
43
44    /**
45     * Internal constants
46     */
47
48    /*
49     * The default amount of time in ms between animation frames
50     */
51    private static final long DEFAULT_FRAME_DELAY = 10;
52
53    /**
54     * Messages sent to timing handler: START is sent when an animation first begins, FRAME is sent
55     * by the handler to itself to process the next animation frame
56     */
57    private static final int ANIMATION_START = 0;
58    private static final int ANIMATION_FRAME = 1;
59
60    /**
61     * Values used with internal variable mPlayingState to indicate the current state of an
62     * animation.
63     */
64    static final int STOPPED    = 0; // Not yet playing
65    static final int RUNNING    = 1; // Playing normally
66    static final int SEEKED     = 2; // Seeked to some time value
67
68    /**
69     * Internal variables
70     * NOTE: This object implements the clone() method, making a deep copy of any referenced
71     * objects. As other non-trivial fields are added to this class, make sure to add logic
72     * to clone() to make deep copies of them.
73     */
74
75    // The first time that the animation's animateFrame() method is called. This time is used to
76    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
77    // to animateFrame()
78    long mStartTime;
79
80    /**
81     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
82     * to a value.
83     */
84    long mSeekTime = -1;
85
86    // TODO: We access the following ThreadLocal variables often, some of them on every update.
87    // If ThreadLocal access is significantly expensive, we may want to put all of these
88    // fields into a structure sot hat we just access ThreadLocal once to get the reference
89    // to that structure, then access the structure directly for each field.
90
91    // The static sAnimationHandler processes the internal timing loop on which all animations
92    // are based
93    private static ThreadLocal<AnimationHandler> sAnimationHandler =
94            new ThreadLocal<AnimationHandler>();
95
96    // The per-thread list of all active animations
97    private static final ThreadLocal<ArrayList<ValueAnimator>> sAnimations =
98            new ThreadLocal<ArrayList<ValueAnimator>>() {
99                @Override
100                protected ArrayList<ValueAnimator> initialValue() {
101                    return new ArrayList<ValueAnimator>();
102                }
103            };
104
105    // The per-thread set of animations to be started on the next animation frame
106    private static final ThreadLocal<ArrayList<ValueAnimator>> sPendingAnimations =
107            new ThreadLocal<ArrayList<ValueAnimator>>() {
108                @Override
109                protected ArrayList<ValueAnimator> initialValue() {
110                    return new ArrayList<ValueAnimator>();
111                }
112            };
113
114    /**
115     * Internal per-thread collections used to avoid set collisions as animations start and end
116     * while being processed.
117     */
118    private static final ThreadLocal<ArrayList<ValueAnimator>> sDelayedAnims =
119            new ThreadLocal<ArrayList<ValueAnimator>>() {
120                @Override
121                protected ArrayList<ValueAnimator> initialValue() {
122                    return new ArrayList<ValueAnimator>();
123                }
124            };
125
126    private static final ThreadLocal<ArrayList<ValueAnimator>> sEndingAnims =
127            new ThreadLocal<ArrayList<ValueAnimator>>() {
128                @Override
129                protected ArrayList<ValueAnimator> initialValue() {
130                    return new ArrayList<ValueAnimator>();
131                }
132            };
133
134    private static final ThreadLocal<ArrayList<ValueAnimator>> sReadyAnims =
135            new ThreadLocal<ArrayList<ValueAnimator>>() {
136                @Override
137                protected ArrayList<ValueAnimator> initialValue() {
138                    return new ArrayList<ValueAnimator>();
139                }
140            };
141
142    // The time interpolator to be used if none is set on the animation
143    private static final TimeInterpolator sDefaultInterpolator =
144            new AccelerateDecelerateInterpolator();
145
146    // type evaluators for the primitive types handled by this implementation
147    private static final TypeEvaluator sIntEvaluator = new IntEvaluator();
148    private static final TypeEvaluator sFloatEvaluator = new FloatEvaluator();
149
150    /**
151     * Used to indicate whether the animation is currently playing in reverse. This causes the
152     * elapsed fraction to be inverted to calculate the appropriate values.
153     */
154    private boolean mPlayingBackwards = false;
155
156    /**
157     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
158     * repeatCount (if repeatCount!=INFINITE), the animation ends
159     */
160    private int mCurrentIteration = 0;
161
162    /**
163     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
164     */
165    private float mCurrentFraction = 0f;
166
167    /**
168     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
169     */
170    private boolean mStartedDelay = false;
171
172    /**
173     * Tracks the time at which the animation began playing through its startDelay. This is
174     * different from the mStartTime variable, which is used to track when the animation became
175     * active (which is when the startDelay expired and the animation was added to the active
176     * animations list).
177     */
178    private long mDelayStartTime;
179
180    /**
181     * Flag that represents the current state of the animation. Used to figure out when to start
182     * an animation (if state == STOPPED). Also used to end an animation that
183     * has been cancel()'d or end()'d since the last animation frame. Possible values are
184     * STOPPED, RUNNING, SEEKED.
