ValueAnimator.java revision add6577a0196258e5a48c5deefcdb12e05c935b3
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Handler;
20import android.os.Looper;
21import android.os.Message;
22import android.util.AndroidRuntimeException;
23import android.view.animation.AccelerateDecelerateInterpolator;
24import android.view.animation.AnimationUtils;
25import android.view.animation.LinearInterpolator;
26
27import java.util.ArrayList;
28import java.util.HashMap;
29
30/**
31 * This class provides a simple timing engine for running animations
32 * which calculate animated values and set them on target objects.
33 *
34 * <p>There is a single timing pulse that all animations use. It runs in a
35 * custom handler to ensure that property changes happen on the UI thread.</p>
36 *
37 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
38 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
39 * out of an animation. This behavior can be changed by calling
40 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
41 */
42public class ValueAnimator extends Animator {
43
44    /**
45     * Internal constants
46     */
47
48    /*
49     * The default amount of time in ms between animation frames
50     */
51    private static final long DEFAULT_FRAME_DELAY = 10;
52
53    /**
54     * Messages sent to timing handler: START is sent when an animation first begins, FRAME is sent
55     * by the handler to itself to process the next animation frame
56     */
57    private static final int ANIMATION_START = 0;
58    private static final int ANIMATION_FRAME = 1;
59
60    /**
61     * Values used with internal variable mPlayingState to indicate the current state of an
62     * animation.
63     */
64    static final int STOPPED    = 0; // Not yet playing
65    static final int RUNNING    = 1; // Playing normally
66    static final int SEEKED     = 2; // Seeked to some time value
67
68    /**
69     * Internal variables
70     * NOTE: This object implements the clone() method, making a deep copy of any referenced
71     * objects. As other non-trivial fields are added to this class, make sure to add logic
72     * to clone() to make deep copies of them.
73     */
74
75    // The first time that the animation's animateFrame() method is called. This time is used to
76    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
77    // to animateFrame()
78    long mStartTime;
79
80    /**
81     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
82     * to a value.
83     */
84    long mSeekTime = -1;
85
86    // TODO: We access the following ThreadLocal variables often, some of them on every update.
87    // If ThreadLocal access is significantly expensive, we may want to put all of these
88    // fields into a structure sot hat we just access ThreadLocal once to get the reference
89    // to that structure, then access the structure directly for each field.
90
91    // The static sAnimationHandler processes the internal timing loop on which all animations
92    // are based
93    private static ThreadLocal<AnimationHandler> sAnimationHandler =
94            new ThreadLocal<AnimationHandler>();
95
96    // The per-thread list of all active animations
97    private static final ThreadLocal<ArrayList<ValueAnimator>> sAnimations =
98            new ThreadLocal<ArrayList<ValueAnimator>>() {
99                @Override
100                protected ArrayList<ValueAnimator> initialValue() {
101                    return new ArrayList<ValueAnimator>();
102                }
103            };
104
105    // The per-thread set of animations to be started on the next animation frame
106    private static final ThreadLocal<ArrayList<ValueAnimator>> sPendingAnimations =
107            new ThreadLocal<ArrayList<ValueAnimator>>() {
108                @Override
109                protected ArrayList<ValueAnimator> initialValue() {
110                    return new ArrayList<ValueAnimator>();
111                }
112            };
113
114    /**
115     * Internal per-thread collections used to avoid set collisions as animations start and end
116     * while being processed.
117     */
118    private static final ThreadLocal<ArrayList<ValueAnimator>> sDelayedAnims =
119            new ThreadLocal<ArrayList<ValueAnimator>>() {
120                @Override
121                protected ArrayList<ValueAnimator> initialValue() {
122                    return new ArrayList<ValueAnimator>();
123                }
124            };
125
126    private static final ThreadLocal<ArrayList<ValueAnimator>> sEndingAnims =
127            new ThreadLocal<ArrayList<ValueAnimator>>() {
128                @Override
129                protected ArrayList<ValueAnimator> initialValue() {
130                    return new ArrayList<ValueAnimator>();
131                }
132            };
133
134    private static final ThreadLocal<ArrayList<ValueAnimator>> sReadyAnims =
135            new ThreadLocal<ArrayList<ValueAnimator>>() {
136                @Override
137                protected ArrayList<ValueAnimator> initialValue() {
138                    return new ArrayList<ValueAnimator>();
139                }
140            };
141
142    // The time interpolator to be used if none is set on the animation
143    private static final TimeInterpolator sDefaultInterpolator =
144            new AccelerateDecelerateInterpolator();
145
146    // type evaluators for the primitive types handled by this implementation
147    private static final TypeEvaluator sIntEvaluator = new IntEvaluator();
148    private static final TypeEvaluator sFloatEvaluator = new FloatEvaluator();
149
150    /**
151     * Used to indicate whether the animation is currently playing in reverse. This causes the
152     * elapsed fraction to be inverted to calculate the appropriate values.
