ValueAnimator.java revision 96e942dabeeaaa9ab6df3a870668c6fe53d930da
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Handler;
20import android.os.Looper;
21import android.os.Message;
22import android.util.AndroidRuntimeException;
23import android.view.Choreographer;
24import android.view.animation.AccelerateDecelerateInterpolator;
25import android.view.animation.AnimationUtils;
26import android.view.animation.LinearInterpolator;
27
28import java.util.ArrayList;
29import java.util.HashMap;
30
31/**
32 * This class provides a simple timing engine for running animations
33 * which calculate animated values and set them on target objects.
34 *
35 * <p>There is a single timing pulse that all animations use. It runs in a
36 * custom handler to ensure that property changes happen on the UI thread.</p>
37 *
38 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
39 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
40 * out of an animation. This behavior can be changed by calling
41 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
42 */
43public class ValueAnimator extends Animator {
44
45    /**
46     * Internal constants
47     */
48
49    /**
50     * Messages sent to timing handler: START is sent when an animation first begins.
51     */
52    static final int ANIMATION_START = 0;
53
54    /**
55     * Values used with internal variable mPlayingState to indicate the current state of an
56     * animation.
57     */
58    static final int STOPPED    = 0; // Not yet playing
59    static final int RUNNING    = 1; // Playing normally
60    static final int SEEKED     = 2; // Seeked to some time value
61
62    /**
63     * Internal variables
64     * NOTE: This object implements the clone() method, making a deep copy of any referenced
65     * objects. As other non-trivial fields are added to this class, make sure to add logic
66     * to clone() to make deep copies of them.
67     */
68
69    // The first time that the animation's animateFrame() method is called. This time is used to
70    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
71    // to animateFrame()
72    long mStartTime;
73
74    /**
75     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
76     * to a value.
77     */
78    long mSeekTime = -1;
79
80    // The static sAnimationHandler processes the internal timing loop on which all animations
81    // are based
82    private static ThreadLocal<AnimationHandler> sAnimationHandler =
83            new ThreadLocal<AnimationHandler>();
84
85    // The time interpolator to be used if none is set on the animation
86    private static final TimeInterpolator sDefaultInterpolator =
87            new AccelerateDecelerateInterpolator();
88
89    /**
90     * Used to indicate whether the animation is currently playing in reverse. This causes the
91     * elapsed fraction to be inverted to calculate the appropriate values.
92     */
93    private boolean mPlayingBackwards = false;
94
95    /**
96     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
97     * repeatCount (if repeatCount!=INFINITE), the animation ends
98     */
99    private int mCurrentIteration = 0;
100
101    /**
102     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
103     */
104    private float mCurrentFraction = 0f;
105
106    /**
107     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
108     */
109    private boolean mStartedDelay = false;
110
111    /**
112     * Tracks the time at which the animation began playing through its startDelay. This is
113     * different from the mStartTime variable, which is used to track when the animation became
114     * active (which is when the startDelay expired and the animation was added to the active
115     * animations list).
116     */
117    private long mDelayStartTime;
118
119    /**
120     * Flag that represents the current state of the animation. Used to figure out when to start
121     * an animation (if state == STOPPED). Also used to end an animation that
122     * has been cancel()'d or end()'d since the last animation frame. Possible values are
123     * STOPPED, RUNNING, SEEKED.
124     */
125    int mPlayingState = STOPPED;
126
127    /**
128     * Additional playing state to indicate whether an animator has been start()'d. There is
129     * some lag between a call to start() and the first animation frame. We should still note
130     * that the animation has been started, even if it's first animation frame has not yet
131     * happened, and reflect that state in isRunning().
132     * Note that delayed animations are different: they are not started until their first
133     * animation frame, which occurs after their delay elapses.
134     */
135    private boolean mRunning = false;
136
137    /**
138     * Additional playing state to indicate whether an animator has been start()'d, whether or
139     * not there is a nonzero startDelay.
140     */
141    private boolean mStarted = false;
142
143    /**
144     * Flag that denotes whether the animation is set up and ready to go. Used to
145     * set up animation that has not yet been started.
146     */
147    boolean mInitialized = false;
148
149    //
150    // Backing variables
151    //
152
153    // How long the animation should last in ms
154    private long mDuration = 300;
155
156    // The amount of time in ms to delay starting the animation after start() is called
157    private long mStartDelay = 0;
158
159    // The number of times the animation will repeat. The default is 0, which means the animation
160    // will play only once
161    private int mRepeatCount = 0;
162
163    /**
164     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
165     * animation will start from the beginning on every new cycle. REVERSE means the animation
166     * will reverse directions on each iteration.
167     */
168    private int mRepeatMode = RESTART;
169
170    /**
171     * The time interpolator to be used. The elapsed fraction of the animation will be passed
172     * through this interpolator to calculate the interpolated fraction, which is then used to
173     * calculate the animated values.
174     */
175    private TimeInterpolator mInterpolator = sDefaultInterpolator;
176
177    /**
178     * The set of listeners to be sent events through the life of an animation.
