ValueAnimator.java revision 907c177b04d07d5d84005ac92df9bde6af7c394d
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.annotation.CallSuper;
20import android.annotation.IntDef;
21import android.os.Looper;
22import android.os.Trace;
23import android.util.AndroidRuntimeException;
24import android.util.Log;
25import android.view.animation.AccelerateDecelerateInterpolator;
26import android.view.animation.AnimationUtils;
27import android.view.animation.LinearInterpolator;
28
29import java.lang.annotation.Retention;
30import java.lang.annotation.RetentionPolicy;
31import java.util.ArrayList;
32import java.util.HashMap;
33
34/**
35 * This class provides a simple timing engine for running animations
36 * which calculate animated values and set them on target objects.
37 *
38 * <p>There is a single timing pulse that all animations use. It runs in a
39 * custom handler to ensure that property changes happen on the UI thread.</p>
40 *
41 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
42 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
43 * out of an animation. This behavior can be changed by calling
44 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
45 *
46 * <p>Animators can be created from either code or resource files. Here is an example
47 * of a ValueAnimator resource file:</p>
48 *
49 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
50 *
51 * <p>It is also possible to use a combination of {@link PropertyValuesHolder} and
52 * {@link Keyframe} resource tags to create a multi-step animation.
53 * Note that you can specify explicit fractional values (from 0 to 1) for
54 * each keyframe to determine when, in the overall duration, the animation should arrive at that
55 * value. Alternatively, you can leave the fractions off and the keyframes will be equally
56 * distributed within the total duration:</p>
57 *
58 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
59 * ValueAnimatorKeyframeResources}
60 *
61 * <div class="special reference">
62 * <h3>Developer Guides</h3>
63 * <p>For more information about animating with {@code ValueAnimator}, read the
64 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
65 * Animation</a> developer guide.</p>
66 * </div>
67 */
68@SuppressWarnings("unchecked")
69public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
70    private static final String TAG = "ValueAnimator";
71    private static final boolean DEBUG = false;
72
73    /**
74     * Internal constants
75     */
76    private static float sDurationScale = 1.0f;
77
78    /**
79     * Internal variables
80     * NOTE: This object implements the clone() method, making a deep copy of any referenced
81     * objects. As other non-trivial fields are added to this class, make sure to add logic
82     * to clone() to make deep copies of them.
83     */
84
85    /**
86     * The first time that the animation's animateFrame() method is called. This time is used to
87     * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
88     * to animateFrame().
89     *
90     * Whenever mStartTime is set, you must also update mStartTimeCommitted.
91     */
92    long mStartTime;
93
94    /**
95     * When true, the start time has been firmly committed as a chosen reference point in
96     * time by which the progress of the animation will be evaluated.  When false, the
97     * start time may be updated when the first animation frame is committed so as
98     * to compensate for jank that may have occurred between when the start time was
99     * initialized and when the frame was actually drawn.
100     *
101     * This flag is generally set to false during the first frame of the animation
102     * when the animation playing state transitions from STOPPED to RUNNING or
103     * resumes after having been paused.  This flag is set to true when the start time
104     * is firmly committed and should not be further compensated for jank.
105     */
106    boolean mStartTimeCommitted;
107
108    /**
109     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
110     * to a value.
111     */
112    float mSeekFraction = -1;
113
114    /**
115     * Set on the next frame after pause() is called, used to calculate a new startTime
116     * or delayStartTime which allows the animator to continue from the point at which
117     * it was paused. If negative, has not yet been set.
118     */
119    private long mPauseTime;
120
121    /**
122     * Set when an animator is resumed. This triggers logic in the next frame which
123     * actually resumes the animator.
124     */
125    private boolean mResumed = false;
126
127    // The time interpolator to be used if none is set on the animation
128    private static final TimeInterpolator sDefaultInterpolator =
129            new AccelerateDecelerateInterpolator();
130
131    /**
132     * Flag to indicate whether this animator is playing in reverse mode, specifically
133     * by being started or interrupted by a call to reverse(). This flag is different than
134     * mPlayingBackwards, which indicates merely whether the current iteration of the
135     * animator is playing in reverse. It is used in corner cases to determine proper end
136     * behavior.
137     */
138    private boolean mReversing;
139
140    /**
141     * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1
142     */
143    private float mOverallFraction = 0f;
144
145    /**
146     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
147     * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration.
148     */
149    private float mCurrentFraction = 0f;
150
151    /**
152     * Tracks the time (in milliseconds) when the last frame arrived.
153     */
154    private long mLastFrameTime = 0;
155
156    /**
157     * Additional playing state to indicate whether an animator has been start()'d. There is
158     * some lag between a call to start() and the first animation frame. We should still note
159     * that the animation has been started, even if it's first animation frame has not yet
160     * happened, and reflect that state in isRunning().
161     * Note that delayed animations are different: they are not started until their first
162     * animation frame, which occurs after their delay elapses.
163     */
164    private boolean mRunning = false;
165
166    /**
167     * Additional playing state to indicate whether an animator has been start()'d, whether or
168     * not there is a nonzero startDelay.
169     */
170    private boolean mStarted = false;
171
172    /**
173     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
174     * complex to keep track of since we notify listeners at different times depending on
175     * startDelay and whether start() was called before end().
176     */
177    private boolean mStartListenersCalled = false;
178
179    /**
180     * Flag that denotes whether the animation is set up and ready to go. Used to
181     * set up animation that has not yet been started.
182     */
183    boolean mInitialized = false;
184
185    /**
186     * Flag that tracks whether animation has been requested to end.
187     */
188    private boolean mAnimationEndRequested = false;
189
190    //
191    // Backing variables
192    //
193
194    // How long the animation should last in ms
195    private long mDuration = 300;
196
197    // The amount of time in ms to delay starting the animation after start() is called. Note
198    // that this start delay is unscaled. When there is a duration scale set on the animator, the
199    // scaling factor will be applied to this delay.
