ValueAnimator.java revision d21a9fe2d9a6cfe966fc7df3a8c37c172d7ac302
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Handler;
20import android.os.Looper;
21import android.os.Message;
22import android.os.SystemProperties;
23import android.util.AndroidRuntimeException;
24import android.view.Choreographer;
25import android.view.animation.AccelerateDecelerateInterpolator;
26import android.view.animation.AnimationUtils;
27import android.view.animation.LinearInterpolator;
28
29import java.util.ArrayList;
30import java.util.HashMap;
31
32/**
33 * This class provides a simple timing engine for running animations
34 * which calculate animated values and set them on target objects.
35 *
36 * <p>There is a single timing pulse that all animations use. It runs in a
37 * custom handler to ensure that property changes happen on the UI thread.</p>
38 *
39 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
40 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
41 * out of an animation. This behavior can be changed by calling
42 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
43 *
44 * <div class="special reference">
45 * <h3>Developer Guides</h3>
46 * <p>For more information about animating with {@code ValueAnimator}, read the
47 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
48 * Animation</a> developer guide.</p>
49 * </div>
50 */
51public class ValueAnimator extends Animator {
52
53    /**
54     * Internal constants
55     */
56    private static float sDurationScale = 1.0f;
57    private static boolean sDurationScaleInitialized = false;
58
59    /**
60     * Messages sent to timing handler: START is sent when an animation first begins.
61     */
62    static final int ANIMATION_START = 0;
63
64    /**
65     * Values used with internal variable mPlayingState to indicate the current state of an
66     * animation.
67     */
68    static final int STOPPED    = 0; // Not yet playing
69    static final int RUNNING    = 1; // Playing normally
70    static final int SEEKED     = 2; // Seeked to some time value
71
72    /**
73     * Internal variables
74     * NOTE: This object implements the clone() method, making a deep copy of any referenced
75     * objects. As other non-trivial fields are added to this class, make sure to add logic
76     * to clone() to make deep copies of them.
77     */
78
79    // The first time that the animation's animateFrame() method is called. This time is used to
80    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
81    // to animateFrame()
82    long mStartTime;
83
84    /**
85     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
86     * to a value.
87     */
88    long mSeekTime = -1;
89
90    // The static sAnimationHandler processes the internal timing loop on which all animations
91    // are based
92    private static ThreadLocal<AnimationHandler> sAnimationHandler =
93            new ThreadLocal<AnimationHandler>();
94
95    // The time interpolator to be used if none is set on the animation
96    private static final TimeInterpolator sDefaultInterpolator =
97            new AccelerateDecelerateInterpolator();
98
99    /**
100     * Used to indicate whether the animation is currently playing in reverse. This causes the
101     * elapsed fraction to be inverted to calculate the appropriate values.
102     */
103    private boolean mPlayingBackwards = false;
104
105    /**
106     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
107     * repeatCount (if repeatCount!=INFINITE), the animation ends
108     */
109    private int mCurrentIteration = 0;
110
111    /**
112     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
113     */
114    private float mCurrentFraction = 0f;
115
116    /**
117     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
118     */
119    private boolean mStartedDelay = false;
120
121    /**
122     * Tracks the time at which the animation began playing through its startDelay. This is
123     * different from the mStartTime variable, which is used to track when the animation became
124     * active (which is when the startDelay expired and the animation was added to the active
125     * animations list).
126     */
127    private long mDelayStartTime;
128
129    /**
130     * Flag that represents the current state of the animation. Used to figure out when to start
131     * an animation (if state == STOPPED). Also used to end an animation that
132     * has been cancel()'d or end()'d since the last animation frame. Possible values are
133     * STOPPED, RUNNING, SEEKED.
134     */
135    int mPlayingState = STOPPED;
136
137    /**
138     * Additional playing state to indicate whether an animator has been start()'d. There is
139     * some lag between a call to start() and the first animation frame. We should still note
140     * that the animation has been started, even if it's first animation frame has not yet
141     * happened, and reflect that state in isRunning().
142     * Note that delayed animations are different: they are not started until their first
143     * animation frame, which occurs after their delay elapses.