179     */
180    private ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
181
182    /**
183     * The property/value sets being animated.
184     */
185    PropertyValuesHolder[] mValues;
186
187    /**
188     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
189     * by property name during calls to getAnimatedValue(String).
190     */
191    HashMap<String, PropertyValuesHolder> mValuesMap;
192
193    /**
194     * Public constants
195     */
196
197    /**
198     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
199     * or a positive value, the animation restarts from the beginning.
200     */
201    public static final int RESTART = 1;
202    /**
203     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
204     * or a positive value, the animation reverses direction on every iteration.
205     */
206    public static final int REVERSE = 2;
207    /**
208     * This value used used with the {@link #setRepeatCount(int)} property to repeat
209     * the animation indefinitely.
210     */
211    public static final int INFINITE = -1;
212
213    /**
214     * Creates a new ValueAnimator object. This default constructor is primarily for
215     * use internally; the factory methods which take parameters are more generally
216     * useful.
217     */
218    public ValueAnimator() {
219    }
220
221    /**
222     * Constructs and returns a ValueAnimator that animates between int values. A single
223     * value implies that that value is the one being animated to. However, this is not typically
224     * useful in a ValueAnimator object because there is no way for the object to determine the
225     * starting value for the animation (unlike ObjectAnimator, which can derive that value
226     * from the target object and property being animated). Therefore, there should typically
227     * be two or more values.
228     *
229     * @param values A set of values that the animation will animate between over time.
230     * @return A ValueAnimator object that is set up to animate between the given values.
231     */
232    public static ValueAnimator ofInt(int... values) {
233        ValueAnimator anim = new ValueAnimator();
234        anim.setIntValues(values);
235        return anim;
236    }
237
238    /**
239     * Constructs and returns a ValueAnimator that animates between float values. A single
240     * value implies that that value is the one being animated to. However, this is not typically
241     * useful in a ValueAnimator object because there is no way for the object to determine the
242     * starting value for the animation (unlike ObjectAnimator, which can derive that value
243     * from the target object and property being animated). Therefore, there should typically
244     * be two or more values.
245     *
246     * @param values A set of values that the animation will animate between over time.
247     * @return A ValueAnimator object that is set up to animate between the given values.
248     */
249    public static ValueAnimator ofFloat(float... values) {
250        ValueAnimator anim = new ValueAnimator();
251        anim.setFloatValues(values);
252        return anim;
253    }
254
255    /**
256     * Constructs and returns a ValueAnimator that animates between the values
257     * specified in the PropertyValuesHolder objects.
258     *
259     * @param values A set of PropertyValuesHolder objects whose values will be animated
260     * between over time.
261     * @return A ValueAnimator object that is set up to animate between the given values.
262     */
263    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
264        ValueAnimator anim = new ValueAnimator();
265        anim.setValues(values);
266        return anim;
267    }
268    /**
269     * Constructs and returns a ValueAnimator that animates between Object values. A single
270     * value implies that that value is the one being animated to. However, this is not typically
271     * useful in a ValueAnimator object because there is no way for the object to determine the
272     * starting value for the animation (unlike ObjectAnimator, which can derive that value
273     * from the target object and property being animated). Therefore, there should typically
274     * be two or more values.
275     *
276     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
277     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
278     * to perform that interpolation.
279     *
280     * @param evaluator A TypeEvaluator that will be called on each animation frame to
281     * provide the ncessry interpolation between the Object values to derive the animated
282     * value.
283     * @param values A set of values that the animation will animate between over time.
284     * @return A ValueAnimator object that is set up to animate between the given values.
285     */
286    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
287        ValueAnimator anim = new ValueAnimator();
288        anim.setObjectValues(values);
289        anim.setEvaluator(evaluator);
290        return anim;
291    }
292
293    /**
294     * Sets int values that will be animated between. A single
295     * value implies that that value is the one being animated to. However, this is not typically
296     * useful in a ValueAnimator object because there is no way for the object to determine the
297     * starting value for the animation (unlike ObjectAnimator, which can derive that value
298     * from the target object and property being animated). Therefore, there should typically
299     * be two or more values.
300     *
301     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
302     * than one PropertyValuesHolder object, this method will set the values for the first
303     * of those objects.</p>
304     *
305     * @param values A set of values that the animation will animate between over time.
306     */
307    public void setIntValues(int... values) {
308        if (values == null || values.length == 0) {
309            return;
310        }
311        if (mValues == null || mValues.length == 0) {
312            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofInt("", values)});
313        } else {
314            PropertyValuesHolder valuesHolder = mValues[0];
315            valuesHolder.setIntValues(values);
316        }
317        // New property/values/target should cause re-initialization prior to starting
318        mInitialized = false;
319    }
320
321    /**
322     * Sets float values that will be animated between. A single
323     * value implies that that value is the one being animated to. However, this is not typically
324     * useful in a ValueAnimator object because there is no way for the object to determine the
325     * starting value for the animation (unlike ObjectAnimator, which can derive that value
326     * from the target object and property being animated). Therefore, there should typically
327     * be two or more values.