200    private long mStartDelay = 0;
201
202    // The number of times the animation will repeat. The default is 0, which means the animation
203    // will play only once
204    private int mRepeatCount = 0;
205
206    /**
207     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
208     * animation will start from the beginning on every new cycle. REVERSE means the animation
209     * will reverse directions on each iteration.
210     */
211    private int mRepeatMode = RESTART;
212
213    /**
214     * The time interpolator to be used. The elapsed fraction of the animation will be passed
215     * through this interpolator to calculate the interpolated fraction, which is then used to
216     * calculate the animated values.
217     */
218    private TimeInterpolator mInterpolator = sDefaultInterpolator;
219
220    /**
221     * The set of listeners to be sent events through the life of an animation.
222     */
223    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
224
225    /**
226     * The property/value sets being animated.
227     */
228    PropertyValuesHolder[] mValues;
229
230    /**
231     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
232     * by property name during calls to getAnimatedValue(String).
233     */
234    HashMap<String, PropertyValuesHolder> mValuesMap;
235
236    /**
237     * Public constants
238     */
239
240    /** @hide */
241    @IntDef({RESTART, REVERSE})
242    @Retention(RetentionPolicy.SOURCE)
243    public @interface RepeatMode {}
244
245    /**
246     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
247     * or a positive value, the animation restarts from the beginning.
248     */
249    public static final int RESTART = 1;
250    /**
251     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
252     * or a positive value, the animation reverses direction on every iteration.
253     */
254    public static final int REVERSE = 2;
255    /**
256     * This value used used with the {@link #setRepeatCount(int)} property to repeat
257     * the animation indefinitely.
258     */
259    public static final int INFINITE = -1;
260
261    /**
262     * @hide
263     */
264    public static void setDurationScale(float durationScale) {
265        sDurationScale = durationScale;
266    }
267
268    /**
269     * @hide
270     */
271    public static float getDurationScale() {
272        return sDurationScale;
273    }
274
275    /**
276     * Creates a new ValueAnimator object. This default constructor is primarily for
277     * use internally; the factory methods which take parameters are more generally
278     * useful.
279     */
280    public ValueAnimator() {
281    }
282
283    /**
284     * Constructs and returns a ValueAnimator that animates between int values. A single
285     * value implies that that value is the one being animated to. However, this is not typically
286     * useful in a ValueAnimator object because there is no way for the object to determine the
287     * starting value for the animation (unlike ObjectAnimator, which can derive that value
288     * from the target object and property being animated). Therefore, there should typically
289     * be two or more values.
290     *
291     * @param values A set of values that the animation will animate between over time.
292     * @return A ValueAnimator object that is set up to animate between the given values.
293     */
294    public static ValueAnimator ofInt(int... values) {
295        ValueAnimator anim = new ValueAnimator();
296        anim.setIntValues(values);
297        return anim;
298    }
299
300    /**
301     * Constructs and returns a ValueAnimator that animates between color values. A single
302     * value implies that that value is the one being animated to. However, this is not typically
303     * useful in a ValueAnimator object because there is no way for the object to determine the
304     * starting value for the animation (unlike ObjectAnimator, which can derive that value
305     * from the target object and property being animated). Therefore, there should typically
306     * be two or more values.
307     *
308     * @param values A set of values that the animation will animate between over time.
309     * @return A ValueAnimator object that is set up to animate between the given values.
310     */
311    public static ValueAnimator ofArgb(int... values) {
312        ValueAnimator anim = new ValueAnimator();
313        anim.setIntValues(values);
314        anim.setEvaluator(ArgbEvaluator.getInstance());
315        return anim;
316    }
317
318    /**
319     * Constructs and returns a ValueAnimator that animates between float values. A single
320     * value implies that that value is the one being animated to. However, this is not typically
321     * useful in a ValueAnimator object because there is no way for the object to determine the
322     * starting value for the animation (unlike ObjectAnimator, which can derive that value
323     * from the target object and property being animated). Therefore, there should typically
324     * be two or more values.
325     *
326     * @param values A set of values that the animation will animate between over time.
327     * @return A ValueAnimator object that is set up to animate between the given values.
328     */
329    public static ValueAnimator ofFloat(float... values) {
330        ValueAnimator anim = new ValueAnimator();
331        anim.setFloatValues(values);
332        return anim;
333    }
334
335    /**
336     * Constructs and returns a ValueAnimator that animates between the values
337     * specified in the PropertyValuesHolder objects.
338     *
339     * @param values A set of PropertyValuesHolder objects whose values will be animated
340     * between over time.
341     * @return A ValueAnimator object that is set up to animate between the given values.
342     */
343    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
344        ValueAnimator anim = new ValueAnimator();
345        anim.setValues(values);
346        return anim;
347    }
348    /**
349     * Constructs and returns a ValueAnimator that animates between Object values. A single
350     * value implies that that value is the one being animated to. However, this is not typically
351     * useful in a ValueAnimator object because there is no way for the object to determine the
352     * starting value for the animation (unlike ObjectAnimator, which can derive that value
353     * from the target object and property being animated). Therefore, there should typically
354     * be two or more values.
355     *
356     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
357     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
358     * to perform that interpolation.
359     *
360     * @param evaluator A TypeEvaluator that will be called on each animation frame to
361     * provide the ncessry interpolation between the Object values to derive the animated
362     * value.
363     * @param values A set of values that the animation will animate between over time.
364     * @return A ValueAnimator object that is set up to animate between the given values.
