ValueAnimator.java revision c42b28dda45347b05826dc3e04f5605a60867a63
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.annotation.CallSuper;
20import android.os.Looper;
21import android.os.Trace;
22import android.util.AndroidRuntimeException;
23import android.util.Log;
24import android.view.Choreographer;
25import android.view.animation.AccelerateDecelerateInterpolator;
26import android.view.animation.AnimationUtils;
27import android.view.animation.LinearInterpolator;
28
29import java.util.ArrayList;
30import java.util.HashMap;
31
32/**
33 * This class provides a simple timing engine for running animations
34 * which calculate animated values and set them on target objects.
35 *
36 * <p>There is a single timing pulse that all animations use. It runs in a
37 * custom handler to ensure that property changes happen on the UI thread.</p>
38 *
39 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
40 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
41 * out of an animation. This behavior can be changed by calling
42 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
43 *
44 * <p>Animators can be created from either code or resource files. Here is an example
45 * of a ValueAnimator resource file:</p>
46 *
47 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
48 *
49 * <p>It is also possible to use a combination of {@link PropertyValuesHolder} and
50 * {@link Keyframe} resource tags to create a multi-step animation.
51 * Note that you can specify explicit fractional values (from 0 to 1) for
52 * each keyframe to determine when, in the overall duration, the animation should arrive at that
53 * value. Alternatively, you can leave the fractions off and the keyframes will be equally
54 * distributed within the total duration:</p>
55 *
56 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
57 * ValueAnimatorKeyframeResources}
58 *
59 * <div class="special reference">
60 * <h3>Developer Guides</h3>
61 * <p>For more information about animating with {@code ValueAnimator}, read the
62 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
63 * Animation</a> developer guide.</p>
64 * </div>
65 */
66@SuppressWarnings("unchecked")
67public class ValueAnimator extends Animator {
68    private static final String TAG = "ValueAnimator";
69    private static final boolean DEBUG = false;
70
71    /**
72     * Internal constants
73     */
74    private static float sDurationScale = 1.0f;
75
76    /**
77     * Values used with internal variable mPlayingState to indicate the current state of an
78     * animation.
79     */
80    static final int STOPPED    = 0; // Not yet playing
81    static final int RUNNING    = 1; // Playing normally
82    static final int SEEKED     = 2; // Seeked to some time value
83
84    /**
85     * Internal variables
86     * NOTE: This object implements the clone() method, making a deep copy of any referenced
87     * objects. As other non-trivial fields are added to this class, make sure to add logic
88     * to clone() to make deep copies of them.
89     */
90
91    /**
92     * The first time that the animation's animateFrame() method is called. This time is used to
93     * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
94     * to animateFrame().
95     *
96     * Whenever mStartTime is set, you must also update mStartTimeCommitted.
97     */
98    long mStartTime;
99
100    /**
101     * When true, the start time has been firmly committed as a chosen reference point in
102     * time by which the progress of the animation will be evaluated.  When false, the
103     * start time may be updated when the first animation frame is committed so as
104     * to compensate for jank that may have occurred between when the start time was
105     * initialized and when the frame was actually drawn.
106     *
107     * This flag is generally set to false during the first frame of the animation
108     * when the animation playing state transitions from STOPPED to RUNNING or
109     * resumes after having been paused.  This flag is set to true when the start time
110     * is firmly committed and should not be further compensated for jank.
111     */
112    boolean mStartTimeCommitted;
113
114    /**
115     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
116     * to a value.
117     */
118    float mSeekFraction = -1;
119
120    /**
121     * Set on the next frame after pause() is called, used to calculate a new startTime
122     * or delayStartTime which allows the animator to continue from the point at which
123     * it was paused. If negative, has not yet been set.
124     */
125    private long mPauseTime;
126
127    /**
128     * Set when an animator is resumed. This triggers logic in the next frame which
129     * actually resumes the animator.
130     */
131    private boolean mResumed = false;
132
133
134    // The static sAnimationHandler processes the internal timing loop on which all animations
135    // are based
136    /**
137     * @hide
138     */
139    protected static ThreadLocal<AnimationHandler> sAnimationHandler =
140            new ThreadLocal<AnimationHandler>();
141
142    // The time interpolator to be used if none is set on the animation
143    private static final TimeInterpolator sDefaultInterpolator =
144            new AccelerateDecelerateInterpolator();
145
146    /**
147     * Used to indicate whether the animation is currently playing in reverse. This causes the
148     * elapsed fraction to be inverted to calculate the appropriate values.
149     */
150    private boolean mPlayingBackwards = false;
151
152    /**
153     * Flag to indicate whether this animator is playing in reverse mode, specifically
154     * by being started or interrupted by a call to reverse(). This flag is different than
155     * mPlayingBackwards, which indicates merely whether the current iteration of the
156     * animator is playing in reverse. It is used in corner cases to determine proper end
157     * behavior.
158     */
159    private boolean mReversing;
160
161    /**
162     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
163     * repeatCount (if repeatCount!=INFINITE), the animation ends
164     */
165    private int mCurrentIteration = 0;
166
167    /**
168     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
169     */
170    private float mCurrentFraction = 0f;
171
172    /**
173     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
174     */
175    private boolean mStartedDelay = false;
176
177    /**
178     * Tracks the time at which the animation began playing through its startDelay. This is
179     * different from the mStartTime variable, which is used to track when the animation became
180     * active (which is when the startDelay expired and the animation was added to the active
181     * animations list).
182     */
183    private long mDelayStartTime;
184
185    /**
186     * Flag that represents the current state of the animation. Used to figure out when to start
187     * an animation (if state == STOPPED). Also used to end an animation that
188     * has been cancel()'d or end()'d since the last animation frame. Possible values are
189     * STOPPED, RUNNING, SEEKED.
190     */
191    int mPlayingState = STOPPED;
192
193    /**
194     * Additional playing state to indicate whether an animator has been start()'d. There is
195     * some lag between a call to start() and the first animation frame. We should still note
196     * that the animation has been started, even if it's first animation frame has not yet
197     * happened, and reflect that state in isRunning().
198     * Note that delayed animations are different: they are not started until their first
199     * animation frame, which occurs after their delay elapses.
200     */
201    private boolean mRunning = false;
202
203    /**
204     * Additional playing state to indicate whether an animator has been start()'d, whether or
205     * not there is a nonzero startDelay.
206     */
207    private boolean mStarted = false;
208
209    /**
210     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
211     * complex to keep track of since we notify listeners at different times depending on
212     * startDelay and whether start() was called before end().