328     *
329     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
330     * than one PropertyValuesHolder object, this method will set the values for the first
331     * of those objects.</p>
332     *
333     * @param values A set of values that the animation will animate between over time.
334     */
335    public void setFloatValues(float... values) {
336        if (values == null || values.length == 0) {
337            return;
338        }
339        if (mValues == null || mValues.length == 0) {
340            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofFloat("", values)});
341        } else {
342            PropertyValuesHolder valuesHolder = mValues[0];
343            valuesHolder.setFloatValues(values);
344        }
345        // New property/values/target should cause re-initialization prior to starting
346        mInitialized = false;
347    }
348
349    /**
350     * Sets the values to animate between for this animation. A single
351     * value implies that that value is the one being animated to. However, this is not typically
352     * useful in a ValueAnimator object because there is no way for the object to determine the
353     * starting value for the animation (unlike ObjectAnimator, which can derive that value
354     * from the target object and property being animated). Therefore, there should typically
355     * be two or more values.
356     *
357     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
358     * than one PropertyValuesHolder object, this method will set the values for the first
359     * of those objects.</p>
360     *
361     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
362     * between these value objects. ValueAnimator only knows how to interpolate between the
363     * primitive types specified in the other setValues() methods.</p>
364     *
365     * @param values The set of values to animate between.
366     */
367    public void setObjectValues(Object... values) {
368        if (values == null || values.length == 0) {
369            return;
370        }
371        if (mValues == null || mValues.length == 0) {
372            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofObject("",
373                    (TypeEvaluator)null, values)});
374        } else {
375            PropertyValuesHolder valuesHolder = mValues[0];
376            valuesHolder.setObjectValues(values);
377        }
378        // New property/values/target should cause re-initialization prior to starting
379        mInitialized = false;
380    }
381
382    /**
383     * Sets the values, per property, being animated between. This function is called internally
384     * by the constructors of ValueAnimator that take a list of values. But an ValueAnimator can
385     * be constructed without values and this method can be called to set the values manually
386     * instead.
387     *
388     * @param values The set of values, per property, being animated between.
389     */
390    public void setValues(PropertyValuesHolder... values) {
391        int numValues = values.length;
392        mValues = values;
393        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
394        for (int i = 0; i < numValues; ++i) {
395            PropertyValuesHolder valuesHolder = (PropertyValuesHolder) values[i];
396            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
397        }
398        // New property/values/target should cause re-initialization prior to starting
399        mInitialized = false;
400    }
401
402    /**
403     * Returns the values that this ValueAnimator animates between. These values are stored in
404     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
405     * of value objects instead.
406     *
407     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
408     * values, per property, that define the animation.
409     */
410    public PropertyValuesHolder[] getValues() {
411        return mValues;
412    }
413
414    /**
415     * This function is called immediately before processing the first animation
416     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
417     * function is called after that delay ends.
418     * It takes care of the final initialization steps for the
419     * animation.
420     *
421     *  <p>Overrides of this method should call the superclass method to ensure
422     *  that internal mechanisms for the animation are set up correctly.</p>
423     */
424    void initAnimation() {
425        if (!mInitialized) {
426            int numValues = mValues.length;
427            for (int i = 0; i < numValues; ++i) {
428                mValues[i].init();
429            }
430            mInitialized = true;
431        }
432    }
433
434
435    /**
436     * Sets the length of the animation. The default duration is 300 milliseconds.
437     *
438     * @param duration The length of the animation, in milliseconds. This value cannot
439     * be negative.
440     * @return ValueAnimator The object called with setDuration(). This return
441     * value makes it easier to compose statements together that construct and then set the
442     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
443     */
444    public ValueAnimator setDuration(long duration) {
445        if (duration < 0) {
446            throw new IllegalArgumentException("Animators cannot have negative duration: " +
447                    duration);
448        }
449        mDuration = duration;
450        return this;
451    }
452
453    /**
454     * Gets the length of the animation. The default duration is 300 milliseconds.
455     *
456     * @return The length of the animation, in milliseconds.
457     */
458    public long getDuration() {
459        return mDuration;
460    }
461
462    /**
463     * Sets the position of the animation to the specified point in time. This time should
464     * be between 0 and the total duration of the animation, including any repetition. If
465     * the animation has not yet been started, then it will not advance forward after it is
466     * set to this time; it will simply set the time to this value and perform any appropriate
467     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
468     * will set the current playing time to this value and continue playing from that point.
469     *
470     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
471     */
472    public void setCurrentPlayTime(long playTime) {
473        initAnimation();
474        long currentTime = AnimationUtils.currentAnimationTimeMillis();
475        if (mPlayingState != RUNNING) {
476            mSeekTime = playTime;
477            mPlayingState = SEEKED;
478        }
479        mStartTime = currentTime - playTime;
480        animationFrame(currentTime);
481    }
482
483    /**
484     * Gets the current position of the animation in time, which is equal to the current
485     * time minus the time that the animation started. An animation that is not yet started will
486     * return a value of zero.