185     */
186    int mPlayingState = STOPPED;
187
188    /**
189     * Additional playing state to indicate whether an animator has been start()'d. There is
190     * some lag between a call to start() and the first animation frame. We should still note
191     * that the animation has been started, even if it's first animation frame has not yet
192     * happened, and reflect that state in isRunning().
193     * Note that delayed animations are different: they are not started until their first
194     * animation frame, which occurs after their delay elapses.
195     */
196    private boolean mRunning = false;
197
198    /**
199     * Additional playing state to indicate whether an animator has been start()'d, whether or
200     * not there is a nonzero startDelay.
201     */
202    private boolean mStarted = false;
203
204    /**
205     * Flag that denotes whether the animation is set up and ready to go. Used to
206     * set up animation that has not yet been started.
207     */
208    boolean mInitialized = false;
209
210    //
211    // Backing variables
212    //
213
214    // How long the animation should last in ms
215    private long mDuration = 300;
216
217    // The amount of time in ms to delay starting the animation after start() is called
218    private long mStartDelay = 0;
219
220    // The number of milliseconds between animation frames
221    private static long sFrameDelay = DEFAULT_FRAME_DELAY;
222
223    // The number of times the animation will repeat. The default is 0, which means the animation
224    // will play only once
225    private int mRepeatCount = 0;
226
227    /**
228     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
229     * animation will start from the beginning on every new cycle. REVERSE means the animation
230     * will reverse directions on each iteration.
231     */
232    private int mRepeatMode = RESTART;
233
234    /**
235     * The time interpolator to be used. The elapsed fraction of the animation will be passed
236     * through this interpolator to calculate the interpolated fraction, which is then used to
237     * calculate the animated values.
238     */
239    private TimeInterpolator mInterpolator = sDefaultInterpolator;
240
241    /**
242     * The set of listeners to be sent events through the life of an animation.
243     */
244    private ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
245
246    /**
247     * The property/value sets being animated.
248     */
249    PropertyValuesHolder[] mValues;
250
251    /**
252     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
253     * by property name during calls to getAnimatedValue(String).
254     */
255    HashMap<String, PropertyValuesHolder> mValuesMap;
256
257    /**
258     * Public constants
259     */
260
261    /**
262     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
263     * or a positive value, the animation restarts from the beginning.
264     */
265    public static final int RESTART = 1;
266    /**
267     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
268     * or a positive value, the animation reverses direction on every iteration.
269     */
270    public static final int REVERSE = 2;
271    /**
272     * This value used used with the {@link #setRepeatCount(int)} property to repeat
273     * the animation indefinitely.
274     */
275    public static final int INFINITE = -1;
276
277    /**
278     * Creates a new ValueAnimator object. This default constructor is primarily for
279     * use internally; the factory methods which take parameters are more generally
280     * useful.
281     */
282    public ValueAnimator() {
283    }
284
285    /**
286     * Constructs and returns a ValueAnimator that animates between int values. A single
287     * value implies that that value is the one being animated to. However, this is not typically
288     * useful in a ValueAnimator object because there is no way for the object to determine the
289     * starting value for the animation (unlike ObjectAnimator, which can derive that value
290     * from the target object and property being animated). Therefore, there should typically
291     * be two or more values.
292     *
293     * @param values A set of values that the animation will animate between over time.
294     * @return A ValueAnimator object that is set up to animate between the given values.
295     */
296    public static ValueAnimator ofInt(int... values) {
297        ValueAnimator anim = new ValueAnimator();
298        anim.setIntValues(values);
299        return anim;
300    }
301
302    /**
303     * Constructs and returns a ValueAnimator that animates between float values. A single
304     * value implies that that value is the one being animated to. However, this is not typically
305     * useful in a ValueAnimator object because there is no way for the object to determine the
306     * starting value for the animation (unlike ObjectAnimator, which can derive that value
307     * from the target object and property being animated). Therefore, there should typically
308     * be two or more values.
309     *
310     * @param values A set of values that the animation will animate between over time.
311     * @return A ValueAnimator object that is set up to animate between the given values.
312     */
313    public static ValueAnimator ofFloat(float... values) {
314        ValueAnimator anim = new ValueAnimator();
315        anim.setFloatValues(values);
316        return anim;
317    }
318
319    /**
320     * Constructs and returns a ValueAnimator that animates between the values
321     * specified in the PropertyValuesHolder objects.
322     *
323     * @param values A set of PropertyValuesHolder objects whose values will be animated
324     * between over time.
325     * @return A ValueAnimator object that is set up to animate between the given values.
326     */
327    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
328        ValueAnimator anim = new ValueAnimator();
329        anim.setValues(values);
330        return anim;
331    }
332    /**
333     * Constructs and returns a ValueAnimator that animates between Object values. A single
334     * value implies that that value is the one being animated to. However, this is not typically
335     * useful in a ValueAnimator object because there is no way for the object to determine the
336     * starting value for the animation (unlike ObjectAnimator, which can derive that value
337     * from the target object and property being animated). Therefore, there should typically
338     * be two or more values.
339     *
340     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
341     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
342     * to perform that interpolation.
343     *
344     * @param evaluator A TypeEvaluator that will be called on each animation frame to
345     * provide the ncessry interpolation between the Object values to derive the animated
346     * value.
347     * @param values A set of values that the animation will animate between over time.