213     */
214    private boolean mStartListenersCalled = false;
215
216    /**
217     * Flag that denotes whether the animation is set up and ready to go. Used to
218     * set up animation that has not yet been started.
219     */
220    boolean mInitialized = false;
221
222    //
223    // Backing variables
224    //
225
226    // How long the animation should last in ms
227    private long mDuration = (long)(300 * sDurationScale);
228    private long mUnscaledDuration = 300;
229
230    // The amount of time in ms to delay starting the animation after start() is called
231    private long mStartDelay = 0;
232    private long mUnscaledStartDelay = 0;
233
234    // The number of times the animation will repeat. The default is 0, which means the animation
235    // will play only once
236    private int mRepeatCount = 0;
237
238    /**
239     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
240     * animation will start from the beginning on every new cycle. REVERSE means the animation
241     * will reverse directions on each iteration.
242     */
243    private int mRepeatMode = RESTART;
244
245    /**
246     * The time interpolator to be used. The elapsed fraction of the animation will be passed
247     * through this interpolator to calculate the interpolated fraction, which is then used to
248     * calculate the animated values.
249     */
250    private TimeInterpolator mInterpolator = sDefaultInterpolator;
251
252    /**
253     * The set of listeners to be sent events through the life of an animation.
254     */
255    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
256
257    /**
258     * The property/value sets being animated.
259     */
260    PropertyValuesHolder[] mValues;
261
262    /**
263     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
264     * by property name during calls to getAnimatedValue(String).
265     */
266    HashMap<String, PropertyValuesHolder> mValuesMap;
267
268    /**
269     * Public constants
270     */
271
272    /**
273     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
274     * or a positive value, the animation restarts from the beginning.
275     */
276    public static final int RESTART = 1;
277    /**
278     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
279     * or a positive value, the animation reverses direction on every iteration.
280     */
281    public static final int REVERSE = 2;
282    /**
283     * This value used used with the {@link #setRepeatCount(int)} property to repeat
284     * the animation indefinitely.
285     */
286    public static final int INFINITE = -1;
287
288
289    /**
290     * @hide
291     */
292    public static void setDurationScale(float durationScale) {
293        sDurationScale = durationScale;
294    }
295
296    /**
297     * @hide
298     */
299    public static float getDurationScale() {
300        return sDurationScale;
301    }
302
303    /**
304     * Creates a new ValueAnimator object. This default constructor is primarily for
305     * use internally; the factory methods which take parameters are more generally
306     * useful.
307     */
308    public ValueAnimator() {
309    }
310
311    /**
312     * Constructs and returns a ValueAnimator that animates between int values. A single
313     * value implies that that value is the one being animated to. However, this is not typically
314     * useful in a ValueAnimator object because there is no way for the object to determine the
315     * starting value for the animation (unlike ObjectAnimator, which can derive that value
316     * from the target object and property being animated). Therefore, there should typically
317     * be two or more values.
318     *
319     * @param values A set of values that the animation will animate between over time.
320     * @return A ValueAnimator object that is set up to animate between the given values.
321     */
322    public static ValueAnimator ofInt(int... values) {
323        ValueAnimator anim = new ValueAnimator();
324        anim.setIntValues(values);
325        return anim;
326    }
327
328    /**
329     * Constructs and returns a ValueAnimator that animates between color values. A single
330     * value implies that that value is the one being animated to. However, this is not typically
331     * useful in a ValueAnimator object because there is no way for the object to determine the
332     * starting value for the animation (unlike ObjectAnimator, which can derive that value
333     * from the target object and property being animated). Therefore, there should typically
334     * be two or more values.
335     *
336     * @param values A set of values that the animation will animate between over time.
337     * @return A ValueAnimator object that is set up to animate between the given values.
338     */
339    public static ValueAnimator ofArgb(int... values) {
340        ValueAnimator anim = new ValueAnimator();
341        anim.setIntValues(values);
342        anim.setEvaluator(ArgbEvaluator.getInstance());
343        return anim;
344    }
345
346    /**
347     * Constructs and returns a ValueAnimator that animates between float values. A single
348     * value implies that that value is the one being animated to. However, this is not typically
349     * useful in a ValueAnimator object because there is no way for the object to determine the
350     * starting value for the animation (unlike ObjectAnimator, which can derive that value
351     * from the target object and property being animated). Therefore, there should typically
352     * be two or more values.
353     *
354     * @param values A set of values that the animation will animate between over time.
355     * @return A ValueAnimator object that is set up to animate between the given values.
356     */
357    public static ValueAnimator ofFloat(float... values) {
358        ValueAnimator anim = new ValueAnimator();
359        anim.setFloatValues(values);
360        return anim;
361    }
362
363    /**
364     * Constructs and returns a ValueAnimator that animates between the values
365     * specified in the PropertyValuesHolder objects.
366     *
367     * @param values A set of PropertyValuesHolder objects whose values will be animated
368     * between over time.
369     * @return A ValueAnimator object that is set up to animate between the given values.
370     */
371    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
372        ValueAnimator anim = new ValueAnimator();
373        anim.setValues(values);
374        return anim;
375    }
376    /**
377     * Constructs and returns a ValueAnimator that animates between Object values. A single
378     * value implies that that value is the one being animated to. However, this is not typically
379     * useful in a ValueAnimator object because there is no way for the object to determine the
380     * starting value for the animation (unlike ObjectAnimator, which can derive that value
381     * from the target object and property being animated). Therefore, there should typically
382     * be two or more values.
383     *
384     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
385     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
386     * to perform that interpolation.
387     *
388     * @param evaluator A TypeEvaluator that will be called on each animation frame to
389     * provide the ncessry interpolation between the Object values to derive the animated
390     * value.
391     * @param values A set of values that the animation will animate between over time.
392     * @return A ValueAnimator object that is set up to animate between the given values.
393     */
394    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
395        ValueAnimator anim = new ValueAnimator();
396        anim.setObjectValues(values);
397        anim.setEvaluator(evaluator);
398        return anim;
399    }
400
401    /**
402     * Sets int values that will be animated between. A single
403     * value implies that that value is the one being animated to. However, this is not typically
404     * useful in a ValueAnimator object because there is no way for the object to determine the
405     * starting value for the animation (unlike ObjectAnimator, which can derive that value
406     * from the target object and property being animated). Therefore, there should typically
407     * be two or more values.
408     *
409     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
410     * than one PropertyValuesHolder object, this method will set the values for the first
411     * of those objects.</p>
412     *
413     * @param values A set of values that the animation will animate between over time.