144     */
145    private boolean mRunning = false;
146
147    /**
148     * Additional playing state to indicate whether an animator has been start()'d, whether or
149     * not there is a nonzero startDelay.
150     */
151    private boolean mStarted = false;
152
153    /**
154     * Flag that denotes whether the animation is set up and ready to go. Used to
155     * set up animation that has not yet been started.
156     */
157    boolean mInitialized = false;
158
159    //
160    // Backing variables
161    //
162
163    // How long the animation should last in ms
164    private long mDuration = 300;
165    private long mUnscaledDuration = 300;
166
167    // The amount of time in ms to delay starting the animation after start() is called
168    private long mStartDelay = 0;
169    private long mUnscaledStartDelay = 0;
170
171    // The number of times the animation will repeat. The default is 0, which means the animation
172    // will play only once
173    private int mRepeatCount = 0;
174
175    /**
176     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
177     * animation will start from the beginning on every new cycle. REVERSE means the animation
178     * will reverse directions on each iteration.
179     */
180    private int mRepeatMode = RESTART;
181
182    /**
183     * The time interpolator to be used. The elapsed fraction of the animation will be passed
184     * through this interpolator to calculate the interpolated fraction, which is then used to
185     * calculate the animated values.
186     */
187    private TimeInterpolator mInterpolator = sDefaultInterpolator;
188
189    /**
190     * The set of listeners to be sent events through the life of an animation.
191     */
192    private ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
193
194    /**
195     * The property/value sets being animated.
196     */
197    PropertyValuesHolder[] mValues;
198
199    /**
200     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
201     * by property name during calls to getAnimatedValue(String).
202     */
203    HashMap<String, PropertyValuesHolder> mValuesMap;
204
205    /**
206     * Public constants
207     */
208
209    /**
210     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
211     * or a positive value, the animation restarts from the beginning.
212     */
213    public static final int RESTART = 1;
214    /**
215     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
216     * or a positive value, the animation reverses direction on every iteration.
217     */
218    public static final int REVERSE = 2;
219    /**
220     * This value used used with the {@link #setRepeatCount(int)} property to repeat
221     * the animation indefinitely.
222     */
223    public static final int INFINITE = -1;
224
225    /**
226     * Creates a new ValueAnimator object. This default constructor is primarily for
227     * use internally; the factory methods which take parameters are more generally
228     * useful.
229     */
230    public ValueAnimator() {
231        if (!sDurationScaleInitialized) {
232            // Scale value initialized per-process when first animator is constructed
233            String scaleString = SystemProperties.get("persist.sys.ui.animation");
234            if (!scaleString.isEmpty()) {
235                sDurationScale = Float.parseFloat(scaleString);
236            }
237            sDurationScaleInitialized = true;
238        }
239        mDuration *= sDurationScale;
240    }
241
242    /**
243     * Constructs and returns a ValueAnimator that animates between int values. A single
244     * value implies that that value is the one being animated to. However, this is not typically
245     * useful in a ValueAnimator object because there is no way for the object to determine the
246     * starting value for the animation (unlike ObjectAnimator, which can derive that value
247     * from the target object and property being animated). Therefore, there should typically
248     * be two or more values.
249     *
250     * @param values A set of values that the animation will animate between over time.
251     * @return A ValueAnimator object that is set up to animate between the given values.
252     */
253    public static ValueAnimator ofInt(int... values) {
254        ValueAnimator anim = new ValueAnimator();
255        anim.setIntValues(values);
256        return anim;
257    }
258
259    /**
260     * Constructs and returns a ValueAnimator that animates between float values. A single
261     * value implies that that value is the one being animated to. However, this is not typically
262     * useful in a ValueAnimator object because there is no way for the object to determine the
263     * starting value for the animation (unlike ObjectAnimator, which can derive that value
264     * from the target object and property being animated). Therefore, there should typically
265     * be two or more values.
266     *
267     * @param values A set of values that the animation will animate between over time.
268     * @return A ValueAnimator object that is set up to animate between the given values.
269     */
270    public static ValueAnimator ofFloat(float... values) {
271        ValueAnimator anim = new ValueAnimator();
272        anim.setFloatValues(values);
273        return anim;
274    }
275
276    /**
277     * Constructs and returns a ValueAnimator that animates between the values
278     * specified in the PropertyValuesHolder objects.