487     *
488     * @return The current position in time of the animation.
489     */
490    public long getCurrentPlayTime() {
491        if (!mInitialized || mPlayingState == STOPPED) {
492            return 0;
493        }
494        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
495    }
496
497    /**
498     * This custom, static handler handles the timing pulse that is shared by
499     * all active animations. This approach ensures that the setting of animation
500     * values will happen on the UI thread and that all animations will share
501     * the same times for calculating their values, which makes synchronizing
502     * animations possible.
503     *
504     */
505    private static class AnimationHandler extends Handler
506            implements Choreographer.OnAnimateListener {
507        // The per-thread list of all active animations
508        private final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
509
510        // The per-thread set of animations to be started on the next animation frame
511        private final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
512
513        /**
514         * Internal per-thread collections used to avoid set collisions as animations start and end
515         * while being processed.
516         */
517        private final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
518        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
519        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
520
521        private final Choreographer mChoreographer;
522        private boolean mIsChoreographed;
523
524        private AnimationHandler() {
525            mChoreographer = Choreographer.getInstance();
526        }
527
528        /**
529         * The START message is sent when an animation's start()  method is called.
530         * It cannot start synchronously when start() is called
531         * because the call may be on the wrong thread, and it would also not be
532         * synchronized with other animations because it would not start on a common
533         * timing pulse. So each animation sends a START message to the handler, which
534         * causes the handler to place the animation on the active animations queue and
535         * start processing frames for that animation.
536         */
537        @Override
538        public void handleMessage(Message msg) {
539            switch (msg.what) {
540                case ANIMATION_START:
541                    doAnimationStart();
542                    break;
543            }
544        }
545
546        private void doAnimationStart() {
547            // mPendingAnimations holds any animations that have requested to be started
548            // We're going to clear mPendingAnimations, but starting animation may
549            // cause more to be added to the pending list (for example, if one animation
550            // starting triggers another starting). So we loop until mPendingAnimations
551            // is empty.
552            while (mPendingAnimations.size() > 0) {
553                ArrayList<ValueAnimator> pendingCopy =
554                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
555                mPendingAnimations.clear();
556                int count = pendingCopy.size();
557                for (int i = 0; i < count; ++i) {
558                    ValueAnimator anim = pendingCopy.get(i);
559                    // If the animation has a startDelay, place it on the delayed list
560                    if (anim.mStartDelay == 0) {
561                        anim.startAnimation(this);
562                    } else {
563                        mDelayedAnims.add(anim);
564                    }
565                }
566            }
567            doAnimationFrame();
568        }
569
570        private void doAnimationFrame() {
571            // currentTime holds the common time for all animations processed
572            // during this frame
573            long currentTime = AnimationUtils.currentAnimationTimeMillis();
574
575            // First, process animations currently sitting on the delayed queue, adding
576            // them to the active animations if they are ready
577            int numDelayedAnims = mDelayedAnims.size();
578            for (int i = 0; i < numDelayedAnims; ++i) {
579                ValueAnimator anim = mDelayedAnims.get(i);
580                if (anim.delayedAnimationFrame(currentTime)) {
581                    mReadyAnims.add(anim);
582                }
583            }
584            int numReadyAnims = mReadyAnims.size();
585            if (numReadyAnims > 0) {
586                for (int i = 0; i < numReadyAnims; ++i) {
587                    ValueAnimator anim = mReadyAnims.get(i);
588                    anim.startAnimation(this);
589                    anim.mRunning = true;
590                    mDelayedAnims.remove(anim);
591                }
592                mReadyAnims.clear();
593            }
594
595            // Now process all active animations. The return value from animationFrame()
596            // tells the handler whether it should now be ended
597            int numAnims = mAnimations.size();
598            int i = 0;
599            while (i < numAnims) {
600                ValueAnimator anim = mAnimations.get(i);
601                if (anim.animationFrame(currentTime)) {
602                    mEndingAnims.add(anim);
603                }
604                if (mAnimations.size() == numAnims) {
605                    ++i;
606                } else {
607                    // An animation might be canceled or ended by client code
608                    // during the animation frame. Check to see if this happened by
609                    // seeing whether the current index is the same as it was before
610                    // calling animationFrame(). Another approach would be to copy
611                    // animations to a temporary list and process that list instead,
612                    // but that entails garbage and processing overhead that would
613                    // be nice to avoid.
614                    --numAnims;
615                    mEndingAnims.remove(anim);
616                }
617            }
618            if (mEndingAnims.size() > 0) {
619                for (i = 0; i < mEndingAnims.size(); ++i) {
620                    mEndingAnims.get(i).endAnimation(this);
621                }
622                mEndingAnims.clear();
623            }
624
625            // If there are still active or delayed animations, schedule a future call to
626            // onAnimate to process the next frame of the animations.