414     */
415    public void setIntValues(int... values) {
416        if (values == null || values.length == 0) {
417            return;
418        }
419        if (mValues == null || mValues.length == 0) {
420            setValues(PropertyValuesHolder.ofInt("", values));
421        } else {
422            PropertyValuesHolder valuesHolder = mValues[0];
423            valuesHolder.setIntValues(values);
424        }
425        // New property/values/target should cause re-initialization prior to starting
426        mInitialized = false;
427    }
428
429    /**
430     * Sets float values that will be animated between. A single
431     * value implies that that value is the one being animated to. However, this is not typically
432     * useful in a ValueAnimator object because there is no way for the object to determine the
433     * starting value for the animation (unlike ObjectAnimator, which can derive that value
434     * from the target object and property being animated). Therefore, there should typically
435     * be two or more values.
436     *
437     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
438     * than one PropertyValuesHolder object, this method will set the values for the first
439     * of those objects.</p>
440     *
441     * @param values A set of values that the animation will animate between over time.
442     */
443    public void setFloatValues(float... values) {
444        if (values == null || values.length == 0) {
445            return;
446        }
447        if (mValues == null || mValues.length == 0) {
448            setValues(PropertyValuesHolder.ofFloat("", values));
449        } else {
450            PropertyValuesHolder valuesHolder = mValues[0];
451            valuesHolder.setFloatValues(values);
452        }
453        // New property/values/target should cause re-initialization prior to starting
454        mInitialized = false;
455    }
456
457    /**
458     * Sets the values to animate between for this animation. A single
459     * value implies that that value is the one being animated to. However, this is not typically
460     * useful in a ValueAnimator object because there is no way for the object to determine the
461     * starting value for the animation (unlike ObjectAnimator, which can derive that value
462     * from the target object and property being animated). Therefore, there should typically
463     * be two or more values.
464     *
465     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
466     * than one PropertyValuesHolder object, this method will set the values for the first
467     * of those objects.</p>
468     *
469     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
470     * between these value objects. ValueAnimator only knows how to interpolate between the
471     * primitive types specified in the other setValues() methods.</p>
472     *
473     * @param values The set of values to animate between.
474     */
475    public void setObjectValues(Object... values) {
476        if (values == null || values.length == 0) {
477            return;
478        }
479        if (mValues == null || mValues.length == 0) {
480            setValues(PropertyValuesHolder.ofObject("", null, values));
481        } else {
482            PropertyValuesHolder valuesHolder = mValues[0];
483            valuesHolder.setObjectValues(values);
484        }
485        // New property/values/target should cause re-initialization prior to starting
486        mInitialized = false;
487    }
488
489    /**
490     * Sets the values, per property, being animated between. This function is called internally
491     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
492     * be constructed without values and this method can be called to set the values manually
493     * instead.
494     *
495     * @param values The set of values, per property, being animated between.
496     */
497    public void setValues(PropertyValuesHolder... values) {
498        int numValues = values.length;
499        mValues = values;
500        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
501        for (int i = 0; i < numValues; ++i) {
502            PropertyValuesHolder valuesHolder = values[i];
503            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
504        }
505        // New property/values/target should cause re-initialization prior to starting
506        mInitialized = false;
507    }
508
509    /**
510     * Returns the values that this ValueAnimator animates between. These values are stored in
511     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
512     * of value objects instead.
513     *
514     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
515     * values, per property, that define the animation.
516     */
517    public PropertyValuesHolder[] getValues() {
518        return mValues;
519    }
520
521    /**
522     * This function is called immediately before processing the first animation
523     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
524     * function is called after that delay ends.
525     * It takes care of the final initialization steps for the
526     * animation.
527     *
528     *  <p>Overrides of this method should call the superclass method to ensure
529     *  that internal mechanisms for the animation are set up correctly.</p>
530     */
531    @CallSuper
532    void initAnimation() {
533        if (!mInitialized) {
534            int numValues = mValues.length;
535            for (int i = 0; i < numValues; ++i) {
536                mValues[i].init();
537            }
538            mInitialized = true;
539        }
540    }
541
542
543    /**
544     * Sets the length of the animation. The default duration is 300 milliseconds.
545     *
546     * @param duration The length of the animation, in milliseconds. This value cannot
547     * be negative.
548     * @return ValueAnimator The object called with setDuration(). This return
549     * value makes it easier to compose statements together that construct and then set the
550     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
551     */
552    @Override
553    public ValueAnimator setDuration(long duration) {
554        if (duration < 0) {
555            throw new IllegalArgumentException("Animators cannot have negative duration: " +
556                    duration);
557        }
558        mUnscaledDuration = duration;
559        updateScaledDuration();
560        return this;
561    }
562
563    private void updateScaledDuration() {
564        mDuration = (long)(mUnscaledDuration * sDurationScale);
565    }
566
567    /**
568     * Gets the length of the animation. The default duration is 300 milliseconds.
569     *
570     * @return The length of the animation, in milliseconds.
571     */
572    @Override
573    public long getDuration() {
574        return mUnscaledDuration;
575    }
576
577    /**
578     * Sets the position of the animation to the specified point in time. This time should
579     * be between 0 and the total duration of the animation, including any repetition. If
580     * the animation has not yet been started, then it will not advance forward after it is
581     * set to this time; it will simply set the time to this value and perform any appropriate
582     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
583     * will set the current playing time to this value and continue playing from that point.
584     *
585     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
586     */
587    public void setCurrentPlayTime(long playTime) {
588        float fraction = mUnscaledDuration > 0 ? (float) playTime / mUnscaledDuration : 1;
589        setCurrentFraction(fraction);
590    }
591
592    /**
593     * Sets the position of the animation to the specified fraction. This fraction should
594     * be between 0 and the total fraction of the animation, including any repetition. That is,
595     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
596     * and a value of 2 at the end of a reversing animator that repeats once. If
597     * the animation has not yet been started, then it will not advance forward after it is
598     * set to this fraction; it will simply set the fraction to this value and perform any
599     * appropriate actions based on that fraction. If the animation is already running, then
600     * setCurrentFraction() will set the current fraction to this value and continue
601     * playing from that point. {@link Animator.AnimatorListener} events are not called
602     * due to changing the fraction; those events are only processed while the animation
603     * is running.
604     *
605     * @param fraction The fraction to which the animation is advanced or rewound. Values
606     * outside the range of 0 to the maximum fraction for the animator will be clamped to
607     * the correct range.