153     */
154    private boolean mPlayingBackwards = false;
155
156    /**
157     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
158     * repeatCount (if repeatCount!=INFINITE), the animation ends
159     */
160    private int mCurrentIteration = 0;
161
162    /**
163     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
164     */
165    private boolean mStartedDelay = false;
166
167    /**
168     * Tracks the time at which the animation began playing through its startDelay. This is
169     * different from the mStartTime variable, which is used to track when the animation became
170     * active (which is when the startDelay expired and the animation was added to the active
171     * animations list).
172     */
173    private long mDelayStartTime;
174
175    /**
176     * Flag that represents the current state of the animation. Used to figure out when to start
177     * an animation (if state == STOPPED). Also used to end an animation that
178     * has been cancel()'d or end()'d since the last animation frame. Possible values are
179     * STOPPED, RUNNING, SEEKED.
180     */
181    int mPlayingState = STOPPED;
182
183    /**
184     * Flag that denotes whether the animation is set up and ready to go. Used to
185     * set up animation that has not yet been started.
186     */
187    boolean mInitialized = false;
188
189    //
190    // Backing variables
191    //
192
193    // How long the animation should last in ms
194    private long mDuration = 300;
195
196    // The amount of time in ms to delay starting the animation after start() is called
197    private long mStartDelay = 0;
198
199    // The number of milliseconds between animation frames
200    private static long sFrameDelay = DEFAULT_FRAME_DELAY;
201
202    // The number of times the animation will repeat. The default is 0, which means the animation
203    // will play only once
204    private int mRepeatCount = 0;
205
206    /**
207     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
208     * animation will start from the beginning on every new cycle. REVERSE means the animation
209     * will reverse directions on each iteration.
210     */
211    private int mRepeatMode = RESTART;
212
213    /**
214     * The time interpolator to be used. The elapsed fraction of the animation will be passed
215     * through this interpolator to calculate the interpolated fraction, which is then used to
216     * calculate the animated values.
217     */
218    private TimeInterpolator mInterpolator = sDefaultInterpolator;
219
220    /**
221     * The set of listeners to be sent events through the life of an animation.
222     */
223    private ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
224
225    /**
226     * The property/value sets being animated.
227     */
228    PropertyValuesHolder[] mValues;
229
230    /**
231     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
232     * by property name during calls to getAnimatedValue(String).
233     */
234    HashMap<String, PropertyValuesHolder> mValuesMap;
235
236    /**
237     * Public constants
238     */
239
240    /**
241     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
242     * or a positive value, the animation restarts from the beginning.
243     */
244    public static final int RESTART = 1;
245    /**
246     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
247     * or a positive value, the animation reverses direction on every iteration.
248     */
249    public static final int REVERSE = 2;
250    /**
251     * This value used used with the {@link #setRepeatCount(int)} property to repeat
252     * the animation indefinitely.
253     */
254    public static final int INFINITE = -1;
255
256    /**
257     * Creates a new ValueAnimator object. This default constructor is primarily for
258     * use internally; the factory methods which take parameters are more generally
259     * useful.
260     */
261    public ValueAnimator() {
262    }
263
264    /**
265     * Constructs and returns a ValueAnimator that animates between int values. A single
266     * value implies that that value is the one being animated to. However, this is not typically
267     * useful in a ValueAnimator object because there is no way for the object to determine the
268     * starting value for the animation (unlike ObjectAnimator, which can derive that value
269     * from the target object and property being animated). Therefore, there should typically
270     * be two or more values.
271     *
272     * @param values A set of values that the animation will animate between over time.
273     * @return A ValueAnimator object that is set up to animate between the given values.
274     */
275    public static ValueAnimator ofInt(int... values) {
276        ValueAnimator anim = new ValueAnimator();
277        anim.setIntValues(values);
278        return anim;
279    }
280
281    /**
282     * Constructs and returns a ValueAnimator that animates between float values. A single
283     * value implies that that value is the one being animated to. However, this is not typically
284     * useful in a ValueAnimator object because there is no way for the object to determine the
285     * starting value for the animation (unlike ObjectAnimator, which can derive that value
286     * from the target object and property being animated). Therefore, there should typically
287     * be two or more values.
288     *
289     * @param values A set of values that the animation will animate between over time.
290     * @return A ValueAnimator object that is set up to animate between the given values.
291     */
292    public static ValueAnimator ofFloat(float... values) {
293        ValueAnimator anim = new ValueAnimator();
294        anim.setFloatValues(values);
295        return anim;
296    }
297
298    /**
299     * Constructs and returns a ValueAnimator that animates between the values
300     * specified in the PropertyValuesHolder objects.
301     *
302     * @param values A set of PropertyValuesHolder objects whose values will be animated
303     * between over time.
304     * @return A ValueAnimator object that is set up to animate between the given values.
305     */
306    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
307        ValueAnimator anim = new ValueAnimator();
308        anim.setValues(values);
309        return anim;
310    }
311    /**
312     * Constructs and returns a ValueAnimator that animates between Object values. A single
313     * value implies that that value is the one being animated to. However, this is not typically
314     * useful in a ValueAnimator object because there is no way for the object to determine the
315     * starting value for the animation (unlike ObjectAnimator, which can derive that value
316     * from the target object and property being animated). Therefore, there should typically
317     * be two or more values.