365     */
366    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
367        ValueAnimator anim = new ValueAnimator();
368        anim.setObjectValues(values);
369        anim.setEvaluator(evaluator);
370        return anim;
371    }
372
373    /**
374     * Sets int values that will be animated between. A single
375     * value implies that that value is the one being animated to. However, this is not typically
376     * useful in a ValueAnimator object because there is no way for the object to determine the
377     * starting value for the animation (unlike ObjectAnimator, which can derive that value
378     * from the target object and property being animated). Therefore, there should typically
379     * be two or more values.
380     *
381     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
382     * than one PropertyValuesHolder object, this method will set the values for the first
383     * of those objects.</p>
384     *
385     * @param values A set of values that the animation will animate between over time.
386     */
387    public void setIntValues(int... values) {
388        if (values == null || values.length == 0) {
389            return;
390        }
391        if (mValues == null || mValues.length == 0) {
392            setValues(PropertyValuesHolder.ofInt("", values));
393        } else {
394            PropertyValuesHolder valuesHolder = mValues[0];
395            valuesHolder.setIntValues(values);
396        }
397        // New property/values/target should cause re-initialization prior to starting
398        mInitialized = false;
399    }
400
401    /**
402     * Sets float values that will be animated between. A single
403     * value implies that that value is the one being animated to. However, this is not typically
404     * useful in a ValueAnimator object because there is no way for the object to determine the
405     * starting value for the animation (unlike ObjectAnimator, which can derive that value
406     * from the target object and property being animated). Therefore, there should typically
407     * be two or more values.
408     *
409     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
410     * than one PropertyValuesHolder object, this method will set the values for the first
411     * of those objects.</p>
412     *
413     * @param values A set of values that the animation will animate between over time.
414     */
415    public void setFloatValues(float... values) {
416        if (values == null || values.length == 0) {
417            return;
418        }
419        if (mValues == null || mValues.length == 0) {
420            setValues(PropertyValuesHolder.ofFloat("", values));
421        } else {
422            PropertyValuesHolder valuesHolder = mValues[0];
423            valuesHolder.setFloatValues(values);
424        }
425        // New property/values/target should cause re-initialization prior to starting
426        mInitialized = false;
427    }
428
429    /**
430     * Sets the values to animate between for this animation. A single
431     * value implies that that value is the one being animated to. However, this is not typically
432     * useful in a ValueAnimator object because there is no way for the object to determine the
433     * starting value for the animation (unlike ObjectAnimator, which can derive that value
434     * from the target object and property being animated). Therefore, there should typically
435     * be two or more values.
436     *
437     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
438     * than one PropertyValuesHolder object, this method will set the values for the first
439     * of those objects.</p>
440     *
441     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
442     * between these value objects. ValueAnimator only knows how to interpolate between the
443     * primitive types specified in the other setValues() methods.</p>
444     *
445     * @param values The set of values to animate between.
446     */
447    public void setObjectValues(Object... values) {
448        if (values == null || values.length == 0) {
449            return;
450        }
451        if (mValues == null || mValues.length == 0) {
452            setValues(PropertyValuesHolder.ofObject("", null, values));
453        } else {
454            PropertyValuesHolder valuesHolder = mValues[0];
455            valuesHolder.setObjectValues(values);
456        }
457        // New property/values/target should cause re-initialization prior to starting
458        mInitialized = false;
459    }
460
461    /**
462     * Sets the values, per property, being animated between. This function is called internally
463     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
464     * be constructed without values and this method can be called to set the values manually
465     * instead.
466     *
467     * @param values The set of values, per property, being animated between.
468     */
469    public void setValues(PropertyValuesHolder... values) {
470        int numValues = values.length;
471        mValues = values;
472        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
473        for (int i = 0; i < numValues; ++i) {
474            PropertyValuesHolder valuesHolder = values[i];
475            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
476        }
477        // New property/values/target should cause re-initialization prior to starting
478        mInitialized = false;
479    }
480
481    /**
482     * Returns the values that this ValueAnimator animates between. These values are stored in
483     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
484     * of value objects instead.
485     *
486     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
487     * values, per property, that define the animation.
488     */
489    public PropertyValuesHolder[] getValues() {
490        return mValues;
491    }
492
493    /**
494     * This function is called immediately before processing the first animation
495     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
496     * function is called after that delay ends.
497     * It takes care of the final initialization steps for the
498     * animation.
499     *
500     *  <p>Overrides of this method should call the superclass method to ensure
501     *  that internal mechanisms for the animation are set up correctly.</p>
502     */
503    @CallSuper
504    void initAnimation() {
505        if (!mInitialized) {
506            int numValues = mValues.length;
507            for (int i = 0; i < numValues; ++i) {
508                mValues[i].init();
509            }
510            mInitialized = true;
511        }
512    }
513
514    /**
515     * Sets the length of the animation. The default duration is 300 milliseconds.
516     *
517     * @param duration The length of the animation, in milliseconds. This value cannot
518     * be negative.
519     * @return ValueAnimator The object called with setDuration(). This return
520     * value makes it easier to compose statements together that construct and then set the
521     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
522     */
523    @Override
524    public ValueAnimator setDuration(long duration) {
525        if (duration < 0) {
526            throw new IllegalArgumentException("Animators cannot have negative duration: " +
527                    duration);
528        }
529        mDuration = duration;
530        return this;
531    }
532
533    private long getScaledDuration() {
534        return (long)(mDuration * sDurationScale);
535    }
536
537    /**
538     * Gets the length of the animation. The default duration is 300 milliseconds.
539     *
540     * @return The length of the animation, in milliseconds.
541     */
542    @Override
543    public long getDuration() {
544        return mDuration;
545    }
546
547    @Override
548    public long getTotalDuration() {
549        if (mRepeatCount == INFINITE) {
550            return DURATION_INFINITE;
551        } else {
552            return mStartDelay + (mDuration * (mRepeatCount + 1));
553        }
554    }
555
556    /**
557     * Sets the position of the animation to the specified point in time. This time should
558     * be between 0 and the total duration of the animation, including any repetition. If
559     * the animation has not yet been started, then it will not advance forward after it is
560     * set to this time; it will simply set the time to this value and perform any appropriate
561     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
562     * will set the current playing time to this value and continue playing from that point.