279     *
280     * @param values A set of PropertyValuesHolder objects whose values will be animated
281     * between over time.
282     * @return A ValueAnimator object that is set up to animate between the given values.
283     */
284    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
285        ValueAnimator anim = new ValueAnimator();
286        anim.setValues(values);
287        return anim;
288    }
289    /**
290     * Constructs and returns a ValueAnimator that animates between Object values. A single
291     * value implies that that value is the one being animated to. However, this is not typically
292     * useful in a ValueAnimator object because there is no way for the object to determine the
293     * starting value for the animation (unlike ObjectAnimator, which can derive that value
294     * from the target object and property being animated). Therefore, there should typically
295     * be two or more values.
296     *
297     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
298     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
299     * to perform that interpolation.
300     *
301     * @param evaluator A TypeEvaluator that will be called on each animation frame to
302     * provide the ncessry interpolation between the Object values to derive the animated
303     * value.
304     * @param values A set of values that the animation will animate between over time.
305     * @return A ValueAnimator object that is set up to animate between the given values.
306     */
307    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
308        ValueAnimator anim = new ValueAnimator();
309        anim.setObjectValues(values);
310        anim.setEvaluator(evaluator);
311        return anim;
312    }
313
314    /**
315     * Sets int values that will be animated between. A single
316     * value implies that that value is the one being animated to. However, this is not typically
317     * useful in a ValueAnimator object because there is no way for the object to determine the
318     * starting value for the animation (unlike ObjectAnimator, which can derive that value
319     * from the target object and property being animated). Therefore, there should typically
320     * be two or more values.
321     *
322     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
323     * than one PropertyValuesHolder object, this method will set the values for the first
324     * of those objects.</p>
325     *
326     * @param values A set of values that the animation will animate between over time.
327     */
328    public void setIntValues(int... values) {
329        if (values == null || values.length == 0) {
330            return;
331        }
332        if (mValues == null || mValues.length == 0) {
333            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofInt("", values)});
334        } else {
335            PropertyValuesHolder valuesHolder = mValues[0];
336            valuesHolder.setIntValues(values);
337        }
338        // New property/values/target should cause re-initialization prior to starting
339        mInitialized = false;
340    }
341
342    /**
343     * Sets float values that will be animated between. A single
344     * value implies that that value is the one being animated to. However, this is not typically
345     * useful in a ValueAnimator object because there is no way for the object to determine the
346     * starting value for the animation (unlike ObjectAnimator, which can derive that value
347     * from the target object and property being animated). Therefore, there should typically
348     * be two or more values.
349     *
350     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
351     * than one PropertyValuesHolder object, this method will set the values for the first
352     * of those objects.</p>
353     *
354     * @param values A set of values that the animation will animate between over time.
355     */
356    public void setFloatValues(float... values) {
357        if (values == null || values.length == 0) {
358            return;
359        }
360        if (mValues == null || mValues.length == 0) {
361            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofFloat("", values)});
362        } else {
363            PropertyValuesHolder valuesHolder = mValues[0];
364            valuesHolder.setFloatValues(values);
365        }
366        // New property/values/target should cause re-initialization prior to starting
367        mInitialized = false;
368    }
369
370    /**
371     * Sets the values to animate between for this animation. A single
372     * value implies that that value is the one being animated to. However, this is not typically
373     * useful in a ValueAnimator object because there is no way for the object to determine the
374     * starting value for the animation (unlike ObjectAnimator, which can derive that value
375     * from the target object and property being animated). Therefore, there should typically
376     * be two or more values.
377     *
378     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
379     * than one PropertyValuesHolder object, this method will set the values for the first
380     * of those objects.</p>
381     *
382     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
383     * between these value objects. ValueAnimator only knows how to interpolate between the
384     * primitive types specified in the other setValues() methods.</p>
385     *
386     * @param values The set of values to animate between.