608     */
609    public void setCurrentFraction(float fraction) {
610        initAnimation();
611        if (fraction < 0) {
612            fraction = 0;
613        }
614        int iteration = (int) fraction;
615        if (fraction == 1) {
616            iteration -= 1;
617        } else if (fraction > 1) {
618            if (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE) {
619                if (mRepeatMode == REVERSE) {
620                    mPlayingBackwards = (iteration % 2) != 0;
621                }
622                fraction = fraction % 1f;
623            } else {
624                fraction = 1;
625                iteration -= 1;
626            }
627        } else {
628            mPlayingBackwards = mReversing;
629        }
630        mCurrentIteration = iteration;
631        long seekTime = (long) (mDuration * fraction);
632        long currentTime = AnimationUtils.currentAnimationTimeMillis();
633        mStartTime = currentTime - seekTime;
634        mStartTimeCommitted = true; // do not allow start time to be compensated for jank
635        if (mPlayingState != RUNNING) {
636            mSeekFraction = fraction;
637            mPlayingState = SEEKED;
638        }
639        if (mPlayingBackwards) {
640            fraction = 1f - fraction;
641        }
642        animateValue(fraction);
643    }
644
645    /**
646     * Gets the current position of the animation in time, which is equal to the current
647     * time minus the time that the animation started. An animation that is not yet started will
648     * return a value of zero.
649     *
650     * @return The current position in time of the animation.
651     */
652    public long getCurrentPlayTime() {
653        if (!mInitialized || mPlayingState == STOPPED) {
654            return 0;
655        }
656        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
657    }
658
659    /**
660     * This custom, static handler handles the timing pulse that is shared by
661     * all active animations. This approach ensures that the setting of animation
662     * values will happen on the UI thread and that all animations will share
663     * the same times for calculating their values, which makes synchronizing
664     * animations possible.
665     *
666     * The handler uses the Choreographer for executing periodic callbacks.
667     *
668     * @hide
669     */
670    @SuppressWarnings("unchecked")
671    protected static class AnimationHandler {
672        // The per-thread list of all active animations
673        /** @hide */
674        protected final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
675
676        // Used in doAnimationFrame() to avoid concurrent modifications of mAnimations
677        private final ArrayList<ValueAnimator> mTmpAnimations = new ArrayList<ValueAnimator>();
678
679        // The per-thread set of animations to be started on the next animation frame
680        /** @hide */
681        protected final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
682
683        /**
684         * Internal per-thread collections used to avoid set collisions as animations start and end
685         * while being processed.
686         * @hide
687         */
688        protected final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
689        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
690        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
691
692        private final Choreographer mChoreographer;
693        private boolean mAnimationScheduled;
694        private long mLastFrameTime;
695
696        private AnimationHandler() {
697            mChoreographer = Choreographer.getInstance();
698        }
699
700        /**
701         * Start animating on the next frame.
702         */
703        public void start() {
704            scheduleAnimation();
705        }
706
707        void doAnimationFrame(long frameTime) {
708            mLastFrameTime = frameTime;
709
710            // mPendingAnimations holds any animations that have requested to be started
711            // We're going to clear mPendingAnimations, but starting animation may
712            // cause more to be added to the pending list (for example, if one animation
713            // starting triggers another starting). So we loop until mPendingAnimations
714            // is empty.
715            while (mPendingAnimations.size() > 0) {
716                ArrayList<ValueAnimator> pendingCopy =
717                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
718                mPendingAnimations.clear();
719                int count = pendingCopy.size();
720                for (int i = 0; i < count; ++i) {
721                    ValueAnimator anim = pendingCopy.get(i);
722                    // If the animation has a startDelay, place it on the delayed list
723                    if (anim.mStartDelay == 0) {
724                        anim.startAnimation(this);
725                    } else {
726                        mDelayedAnims.add(anim);
727                    }
728                }
729            }
730
731            // Next, process animations currently sitting on the delayed queue, adding
732            // them to the active animations if they are ready
733            int numDelayedAnims = mDelayedAnims.size();
734            for (int i = 0; i < numDelayedAnims; ++i) {
735                ValueAnimator anim = mDelayedAnims.get(i);
736                if (anim.delayedAnimationFrame(frameTime)) {
737                    mReadyAnims.add(anim);
738                }
739            }
740            int numReadyAnims = mReadyAnims.size();
741            if (numReadyAnims > 0) {
742                for (int i = 0; i < numReadyAnims; ++i) {
743                    ValueAnimator anim = mReadyAnims.get(i);
744                    anim.startAnimation(this);
745                    anim.mRunning = true;
746                    mDelayedAnims.remove(anim);
747                }
748                mReadyAnims.clear();
749            }
750
751            // Now process all active animations. The return value from animationFrame()
752            // tells the handler whether it should now be ended
753            int numAnims = mAnimations.size();
754            for (int i = 0; i < numAnims; ++i) {
755                mTmpAnimations.add(mAnimations.get(i));
756            }
757            for (int i = 0; i < numAnims; ++i) {
758                ValueAnimator anim = mTmpAnimations.get(i);
759                if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
760                    mEndingAnims.add(anim);
761                }
762            }
763            mTmpAnimations.clear();
764            if (mEndingAnims.size() > 0) {
765                for (int i = 0; i < mEndingAnims.size(); ++i) {
766                    mEndingAnims.get(i).endAnimation(this);
767                }
768                mEndingAnims.clear();
769            }
770
771            // Schedule final commit for the frame.
772            mChoreographer.postCallback(Choreographer.CALLBACK_COMMIT, mCommit, null);
773
774            // If there are still active or delayed animations, schedule a future call to
775            // onAnimate to process the next frame of the animations.
776            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
777                scheduleAnimation();
778            }
779        }
780
781        void commitAnimationFrame(long frameTime) {
782            final long adjustment = frameTime - mLastFrameTime;
783            final int numAnims = mAnimations.size();
784            for (int i = 0; i < numAnims; ++i) {
785                mAnimations.get(i).commitAnimationFrame(adjustment);
786            }
787        }
788
789        private void scheduleAnimation() {
790            if (!mAnimationScheduled) {
791                mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, mAnimate, null);
792                mAnimationScheduled = true;
793            }
794        }
795
796        // Called by the Choreographer.
797        final Runnable mAnimate = new Runnable() {
798            @Override
799            public void run() {
800                mAnimationScheduled = false;
801                doAnimationFrame(mChoreographer.getFrameTime());
802            }
803        };
804
805        // Called by the Choreographer.
806        final Runnable mCommit = new Runnable() {
807            @Override
808            public void run() {
809                commitAnimationFrame(mChoreographer.getFrameTime());
810            }
811        };
812    }
813
814    /**
815     * The amount of time, in milliseconds, to delay starting the animation after
816     * {@link #start()} is called.