627            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
628                if (!mIsChoreographed) {
629                    mIsChoreographed = true;
630                    mChoreographer.addOnAnimateListener(this);
631                }
632                mChoreographer.scheduleAnimation();
633            } else {
634                if (mIsChoreographed) {
635                    mIsChoreographed = false;
636                    mChoreographer.removeOnAnimateListener(this);
637                }
638            }
639        }
640
641        @Override
642        public void onAnimate() {
643            doAnimationFrame();
644        }
645    }
646
647    /**
648     * The amount of time, in milliseconds, to delay starting the animation after
649     * {@link #start()} is called.
650     *
651     * @return the number of milliseconds to delay running the animation
652     */
653    public long getStartDelay() {
654        return mStartDelay;
655    }
656
657    /**
658     * The amount of time, in milliseconds, to delay starting the animation after
659     * {@link #start()} is called.
660
661     * @param startDelay The amount of the delay, in milliseconds
662     */
663    public void setStartDelay(long startDelay) {
664        this.mStartDelay = startDelay;
665    }
666
667    /**
668     * The amount of time, in milliseconds, between each frame of the animation. This is a
669     * requested time that the animation will attempt to honor, but the actual delay between
670     * frames may be different, depending on system load and capabilities. This is a static
671     * function because the same delay will be applied to all animations, since they are all
672     * run off of a single timing loop.
673     *
674     * The frame delay may be ignored when the animation system uses an external timing
675     * source, such as the display refresh rate (vsync), to govern animations.
676     *
677     * @return the requested time between frames, in milliseconds
678     */
679    public static long getFrameDelay() {
680        return Choreographer.getFrameDelay();
681    }
682
683    /**
684     * The amount of time, in milliseconds, between each frame of the animation. This is a
685     * requested time that the animation will attempt to honor, but the actual delay between
686     * frames may be different, depending on system load and capabilities. This is a static
687     * function because the same delay will be applied to all animations, since they are all
688     * run off of a single timing loop.
689     *
690     * The frame delay may be ignored when the animation system uses an external timing
691     * source, such as the display refresh rate (vsync), to govern animations.
692     *
693     * @param frameDelay the requested time between frames, in milliseconds
694     */
695    public static void setFrameDelay(long frameDelay) {
696        Choreographer.setFrameDelay(frameDelay);
697    }
698
699    /**
700     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
701     * property being animated. This value is only sensible while the animation is running. The main
702     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
703     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
704     * is called during each animation frame, immediately after the value is calculated.
705     *
706     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
707     * the single property being animated. If there are several properties being animated
708     * (specified by several PropertyValuesHolder objects in the constructor), this function
709     * returns the animated value for the first of those objects.
710     */
711    public Object getAnimatedValue() {
712        if (mValues != null && mValues.length > 0) {
713            return mValues[0].getAnimatedValue();
714        }
715        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
716        return null;
717    }
718
719    /**
720     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
721     * The main purpose for this read-only property is to retrieve the value from the
722     * <code>ValueAnimator</code> during a call to
723     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
724     * is called during each animation frame, immediately after the value is calculated.
725     *
726     * @return animatedValue The value most recently calculated for the named property
727     * by this <code>ValueAnimator</code>.
728     */
729    public Object getAnimatedValue(String propertyName) {
730        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
731        if (valuesHolder != null) {
732            return valuesHolder.getAnimatedValue();
733        } else {
734            // At least avoid crashing if called with bogus propertyName
735            return null;
736        }
737    }
738
739    /**
740     * Sets how many times the animation should be repeated. If the repeat
741     * count is 0, the animation is never repeated. If the repeat count is
742     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
743     * into account. The repeat count is 0 by default.
744     *
745     * @param value the number of times the animation should be repeated
746     */
747    public void setRepeatCount(int value) {
748        mRepeatCount = value;
749    }
750    /**
751     * Defines how many times the animation should repeat. The default value
752     * is 0.
753     *
754     * @return the number of times the animation should repeat, or {@link #INFINITE}
755     */
756    public int getRepeatCount() {
757        return mRepeatCount;
758    }
759
760    /**
761     * Defines what this animation should do when it reaches the end. This
762     * setting is applied only when the repeat count is either greater than
763     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
764     *
765     * @param value {@link #RESTART} or {@link #REVERSE}
766     */
767    public void setRepeatMode(int value) {
768        mRepeatMode = value;
769    }
770
771    /**
772     * Defines what this animation should do when it reaches the end.
773     *
774     * @return either one of {@link #REVERSE} or {@link #RESTART}
775     */
776    public int getRepeatMode() {
777        return mRepeatMode;
778    }
779
780    /**
781     * Adds a listener to the set of listeners that are sent update events through the life of
782     * an animation. This method is called on all listeners for every frame of the animation,
783     * after the values for the animation have been calculated.
784     *
785     * @param listener the listener to be added to the current set of listeners for this animation.
786     */
787    public void addUpdateListener(AnimatorUpdateListener listener) {
788        if (mUpdateListeners == null) {
789            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
790        }
791        mUpdateListeners.add(listener);
792    }
793
794    /**
795     * Removes all listeners from the set listening to frame updates for this animation.