318     *
319     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
320     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
321     * to perform that interpolation.
322     *
323     * @param evaluator A TypeEvaluator that will be called on each animation frame to
324     * provide the ncessry interpolation between the Object values to derive the animated
325     * value.
326     * @param values A set of values that the animation will animate between over time.
327     * @return A ValueAnimator object that is set up to animate between the given values.
328     */
329    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
330        ValueAnimator anim = new ValueAnimator();
331        anim.setObjectValues(values);
332        anim.setEvaluator(evaluator);
333        return anim;
334    }
335
336    /**
337     * Sets int values that will be animated between. A single
338     * value implies that that value is the one being animated to. However, this is not typically
339     * useful in a ValueAnimator object because there is no way for the object to determine the
340     * starting value for the animation (unlike ObjectAnimator, which can derive that value
341     * from the target object and property being animated). Therefore, there should typically
342     * be two or more values.
343     *
344     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
345     * than one PropertyValuesHolder object, this method will set the values for the first
346     * of those objects.</p>
347     *
348     * @param values A set of values that the animation will animate between over time.
349     */
350    public void setIntValues(int... values) {
351        if (values == null || values.length == 0) {
352            return;
353        }
354        if (mValues == null || mValues.length == 0) {
355            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofInt("", values)});
356        } else {
357            PropertyValuesHolder valuesHolder = mValues[0];
358            valuesHolder.setIntValues(values);
359        }
360        // New property/values/target should cause re-initialization prior to starting
361        mInitialized = false;
362    }
363
364    /**
365     * Sets float values that will be animated between. A single
366     * value implies that that value is the one being animated to. However, this is not typically
367     * useful in a ValueAnimator object because there is no way for the object to determine the
368     * starting value for the animation (unlike ObjectAnimator, which can derive that value
369     * from the target object and property being animated). Therefore, there should typically
370     * be two or more values.
371     *
372     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
373     * than one PropertyValuesHolder object, this method will set the values for the first
374     * of those objects.</p>
375     *
376     * @param values A set of values that the animation will animate between over time.
377     */
378    public void setFloatValues(float... values) {
379        if (values == null || values.length == 0) {
380            return;
381        }
382        if (mValues == null || mValues.length == 0) {
383            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofFloat("", values)});
384        } else {
385            PropertyValuesHolder valuesHolder = mValues[0];
386            valuesHolder.setFloatValues(values);
387        }
388        // New property/values/target should cause re-initialization prior to starting
389        mInitialized = false;
390    }
391
392    /**
393     * Sets the values to animate between for this animation. A single
394     * value implies that that value is the one being animated to. However, this is not typically
395     * useful in a ValueAnimator object because there is no way for the object to determine the
396     * starting value for the animation (unlike ObjectAnimator, which can derive that value
397     * from the target object and property being animated). Therefore, there should typically
398     * be two or more values.
399     *
400     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
401     * than one PropertyValuesHolder object, this method will set the values for the first
402     * of those objects.</p>
403     *
404     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
405     * between these value objects. ValueAnimator only knows how to interpolate between the
406     * primitive types specified in the other setValues() methods.</p>
407     *
408     * @param values The set of values to animate between.
409     */
410    public void setObjectValues(Object... values) {
411        if (values == null || values.length == 0) {
412            return;
413        }
414        if (mValues == null || mValues.length == 0) {
415            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofObject("",
416                    (TypeEvaluator)null, values)});
417        } else {
418            PropertyValuesHolder valuesHolder = mValues[0];
419            valuesHolder.setObjectValues(values);
420        }
421        // New property/values/target should cause re-initialization prior to starting
422        mInitialized = false;
423    }
424
425    /**
426     * Sets the values, per property, being animated between. This function is called internally
427     * by the constructors of ValueAnimator that take a list of values. But an ValueAnimator can
428     * be constructed without values and this method can be called to set the values manually
429     * instead.
430     *
431     * @param values The set of values, per property, being animated between.
432     */
433    public void setValues(PropertyValuesHolder... values) {
434        int numValues = values.length;
435        mValues = values;
436        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
437        for (int i = 0; i < numValues; ++i) {
438            PropertyValuesHolder valuesHolder = (PropertyValuesHolder) values[i];
439            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
440        }
441        // New property/values/target should cause re-initialization prior to starting
442        mInitialized = false;
443    }
444
445    /**
446     * Returns the values that this ValueAnimator animates between. These values are stored in
447     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
448     * of value objects instead.
449     *
450     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
451     * values, per property, that define the animation.
452     */
453    public PropertyValuesHolder[] getValues() {
454        return mValues;
455    }
456
457    /**
458     * This function is called immediately before processing the first animation
459     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
460     * function is called after that delay ends.
461     * It takes care of the final initialization steps for the
462     * animation.
463     *
464     *  <p>Overrides of this method should call the superclass method to ensure
465     *  that internal mechanisms for the animation are set up correctly.</p>
466     */
467    void initAnimation() {
468        if (!mInitialized) {
469            int numValues = mValues.length;
470            for (int i = 0; i < numValues; ++i) {
471                mValues[i].init();
472            }
473            mInitialized = true;
474        }
475    }
476
477
478    /**
479     * Sets the length of the animation. The default duration is 300 milliseconds.