817     *
818     * @return the number of milliseconds to delay running the animation
819     */
820    @Override
821    public long getStartDelay() {
822        return mUnscaledStartDelay;
823    }
824
825    /**
826     * The amount of time, in milliseconds, to delay starting the animation after
827     * {@link #start()} is called.
828
829     * @param startDelay The amount of the delay, in milliseconds
830     */
831    @Override
832    public void setStartDelay(long startDelay) {
833        this.mStartDelay = (long)(startDelay * sDurationScale);
834        mUnscaledStartDelay = startDelay;
835    }
836
837    /**
838     * The amount of time, in milliseconds, between each frame of the animation. This is a
839     * requested time that the animation will attempt to honor, but the actual delay between
840     * frames may be different, depending on system load and capabilities. This is a static
841     * function because the same delay will be applied to all animations, since they are all
842     * run off of a single timing loop.
843     *
844     * The frame delay may be ignored when the animation system uses an external timing
845     * source, such as the display refresh rate (vsync), to govern animations.
846     *
847     * @return the requested time between frames, in milliseconds
848     */
849    public static long getFrameDelay() {
850        return Choreographer.getFrameDelay();
851    }
852
853    /**
854     * The amount of time, in milliseconds, between each frame of the animation. This is a
855     * requested time that the animation will attempt to honor, but the actual delay between
856     * frames may be different, depending on system load and capabilities. This is a static
857     * function because the same delay will be applied to all animations, since they are all
858     * run off of a single timing loop.
859     *
860     * The frame delay may be ignored when the animation system uses an external timing
861     * source, such as the display refresh rate (vsync), to govern animations.
862     *
863     * @param frameDelay the requested time between frames, in milliseconds
864     */
865    public static void setFrameDelay(long frameDelay) {
866        Choreographer.setFrameDelay(frameDelay);
867    }
868
869    /**
870     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
871     * property being animated. This value is only sensible while the animation is running. The main
872     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
873     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
874     * is called during each animation frame, immediately after the value is calculated.
875     *
876     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
877     * the single property being animated. If there are several properties being animated
878     * (specified by several PropertyValuesHolder objects in the constructor), this function
879     * returns the animated value for the first of those objects.
880     */
881    public Object getAnimatedValue() {
882        if (mValues != null && mValues.length > 0) {
883            return mValues[0].getAnimatedValue();
884        }
885        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
886        return null;
887    }
888
889    /**
890     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
891     * The main purpose for this read-only property is to retrieve the value from the
892     * <code>ValueAnimator</code> during a call to
893     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
894     * is called during each animation frame, immediately after the value is calculated.
895     *
896     * @return animatedValue The value most recently calculated for the named property
897     * by this <code>ValueAnimator</code>.
898     */
899    public Object getAnimatedValue(String propertyName) {
900        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
901        if (valuesHolder != null) {
902            return valuesHolder.getAnimatedValue();
903        } else {
904            // At least avoid crashing if called with bogus propertyName
905            return null;
906        }
907    }
908
909    /**
910     * Sets how many times the animation should be repeated. If the repeat
911     * count is 0, the animation is never repeated. If the repeat count is
912     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
913     * into account. The repeat count is 0 by default.
914     *
915     * @param value the number of times the animation should be repeated
916     */
917    public void setRepeatCount(int value) {
918        mRepeatCount = value;
919    }
920    /**
921     * Defines how many times the animation should repeat. The default value
922     * is 0.
923     *
924     * @return the number of times the animation should repeat, or {@link #INFINITE}
925     */
926    public int getRepeatCount() {
927        return mRepeatCount;
928    }
929
930    /**
931     * Defines what this animation should do when it reaches the end. This
932     * setting is applied only when the repeat count is either greater than
933     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
934     *
935     * @param value {@link #RESTART} or {@link #REVERSE}
936     */
937    public void setRepeatMode(int value) {
938        mRepeatMode = value;
939    }
940
941    /**
942     * Defines what this animation should do when it reaches the end.
943     *
944     * @return either one of {@link #REVERSE} or {@link #RESTART}
945     */
946    public int getRepeatMode() {
947        return mRepeatMode;
948    }
949
950    /**
951     * Adds a listener to the set of listeners that are sent update events through the life of
952     * an animation. This method is called on all listeners for every frame of the animation,
953     * after the values for the animation have been calculated.
954     *
955     * @param listener the listener to be added to the current set of listeners for this animation.
956     */
957    public void addUpdateListener(AnimatorUpdateListener listener) {
958        if (mUpdateListeners == null) {
959            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
960        }
961        mUpdateListeners.add(listener);
962    }
963
964    /**
965     * Removes all listeners from the set listening to frame updates for this animation.
966     */
967    public void removeAllUpdateListeners() {
968        if (mUpdateListeners == null) {
969            return;
970        }
971        mUpdateListeners.clear();
972        mUpdateListeners = null;
973    }
974
975    /**
976     * Removes a listener from the set listening to frame updates for this animation.
977     *
978     * @param listener the listener to be removed from the current set of update listeners
979     * for this animation.
980     */
981    public void removeUpdateListener(AnimatorUpdateListener listener) {
982        if (mUpdateListeners == null) {
983            return;
984        }
985        mUpdateListeners.remove(listener);
986        if (mUpdateListeners.size() == 0) {
987            mUpdateListeners = null;
988        }
989    }
990
991
992    /**
993     * The time interpolator used in calculating the elapsed fraction of this animation. The
994     * interpolator determines whether the animation runs with linear or non-linear motion,
995     * such as acceleration and deceleration. The default value is
996     * {@link android.view.animation.AccelerateDecelerateInterpolator}
997     *
998     * @param value the interpolator to be used by this animation. A value of <code>null</code>
999     * will result in linear interpolation.
1000     */
1001    @Override
1002    public void setInterpolator(TimeInterpolator value) {
1003        if (value != null) {
1004            mInterpolator = value;
1005        } else {
1006            mInterpolator = new LinearInterpolator();
1007        }
1008    }
1009
1010    /**
1011     * Returns the timing interpolator that this ValueAnimator uses.
1012     *
1013     * @return The timing interpolator for this ValueAnimator.
1014     */
1015    @Override
1016    public TimeInterpolator getInterpolator() {
1017        return mInterpolator;
1018    }
1019
1020    /**
1021     * The type evaluator to be used when calculating the animated values of this animation.
1022     * The system will automatically assign a float or int evaluator based on the type
1023     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
1024     * are not one of these primitive types, or if different evaluation is desired (such as is
1025     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
1026     * For example, when running an animation on color values, the {@link ArgbEvaluator}
1027     * should be used to get correct RGB color interpolation.