796     */
797    public void removeAllUpdateListeners() {
798        if (mUpdateListeners == null) {
799            return;
800        }
801        mUpdateListeners.clear();
802        mUpdateListeners = null;
803    }
804
805    /**
806     * Removes a listener from the set listening to frame updates for this animation.
807     *
808     * @param listener the listener to be removed from the current set of update listeners
809     * for this animation.
810     */
811    public void removeUpdateListener(AnimatorUpdateListener listener) {
812        if (mUpdateListeners == null) {
813            return;
814        }
815        mUpdateListeners.remove(listener);
816        if (mUpdateListeners.size() == 0) {
817            mUpdateListeners = null;
818        }
819    }
820
821
822    /**
823     * The time interpolator used in calculating the elapsed fraction of this animation. The
824     * interpolator determines whether the animation runs with linear or non-linear motion,
825     * such as acceleration and deceleration. The default value is
826     * {@link android.view.animation.AccelerateDecelerateInterpolator}
827     *
828     * @param value the interpolator to be used by this animation. A value of <code>null</code>
829     * will result in linear interpolation.
830     */
831    @Override
832    public void setInterpolator(TimeInterpolator value) {
833        if (value != null) {
834            mInterpolator = value;
835        } else {
836            mInterpolator = new LinearInterpolator();
837        }
838    }
839
840    /**
841     * Returns the timing interpolator that this ValueAnimator uses.
842     *
843     * @return The timing interpolator for this ValueAnimator.
844     */
845    public TimeInterpolator getInterpolator() {
846        return mInterpolator;
847    }
848
849    /**
850     * The type evaluator to be used when calculating the animated values of this animation.
851     * The system will automatically assign a float or int evaluator based on the type
852     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
853     * are not one of these primitive types, or if different evaluation is desired (such as is
854     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
855     * For example, when running an animation on color values, the {@link ArgbEvaluator}
856     * should be used to get correct RGB color interpolation.
857     *
858     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
859     * will be used for that set. If there are several sets of values being animated, which is
860     * the case if PropertyValuesHOlder objects were set on the ValueAnimator, then the evaluator
861     * is assigned just to the first PropertyValuesHolder object.</p>
862     *
863     * @param value the evaluator to be used this animation
864     */
865    public void setEvaluator(TypeEvaluator value) {
866        if (value != null && mValues != null && mValues.length > 0) {
867            mValues[0].setEvaluator(value);
868        }
869    }
870
871    /**
872     * Start the animation playing. This version of start() takes a boolean flag that indicates
873     * whether the animation should play in reverse. The flag is usually false, but may be set
874     * to true if called from the reverse() method.
875     *
876     * <p>The animation started by calling this method will be run on the thread that called
877     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
878     * this is not the case). Also, if the animation will animate
879     * properties of objects in the view hierarchy, then the calling thread should be the UI
880     * thread for that view hierarchy.</p>
881     *
882     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
883     */
884    private void start(boolean playBackwards) {
885        if (Looper.myLooper() == null) {
886            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
887        }
888        mPlayingBackwards = playBackwards;
889        mCurrentIteration = 0;
890        mPlayingState = STOPPED;
891        mStarted = true;
892        mStartedDelay = false;
893        AnimationHandler animationHandler = getOrCreateAnimationHandler();
894        animationHandler.mPendingAnimations.add(this);
895        if (mStartDelay == 0) {
896            // This sets the initial value of the animation, prior to actually starting it running
897            setCurrentPlayTime(getCurrentPlayTime());
898            mPlayingState = STOPPED;
899            mRunning = true;
900
901            if (mListeners != null) {
902                ArrayList<AnimatorListener> tmpListeners =
903                        (ArrayList<AnimatorListener>) mListeners.clone();
904                int numListeners = tmpListeners.size();
905                for (int i = 0; i < numListeners; ++i) {
906                    tmpListeners.get(i).onAnimationStart(this);
907                }
908            }
909        }
910        animationHandler.sendEmptyMessage(ANIMATION_START);
911    }
912
913    @Override
914    public void start() {
915        start(false);
916    }
917
918    @Override
919    public void cancel() {
920        // Only cancel if the animation is actually running or has been started and is about
921        // to run
922        AnimationHandler handler = getOrCreateAnimationHandler();
923        if (mPlayingState != STOPPED
924                || handler.mPendingAnimations.contains(this)
925                || handler.mDelayedAnims.contains(this)) {
926            // Only notify listeners if the animator has actually started
927            if (mRunning && mListeners != null) {
928                ArrayList<AnimatorListener> tmpListeners =
929                        (ArrayList<AnimatorListener>) mListeners.clone();
930                for (AnimatorListener listener : tmpListeners) {
931                    listener.onAnimationCancel(this);
932                }
933            }
934            endAnimation(handler);
935        }
936    }
937
938    @Override
939    public void end() {
940        AnimationHandler handler = getOrCreateAnimationHandler();
941        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
942            // Special case if the animation has not yet started; get it ready for ending
943            mStartedDelay = false;
944            startAnimation(handler);
945        } else if (!mInitialized) {
946            initAnimation();
947        }
948        // The final value set on the target varies, depending on whether the animation
949        // was supposed to repeat an odd number of times
950        if (mRepeatCount > 0 && (mRepeatCount & 0x01) == 1) {
951            animateValue(0f);
952        } else {
953            animateValue(1f);
954        }
955        endAnimation(handler);
956    }
957
958    @Override
959    public boolean isRunning() {
960        return (mPlayingState == RUNNING || mRunning);
961    }
962
963    @Override
964    public boolean isStarted() {
965        return mStarted;
966    }
967
968    /**
969     * Plays the ValueAnimator in reverse. If the animation is already running,
970     * it will stop itself and play backwards from the point reached when reverse was called.