348     * @return A ValueAnimator object that is set up to animate between the given values.
349     */
350    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
351        ValueAnimator anim = new ValueAnimator();
352        anim.setObjectValues(values);
353        anim.setEvaluator(evaluator);
354        return anim;
355    }
356
357    /**
358     * Sets int values that will be animated between. A single
359     * value implies that that value is the one being animated to. However, this is not typically
360     * useful in a ValueAnimator object because there is no way for the object to determine the
361     * starting value for the animation (unlike ObjectAnimator, which can derive that value
362     * from the target object and property being animated). Therefore, there should typically
363     * be two or more values.
364     *
365     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
366     * than one PropertyValuesHolder object, this method will set the values for the first
367     * of those objects.</p>
368     *
369     * @param values A set of values that the animation will animate between over time.
370     */
371    public void setIntValues(int... values) {
372        if (values == null || values.length == 0) {
373            return;
374        }
375        if (mValues == null || mValues.length == 0) {
376            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofInt("", values)});
377        } else {
378            PropertyValuesHolder valuesHolder = mValues[0];
379            valuesHolder.setIntValues(values);
380        }
381        // New property/values/target should cause re-initialization prior to starting
382        mInitialized = false;
383    }
384
385    /**
386     * Sets float values that will be animated between. A single
387     * value implies that that value is the one being animated to. However, this is not typically
388     * useful in a ValueAnimator object because there is no way for the object to determine the
389     * starting value for the animation (unlike ObjectAnimator, which can derive that value
390     * from the target object and property being animated). Therefore, there should typically
391     * be two or more values.
392     *
393     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
394     * than one PropertyValuesHolder object, this method will set the values for the first
395     * of those objects.</p>
396     *
397     * @param values A set of values that the animation will animate between over time.
398     */
399    public void setFloatValues(float... values) {
400        if (values == null || values.length == 0) {
401            return;
402        }
403        if (mValues == null || mValues.length == 0) {
404            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofFloat("", values)});
405        } else {
406            PropertyValuesHolder valuesHolder = mValues[0];
407            valuesHolder.setFloatValues(values);
408        }
409        // New property/values/target should cause re-initialization prior to starting
410        mInitialized = false;
411    }
412
413    /**
414     * Sets the values to animate between for this animation. A single
415     * value implies that that value is the one being animated to. However, this is not typically
416     * useful in a ValueAnimator object because there is no way for the object to determine the
417     * starting value for the animation (unlike ObjectAnimator, which can derive that value
418     * from the target object and property being animated). Therefore, there should typically
419     * be two or more values.
420     *
421     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
422     * than one PropertyValuesHolder object, this method will set the values for the first
423     * of those objects.</p>
424     *
425     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
426     * between these value objects. ValueAnimator only knows how to interpolate between the
427     * primitive types specified in the other setValues() methods.</p>
428     *
429     * @param values The set of values to animate between.
430     */
431    public void setObjectValues(Object... values) {
432        if (values == null || values.length == 0) {
433            return;
434        }
435        if (mValues == null || mValues.length == 0) {
436            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofObject("",
437                    (TypeEvaluator)null, values)});
438        } else {
439            PropertyValuesHolder valuesHolder = mValues[0];
440            valuesHolder.setObjectValues(values);
441        }
442        // New property/values/target should cause re-initialization prior to starting
443        mInitialized = false;
444    }
445
446    /**
447     * Sets the values, per property, being animated between. This function is called internally
448     * by the constructors of ValueAnimator that take a list of values. But an ValueAnimator can
449     * be constructed without values and this method can be called to set the values manually
450     * instead.
451     *
452     * @param values The set of values, per property, being animated between.
453     */
454    public void setValues(PropertyValuesHolder... values) {
455        int numValues = values.length;
456        mValues = values;
457        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
458        for (int i = 0; i < numValues; ++i) {
459            PropertyValuesHolder valuesHolder = (PropertyValuesHolder) values[i];
460            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
461        }
462        // New property/values/target should cause re-initialization prior to starting
463        mInitialized = false;
464    }
465
466    /**
467     * Returns the values that this ValueAnimator animates between. These values are stored in
468     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
469     * of value objects instead.
470     *
471     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
472     * values, per property, that define the animation.
473     */
474    public PropertyValuesHolder[] getValues() {
475        return mValues;
476    }
477
478    /**
479     * This function is called immediately before processing the first animation
480     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
481     * function is called after that delay ends.
482     * It takes care of the final initialization steps for the
483     * animation.
484     *
485     *  <p>Overrides of this method should call the superclass method to ensure
486     *  that internal mechanisms for the animation are set up correctly.</p>
487     */
488    void initAnimation() {
489        if (!mInitialized) {
490            int numValues = mValues.length;
491            for (int i = 0; i < numValues; ++i) {
492                mValues[i].init();
493            }
494            mInitialized = true;
495        }
496    }
497
498
499    /**
500     * Sets the length of the animation. The default duration is 300 milliseconds.
501     *
502     * @param duration The length of the animation, in milliseconds. This value cannot
503     * be negative.