1028     *
1029     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
1030     * will be used for that set. If there are several sets of values being animated, which is
1031     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
1032     * is assigned just to the first PropertyValuesHolder object.</p>
1033     *
1034     * @param value the evaluator to be used this animation
1035     */
1036    public void setEvaluator(TypeEvaluator value) {
1037        if (value != null && mValues != null && mValues.length > 0) {
1038            mValues[0].setEvaluator(value);
1039        }
1040    }
1041
1042    private void notifyStartListeners() {
1043        if (mListeners != null && !mStartListenersCalled) {
1044            ArrayList<AnimatorListener> tmpListeners =
1045                    (ArrayList<AnimatorListener>) mListeners.clone();
1046            int numListeners = tmpListeners.size();
1047            for (int i = 0; i < numListeners; ++i) {
1048                tmpListeners.get(i).onAnimationStart(this);
1049            }
1050        }
1051        mStartListenersCalled = true;
1052    }
1053
1054    /**
1055     * Start the animation playing. This version of start() takes a boolean flag that indicates
1056     * whether the animation should play in reverse. The flag is usually false, but may be set
1057     * to true if called from the reverse() method.
1058     *
1059     * <p>The animation started by calling this method will be run on the thread that called
1060     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
1061     * this is not the case). Also, if the animation will animate
1062     * properties of objects in the view hierarchy, then the calling thread should be the UI
1063     * thread for that view hierarchy.</p>
1064     *
1065     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
1066     */
1067    private void start(boolean playBackwards) {
1068        if (Looper.myLooper() == null) {
1069            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1070        }
1071        mReversing = playBackwards;
1072        mPlayingBackwards = playBackwards;
1073        if (playBackwards && mSeekFraction != -1) {
1074            if (mSeekFraction == 0 && mCurrentIteration == 0) {
1075                // special case: reversing from seek-to-0 should act as if not seeked at all
1076                mSeekFraction = 0;
1077            } else if (mRepeatCount == INFINITE) {
1078                mSeekFraction = 1 - (mSeekFraction % 1);
1079            } else {
1080                mSeekFraction = 1 + mRepeatCount - (mCurrentIteration + mSeekFraction);
1081            }
1082            mCurrentIteration = (int) mSeekFraction;
1083            mSeekFraction = mSeekFraction % 1;
1084        }
1085        if (mCurrentIteration > 0 && mRepeatMode == REVERSE &&
1086                (mCurrentIteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
1087            // if we were seeked to some other iteration in a reversing animator,
1088            // figure out the correct direction to start playing based on the iteration
1089            if (playBackwards) {
1090                mPlayingBackwards = (mCurrentIteration % 2) == 0;
1091            } else {
1092                mPlayingBackwards = (mCurrentIteration % 2) != 0;
1093            }
1094        }
1095        int prevPlayingState = mPlayingState;
1096        mPlayingState = STOPPED;
1097        mStarted = true;
1098        mStartedDelay = false;
1099        mPaused = false;
1100        updateScaledDuration(); // in case the scale factor has changed since creation time
1101        AnimationHandler animationHandler = getOrCreateAnimationHandler();
1102        animationHandler.mPendingAnimations.add(this);
1103        if (mStartDelay == 0) {
1104            // This sets the initial value of the animation, prior to actually starting it running
1105            if (prevPlayingState != SEEKED) {
1106                setCurrentPlayTime(0);
1107            }
1108            mPlayingState = STOPPED;
1109            mRunning = true;
1110            notifyStartListeners();
1111        }
1112        animationHandler.start();
1113    }
1114
1115    @Override
1116    public void start() {
1117        start(false);
1118    }
1119
1120    @Override
1121    public void cancel() {
1122        // Only cancel if the animation is actually running or has been started and is about
1123        // to run
1124        AnimationHandler handler = getOrCreateAnimationHandler();
1125        if (mPlayingState != STOPPED
1126                || handler.mPendingAnimations.contains(this)
1127                || handler.mDelayedAnims.contains(this)) {
1128            // Only notify listeners if the animator has actually started
1129            if ((mStarted || mRunning) && mListeners != null) {
1130                if (!mRunning) {
1131                    // If it's not yet running, then start listeners weren't called. Call them now.
1132                    notifyStartListeners();
1133                }
1134                ArrayList<AnimatorListener> tmpListeners =
1135                        (ArrayList<AnimatorListener>) mListeners.clone();
1136                for (AnimatorListener listener : tmpListeners) {
1137                    listener.onAnimationCancel(this);
1138                }
1139            }
1140            endAnimation(handler);
1141        }
1142    }
1143
1144    @Override
1145    public void end() {
1146        AnimationHandler handler = getOrCreateAnimationHandler();
1147        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
1148            // Special case if the animation has not yet started; get it ready for ending
1149            mStartedDelay = false;
1150            startAnimation(handler);
1151            mStarted = true;
1152        } else if (!mInitialized) {
1153            initAnimation();
1154        }
1155        animateValue(mPlayingBackwards ? 0f : 1f);
1156        endAnimation(handler);
1157    }
1158
1159    @Override
1160    public void resume() {
1161        if (mPaused) {
1162            mResumed = true;
1163        }
1164        super.resume();
1165    }
1166
1167    @Override
1168    public void pause() {
1169        boolean previouslyPaused = mPaused;
1170        super.pause();
1171        if (!previouslyPaused && mPaused) {
1172            mPauseTime = -1;
1173            mResumed = false;
1174        }
1175    }
1176
1177    @Override
1178    public boolean isRunning() {
1179        return (mPlayingState == RUNNING || mRunning);
1180    }
1181
1182    @Override
1183    public boolean isStarted() {
1184        return mStarted;
1185    }
1186
1187    /**
1188     * Plays the ValueAnimator in reverse. If the animation is already running,
1189     * it will stop itself and play backwards from the point reached when reverse was called.
1190     * If the animation is not currently running, then it will start from the end and
1191     * play backwards. This behavior is only set for the current animation; future playing
1192     * of the animation will use the default behavior of playing forward.
1193     */
1194    @Override
1195    public void reverse() {
1196        mPlayingBackwards = !mPlayingBackwards;
1197        if (mPlayingState == RUNNING) {
1198            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1199            long currentPlayTime = currentTime - mStartTime;
1200            long timeLeft = mDuration - currentPlayTime;
1201            mStartTime = currentTime - timeLeft;
1202            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1203            mReversing = !mReversing;
1204        } else if (mStarted) {
1205            end();
1206        } else {
1207            start(true);
1208        }
1209    }
1210
1211    /**
1212     * @hide
1213     */
1214    @Override
1215    public boolean canReverse() {
1216        return true;
1217    }
1218
1219    /**
1220     * Called internally to end an animation by removing it from the animations list. Must be
1221     * called on the UI thread.