480     *
481     * @param duration The length of the animation, in milliseconds. This value cannot
482     * be negative.
483     * @return ValueAnimator The object called with setDuration(). This return
484     * value makes it easier to compose statements together that construct and then set the
485     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
486     */
487    public ValueAnimator setDuration(long duration) {
488        if (duration < 0) {
489            throw new IllegalArgumentException("Animators cannot have negative duration: " +
490                    duration);
491        }
492        mDuration = duration;
493        return this;
494    }
495
496    /**
497     * Gets the length of the animation. The default duration is 300 milliseconds.
498     *
499     * @return The length of the animation, in milliseconds.
500     */
501    public long getDuration() {
502        return mDuration;
503    }
504
505    /**
506     * Sets the position of the animation to the specified point in time. This time should
507     * be between 0 and the total duration of the animation, including any repetition. If
508     * the animation has not yet been started, then it will not advance forward after it is
509     * set to this time; it will simply set the time to this value and perform any appropriate
510     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
511     * will set the current playing time to this value and continue playing from that point.
512     *
513     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
514     */
515    public void setCurrentPlayTime(long playTime) {
516        initAnimation();
517        long currentTime = AnimationUtils.currentAnimationTimeMillis();
518        if (mPlayingState != RUNNING) {
519            mSeekTime = playTime;
520            mPlayingState = SEEKED;
521        }
522        mStartTime = currentTime - playTime;
523        animationFrame(currentTime);
524    }
525
526    /**
527     * Gets the current position of the animation in time, which is equal to the current
528     * time minus the time that the animation started. An animation that is not yet started will
529     * return a value of zero.
530     *
531     * @return The current position in time of the animation.
532     */
533    public long getCurrentPlayTime() {
534        if (!mInitialized || mPlayingState == STOPPED) {
535            return 0;
536        }
537        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
538    }
539
540    /**
541     * This custom, static handler handles the timing pulse that is shared by
542     * all active animations. This approach ensures that the setting of animation
543     * values will happen on the UI thread and that all animations will share
544     * the same times for calculating their values, which makes synchronizing
545     * animations possible.
546     *
547     */
548    private static class AnimationHandler extends Handler {
549        /**
550         * There are only two messages that we care about: ANIMATION_START and
551         * ANIMATION_FRAME. The START message is sent when an animation's start()
552         * method is called. It cannot start synchronously when start() is called
553         * because the call may be on the wrong thread, and it would also not be
554         * synchronized with other animations because it would not start on a common
555         * timing pulse. So each animation sends a START message to the handler, which
556         * causes the handler to place the animation on the active animations queue and
557         * start processing frames for that animation.
558         * The FRAME message is the one that is sent over and over while there are any
559         * active animations to process.
560         */
561        @Override
562        public void handleMessage(Message msg) {
563            boolean callAgain = true;
564            ArrayList<ValueAnimator> animations = sAnimations.get();
565            ArrayList<ValueAnimator> delayedAnims = sDelayedAnims.get();
566            switch (msg.what) {
567                // TODO: should we avoid sending frame message when starting if we
568                // were already running?
569                case ANIMATION_START:
570                    ArrayList<ValueAnimator> pendingAnimations = sPendingAnimations.get();
571                    if (animations.size() > 0 || delayedAnims.size() > 0) {
572                        callAgain = false;
573                    }
574                    // pendingAnims holds any animations that have requested to be started
575                    // We're going to clear sPendingAnimations, but starting animation may
576                    // cause more to be added to the pending list (for example, if one animation
577                    // starting triggers another starting). So we loop until sPendingAnimations
578                    // is empty.