504     * @return ValueAnimator The object called with setDuration(). This return
505     * value makes it easier to compose statements together that construct and then set the
506     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
507     */
508    public ValueAnimator setDuration(long duration) {
509        if (duration < 0) {
510            throw new IllegalArgumentException("Animators cannot have negative duration: " +
511                    duration);
512        }
513        mDuration = duration;
514        return this;
515    }
516
517    /**
518     * Gets the length of the animation. The default duration is 300 milliseconds.
519     *
520     * @return The length of the animation, in milliseconds.
521     */
522    public long getDuration() {
523        return mDuration;
524    }
525
526    /**
527     * Sets the position of the animation to the specified point in time. This time should
528     * be between 0 and the total duration of the animation, including any repetition. If
529     * the animation has not yet been started, then it will not advance forward after it is
530     * set to this time; it will simply set the time to this value and perform any appropriate
531     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
532     * will set the current playing time to this value and continue playing from that point.
533     *
534     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
535     */
536    public void setCurrentPlayTime(long playTime) {
537        initAnimation();
538        long currentTime = AnimationUtils.currentAnimationTimeMillis();
539        if (mPlayingState != RUNNING) {
540            mSeekTime = playTime;
541            mPlayingState = SEEKED;
542        }
543        mStartTime = currentTime - playTime;
544        animationFrame(currentTime);
545    }
546
547    /**
548     * Gets the current position of the animation in time, which is equal to the current
549     * time minus the time that the animation started. An animation that is not yet started will
550     * return a value of zero.
551     *
552     * @return The current position in time of the animation.
553     */
554    public long getCurrentPlayTime() {
555        if (!mInitialized || mPlayingState == STOPPED) {
556            return 0;
557        }
558        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
559    }
560
561    /**
562     * This custom, static handler handles the timing pulse that is shared by
563     * all active animations. This approach ensures that the setting of animation
564     * values will happen on the UI thread and that all animations will share
565     * the same times for calculating their values, which makes synchronizing
566     * animations possible.
567     *
568     */
569    private static class AnimationHandler extends Handler {
570        /**
571         * There are only two messages that we care about: ANIMATION_START and
572         * ANIMATION_FRAME. The START message is sent when an animation's start()
573         * method is called. It cannot start synchronously when start() is called
574         * because the call may be on the wrong thread, and it would also not be
575         * synchronized with other animations because it would not start on a common
576         * timing pulse. So each animation sends a START message to the handler, which
577         * causes the handler to place the animation on the active animations queue and
578         * start processing frames for that animation.
579         * The FRAME message is the one that is sent over and over while there are any
580         * active animations to process.
581         */
582        @Override
583        public void handleMessage(Message msg) {
584            boolean callAgain = true;
585            ArrayList<ValueAnimator> animations = sAnimations.get();
586            ArrayList<ValueAnimator> delayedAnims = sDelayedAnims.get();
587            switch (msg.what) {
588                // TODO: should we avoid sending frame message when starting if we
589                // were already running?
590                case ANIMATION_START:
591                    ArrayList<ValueAnimator> pendingAnimations = sPendingAnimations.get();
592                    if (animations.size() > 0 || delayedAnims.size() > 0) {
593                        callAgain = false;
594                    }
595                    // pendingAnims holds any animations that have requested to be started
596                    // We're going to clear sPendingAnimations, but starting animation may
597                    // cause more to be added to the pending list (for example, if one animation
598                    // starting triggers another starting). So we loop until sPendingAnimations
599                    // is empty.
600                    while (pendingAnimations.size() > 0) {
601                        ArrayList<ValueAnimator> pendingCopy =
602                                (ArrayList<ValueAnimator>) pendingAnimations.clone();
603                        pendingAnimations.clear();
604                        int count = pendingCopy.size();
605                        for (int i = 0; i < count; ++i) {
606                            ValueAnimator anim = pendingCopy.get(i);
607                            // If the animation has a startDelay, place it on the delayed list
608                            if (anim.mStartDelay == 0) {
609                                anim.startAnimation();
610                            } else {
611                                delayedAnims.add(anim);
612                            }
613                        }
614                    }
615                    // fall through to process first frame of new animations
616                case ANIMATION_FRAME:
617                    // currentTime holds the common time for all animations processed
618                    // during this frame
619                    long currentTime = AnimationUtils.currentAnimationTimeMillis();
620                    ArrayList<ValueAnimator> readyAnims = sReadyAnims.get();
621                    ArrayList<ValueAnimator> endingAnims = sEndingAnims.get();
622
623                    // First, process animations currently sitting on the delayed queue, adding
624                    // them to the active animations if they are ready
625                    int numDelayedAnims = delayedAnims.size();
626                    for (int i = 0; i < numDelayedAnims; ++i) {
627                        ValueAnimator anim = delayedAnims.get(i);
628                        if (anim.delayedAnimationFrame(currentTime)) {
629                            readyAnims.add(anim);
630                        }
631                    }
632                    int numReadyAnims = readyAnims.size();
633                    if (numReadyAnims > 0) {
634                        for (int i = 0; i < numReadyAnims; ++i) {
635                            ValueAnimator anim = readyAnims.get(i);
636                            anim.startAnimation();
637                            anim.mRunning = true;
638                            delayedAnims.remove(anim);
639                        }
640                        readyAnims.clear();
641                    }
642
643                    // Now process all active animations. The return value from animationFrame()
644                    // tells the handler whether it should now be ended
645                    int numAnims = animations.size();
646                    int i = 0;
647                    while (i < numAnims) {
648                        ValueAnimator anim = animations.get(i);
649                        if (anim.animationFrame(currentTime)) {
650                            endingAnims.add(anim);
651                        }
652                        if (animations.size() == numAnims) {
653                            ++i;
654                        } else {
655                            // An animation might be canceled or ended by client code
656                            // during the animation frame. Check to see if this happened by
657                            // seeing whether the current index is the same as it was before
658                            // calling animationFrame(). Another approach would be to copy
659                            // animations to a temporary list and process that list instead,
660                            // but that entails garbage and processing overhead that would
661                            // be nice to avoid.