387     */
388    public void setObjectValues(Object... values) {
389        if (values == null || values.length == 0) {
390            return;
391        }
392        if (mValues == null || mValues.length == 0) {
393            setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofObject("",
394                    (TypeEvaluator)null, values)});
395        } else {
396            PropertyValuesHolder valuesHolder = mValues[0];
397            valuesHolder.setObjectValues(values);
398        }
399        // New property/values/target should cause re-initialization prior to starting
400        mInitialized = false;
401    }
402
403    /**
404     * Sets the values, per property, being animated between. This function is called internally
405     * by the constructors of ValueAnimator that take a list of values. But an ValueAnimator can
406     * be constructed without values and this method can be called to set the values manually
407     * instead.
408     *
409     * @param values The set of values, per property, being animated between.
410     */
411    public void setValues(PropertyValuesHolder... values) {
412        int numValues = values.length;
413        mValues = values;
414        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
415        for (int i = 0; i < numValues; ++i) {
416            PropertyValuesHolder valuesHolder = (PropertyValuesHolder) values[i];
417            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
418        }
419        // New property/values/target should cause re-initialization prior to starting
420        mInitialized = false;
421    }
422
423    /**
424     * Returns the values that this ValueAnimator animates between. These values are stored in
425     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
426     * of value objects instead.
427     *
428     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
429     * values, per property, that define the animation.
430     */
431    public PropertyValuesHolder[] getValues() {
432        return mValues;
433    }
434
435    /**
436     * This function is called immediately before processing the first animation
437     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
438     * function is called after that delay ends.
439     * It takes care of the final initialization steps for the
440     * animation.
441     *
442     *  <p>Overrides of this method should call the superclass method to ensure
443     *  that internal mechanisms for the animation are set up correctly.</p>
444     */
445    void initAnimation() {
446        if (!mInitialized) {
447            int numValues = mValues.length;
448            for (int i = 0; i < numValues; ++i) {
449                mValues[i].init();
450            }
451            mInitialized = true;
452        }
453    }
454
455
456    /**
457     * Sets the length of the animation. The default duration is 300 milliseconds.
458     *
459     * @param duration The length of the animation, in milliseconds. This value cannot
460     * be negative.
461     * @return ValueAnimator The object called with setDuration(). This return
462     * value makes it easier to compose statements together that construct and then set the
463     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
464     */
465    public ValueAnimator setDuration(long duration) {
466        if (duration < 0) {
467            throw new IllegalArgumentException("Animators cannot have negative duration: " +
468                    duration);
469        }
470        mUnscaledDuration = duration;
471        mDuration = (long)(duration * sDurationScale);
472        return this;
473    }
474
475    /**
476     * Gets the length of the animation. The default duration is 300 milliseconds.
477     *
478     * @return The length of the animation, in milliseconds.
479     */
480    public long getDuration() {
481        return mUnscaledDuration;
482    }
483
484    /**
485     * Sets the position of the animation to the specified point in time. This time should
486     * be between 0 and the total duration of the animation, including any repetition. If
487     * the animation has not yet been started, then it will not advance forward after it is
488     * set to this time; it will simply set the time to this value and perform any appropriate
489     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
490     * will set the current playing time to this value and continue playing from that point.
491     *
492     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
493     */
494    public void setCurrentPlayTime(long playTime) {
495        initAnimation();
496        long currentTime = AnimationUtils.currentAnimationTimeMillis();
497        if (mPlayingState != RUNNING) {
498            mSeekTime = playTime;
499            mPlayingState = SEEKED;
500        }
501        mStartTime = currentTime - playTime;
502        animationFrame(currentTime);
503    }
504
505    /**
506     * Gets the current position of the animation in time, which is equal to the current
507     * time minus the time that the animation started. An animation that is not yet started will
508     * return a value of zero.
509     *
510     * @return The current position in time of the animation.
511     */
512    public long getCurrentPlayTime() {
513        if (!mInitialized || mPlayingState == STOPPED) {
514            return 0;
515        }
516        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
517    }
518
519    /**
520     * This custom, static handler handles the timing pulse that is shared by
521     * all active animations. This approach ensures that the setting of animation
522     * values will happen on the UI thread and that all animations will share
523     * the same times for calculating their values, which makes synchronizing
524     * animations possible.