579                    while (pendingAnimations.size() > 0) {
580                        ArrayList<ValueAnimator> pendingCopy =
581                                (ArrayList<ValueAnimator>) pendingAnimations.clone();
582                        pendingAnimations.clear();
583                        int count = pendingCopy.size();
584                        for (int i = 0; i < count; ++i) {
585                            ValueAnimator anim = pendingCopy.get(i);
586                            // If the animation has a startDelay, place it on the delayed list
587                            if (anim.mStartDelay == 0) {
588                                anim.startAnimation();
589                            } else {
590                                delayedAnims.add(anim);
591                            }
592                        }
593                    }
594                    // fall through to process first frame of new animations
595                case ANIMATION_FRAME:
596                    // currentTime holds the common time for all animations processed
597                    // during this frame
598                    long currentTime = AnimationUtils.currentAnimationTimeMillis();
599                    ArrayList<ValueAnimator> readyAnims = sReadyAnims.get();
600                    ArrayList<ValueAnimator> endingAnims = sEndingAnims.get();
601
602                    // First, process animations currently sitting on the delayed queue, adding
603                    // them to the active animations if they are ready
604                    int numDelayedAnims = delayedAnims.size();
605                    for (int i = 0; i < numDelayedAnims; ++i) {
606                        ValueAnimator anim = delayedAnims.get(i);
607                        if (anim.delayedAnimationFrame(currentTime)) {
608                            readyAnims.add(anim);
609                        }
610                    }
611                    int numReadyAnims = readyAnims.size();
612                    if (numReadyAnims > 0) {
613                        for (int i = 0; i < numReadyAnims; ++i) {
614                            ValueAnimator anim = readyAnims.get(i);
615                            anim.startAnimation();
616                            delayedAnims.remove(anim);
617                        }
618                        readyAnims.clear();
619                    }
620
621                    // Now process all active animations. The return value from animationFrame()
622                    // tells the handler whether it should now be ended
623                    int numAnims = animations.size();
624                    int i = 0;
625                    while (i < numAnims) {
626                        ValueAnimator anim = animations.get(i);
627                        if (anim.animationFrame(currentTime)) {
628                            endingAnims.add(anim);
629                        }
630                        if (animations.size() == numAnims) {
631                            ++i;
632                        } else {
633                            // An animation might be canceled or ended by client code
634                            // during the animation frame. Check to see if this happened by
635                            // seeing whether the current index is the same as it was before
636                            // calling animationFrame(). Another approach would be to copy
637                            // animations to a temporary list and process that list instead,
638                            // but that entails garbage and processing overhead that would
639                            // be nice to avoid.
640                            --numAnims;
641                            endingAnims.remove(anim);
642                        }
643                    }
644                    if (endingAnims.size() > 0) {
645                        for (i = 0; i < endingAnims.size(); ++i) {
646                            endingAnims.get(i).endAnimation();
647                        }
648                        endingAnims.clear();
649                    }
650
651                    // If there are still active or delayed animations, call the handler again
652                    // after the frameDelay
653                    if (callAgain && (!animations.isEmpty() || !delayedAnims.isEmpty())) {
654                        sendEmptyMessageDelayed(ANIMATION_FRAME, Math.max(0, sFrameDelay -
655                            (AnimationUtils.currentAnimationTimeMillis() - currentTime)));
656                    }
657                    break;
658            }
659        }
660    }
661
662    /**
663     * The amount of time, in milliseconds, to delay starting the animation after
664     * {@link #start()} is called.
665     *
666     * @return the number of milliseconds to delay running the animation
667     */
668    public long getStartDelay() {
669        return mStartDelay;
670    }
671
672    /**
673     * The amount of time, in milliseconds, to delay starting the animation after
674     * {@link #start()} is called.
675
676     * @param startDelay The amount of the delay, in milliseconds
677     */
678    public void setStartDelay(long startDelay) {
679        this.mStartDelay = startDelay;
680    }
681
682    /**
683     * The amount of time, in milliseconds, between each frame of the animation. This is a
684     * requested time that the animation will attempt to honor, but the actual delay between
685     * frames may be different, depending on system load and capabilities. This is a static
686     * function because the same delay will be applied to all animations, since they are all
687     * run off of a single timing loop.
688     *
689     * @return the requested time between frames, in milliseconds
690     */
691    public static long getFrameDelay() {
692        return sFrameDelay;
693    }
694
695    /**
696     * The amount of time, in milliseconds, between each frame of the animation. This is a
697     * requested time that the animation will attempt to honor, but the actual delay between
698     * frames may be different, depending on system load and capabilities. This is a static
699     * function because the same delay will be applied to all animations, since they are all
700     * run off of a single timing loop.
701     *
702     * @param frameDelay the requested time between frames, in milliseconds
703     */
704    public static void setFrameDelay(long frameDelay) {
705        sFrameDelay = frameDelay;
706    }
707
708    /**
709     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
710     * property being animated. This value is only sensible while the animation is running. The main
711     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
712     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
713     * is called during each animation frame, immediately after the value is calculated.
714     *
715     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
716     * the single property being animated. If there are several properties being animated
717     * (specified by several PropertyValuesHolder objects in the constructor), this function
718     * returns the animated value for the first of those objects.
719     */
720    public Object getAnimatedValue() {
721        if (mValues != null && mValues.length > 0) {
722            return mValues[0].getAnimatedValue();
723        }
724        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
725        return null;
726    }
727
728    /**
729     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
730     * The main purpose for this read-only property is to retrieve the value from the
731     * <code>ValueAnimator</code> during a call to
732     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
733     * is called during each animation frame, immediately after the value is calculated.
734     *
735     * @return animatedValue The value most recently calculated for the named property
736     * by this <code>ValueAnimator</code>.
737     */
738    public Object getAnimatedValue(String propertyName) {
739        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
740        if (valuesHolder != null) {
741            return valuesHolder.getAnimatedValue();
742        } else {
743            // At least avoid crashing if called with bogus propertyName
744            return null;
745        }
746    }
747
748    /**
749     * Sets how many times the animation should be repeated. If the repeat
750     * count is 0, the animation is never repeated. If the repeat count is
751     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
752     * into account. The repeat count is 0 by default.
753     *
754     * @param value the number of times the animation should be repeated
755     */
756    public void setRepeatCount(int value) {
757        mRepeatCount = value;
758    }
759    /**
760     * Defines how many times the animation should repeat. The default value
761     * is 0.