563     *
564     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
565     */
566    public void setCurrentPlayTime(long playTime) {
567        float fraction = mDuration > 0 ? (float) playTime / mDuration : 1;
568        setCurrentFraction(fraction);
569    }
570
571    /**
572     * Sets the position of the animation to the specified fraction. This fraction should
573     * be between 0 and the total fraction of the animation, including any repetition. That is,
574     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
575     * and a value of 2 at the end of a reversing animator that repeats once. If
576     * the animation has not yet been started, then it will not advance forward after it is
577     * set to this fraction; it will simply set the fraction to this value and perform any
578     * appropriate actions based on that fraction. If the animation is already running, then
579     * setCurrentFraction() will set the current fraction to this value and continue
580     * playing from that point. {@link Animator.AnimatorListener} events are not called
581     * due to changing the fraction; those events are only processed while the animation
582     * is running.
583     *
584     * @param fraction The fraction to which the animation is advanced or rewound. Values
585     * outside the range of 0 to the maximum fraction for the animator will be clamped to
586     * the correct range.
587     */
588    public void setCurrentFraction(float fraction) {
589        initAnimation();
590        fraction = clampFraction(fraction);
591        long seekTime = (long) (getScaledDuration() * fraction);
592        long currentTime = AnimationUtils.currentAnimationTimeMillis();
593        mStartTime = currentTime - seekTime;
594        mStartTimeCommitted = true; // do not allow start time to be compensated for jank
595        if (!mRunning) {
596            mSeekFraction = fraction;
597        }
598        mOverallFraction = fraction;
599        final float currentIterationFraction = getCurrentIterationFraction(fraction);
600        animateValue(currentIterationFraction);
601    }
602
603    /**
604     * Calculates current iteration based on the overall fraction. The overall fraction will be
605     * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current
606     * iteration can be derived from it.
607     */
608    private int getCurrentIteration(float fraction) {
609        fraction = clampFraction(fraction);
610        // If the overall fraction is a positive integer, we consider the current iteration to be
611        // complete. In other words, the fraction for the current iteration would be 1, and the
612        // current iteration would be overall fraction - 1.
613        double iteration = Math.floor(fraction);
614        if (fraction == iteration && fraction > 0) {
615            iteration--;
616        }
617        return (int) iteration;
618    }
619
620    /**
621     * Calculates the fraction of the current iteration, taking into account whether the animation
622     * should be played backwards. E.g. When the animation is played backwards in an iteration,
623     * the fraction for that iteration will go from 1f to 0f.
624     */
625    private float getCurrentIterationFraction(float fraction) {
626        fraction = clampFraction(fraction);
627        int iteration = getCurrentIteration(fraction);
628        float currentFraction = fraction - iteration;
629        return shouldPlayBackward(iteration) ? 1f - currentFraction : currentFraction;
630    }
631
632    /**
633     * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite,
634     * no upper bound will be set for the fraction.
635     *
636     * @param fraction fraction to be clamped
637     * @return fraction clamped into the range of [0, mRepeatCount + 1]
638     */
639    private float clampFraction(float fraction) {
640        if (fraction < 0) {
641            fraction = 0;
642        } else if (mRepeatCount != INFINITE) {
643            fraction = Math.min(fraction, mRepeatCount + 1);
644        }
645        return fraction;
646    }
647
648    /**
649     * Calculates the direction of animation playing (i.e. forward or backward), based on 1)
650     * whether the entire animation is being reversed, 2) repeat mode applied to the current
651     * iteration.
652     */
653    private boolean shouldPlayBackward(int iteration) {
654        if (iteration > 0 && mRepeatMode == REVERSE &&
655                (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
656            // if we were seeked to some other iteration in a reversing animator,
657            // figure out the correct direction to start playing based on the iteration
658            if (mReversing) {
659                return (iteration % 2) == 0;
660            } else {
661                return (iteration % 2) != 0;
662            }
663        } else {
664            return mReversing;
665        }
666    }
667
668    /**
669     * Gets the current position of the animation in time, which is equal to the current
670     * time minus the time that the animation started. An animation that is not yet started will
671     * return a value of zero, unless the animation has has its play time set via
672     * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
673     * it will return the time that was set.
674     *
675     * @return The current position in time of the animation.
676     */
677    public long getCurrentPlayTime() {
678        if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
679            return 0;
680        }
681        if (mSeekFraction >= 0) {
682            return (long) (mDuration * mSeekFraction);
683        }
684        float durationScale = sDurationScale == 0 ? 1 : sDurationScale;
685        return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale);
686    }
687
688    /**
689     * The amount of time, in milliseconds, to delay starting the animation after
690     * {@link #start()} is called.
691     *
692     * @return the number of milliseconds to delay running the animation
693     */
694    @Override
695    public long getStartDelay() {
696        return mStartDelay;
697    }
698
699    /**
700     * The amount of time, in milliseconds, to delay starting the animation after
701     * {@link #start()} is called.
702
703     * @param startDelay The amount of the delay, in milliseconds
704     */
705    @Override
706    public void setStartDelay(long startDelay) {
707        mStartDelay = startDelay;
708    }
709
710    /**
711     * The amount of time, in milliseconds, between each frame of the animation. This is a
712     * requested time that the animation will attempt to honor, but the actual delay between
713     * frames may be different, depending on system load and capabilities. This is a static
714     * function because the same delay will be applied to all animations, since they are all
715     * run off of a single timing loop.
716     *
717     * The frame delay may be ignored when the animation system uses an external timing
718     * source, such as the display refresh rate (vsync), to govern animations.