971     * If the animation is not currently running, then it will start from the end and
972     * play backwards. This behavior is only set for the current animation; future playing
973     * of the animation will use the default behavior of playing forward.
974     */
975    public void reverse() {
976        mPlayingBackwards = !mPlayingBackwards;
977        if (mPlayingState == RUNNING) {
978            long currentTime = AnimationUtils.currentAnimationTimeMillis();
979            long currentPlayTime = currentTime - mStartTime;
980            long timeLeft = mDuration - currentPlayTime;
981            mStartTime = currentTime - timeLeft;
982        } else {
983            start(true);
984        }
985    }
986
987    /**
988     * Called internally to end an animation by removing it from the animations list. Must be
989     * called on the UI thread.
990     */
991    private void endAnimation(AnimationHandler handler) {
992        handler.mAnimations.remove(this);
993        handler.mPendingAnimations.remove(this);
994        handler.mDelayedAnims.remove(this);
995        mPlayingState = STOPPED;
996        if (mRunning && mListeners != null) {
997            ArrayList<AnimatorListener> tmpListeners =
998                    (ArrayList<AnimatorListener>) mListeners.clone();
999            int numListeners = tmpListeners.size();
1000            for (int i = 0; i < numListeners; ++i) {
1001                tmpListeners.get(i).onAnimationEnd(this);
1002            }
1003        }
1004        mRunning = false;
1005        mStarted = false;
1006    }
1007
1008    /**
1009     * Called internally to start an animation by adding it to the active animations list. Must be
1010     * called on the UI thread.
1011     */
1012    private void startAnimation(AnimationHandler handler) {
1013        initAnimation();
1014        handler.mAnimations.add(this);
1015        if (mStartDelay > 0 && mListeners != null) {
1016            // Listeners were already notified in start() if startDelay is 0; this is
1017            // just for delayed animations
1018            ArrayList<AnimatorListener> tmpListeners =
1019                    (ArrayList<AnimatorListener>) mListeners.clone();
1020            int numListeners = tmpListeners.size();
1021            for (int i = 0; i < numListeners; ++i) {
1022                tmpListeners.get(i).onAnimationStart(this);
1023            }
1024        }
1025    }
1026
1027    /**
1028     * Internal function called to process an animation frame on an animation that is currently
1029     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1030     * should be woken up and put on the active animations queue.
1031     *
1032     * @param currentTime The current animation time, used to calculate whether the animation
1033     * has exceeded its <code>startDelay</code> and should be started.
1034     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1035     * should be added to the set of active animations.
1036     */
1037    private boolean delayedAnimationFrame(long currentTime) {
1038        if (!mStartedDelay) {
1039            mStartedDelay = true;
1040            mDelayStartTime = currentTime;
1041        } else {
1042            long deltaTime = currentTime - mDelayStartTime;
1043            if (deltaTime > mStartDelay) {
1044                // startDelay ended - start the anim and record the
1045                // mStartTime appropriately
1046                mStartTime = currentTime - (deltaTime - mStartDelay);
1047                mPlayingState = RUNNING;
1048                return true;
1049            }
1050        }
1051        return false;
1052    }
1053
1054    /**
1055     * This internal function processes a single animation frame for a given animation. The
1056     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1057     * elapsed duration, and therefore
1058     * the elapsed fraction, of the animation. The return value indicates whether the animation
1059     * should be ended (which happens when the elapsed time of the animation exceeds the
1060     * animation's duration, including the repeatCount).
1061     *
1062     * @param currentTime The current time, as tracked by the static timing handler
1063     * @return true if the animation's duration, including any repetitions due to
1064     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1065     */
1066    boolean animationFrame(long currentTime) {
1067        boolean done = false;
1068
1069        if (mPlayingState == STOPPED) {
1070            mPlayingState = RUNNING;
1071            if (mSeekTime < 0) {
1072                mStartTime = currentTime;
1073            } else {
1074                mStartTime = currentTime - mSeekTime;
1075                // Now that we're playing, reset the seek time
1076                mSeekTime = -1;
1077            }
1078        }
1079        switch (mPlayingState) {
1080        case RUNNING:
1081        case SEEKED:
1082            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1083            if (fraction >= 1f) {
1084                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1085                    // Time to repeat
1086                    if (mListeners != null) {
1087                        int numListeners = mListeners.size();
1088                        for (int i = 0; i < numListeners; ++i) {
1089                            mListeners.get(i).onAnimationRepeat(this);
1090                        }
1091                    }
1092                    if (mRepeatMode == REVERSE) {
1093                        mPlayingBackwards = mPlayingBackwards ? false : true;
1094                    }
1095                    mCurrentIteration += (int)fraction;
1096                    fraction = fraction % 1f;
1097                    mStartTime += mDuration;
1098                } else {
1099                    done = true;
1100                    fraction = Math.min(fraction, 1.0f);
1101                }
1102            }
1103            if (mPlayingBackwards) {
1104                fraction = 1f - fraction;
1105            }
1106            animateValue(fraction);
1107            break;
1108        }
1109
1110        return done;
1111    }
1112
1113    /**
1114     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1115     * the most recent frame update on the animation.