762     *
763     * @return the number of times the animation should repeat, or {@link #INFINITE}
764     */
765    public int getRepeatCount() {
766        return mRepeatCount;
767    }
768
769    /**
770     * Defines what this animation should do when it reaches the end. This
771     * setting is applied only when the repeat count is either greater than
772     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
773     *
774     * @param value {@link #RESTART} or {@link #REVERSE}
775     */
776    public void setRepeatMode(int value) {
777        mRepeatMode = value;
778    }
779
780    /**
781     * Defines what this animation should do when it reaches the end.
782     *
783     * @return either one of {@link #REVERSE} or {@link #RESTART}
784     */
785    public int getRepeatMode() {
786        return mRepeatMode;
787    }
788
789    /**
790     * Adds a listener to the set of listeners that are sent update events through the life of
791     * an animation. This method is called on all listeners for every frame of the animation,
792     * after the values for the animation have been calculated.
793     *
794     * @param listener the listener to be added to the current set of listeners for this animation.
795     */
796    public void addUpdateListener(AnimatorUpdateListener listener) {
797        if (mUpdateListeners == null) {
798            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
799        }
800        mUpdateListeners.add(listener);
801    }
802
803    /**
804     * Removes all listeners from the set listening to frame updates for this animation.
805     */
806    public void removeAllUpdateListeners() {
807        if (mUpdateListeners == null) {
808            return;
809        }
810        mUpdateListeners.clear();
811        mUpdateListeners = null;
812    }
813
814    /**
815     * Removes a listener from the set listening to frame updates for this animation.
816     *
817     * @param listener the listener to be removed from the current set of update listeners
818     * for this animation.
819     */
820    public void removeUpdateListener(AnimatorUpdateListener listener) {
821        if (mUpdateListeners == null) {
822            return;
823        }
824        mUpdateListeners.remove(listener);
825        if (mUpdateListeners.size() == 0) {
826            mUpdateListeners = null;
827        }
828    }
829
830
831    /**
832     * The time interpolator used in calculating the elapsed fraction of this animation. The
833     * interpolator determines whether the animation runs with linear or non-linear motion,
834     * such as acceleration and deceleration. The default value is
835     * {@link android.view.animation.AccelerateDecelerateInterpolator}
836     *
837     * @param value the interpolator to be used by this animation. A value of <code>null</code>
838     * will result in linear interpolation.
839     */
840    @Override
841    public void setInterpolator(TimeInterpolator value) {
842        if (value != null) {
843            mInterpolator = value;
844        } else {
845            mInterpolator = new LinearInterpolator();
846        }
847    }
848
849    /**
850     * Returns the timing interpolator that this ValueAnimator uses.
851     *
852     * @return The timing interpolator for this ValueAnimator.
853     */
854    public TimeInterpolator getInterpolator() {
855        return mInterpolator;
856    }
857
858    /**
859     * The type evaluator to be used when calculating the animated values of this animation.
860     * The system will automatically assign a float or int evaluator based on the type
861     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
862     * are not one of these primitive types, or if different evaluation is desired (such as is
863     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
864     * For example, when running an animation on color values, the {@link ArgbEvaluator}
865     * should be used to get correct RGB color interpolation.
866     *
867     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
868     * will be used for that set. If there are several sets of values being animated, which is
869     * the case if PropertyValuesHOlder objects were set on the ValueAnimator, then the evaluator
870     * is assigned just to the first PropertyValuesHolder object.</p>
871     *
872     * @param value the evaluator to be used this animation
873     */
874    public void setEvaluator(TypeEvaluator value) {
875        if (value != null && mValues != null && mValues.length > 0) {
876            mValues[0].setEvaluator(value);
877        }
878    }
879
880    /**
881     * Start the animation playing. This version of start() takes a boolean flag that indicates
882     * whether the animation should play in reverse. The flag is usually false, but may be set
883     * to true if called from the reverse() method.