719     *
720     * Note that this method should be called from the same thread that {@link #start()} is
721     * called in order to check the frame delay for that animation. A runtime exception will be
722     * thrown if the calling thread does not have a Looper.
723     *
724     * @return the requested time between frames, in milliseconds
725     */
726    public static long getFrameDelay() {
727        return AnimationHandler.getInstance().getFrameDelay();
728    }
729
730    /**
731     * The amount of time, in milliseconds, between each frame of the animation. This is a
732     * requested time that the animation will attempt to honor, but the actual delay between
733     * frames may be different, depending on system load and capabilities. This is a static
734     * function because the same delay will be applied to all animations, since they are all
735     * run off of a single timing loop.
736     *
737     * The frame delay may be ignored when the animation system uses an external timing
738     * source, such as the display refresh rate (vsync), to govern animations.
739     *
740     * Note that this method should be called from the same thread that {@link #start()} is
741     * called in order to have the new frame delay take effect on that animation. A runtime
742     * exception will be thrown if the calling thread does not have a Looper.
743     *
744     * @param frameDelay the requested time between frames, in milliseconds
745     */
746    public static void setFrameDelay(long frameDelay) {
747        AnimationHandler.getInstance().setFrameDelay(frameDelay);
748    }
749
750    /**
751     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
752     * property being animated. This value is only sensible while the animation is running. The main
753     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
754     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
755     * is called during each animation frame, immediately after the value is calculated.
756     *
757     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
758     * the single property being animated. If there are several properties being animated
759     * (specified by several PropertyValuesHolder objects in the constructor), this function
760     * returns the animated value for the first of those objects.
761     */
762    public Object getAnimatedValue() {
763        if (mValues != null && mValues.length > 0) {
764            return mValues[0].getAnimatedValue();
765        }
766        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
767        return null;
768    }
769
770    /**
771     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
772     * The main purpose for this read-only property is to retrieve the value from the
773     * <code>ValueAnimator</code> during a call to
774     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
775     * is called during each animation frame, immediately after the value is calculated.
776     *
777     * @return animatedValue The value most recently calculated for the named property
778     * by this <code>ValueAnimator</code>.
779     */
780    public Object getAnimatedValue(String propertyName) {
781        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
782        if (valuesHolder != null) {
783            return valuesHolder.getAnimatedValue();
784        } else {
785            // At least avoid crashing if called with bogus propertyName
786            return null;
787        }
788    }
789
790    /**
791     * Sets how many times the animation should be repeated. If the repeat
792     * count is 0, the animation is never repeated. If the repeat count is
793     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
794     * into account. The repeat count is 0 by default.
795     *
796     * @param value the number of times the animation should be repeated
797     */
798    public void setRepeatCount(int value) {
799        mRepeatCount = value;
800    }
801    /**
802     * Defines how many times the animation should repeat. The default value
803     * is 0.
804     *
805     * @return the number of times the animation should repeat, or {@link #INFINITE}
806     */
807    public int getRepeatCount() {
808        return mRepeatCount;
809    }
810
811    /**
812     * Defines what this animation should do when it reaches the end. This
813     * setting is applied only when the repeat count is either greater than
814     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
815     *
816     * @param value {@link #RESTART} or {@link #REVERSE}
817     */
818    public void setRepeatMode(@RepeatMode int value) {
819        mRepeatMode = value;
820    }
821
822    /**
823     * Defines what this animation should do when it reaches the end.
824     *
825     * @return either one of {@link #REVERSE} or {@link #RESTART}
826     */
827    @RepeatMode
828    public int getRepeatMode() {
829        return mRepeatMode;
830    }
831
832    /**
833     * Adds a listener to the set of listeners that are sent update events through the life of
834     * an animation. This method is called on all listeners for every frame of the animation,
835     * after the values for the animation have been calculated.
836     *
837     * @param listener the listener to be added to the current set of listeners for this animation.
838     */
839    public void addUpdateListener(AnimatorUpdateListener listener) {
840        if (mUpdateListeners == null) {
841            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
842        }
843        mUpdateListeners.add(listener);
844    }
845
846    /**
847     * Removes all listeners from the set listening to frame updates for this animation.
848     */
849    public void removeAllUpdateListeners() {
850        if (mUpdateListeners == null) {
851            return;
852        }
853        mUpdateListeners.clear();
854        mUpdateListeners = null;
855    }
856
857    /**
858     * Removes a listener from the set listening to frame updates for this animation.
859     *
860     * @param listener the listener to be removed from the current set of update listeners
861     * for this animation.
862     */
863    public void removeUpdateListener(AnimatorUpdateListener listener) {
864        if (mUpdateListeners == null) {
865            return;
866        }
867        mUpdateListeners.remove(listener);
868        if (mUpdateListeners.size() == 0) {
869            mUpdateListeners = null;
870        }
871    }
872
873
874    /**
875     * The time interpolator used in calculating the elapsed fraction of this animation. The
876     * interpolator determines whether the animation runs with linear or non-linear motion,
877     * such as acceleration and deceleration. The default value is
878     * {@link android.view.animation.AccelerateDecelerateInterpolator}
879     *
880     * @param value the interpolator to be used by this animation. A value of <code>null</code>
881     * will result in linear interpolation.
882     */
883    @Override
884    public void setInterpolator(TimeInterpolator value) {
885        if (value != null) {
886            mInterpolator = value;
887        } else {
888            mInterpolator = new LinearInterpolator();
889        }
890    }
891
892    /**
893     * Returns the timing interpolator that this ValueAnimator uses.
894     *
895     * @return The timing interpolator for this ValueAnimator.
896     */
897    @Override
898    public TimeInterpolator getInterpolator() {
899        return mInterpolator;
900    }
901
902    /**
903     * The type evaluator to be used when calculating the animated values of this animation.