1222     * @hide
1223     */
1224    protected void endAnimation(AnimationHandler handler) {
1225        handler.mAnimations.remove(this);
1226        handler.mPendingAnimations.remove(this);
1227        handler.mDelayedAnims.remove(this);
1228        mPlayingState = STOPPED;
1229        mPaused = false;
1230        if ((mStarted || mRunning) && mListeners != null) {
1231            if (!mRunning) {
1232                // If it's not yet running, then start listeners weren't called. Call them now.
1233                notifyStartListeners();
1234             }
1235            ArrayList<AnimatorListener> tmpListeners =
1236                    (ArrayList<AnimatorListener>) mListeners.clone();
1237            int numListeners = tmpListeners.size();
1238            for (int i = 0; i < numListeners; ++i) {
1239                tmpListeners.get(i).onAnimationEnd(this);
1240            }
1241        }
1242        mRunning = false;
1243        mStarted = false;
1244        mStartListenersCalled = false;
1245        mPlayingBackwards = false;
1246        mReversing = false;
1247        mCurrentIteration = 0;
1248        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1249            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1250                    System.identityHashCode(this));
1251        }
1252    }
1253
1254    /**
1255     * Called internally to start an animation by adding it to the active animations list. Must be
1256     * called on the UI thread.
1257     */
1258    private void startAnimation(AnimationHandler handler) {
1259        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1260            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1261                    System.identityHashCode(this));
1262        }
1263        initAnimation();
1264        handler.mAnimations.add(this);
1265        if (mStartDelay > 0 && mListeners != null) {
1266            // Listeners were already notified in start() if startDelay is 0; this is
1267            // just for delayed animations
1268            notifyStartListeners();
1269        }
1270    }
1271
1272    /**
1273     * Returns the name of this animator for debugging purposes.
1274     */
1275    String getNameForTrace() {
1276        return "animator";
1277    }
1278
1279
1280    /**
1281     * Internal function called to process an animation frame on an animation that is currently
1282     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1283     * should be woken up and put on the active animations queue.
1284     *
1285     * @param currentTime The current animation time, used to calculate whether the animation
1286     * has exceeded its <code>startDelay</code> and should be started.
1287     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1288     * should be added to the set of active animations.
1289     */
1290    private boolean delayedAnimationFrame(long currentTime) {
1291        if (!mStartedDelay) {
1292            mStartedDelay = true;
1293            mDelayStartTime = currentTime;
1294        }
1295        if (mPaused) {
1296            if (mPauseTime < 0) {
1297                mPauseTime = currentTime;
1298            }
1299            return false;
1300        } else if (mResumed) {
1301            mResumed = false;
1302            if (mPauseTime > 0) {
1303                // Offset by the duration that the animation was paused
1304                mDelayStartTime += (currentTime - mPauseTime);
1305            }
1306        }
1307        long deltaTime = currentTime - mDelayStartTime;
1308        if (deltaTime > mStartDelay) {
1309            // startDelay ended - start the anim and record the mStartTime appropriately
1310            mStartTime = mDelayStartTime + mStartDelay;
1311            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1312            mPlayingState = RUNNING;
1313            return true;
1314        }
1315        return false;
1316    }
1317
1318    /**
1319     * Applies an adjustment to the animation to compensate for jank between when
1320     * the animation first ran and when the frame was drawn.
1321     */
1322    void commitAnimationFrame(long adjustment) {
1323        if (!mStartTimeCommitted) {
1324            mStartTimeCommitted = true;
1325            if (mPlayingState == RUNNING && adjustment > 0) {
1326                mStartTime += adjustment;
1327                if (DEBUG) {
1328                    Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1329                }
1330            }
1331        }
1332    }
1333
1334    /**
1335     * This internal function processes a single animation frame for a given animation. The
1336     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1337     * elapsed duration, and therefore
1338     * the elapsed fraction, of the animation. The return value indicates whether the animation
1339     * should be ended (which happens when the elapsed time of the animation exceeds the
1340     * animation's duration, including the repeatCount).
1341     *
1342     * @param currentTime The current time, as tracked by the static timing handler
1343     * @return true if the animation's duration, including any repetitions due to
1344     * <code>repeatCount</code>, has been exceeded and the animation should be ended.
1345     */
1346    boolean animationFrame(long currentTime) {
1347        boolean done = false;
1348        switch (mPlayingState) {
1349        case RUNNING:
1350        case SEEKED:
1351            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1352            if (mDuration == 0 && mRepeatCount != INFINITE) {
1353                // Skip to the end
1354                mCurrentIteration = mRepeatCount;
1355                if (!mReversing) {
1356                    mPlayingBackwards = false;
1357                }
1358            }
1359            if (fraction >= 1f) {
1360                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1361                    // Time to repeat
1362                    if (mListeners != null) {
1363                        int numListeners = mListeners.size();
1364                        for (int i = 0; i < numListeners; ++i) {
1365                            mListeners.get(i).onAnimationRepeat(this);
1366                        }
1367                    }
1368                    if (mRepeatMode == REVERSE) {
1369                        mPlayingBackwards = !mPlayingBackwards;
1370                    }
1371                    mCurrentIteration += (int) fraction;
1372                    fraction = fraction % 1f;
1373                    mStartTime += mDuration;
1374                    // Note: We do not need to update the value of mStartTimeCommitted here
1375                    // since we just added a duration offset.
1376                } else {
1377                    done = true;
1378                    fraction = Math.min(fraction, 1.0f);
1379                }
1380            }
1381            if (mPlayingBackwards) {
1382                fraction = 1f - fraction;
1383            }
1384            animateValue(fraction);
1385            break;
1386        }
1387
1388        return done;
1389    }
1390
1391    /**
1392     * Processes a frame of the animation, adjusting the start time if needed.
1393     *
1394     * @param frameTime The frame time.
1395     * @return true if the animation has ended.