662                            --numAnims;
663                            endingAnims.remove(anim);
664                        }
665                    }
666                    if (endingAnims.size() > 0) {
667                        for (i = 0; i < endingAnims.size(); ++i) {
668                            endingAnims.get(i).endAnimation();
669                        }
670                        endingAnims.clear();
671                    }
672
673                    // If there are still active or delayed animations, call the handler again
674                    // after the frameDelay
675                    if (callAgain && (!animations.isEmpty() || !delayedAnims.isEmpty())) {
676                        sendEmptyMessageDelayed(ANIMATION_FRAME, Math.max(0, sFrameDelay -
677                            (AnimationUtils.currentAnimationTimeMillis() - currentTime)));
678                    }
679                    break;
680            }
681        }
682    }
683
684    /**
685     * The amount of time, in milliseconds, to delay starting the animation after
686     * {@link #start()} is called.
687     *
688     * @return the number of milliseconds to delay running the animation
689     */
690    public long getStartDelay() {
691        return mStartDelay;
692    }
693
694    /**
695     * The amount of time, in milliseconds, to delay starting the animation after
696     * {@link #start()} is called.
697
698     * @param startDelay The amount of the delay, in milliseconds
699     */
700    public void setStartDelay(long startDelay) {
701        this.mStartDelay = startDelay;
702    }
703
704    /**
705     * The amount of time, in milliseconds, between each frame of the animation. This is a
706     * requested time that the animation will attempt to honor, but the actual delay between
707     * frames may be different, depending on system load and capabilities. This is a static
708     * function because the same delay will be applied to all animations, since they are all
709     * run off of a single timing loop.
710     *
711     * @return the requested time between frames, in milliseconds
712     */
713    public static long getFrameDelay() {
714        return sFrameDelay;
715    }
716
717    /**
718     * The amount of time, in milliseconds, between each frame of the animation. This is a
719     * requested time that the animation will attempt to honor, but the actual delay between
720     * frames may be different, depending on system load and capabilities. This is a static
721     * function because the same delay will be applied to all animations, since they are all
722     * run off of a single timing loop.
723     *
724     * @param frameDelay the requested time between frames, in milliseconds
725     */
726    public static void setFrameDelay(long frameDelay) {
727        sFrameDelay = frameDelay;
728    }
729
730    /**
731     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
732     * property being animated. This value is only sensible while the animation is running. The main
733     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
734     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
735     * is called during each animation frame, immediately after the value is calculated.
736     *
737     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
738     * the single property being animated. If there are several properties being animated
739     * (specified by several PropertyValuesHolder objects in the constructor), this function
740     * returns the animated value for the first of those objects.
741     */
742    public Object getAnimatedValue() {
743        if (mValues != null && mValues.length > 0) {
744            return mValues[0].getAnimatedValue();
745        }
746        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
747        return null;
748    }
749
750    /**
751     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
752     * The main purpose for this read-only property is to retrieve the value from the
753     * <code>ValueAnimator</code> during a call to
754     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
755     * is called during each animation frame, immediately after the value is calculated.
756     *
757     * @return animatedValue The value most recently calculated for the named property
758     * by this <code>ValueAnimator</code>.
759     */
760    public Object getAnimatedValue(String propertyName) {
761        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
762        if (valuesHolder != null) {
763            return valuesHolder.getAnimatedValue();
764        } else {
765            // At least avoid crashing if called with bogus propertyName
766            return null;
767        }
768    }
769
770    /**
771     * Sets how many times the animation should be repeated. If the repeat
772     * count is 0, the animation is never repeated. If the repeat count is
773     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
774     * into account. The repeat count is 0 by default.
775     *
776     * @param value the number of times the animation should be repeated
777     */
778    public void setRepeatCount(int value) {
779        mRepeatCount = value;
780    }
781    /**
782     * Defines how many times the animation should repeat. The default value
783     * is 0.
784     *
785     * @return the number of times the animation should repeat, or {@link #INFINITE}
786     */
787    public int getRepeatCount() {
788        return mRepeatCount;
789    }
790
791    /**
792     * Defines what this animation should do when it reaches the end. This
793     * setting is applied only when the repeat count is either greater than
794     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
795     *
796     * @param value {@link #RESTART} or {@link #REVERSE}
797     */
798    public void setRepeatMode(int value) {
799        mRepeatMode = value;
800    }
801
802    /**
803     * Defines what this animation should do when it reaches the end.