904     * The system will automatically assign a float or int evaluator based on the type
905     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
906     * are not one of these primitive types, or if different evaluation is desired (such as is
907     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
908     * For example, when running an animation on color values, the {@link ArgbEvaluator}
909     * should be used to get correct RGB color interpolation.
910     *
911     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
912     * will be used for that set. If there are several sets of values being animated, which is
913     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
914     * is assigned just to the first PropertyValuesHolder object.</p>
915     *
916     * @param value the evaluator to be used this animation
917     */
918    public void setEvaluator(TypeEvaluator value) {
919        if (value != null && mValues != null && mValues.length > 0) {
920            mValues[0].setEvaluator(value);
921        }
922    }
923
924    private void notifyStartListeners() {
925        if (mListeners != null && !mStartListenersCalled) {
926            ArrayList<AnimatorListener> tmpListeners =
927                    (ArrayList<AnimatorListener>) mListeners.clone();
928            int numListeners = tmpListeners.size();
929            for (int i = 0; i < numListeners; ++i) {
930                tmpListeners.get(i).onAnimationStart(this);
931            }
932        }
933        mStartListenersCalled = true;
934    }
935
936    /**
937     * Start the animation playing. This version of start() takes a boolean flag that indicates
938     * whether the animation should play in reverse. The flag is usually false, but may be set
939     * to true if called from the reverse() method.
940     *
941     * <p>The animation started by calling this method will be run on the thread that called
942     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
943     * this is not the case). Also, if the animation will animate
944     * properties of objects in the view hierarchy, then the calling thread should be the UI
945     * thread for that view hierarchy.</p>
946     *
947     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
948     */
949    private void start(boolean playBackwards) {
950        if (Looper.myLooper() == null) {
951            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
952        }
953        mReversing = playBackwards;
954        // Special case: reversing from seek-to-0 should act as if not seeked at all.
955        if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) {
956            if (mRepeatCount == INFINITE) {
957                // Calculate the fraction of the current iteration.
958                float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction));
959                mSeekFraction = 1 - fraction;
960            } else {
961                mSeekFraction = 1 + mRepeatCount - mSeekFraction;
962            }
963        }
964        mStarted = true;
965        mPaused = false;
966        mRunning = false;
967        AnimationHandler animationHandler = AnimationHandler.getInstance();
968        animationHandler.addAnimationFrameCallback(this, (long) (mStartDelay * sDurationScale));
969
970        if (mStartDelay == 0 || mSeekFraction >= 0) {
971            // If there's no start delay, init the animation and notify start listeners right away
972            // to be consistent with the previous behavior. Otherwise, postpone this until the first
973            // frame after the start delay.
974            startAnimation();
975            if (mSeekFraction == -1) {
976                // No seek, start at play time 0. Note that the reason we are not using fraction 0
977                // is because for animations with 0 duration, we want to be consistent with pre-N
978                // behavior: skip to the final value immediately.
979                setCurrentPlayTime(0);
980            } else {
981                setCurrentFraction(mSeekFraction);
982            }
983        }
984    }
985
986    @Override
987    public void start() {
988        start(false);
989    }
990
991    @Override
992    public void cancel() {
993        if (Looper.myLooper() == null) {
994            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
995        }
996
997        // If end has already been requested, through a previous end() or cancel() call, no-op
998        // until animation starts again.
999        if (mAnimationEndRequested) {
1000            return;
1001        }
1002
1003        // Only cancel if the animation is actually running or has been started and is about
1004        // to run
1005        // Only notify listeners if the animator has actually started
1006        if ((mStarted || mRunning) && mListeners != null) {
1007            if (!mRunning) {
1008                // If it's not yet running, then start listeners weren't called. Call them now.
1009                notifyStartListeners();
1010            }
1011            ArrayList<AnimatorListener> tmpListeners =
1012                    (ArrayList<AnimatorListener>) mListeners.clone();
1013            for (AnimatorListener listener : tmpListeners) {
1014                listener.onAnimationCancel(this);
1015            }
1016        }
1017        endAnimation();
1018
1019    }
1020
1021    @Override
1022    public void end() {
1023        if (Looper.myLooper() == null) {
1024            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1025        }
1026        if (!mRunning) {
1027            // Special case if the animation has not yet started; get it ready for ending
1028            startAnimation();
1029            mStarted = true;
1030        } else if (!mInitialized) {
1031            initAnimation();
1032        }
1033        animateValue(shouldPlayBackward(mRepeatCount) ? 0f : 1f);
1034        endAnimation();
1035    }
1036
1037    @Override
1038    public void resume() {
1039        if (Looper.myLooper() == null) {
1040            throw new AndroidRuntimeException("Animators may only be resumed from the same " +
1041                    "thread that the animator was started on");
1042        }
1043        if (mPaused && !mResumed) {
1044            mResumed = true;
1045            if (mPauseTime > 0) {
1046                AnimationHandler handler = AnimationHandler.getInstance();
1047                handler.addAnimationFrameCallback(this, 0);
1048            }
1049        }
1050        super.resume();
1051    }
1052
1053    @Override
1054    public void pause() {
1055        boolean previouslyPaused = mPaused;
1056        super.pause();
1057        if (!previouslyPaused && mPaused) {
1058            mPauseTime = -1;
1059            mResumed = false;
1060        }
1061    }
1062
1063    @Override
1064    public boolean isRunning() {
1065        return mRunning;
1066    }
1067
1068    @Override
1069    public boolean isStarted() {
1070        return mStarted;
1071    }
1072
1073    /**
1074     * Plays the ValueAnimator in reverse. If the animation is already running,
1075     * it will stop itself and play backwards from the point reached when reverse was called.
1076     * If the animation is not currently running, then it will start from the end and
1077     * play backwards. This behavior is only set for the current animation; future playing
1078     * of the animation will use the default behavior of playing forward.