884     *
885     * <p>The animation started by calling this method will be run on the thread that called
886     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
887     * this is not the case). Also, if the animation will animate
888     * properties of objects in the view hierarchy, then the calling thread should be the UI
889     * thread for that view hierarchy.</p>
890     *
891     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
892     */
893    private void start(boolean playBackwards) {
894        if (Looper.myLooper() == null) {
895            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
896        }
897        mPlayingBackwards = playBackwards;
898        mCurrentIteration = 0;
899        mPlayingState = STOPPED;
900        mStartedDelay = false;
901        sPendingAnimations.get().add(this);
902        if (mStartDelay == 0) {
903            // This sets the initial value of the animation, prior to actually starting it running
904            setCurrentPlayTime(getCurrentPlayTime());
905
906            if (mListeners != null) {
907                ArrayList<AnimatorListener> tmpListeners =
908                        (ArrayList<AnimatorListener>) mListeners.clone();
909                int numListeners = tmpListeners.size();
910                for (int i = 0; i < numListeners; ++i) {
911                    tmpListeners.get(i).onAnimationStart(this);
912                }
913            }
914        }
915        AnimationHandler animationHandler = sAnimationHandler.get();
916        if (animationHandler == null) {
917            animationHandler = new AnimationHandler();
918            sAnimationHandler.set(animationHandler);
919        }
920        animationHandler.sendEmptyMessage(ANIMATION_START);
921    }
922
923    @Override
924    public void start() {
925        start(false);
926    }
927
928    @Override
929    public void cancel() {
930        if (mListeners != null) {
931            ArrayList<AnimatorListener> tmpListeners =
932                    (ArrayList<AnimatorListener>) mListeners.clone();
933            for (AnimatorListener listener : tmpListeners) {
934                listener.onAnimationCancel(this);
935            }
936        }
937        // Only cancel if the animation is actually running or has been started and is about
938        // to run
939        if (mPlayingState != STOPPED || sPendingAnimations.get().contains(this) ||
940                sDelayedAnims.get().contains(this)) {
941            endAnimation();
942        }
943    }
944
945    @Override
946    public void end() {
947        if (!sAnimations.get().contains(this) && !sPendingAnimations.get().contains(this)) {
948            // Special case if the animation has not yet started; get it ready for ending
949            mStartedDelay = false;
950            startAnimation();
951        } else if (!mInitialized) {
952            initAnimation();
953        }
954        // The final value set on the target varies, depending on whether the animation
955        // was supposed to repeat an odd number of times
956        if (mRepeatCount > 0 && (mRepeatCount & 0x01) == 1) {
957            animateValue(0f);
958        } else {
959            animateValue(1f);
960        }
961        endAnimation();
962    }
963
964    @Override
965    public boolean isRunning() {
966        return (mPlayingState == RUNNING);
967    }
968
969    /**
970     * Plays the ValueAnimator in reverse. If the animation is already running,
971     * it will stop itself and play backwards from the point reached when reverse was called.
972     * If the animation is not currently running, then it will start from the end and
973     * play backwards. This behavior is only set for the current animation; future playing
974     * of the animation will use the default behavior of playing forward.
975     */
976    public void reverse() {
977        mPlayingBackwards = !mPlayingBackwards;
978        if (mPlayingState == RUNNING) {
979            long currentTime = AnimationUtils.currentAnimationTimeMillis();
980            long currentPlayTime = currentTime - mStartTime;
981            long timeLeft = mDuration - currentPlayTime;
982            mStartTime = currentTime - timeLeft;
983        } else {
984            start(true);
985        }
986    }
987
988    /**
989     * Called internally to end an animation by removing it from the animations list. Must be
990     * called on the UI thread.
991     */
992    private void endAnimation() {
993        sAnimations.get().remove(this);
994        sPendingAnimations.get().remove(this);
995        sDelayedAnims.get().remove(this);
996        mPlayingState = STOPPED;
997        if (mListeners != null) {
998            ArrayList<AnimatorListener> tmpListeners =
999                    (ArrayList<AnimatorListener>) mListeners.clone();
1000            int numListeners = tmpListeners.size();
1001            for (int i = 0; i < numListeners; ++i) {
1002                tmpListeners.get(i).onAnimationEnd(this);
1003            }
1004        }
1005    }
1006
1007    /**
1008     * Called internally to start an animation by adding it to the active animations list. Must be
1009     * called on the UI thread.
1010     */
1011    private void startAnimation() {
1012        initAnimation();
1013        sAnimations.get().add(this);
1014        if (mStartDelay > 0 && mListeners != null) {
1015            // Listeners were already notified in start() if startDelay is 0; this is
1016            // just for delayed animations
1017            ArrayList<AnimatorListener> tmpListeners =
1018                    (ArrayList<AnimatorListener>) mListeners.clone();
1019            int numListeners = tmpListeners.size();
1020            for (int i = 0; i < numListeners; ++i) {
1021                tmpListeners.get(i).onAnimationStart(this);
1022            }
1023        }
1024    }
1025
1026    /**
1027     * Internal function called to process an animation frame on an animation that is currently
1028     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1029     * should be woken up and put on the active animations queue.
1030     *
1031     * @param currentTime The current animation time, used to calculate whether the animation
1032     * has exceeded its <code>startDelay</code> and should be started.
1033     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1034     * should be added to the set of active animations.
1035     */
1036    private boolean delayedAnimationFrame(long currentTime) {
1037        if (!mStartedDelay) {
1038            mStartedDelay = true;
1039            mDelayStartTime = currentTime;
1040        } else {
1041            long deltaTime = currentTime - mDelayStartTime;
1042            if (deltaTime > mStartDelay) {
1043                // startDelay ended - start the anim and record the
1044                // mStartTime appropriately
1045                mStartTime = currentTime - (deltaTime - mStartDelay);
1046                mPlayingState = RUNNING;
1047                return true;
1048            }
1049        }
1050        return false;
1051    }
1052
1053    /**
1054     * This internal function processes a single animation frame for a given animation. The
1055     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1056     * elapsed duration, and therefore
1057     * the elapsed fraction, of the animation. The return value indicates whether the animation
1058     * should be ended (which happens when the elapsed time of the animation exceeds the
1059     * animation's duration, including the repeatCount).