804     *
805     * @return either one of {@link #REVERSE} or {@link #RESTART}
806     */
807    public int getRepeatMode() {
808        return mRepeatMode;
809    }
810
811    /**
812     * Adds a listener to the set of listeners that are sent update events through the life of
813     * an animation. This method is called on all listeners for every frame of the animation,
814     * after the values for the animation have been calculated.
815     *
816     * @param listener the listener to be added to the current set of listeners for this animation.
817     */
818    public void addUpdateListener(AnimatorUpdateListener listener) {
819        if (mUpdateListeners == null) {
820            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
821        }
822        mUpdateListeners.add(listener);
823    }
824
825    /**
826     * Removes all listeners from the set listening to frame updates for this animation.
827     */
828    public void removeAllUpdateListeners() {
829        if (mUpdateListeners == null) {
830            return;
831        }
832        mUpdateListeners.clear();
833        mUpdateListeners = null;
834    }
835
836    /**
837     * Removes a listener from the set listening to frame updates for this animation.
838     *
839     * @param listener the listener to be removed from the current set of update listeners
840     * for this animation.
841     */
842    public void removeUpdateListener(AnimatorUpdateListener listener) {
843        if (mUpdateListeners == null) {
844            return;
845        }
846        mUpdateListeners.remove(listener);
847        if (mUpdateListeners.size() == 0) {
848            mUpdateListeners = null;
849        }
850    }
851
852
853    /**
854     * The time interpolator used in calculating the elapsed fraction of this animation. The
855     * interpolator determines whether the animation runs with linear or non-linear motion,
856     * such as acceleration and deceleration. The default value is
857     * {@link android.view.animation.AccelerateDecelerateInterpolator}
858     *
859     * @param value the interpolator to be used by this animation. A value of <code>null</code>
860     * will result in linear interpolation.
861     */
862    @Override
863    public void setInterpolator(TimeInterpolator value) {
864        if (value != null) {
865            mInterpolator = value;
866        } else {
867            mInterpolator = new LinearInterpolator();
868        }
869    }
870
871    /**
872     * Returns the timing interpolator that this ValueAnimator uses.
873     *
874     * @return The timing interpolator for this ValueAnimator.
875     */
876    public TimeInterpolator getInterpolator() {
877        return mInterpolator;
878    }
879
880    /**
881     * The type evaluator to be used when calculating the animated values of this animation.
882     * The system will automatically assign a float or int evaluator based on the type
883     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
884     * are not one of these primitive types, or if different evaluation is desired (such as is
885     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
886     * For example, when running an animation on color values, the {@link ArgbEvaluator}
887     * should be used to get correct RGB color interpolation.
888     *
889     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
890     * will be used for that set. If there are several sets of values being animated, which is
891     * the case if PropertyValuesHOlder objects were set on the ValueAnimator, then the evaluator
892     * is assigned just to the first PropertyValuesHolder object.</p>
893     *
894     * @param value the evaluator to be used this animation
895     */
896    public void setEvaluator(TypeEvaluator value) {
897        if (value != null && mValues != null && mValues.length > 0) {
898            mValues[0].setEvaluator(value);
899        }
900    }
901
902    /**
903     * Start the animation playing. This version of start() takes a boolean flag that indicates
904     * whether the animation should play in reverse. The flag is usually false, but may be set
905     * to true if called from the reverse() method.
906     *
907     * <p>The animation started by calling this method will be run on the thread that called
908     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
909     * this is not the case). Also, if the animation will animate
910     * properties of objects in the view hierarchy, then the calling thread should be the UI
911     * thread for that view hierarchy.</p>
912     *
913     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
914     */
915    private void start(boolean playBackwards) {
916        if (Looper.myLooper() == null) {
917            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
918        }
919        mPlayingBackwards = playBackwards;
920        mCurrentIteration = 0;
921        mPlayingState = STOPPED;
922        mStarted = true;
923        mStartedDelay = false;
924        sPendingAnimations.get().add(this);
925        if (mStartDelay == 0) {
926            // This sets the initial value of the animation, prior to actually starting it running
927            setCurrentPlayTime(getCurrentPlayTime());
928            mPlayingState = STOPPED;
929            mRunning = true;
930
931            if (mListeners != null) {
932                ArrayList<AnimatorListener> tmpListeners =
933                        (ArrayList<AnimatorListener>) mListeners.clone();
934                int numListeners = tmpListeners.size();
935                for (int i = 0; i < numListeners; ++i) {
936                    tmpListeners.get(i).onAnimationStart(this);
937                }
938            }
939        }
940        AnimationHandler animationHandler = sAnimationHandler.get();
941        if (animationHandler == null) {
942            animationHandler = new AnimationHandler();
943            sAnimationHandler.set(animationHandler);
944        }
945        animationHandler.sendEmptyMessage(ANIMATION_START);
946    }
947
948    @Override
949    public void start() {
950        start(false);
951    }
952
953    @Override
954    public void cancel() {
955        // Only cancel if the animation is actually running or has been started and is about
956        // to run
957        if (mPlayingState != STOPPED || sPendingAnimations.get().contains(this) ||
958                sDelayedAnims.get().contains(this)) {
959            // Only notify listeners if the animator has actually started
960            if (mRunning && mListeners != null) {
961                ArrayList<AnimatorListener> tmpListeners =
962                        (ArrayList<AnimatorListener>) mListeners.clone();
963                for (AnimatorListener listener : tmpListeners) {
964                    listener.onAnimationCancel(this);
965                }
966            }
967            endAnimation();
968        }
969    }
970
971    @Override
972    public void end() {
973        if (!sAnimations.get().contains(this) && !sPendingAnimations.get().contains(this)) {
974            // Special case if the animation has not yet started; get it ready for ending
975            mStartedDelay = false;
976            startAnimation();
977        } else if (!mInitialized) {
978            initAnimation();
979        }
980        // The final value set on the target varies, depending on whether the animation
981        // was supposed to repeat an odd number of times
982        if (mRepeatCount > 0 && (mRepeatCount & 0x01) == 1) {
983            animateValue(0f);
984        } else {
985            animateValue(1f);
986        }
987        endAnimation();
988    }
989
990    @Override
991    public boolean isRunning() {
992        return (mPlayingState == RUNNING || mRunning);
993    }
994
995    @Override
996    public boolean isStarted() {
997        return mStarted;
998    }
999
1000    /**
1001     * Plays the ValueAnimator in reverse. If the animation is already running,
1002     * it will stop itself and play backwards from the point reached when reverse was called.