1079     */
1080    @Override
1081    public void reverse() {
1082        if (mRunning) {
1083            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1084            long currentPlayTime = currentTime - mStartTime;
1085            long timeLeft = getScaledDuration() - currentPlayTime;
1086            mStartTime = currentTime - timeLeft;
1087            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1088            mReversing = !mReversing;
1089        } else if (mStarted) {
1090            end();
1091        } else {
1092            start(true);
1093        }
1094    }
1095
1096    /**
1097     * @hide
1098     */
1099    @Override
1100    public boolean canReverse() {
1101        return true;
1102    }
1103
1104    /**
1105     * Called internally to end an animation by removing it from the animations list. Must be
1106     * called on the UI thread.
1107     */
1108    private void endAnimation() {
1109        if (mAnimationEndRequested) {
1110            return;
1111        }
1112        AnimationHandler handler = AnimationHandler.getInstance();
1113        handler.removeCallback(this);
1114
1115        mAnimationEndRequested = true;
1116        mPaused = false;
1117        if ((mStarted || mRunning) && mListeners != null) {
1118            if (!mRunning) {
1119                // If it's not yet running, then start listeners weren't called. Call them now.
1120                notifyStartListeners();
1121             }
1122            ArrayList<AnimatorListener> tmpListeners =
1123                    (ArrayList<AnimatorListener>) mListeners.clone();
1124            int numListeners = tmpListeners.size();
1125            for (int i = 0; i < numListeners; ++i) {
1126                tmpListeners.get(i).onAnimationEnd(this);
1127            }
1128        }
1129        mRunning = false;
1130        mStarted = false;
1131        mStartListenersCalled = false;
1132        mReversing = false;
1133        mLastFrameTime = 0;
1134        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1135            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1136                    System.identityHashCode(this));
1137        }
1138    }
1139
1140    /**
1141     * Called internally to start an animation by adding it to the active animations list. Must be
1142     * called on the UI thread.
1143     */
1144    private void startAnimation() {
1145        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1146            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1147                    System.identityHashCode(this));
1148        }
1149
1150        mAnimationEndRequested = false;
1151        initAnimation();
1152        mRunning = true;
1153        if (mSeekFraction >= 0) {
1154            mOverallFraction = mSeekFraction;
1155        } else {
1156            mOverallFraction = 0f;
1157        }
1158        if (mListeners != null) {
1159            notifyStartListeners();
1160        }
1161    }
1162
1163    /**
1164     * Returns the name of this animator for debugging purposes.
1165     */
1166    String getNameForTrace() {
1167        return "animator";
1168    }
1169
1170    /**
1171     * Applies an adjustment to the animation to compensate for jank between when
1172     * the animation first ran and when the frame was drawn.
1173     * @hide
1174     */
1175    public void commitAnimationFrame(long frameTime) {
1176        if (!mStartTimeCommitted) {
1177            mStartTimeCommitted = true;
1178            long adjustment = frameTime - mLastFrameTime;
1179            if (adjustment > 0) {
1180                mStartTime += adjustment;
1181                if (DEBUG) {
1182                    Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1183                }
1184            }
1185        }
1186    }
1187
1188    /**
1189     * This internal function processes a single animation frame for a given animation. The
1190     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1191     * elapsed duration, and therefore
1192     * the elapsed fraction, of the animation. The return value indicates whether the animation
1193     * should be ended (which happens when the elapsed time of the animation exceeds the
1194     * animation's duration, including the repeatCount).
1195     *
1196     * @param currentTime The current time, as tracked by the static timing handler
1197     * @return true if the animation's duration, including any repetitions due to
1198     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1199     */
1200    boolean animateBasedOnTime(long currentTime) {
1201        boolean done = false;
1202        if (mRunning) {
1203            final float fraction = getScaledDuration() > 0 ?
1204                    (float)(currentTime - mStartTime) / getScaledDuration() : 1f;
1205            final float lastFraction = mOverallFraction;
1206            final boolean newIteration = (int) fraction > (int) lastFraction;
1207            final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) &&
1208                    (mRepeatCount != INFINITE);
1209            if (newIteration && !lastIterationFinished) {
1210                // Time to repeat
1211                if (mListeners != null) {
1212                    int numListeners = mListeners.size();
1213                    for (int i = 0; i < numListeners; ++i) {
1214                        mListeners.get(i).onAnimationRepeat(this);
1215                    }
1216                }
1217            } else if (lastIterationFinished) {
1218                done = true;
1219            }
1220            mOverallFraction = clampFraction(fraction);
1221            float currentIterationFraction = getCurrentIterationFraction(mOverallFraction);
1222            animateValue(currentIterationFraction);
1223        }
1224        return done;
1225    }
1226
1227    /**
1228     * Processes a frame of the animation, adjusting the start time if needed.
1229     *
1230     * @param frameTime The frame time.
1231     * @return true if the animation has ended.
1232     * @hide
1233     */
1234    public final void doAnimationFrame(long frameTime) {
1235        AnimationHandler handler = AnimationHandler.getInstance();
1236        if (mLastFrameTime == 0) {
1237            // First frame
1238            handler.addOneShotCommitCallback(this);
1239            if (mStartDelay > 0) {
1240                startAnimation();
1241            }
1242            if (mSeekFraction < 0) {
1243                mStartTime = frameTime;
1244            } else {
1245                long seekTime = (long) (getScaledDuration() * mSeekFraction);
1246                mStartTime = frameTime - seekTime;
1247                mSeekFraction = -1;
1248            }
1249            mStartTimeCommitted = false; // allow start time to be compensated for jank
1250        }
1251        mLastFrameTime = frameTime;
1252        if (mPaused) {
1253            mPauseTime = frameTime;
1254            handler.removeCallback(this);
1255            return;
1256        } else if (mResumed) {
1257            mResumed = false;
1258            if (mPauseTime > 0) {
1259                // Offset by the duration that the animation was paused
1260                mStartTime += (frameTime - mPauseTime);
1261                mStartTimeCommitted = false; // allow start time to be compensated for jank
1262            }
1263            handler.addOneShotCommitCallback(this);
1264        }
1265        // The frame time might be before the start time during the first frame of
1266        // an animation.  The "current time" must always be on or after the start
1267        // time to avoid animating frames at negative time intervals.  In practice, this
1268        // is very rare and only happens when seeking backwards.