1060     *
1061     * @param currentTime The current time, as tracked by the static timing handler
1062     * @return true if the animation's duration, including any repetitions due to
1063     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1064     */
1065    boolean animationFrame(long currentTime) {
1066        boolean done = false;
1067
1068        if (mPlayingState == STOPPED) {
1069            mPlayingState = RUNNING;
1070            if (mSeekTime < 0) {
1071                mStartTime = currentTime;
1072            } else {
1073                mStartTime = currentTime - mSeekTime;
1074                // Now that we're playing, reset the seek time
1075                mSeekTime = -1;
1076            }
1077        }
1078        switch (mPlayingState) {
1079        case RUNNING:
1080        case SEEKED:
1081            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1082            if (fraction >= 1f) {
1083                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1084                    // Time to repeat
1085                    if (mListeners != null) {
1086                        int numListeners = mListeners.size();
1087                        for (int i = 0; i < numListeners; ++i) {
1088                            mListeners.get(i).onAnimationRepeat(this);
1089                        }
1090                    }
1091                    if (mRepeatMode == REVERSE) {
1092                        mPlayingBackwards = mPlayingBackwards ? false : true;
1093                    }
1094                    mCurrentIteration += (int)fraction;
1095                    fraction = fraction % 1f;
1096                    mStartTime += mDuration;
1097                } else {
1098                    done = true;
1099                    fraction = Math.min(fraction, 1.0f);
1100                }
1101            }
1102            if (mPlayingBackwards) {
1103                fraction = 1f - fraction;
1104            }
1105            animateValue(fraction);
1106            break;
1107        }
1108
1109        return done;
1110    }
1111
1112    /**
1113     * This method is called with the elapsed fraction of the animation during every
1114     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1115     * and then into an animated value (from the evaluator. The function is called mostly during
1116     * animation updates, but it is also called when the <code>end()</code>
1117     * function is called, to set the final value on the property.
1118     *
1119     * <p>Overrides of this method must call the superclass to perform the calculation
1120     * of the animated value.</p>
1121     *
1122     * @param fraction The elapsed fraction of the animation.
1123     */
1124    void animateValue(float fraction) {
1125        fraction = mInterpolator.getInterpolation(fraction);
1126        int numValues = mValues.length;
1127        for (int i = 0; i < numValues; ++i) {
1128            mValues[i].calculateValue(fraction);
1129        }
1130        if (mUpdateListeners != null) {
1131            int numListeners = mUpdateListeners.size();
1132            for (int i = 0; i < numListeners; ++i) {
1133                mUpdateListeners.get(i).onAnimationUpdate(this);
1134            }
1135        }
1136    }
1137
1138    @Override
1139    public ValueAnimator clone() {
1140        final ValueAnimator anim = (ValueAnimator) super.clone();
1141        if (mUpdateListeners != null) {
1142            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1143            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1144            int numListeners = oldListeners.size();
1145            for (int i = 0; i < numListeners; ++i) {
1146                anim.mUpdateListeners.add(oldListeners.get(i));
1147            }
1148        }
1149        anim.mSeekTime = -1;
1150        anim.mPlayingBackwards = false;
1151        anim.mCurrentIteration = 0;
1152        anim.mInitialized = false;
1153        anim.mPlayingState = STOPPED;
1154        anim.mStartedDelay = false;
1155        PropertyValuesHolder[] oldValues = mValues;
1156        if (oldValues != null) {
1157            int numValues = oldValues.length;
1158            anim.mValues = new PropertyValuesHolder[numValues];
1159            for (int i = 0; i < numValues; ++i) {
1160                anim.mValues[i] = oldValues[i].clone();
1161            }
1162            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1163            for (int i = 0; i < numValues; ++i) {
1164                PropertyValuesHolder valuesHolder = mValues[i];
1165                anim.mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
1166            }
1167        }
1168        return anim;
1169    }
1170
1171    /**
1172     * Implementors of this interface can add themselves as update listeners
1173     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1174     * frame, after the current frame's values have been calculated for that
1175     * <code>ValueAnimator</code>.
1176     */
1177    public static interface AnimatorUpdateListener {
1178        /**
1179         * <p>Notifies the occurrence of another frame of the animation.</p>
1180         *
1181         * @param animation The animation which was repeated.
1182         */
1183        void onAnimationUpdate(ValueAnimator animation);
1184
1185    }
1186
1187    /**
1188     * Return the number of animations currently running.
1189     *
1190     * Used by StrictMode internally to annotate violations.  Only
1191     * called on the main thread.
1192     *
1193     * @hide
1194     */
1195    public static int getCurrentAnimationsCount() {
1196        return sAnimations.get().size();
1197    }
1198
1199    /**
1200     * Clear all animations on this thread, without canceling or ending them.
1201     * This should be used with caution.
1202     *
1203     * @hide
1204     */
1205    public static void clearAllAnimations() {
1206        sAnimations.get().clear();
1207        sPendingAnimations.get().clear();
1208        sDelayedAnims.get().clear();
1209    }
1210}
1211