1396     */
1397    final boolean doAnimationFrame(long frameTime) {
1398        if (mPlayingState == STOPPED) {
1399            mPlayingState = RUNNING;
1400            if (mSeekFraction < 0) {
1401                mStartTime = frameTime;
1402            } else {
1403                long seekTime = (long) (mDuration * mSeekFraction);
1404                mStartTime = frameTime - seekTime;
1405                mSeekFraction = -1;
1406            }
1407            mStartTimeCommitted = false; // allow start time to be compensated for jank
1408        }
1409        if (mPaused) {
1410            if (mPauseTime < 0) {
1411                mPauseTime = frameTime;
1412            }
1413            return false;
1414        } else if (mResumed) {
1415            mResumed = false;
1416            if (mPauseTime > 0) {
1417                // Offset by the duration that the animation was paused
1418                mStartTime += (frameTime - mPauseTime);
1419                mStartTimeCommitted = false; // allow start time to be compensated for jank
1420            }
1421        }
1422        // The frame time might be before the start time during the first frame of
1423        // an animation.  The "current time" must always be on or after the start
1424        // time to avoid animating frames at negative time intervals.  In practice, this
1425        // is very rare and only happens when seeking backwards.
1426        final long currentTime = Math.max(frameTime, mStartTime);
1427        return animationFrame(currentTime);
1428    }
1429
1430    /**
1431     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1432     * the most recent frame update on the animation.
1433     *
1434     * @return Elapsed/interpolated fraction of the animation.
1435     */
1436    public float getAnimatedFraction() {
1437        return mCurrentFraction;
1438    }
1439
1440    /**
1441     * This method is called with the elapsed fraction of the animation during every
1442     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1443     * and then into an animated value (from the evaluator. The function is called mostly during
1444     * animation updates, but it is also called when the <code>end()</code>
1445     * function is called, to set the final value on the property.
1446     *
1447     * <p>Overrides of this method must call the superclass to perform the calculation
1448     * of the animated value.</p>
1449     *
1450     * @param fraction The elapsed fraction of the animation.
1451     */
1452    @CallSuper
1453    void animateValue(float fraction) {
1454        fraction = mInterpolator.getInterpolation(fraction);
1455        mCurrentFraction = fraction;
1456        int numValues = mValues.length;
1457        for (int i = 0; i < numValues; ++i) {
1458            mValues[i].calculateValue(fraction);
1459        }
1460        if (mUpdateListeners != null) {
1461            int numListeners = mUpdateListeners.size();
1462            for (int i = 0; i < numListeners; ++i) {
1463                mUpdateListeners.get(i).onAnimationUpdate(this);
1464            }
1465        }
1466    }
1467
1468    @Override
1469    public ValueAnimator clone() {
1470        final ValueAnimator anim = (ValueAnimator) super.clone();
1471        if (mUpdateListeners != null) {
1472            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1473        }
1474        anim.mSeekFraction = -1;
1475        anim.mPlayingBackwards = false;
1476        anim.mReversing = false;
1477        anim.mCurrentIteration = 0;
1478        anim.mInitialized = false;
1479        anim.mPlayingState = STOPPED;
1480        anim.mStartedDelay = false;
1481        PropertyValuesHolder[] oldValues = mValues;
1482        if (oldValues != null) {
1483            int numValues = oldValues.length;
1484            anim.mValues = new PropertyValuesHolder[numValues];
1485            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1486            for (int i = 0; i < numValues; ++i) {
1487                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1488                anim.mValues[i] = newValuesHolder;
1489                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1490            }
1491        }
1492        return anim;
1493    }
1494
1495    /**
1496     * Implementors of this interface can add themselves as update listeners
1497     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1498     * frame, after the current frame's values have been calculated for that
1499     * <code>ValueAnimator</code>.
1500     */
1501    public static interface AnimatorUpdateListener {
1502        /**
1503         * <p>Notifies the occurrence of another frame of the animation.</p>
1504         *
1505         * @param animation The animation which was repeated.
1506         */
1507        void onAnimationUpdate(ValueAnimator animation);
1508
1509    }
1510
1511    /**
1512     * Return the number of animations currently running.
1513     *
1514     * Used by StrictMode internally to annotate violations.
1515     * May be called on arbitrary threads!
1516     *
1517     * @hide
1518     */
1519    public static int getCurrentAnimationsCount() {
1520        AnimationHandler handler = sAnimationHandler.get();
1521        return handler != null ? handler.mAnimations.size() : 0;
1522    }
1523
1524    /**
1525     * Clear all animations on this thread, without canceling or ending them.
1526     * This should be used with caution.
1527     *
1528     * @hide
1529     */
1530    public static void clearAllAnimations() {
1531        AnimationHandler handler = sAnimationHandler.get();
1532        if (handler != null) {
1533            handler.mAnimations.clear();
1534            handler.mPendingAnimations.clear();
1535            handler.mDelayedAnims.clear();
1536        }
1537    }
1538
1539    private static AnimationHandler getOrCreateAnimationHandler() {
1540        AnimationHandler handler = sAnimationHandler.get();
1541        if (handler == null) {
1542            handler = new AnimationHandler();
1543            sAnimationHandler.set(handler);
1544        }
1545        return handler;
1546    }
1547
1548    @Override
1549    public String toString() {
1550        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1551        if (mValues != null) {
1552            for (int i = 0; i < mValues.length; ++i) {
1553                returnVal += "\n    " + mValues[i].toString();
1554            }
1555        }
1556        return returnVal;
1557    }
1558
1559    /**
1560     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1561     * the UI thread. This is a hint that informs the ValueAnimator that it is
1562     * OK to run the animation off-thread, however ValueAnimator may decide
1563     * that it must run the animation on the UI thread anyway. For example if there
1564     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1565     * regardless of the value of this hint.</p>
1566     *
1567     * <p>Regardless of whether or not the animation runs asynchronously, all
1568     * listener callbacks will be called on the UI thread.</p>
1569     *
1570     * <p>To be able to use this hint the following must be true:</p>
1571     * <ol>
1572     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1573     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1574     *    to change values, duration, delay, etc... may be ignored.</li>
1575     * <li>Lifecycle callback events may be asynchronous. Events such as
1576     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1577     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1578     *    as they must be posted back to the UI thread, and any actions performed
1579     *    by those callbacks (such as starting new animations) will not happen
1580     *    in the same frame.</li>
1581     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1582     *    may be asynchronous. It is guaranteed that all state changes that are
1583     *    performed on the UI thread in the same frame will be applied as a single
1584     *    atomic update, however that frame may be the current frame,
1585     *    the next frame, or some future frame. This will also impact the observed
1586     *    state of the Animator. For example, {@link #isStarted()} may still return true
1587     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1588     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1589     *    for this reason.</li>
1590     * </ol>
1591     * @hide
1592     */
1593    @Override
1594    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1595        // It is up to subclasses to support this, if they can.
1596    }
1597}
1598