1269        final long currentTime = Math.max(frameTime, mStartTime);
1270        boolean finished = animateBasedOnTime(currentTime);
1271
1272        if (finished) {
1273            endAnimation();
1274        }
1275    }
1276
1277    /**
1278     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1279     * the most recent frame update on the animation.
1280     *
1281     * @return Elapsed/interpolated fraction of the animation.
1282     */
1283    public float getAnimatedFraction() {
1284        return mCurrentFraction;
1285    }
1286
1287    /**
1288     * This method is called with the elapsed fraction of the animation during every
1289     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1290     * and then into an animated value (from the evaluator. The function is called mostly during
1291     * animation updates, but it is also called when the <code>end()</code>
1292     * function is called, to set the final value on the property.
1293     *
1294     * <p>Overrides of this method must call the superclass to perform the calculation
1295     * of the animated value.</p>
1296     *
1297     * @param fraction The elapsed fraction of the animation.
1298     */
1299    @CallSuper
1300    void animateValue(float fraction) {
1301        fraction = mInterpolator.getInterpolation(fraction);
1302        mCurrentFraction = fraction;
1303        int numValues = mValues.length;
1304        for (int i = 0; i < numValues; ++i) {
1305            mValues[i].calculateValue(fraction);
1306        }
1307        if (mUpdateListeners != null) {
1308            int numListeners = mUpdateListeners.size();
1309            for (int i = 0; i < numListeners; ++i) {
1310                mUpdateListeners.get(i).onAnimationUpdate(this);
1311            }
1312        }
1313    }
1314
1315    @Override
1316    public ValueAnimator clone() {
1317        final ValueAnimator anim = (ValueAnimator) super.clone();
1318        if (mUpdateListeners != null) {
1319            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1320        }
1321        anim.mSeekFraction = -1;
1322        anim.mReversing = false;
1323        anim.mInitialized = false;
1324        anim.mStarted = false;
1325        anim.mRunning = false;
1326        anim.mPaused = false;
1327        anim.mResumed = false;
1328        anim.mStartListenersCalled = false;
1329        anim.mStartTime = 0;
1330        anim.mStartTimeCommitted = false;
1331        anim.mAnimationEndRequested = false;
1332        anim.mPauseTime = 0;
1333        anim.mLastFrameTime = 0;
1334        anim.mOverallFraction = 0;
1335        anim.mCurrentFraction = 0;
1336
1337        PropertyValuesHolder[] oldValues = mValues;
1338        if (oldValues != null) {
1339            int numValues = oldValues.length;
1340            anim.mValues = new PropertyValuesHolder[numValues];
1341            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1342            for (int i = 0; i < numValues; ++i) {
1343                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1344                anim.mValues[i] = newValuesHolder;
1345                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1346            }
1347        }
1348        return anim;
1349    }
1350
1351    /**
1352     * Implementors of this interface can add themselves as update listeners
1353     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1354     * frame, after the current frame's values have been calculated for that
1355     * <code>ValueAnimator</code>.
1356     */
1357    public static interface AnimatorUpdateListener {
1358        /**
1359         * <p>Notifies the occurrence of another frame of the animation.</p>
1360         *
1361         * @param animation The animation which was repeated.
1362         */
1363        void onAnimationUpdate(ValueAnimator animation);
1364
1365    }
1366
1367    /**
1368     * Return the number of animations currently running.
1369     *
1370     * Used by StrictMode internally to annotate violations.
1371     * May be called on arbitrary threads!
1372     *
1373     * @hide
1374     */
1375    public static int getCurrentAnimationsCount() {
1376        return AnimationHandler.getAnimationCount();
1377    }
1378
1379    @Override
1380    public String toString() {
1381        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1382        if (mValues != null) {
1383            for (int i = 0; i < mValues.length; ++i) {
1384                returnVal += "\n    " + mValues[i].toString();
1385            }
1386        }
1387        return returnVal;
1388    }
1389
1390    /**
1391     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1392     * the UI thread. This is a hint that informs the ValueAnimator that it is
1393     * OK to run the animation off-thread, however ValueAnimator may decide
1394     * that it must run the animation on the UI thread anyway. For example if there
1395     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1396     * regardless of the value of this hint.</p>
1397     *
1398     * <p>Regardless of whether or not the animation runs asynchronously, all
1399     * listener callbacks will be called on the UI thread.</p>
1400     *
1401     * <p>To be able to use this hint the following must be true:</p>
1402     * <ol>
1403     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1404     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1405     *    to change values, duration, delay, etc... may be ignored.</li>
1406     * <li>Lifecycle callback events may be asynchronous. Events such as
1407     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1408     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1409     *    as they must be posted back to the UI thread, and any actions performed
1410     *    by those callbacks (such as starting new animations) will not happen
1411     *    in the same frame.</li>
1412     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1413     *    may be asynchronous. It is guaranteed that all state changes that are
1414     *    performed on the UI thread in the same frame will be applied as a single
1415     *    atomic update, however that frame may be the current frame,
1416     *    the next frame, or some future frame. This will also impact the observed
1417     *    state of the Animator. For example, {@link #isStarted()} may still return true
1418     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1419     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1420     *    for this reason.</li>
1421     * </ol>
1422     * @hide
1423     */
1424    @Override
1425    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1426        // It is up to subclasses to support this, if they can.
1427    }
1428}
1429