1003     * If the animation is not currently running, then it will start from the end and
1004     * play backwards. This behavior is only set for the current animation; future playing
1005     * of the animation will use the default behavior of playing forward.
1006     */
1007    public void reverse() {
1008        mPlayingBackwards = !mPlayingBackwards;
1009        if (mPlayingState == RUNNING) {
1010            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1011            long currentPlayTime = currentTime - mStartTime;
1012            long timeLeft = mDuration - currentPlayTime;
1013            mStartTime = currentTime - timeLeft;
1014        } else {
1015            start(true);
1016        }
1017    }
1018
1019    /**
1020     * Called internally to end an animation by removing it from the animations list. Must be
1021     * called on the UI thread.
1022     */
1023    private void endAnimation() {
1024        sAnimations.get().remove(this);
1025        sPendingAnimations.get().remove(this);
1026        sDelayedAnims.get().remove(this);
1027        mPlayingState = STOPPED;
1028        if (mRunning && mListeners != null) {
1029            ArrayList<AnimatorListener> tmpListeners =
1030                    (ArrayList<AnimatorListener>) mListeners.clone();
1031            int numListeners = tmpListeners.size();
1032            for (int i = 0; i < numListeners; ++i) {
1033                tmpListeners.get(i).onAnimationEnd(this);
1034            }
1035        }
1036        mRunning = false;
1037        mStarted = false;
1038    }
1039
1040    /**
1041     * Called internally to start an animation by adding it to the active animations list. Must be
1042     * called on the UI thread.
1043     */
1044    private void startAnimation() {
1045        initAnimation();
1046        sAnimations.get().add(this);
1047        if (mStartDelay > 0 && mListeners != null) {
1048            // Listeners were already notified in start() if startDelay is 0; this is
1049            // just for delayed animations
1050            ArrayList<AnimatorListener> tmpListeners =
1051                    (ArrayList<AnimatorListener>) mListeners.clone();
1052            int numListeners = tmpListeners.size();
1053            for (int i = 0; i < numListeners; ++i) {
1054                tmpListeners.get(i).onAnimationStart(this);
1055            }
1056        }
1057    }
1058
1059    /**
1060     * Internal function called to process an animation frame on an animation that is currently
1061     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1062     * should be woken up and put on the active animations queue.
1063     *
1064     * @param currentTime The current animation time, used to calculate whether the animation
1065     * has exceeded its <code>startDelay</code> and should be started.
1066     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1067     * should be added to the set of active animations.
1068     */
1069    private boolean delayedAnimationFrame(long currentTime) {
1070        if (!mStartedDelay) {
1071            mStartedDelay = true;
1072            mDelayStartTime = currentTime;
1073        } else {
1074            long deltaTime = currentTime - mDelayStartTime;
1075            if (deltaTime > mStartDelay) {
1076                // startDelay ended - start the anim and record the
1077                // mStartTime appropriately
1078                mStartTime = currentTime - (deltaTime - mStartDelay);
1079                mPlayingState = RUNNING;
1080                return true;
1081            }
1082        }
1083        return false;
1084    }
1085
1086    /**
1087     * This internal function processes a single animation frame for a given animation. The
1088     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1089     * elapsed duration, and therefore
1090     * the elapsed fraction, of the animation. The return value indicates whether the animation
1091     * should be ended (which happens when the elapsed time of the animation exceeds the
1092     * animation's duration, including the repeatCount).