1116     *
1117     * @return Elapsed/interpolated fraction of the animation.
1118     */
1119    public float getAnimatedFraction() {
1120        return mCurrentFraction;
1121    }
1122
1123    /**
1124     * This method is called with the elapsed fraction of the animation during every
1125     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1126     * and then into an animated value (from the evaluator. The function is called mostly during
1127     * animation updates, but it is also called when the <code>end()</code>
1128     * function is called, to set the final value on the property.
1129     *
1130     * <p>Overrides of this method must call the superclass to perform the calculation
1131     * of the animated value.</p>
1132     *
1133     * @param fraction The elapsed fraction of the animation.
1134     */
1135    void animateValue(float fraction) {
1136        fraction = mInterpolator.getInterpolation(fraction);
1137        mCurrentFraction = fraction;
1138        int numValues = mValues.length;
1139        for (int i = 0; i < numValues; ++i) {
1140            mValues[i].calculateValue(fraction);
1141        }
1142        if (mUpdateListeners != null) {
1143            int numListeners = mUpdateListeners.size();
1144            for (int i = 0; i < numListeners; ++i) {
1145                mUpdateListeners.get(i).onAnimationUpdate(this);
1146            }
1147        }
1148    }
1149
1150    @Override
1151    public ValueAnimator clone() {
1152        final ValueAnimator anim = (ValueAnimator) super.clone();
1153        if (mUpdateListeners != null) {
1154            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1155            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1156            int numListeners = oldListeners.size();
1157            for (int i = 0; i < numListeners; ++i) {
1158                anim.mUpdateListeners.add(oldListeners.get(i));
1159            }
1160        }
1161        anim.mSeekTime = -1;
1162        anim.mPlayingBackwards = false;
1163        anim.mCurrentIteration = 0;
1164        anim.mInitialized = false;
1165        anim.mPlayingState = STOPPED;
1166        anim.mStartedDelay = false;
1167        PropertyValuesHolder[] oldValues = mValues;
1168        if (oldValues != null) {
1169            int numValues = oldValues.length;
1170            anim.mValues = new PropertyValuesHolder[numValues];
1171            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1172            for (int i = 0; i < numValues; ++i) {
1173                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1174                anim.mValues[i] = newValuesHolder;
1175                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1176            }
1177        }
1178        return anim;
1179    }
1180
1181    /**
1182     * Implementors of this interface can add themselves as update listeners
1183     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1184     * frame, after the current frame's values have been calculated for that
1185     * <code>ValueAnimator</code>.
1186     */
1187    public static interface AnimatorUpdateListener {
1188        /**
1189         * <p>Notifies the occurrence of another frame of the animation.</p>
1190         *
1191         * @param animation The animation which was repeated.
1192         */
1193        void onAnimationUpdate(ValueAnimator animation);
1194
1195    }
1196
1197    /**
1198     * Return the number of animations currently running.
1199     *
1200     * Used by StrictMode internally to annotate violations.
1201     * May be called on arbitrary threads!
1202     *
1203     * @hide
1204     */
1205    public static int getCurrentAnimationsCount() {
1206        AnimationHandler handler = sAnimationHandler.get();
1207        return handler != null ? handler.mAnimations.size() : 0;
1208    }
1209
1210    /**
1211     * Clear all animations on this thread, without canceling or ending them.
1212     * This should be used with caution.
1213     *
1214     * @hide
1215     */
1216    public static void clearAllAnimations() {
1217        AnimationHandler handler = sAnimationHandler.get();
1218        if (handler != null) {
1219            handler.mAnimations.clear();
1220            handler.mPendingAnimations.clear();
1221            handler.mDelayedAnims.clear();
1222        }
1223    }
1224
1225    private AnimationHandler getOrCreateAnimationHandler() {
1226        AnimationHandler handler = sAnimationHandler.get();
1227        if (handler == null) {
1228            handler = new AnimationHandler();
1229            sAnimationHandler.set(handler);
1230        }
1231        return handler;
1232    }
1233
1234    @Override
1235    public String toString() {
1236        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1237        if (mValues != null) {
1238            for (int i = 0; i < mValues.length; ++i) {
1239                returnVal += "\n    " + mValues[i].toString();
1240            }
1241        }
1242        return returnVal;
1243    }
1244}
1245