1093     *
1094     * @param currentTime The current time, as tracked by the static timing handler
1095     * @return true if the animation's duration, including any repetitions due to
1096     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1097     */
1098    boolean animationFrame(long currentTime) {
1099        boolean done = false;
1100
1101        if (mPlayingState == STOPPED) {
1102            mPlayingState = RUNNING;
1103            if (mSeekTime < 0) {
1104                mStartTime = currentTime;
1105            } else {
1106                mStartTime = currentTime - mSeekTime;
1107                // Now that we're playing, reset the seek time
1108                mSeekTime = -1;
1109            }
1110        }
1111        switch (mPlayingState) {
1112        case RUNNING:
1113        case SEEKED:
1114            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1115            if (fraction >= 1f) {
1116                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1117                    // Time to repeat
1118                    if (mListeners != null) {
1119                        int numListeners = mListeners.size();
1120                        for (int i = 0; i < numListeners; ++i) {
1121                            mListeners.get(i).onAnimationRepeat(this);
1122                        }
1123                    }
1124                    if (mRepeatMode == REVERSE) {
1125                        mPlayingBackwards = mPlayingBackwards ? false : true;
1126                    }
1127                    mCurrentIteration += (int)fraction;
1128                    fraction = fraction % 1f;
1129                    mStartTime += mDuration;
1130                } else {
1131                    done = true;
1132                    fraction = Math.min(fraction, 1.0f);
1133                }
1134            }
1135            if (mPlayingBackwards) {
1136                fraction = 1f - fraction;
1137            }
1138            animateValue(fraction);
1139            break;
1140        }
1141
1142        return done;
1143    }
1144
1145    /**
1146     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1147     * the most recent frame update on the animation.
1148     *
1149     * @return Elapsed/interpolated fraction of the animation.
1150     */
1151    public float getAnimatedFraction() {
1152        return mCurrentFraction;
1153    }
1154
1155    /**
1156     * This method is called with the elapsed fraction of the animation during every
1157     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1158     * and then into an animated value (from the evaluator. The function is called mostly during
1159     * animation updates, but it is also called when the <code>end()</code>
1160     * function is called, to set the final value on the property.
1161     *
1162     * <p>Overrides of this method must call the superclass to perform the calculation
1163     * of the animated value.</p>
1164     *
1165     * @param fraction The elapsed fraction of the animation.
1166     */
1167    void animateValue(float fraction) {
1168        fraction = mInterpolator.getInterpolation(fraction);
1169        mCurrentFraction = fraction;
1170        int numValues = mValues.length;
1171        for (int i = 0; i < numValues; ++i) {
1172            mValues[i].calculateValue(fraction);
1173        }
1174        if (mUpdateListeners != null) {
1175            int numListeners = mUpdateListeners.size();
1176            for (int i = 0; i < numListeners; ++i) {
1177                mUpdateListeners.get(i).onAnimationUpdate(this);
1178            }
1179        }
1180    }
1181
1182    @Override
1183    public ValueAnimator clone() {
1184        final ValueAnimator anim = (ValueAnimator) super.clone();
1185        if (mUpdateListeners != null) {
1186            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1187            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1188            int numListeners = oldListeners.size();
1189            for (int i = 0; i < numListeners; ++i) {
1190                anim.mUpdateListeners.add(oldListeners.get(i));
1191            }
1192        }
1193        anim.mSeekTime = -1;
1194        anim.mPlayingBackwards = false;
1195        anim.mCurrentIteration = 0;
1196        anim.mInitialized = false;
1197        anim.mPlayingState = STOPPED;
1198        anim.mStartedDelay = false;
1199        PropertyValuesHolder[] oldValues = mValues;
1200        if (oldValues != null) {
1201            int numValues = oldValues.length;
1202            anim.mValues = new PropertyValuesHolder[numValues];
1203            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1204            for (int i = 0; i < numValues; ++i) {
1205                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1206                anim.mValues[i] = newValuesHolder;
1207                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1208            }
1209        }
1210        return anim;
1211    }
1212
1213    /**
1214     * Implementors of this interface can add themselves as update listeners
1215     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1216     * frame, after the current frame's values have been calculated for that
1217     * <code>ValueAnimator</code>.
1218     */
1219    public static interface AnimatorUpdateListener {
1220        /**
1221         * <p>Notifies the occurrence of another frame of the animation.</p>
1222         *
1223         * @param animation The animation which was repeated.
1224         */
1225        void onAnimationUpdate(ValueAnimator animation);
1226
1227    }
1228
1229    /**
1230     * Return the number of animations currently running.
1231     *
1232     * Used by StrictMode internally to annotate violations.  Only
1233     * called on the main thread.
1234     *
1235     * @hide
1236     */
1237    public static int getCurrentAnimationsCount() {
1238        return sAnimations.get().size();
1239    }
1240
1241    /**
1242     * Clear all animations on this thread, without canceling or ending them.
1243     * This should be used with caution.
1244     *
1245     * @hide
1246     */
1247    public static void clearAllAnimations() {
1248        sAnimations.get().clear();
1249        sPendingAnimations.get().clear();
1250        sDelayedAnims.get().clear();
1251    }
1252
1253    @Override
1254    public String toString() {
1255        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1256        if (mValues != null) {
1257            for (int i = 0; i < mValues.length; ++i) {
1258                returnVal += "\n    " + mValues[i].toString();
1259            }
1260        }
1261        return returnVal;
1262    }
1263}
1264