525     *
526     */
527    private static class AnimationHandler extends Handler
528            implements Choreographer.OnAnimateListener {
529        // The per-thread list of all active animations
530        private final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
531
532        // The per-thread set of animations to be started on the next animation frame
533        private final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
534
535        /**
536         * Internal per-thread collections used to avoid set collisions as animations start and end
537         * while being processed.
538         */
539        private final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
540        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
541        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
542
543        private final Choreographer mChoreographer;
544        private boolean mIsChoreographed;
545
546        private AnimationHandler() {
547            mChoreographer = Choreographer.getInstance();
548        }
549
550        /**
551         * The START message is sent when an animation's start()  method is called.
552         * It cannot start synchronously when start() is called
553         * because the call may be on the wrong thread, and it would also not be
554         * synchronized with other animations because it would not start on a common
555         * timing pulse. So each animation sends a START message to the handler, which
556         * causes the handler to place the animation on the active animations queue and
557         * start processing frames for that animation.
558         */
559        @Override
560        public void handleMessage(Message msg) {
561            switch (msg.what) {
562                case ANIMATION_START:
563                    doAnimationStart();
564                    break;
565            }
566        }
567
568        private void doAnimationStart() {
569            // mPendingAnimations holds any animations that have requested to be started
570            // We're going to clear mPendingAnimations, but starting animation may
571            // cause more to be added to the pending list (for example, if one animation
572            // starting triggers another starting). So we loop until mPendingAnimations
573            // is empty.
574            while (mPendingAnimations.size() > 0) {
575                ArrayList<ValueAnimator> pendingCopy =
576                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
577                mPendingAnimations.clear();
578                int count = pendingCopy.size();
579                for (int i = 0; i < count; ++i) {
580                    ValueAnimator anim = pendingCopy.get(i);
581                    // If the animation has a startDelay, place it on the delayed list
582                    if (anim.mStartDelay == 0) {
583                        anim.startAnimation(this);
584                    } else {
585                        mDelayedAnims.add(anim);
586                    }
587                }
588            }
589            doAnimationFrame();
590        }
591
592        private void doAnimationFrame() {
593            // currentTime holds the common time for all animations processed
594            // during this frame
595            long currentTime = AnimationUtils.currentAnimationTimeMillis();
596
597            // First, process animations currently sitting on the delayed queue, adding
598            // them to the active animations if they are ready
599            int numDelayedAnims = mDelayedAnims.size();
600            for (int i = 0; i < numDelayedAnims; ++i) {
601                ValueAnimator anim = mDelayedAnims.get(i);
602                if (anim.delayedAnimationFrame(currentTime)) {
603                    mReadyAnims.add(anim);
604                }
605            }
606            int numReadyAnims = mReadyAnims.size();
607            if (numReadyAnims > 0) {
608                for (int i = 0; i < numReadyAnims; ++i) {
609                    ValueAnimator anim = mReadyAnims.get(i);
610                    anim.startAnimation(this);
611                    anim.mRunning = true;
612                    mDelayedAnims.remove(anim);
613                }
614                mReadyAnims.clear();
615            }
616
617            // Now process all active animations. The return value from animationFrame()
618            // tells the handler whether it should now be ended
619            int numAnims = mAnimations.size();
620            int i = 0;
621            while (i < numAnims) {
622                ValueAnimator anim = mAnimations.get(i);
623                if (anim.animationFrame(currentTime)) {
624                    mEndingAnims.add(anim);
625                }
626                if (mAnimations.size() == numAnims) {
627                    ++i;
628                } else {
629                    // An animation might be canceled or ended by client code
630                    // during the animation frame. Check to see if this happened by
631                    // seeing whether the current index is the same as it was before
632                    // calling animationFrame(). Another approach would be to copy
633                    // animations to a temporary list and process that list instead,
634                    // but that entails garbage and processing overhead that would
635                    // be nice to avoid.
636                    --numAnims;
637                    mEndingAnims.remove(anim);
638                }
639            }
640            if (mEndingAnims.size() > 0) {
641                for (i = 0; i < mEndingAnims.size(); ++i) {
642                    mEndingAnims.get(i).endAnimation(this);
643                }
644                mEndingAnims.clear();
645            }
646
647            // If there are still active or delayed animations, schedule a future call to
648            // onAnimate to process the next frame of the animations.
649            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
650                if (!mIsChoreographed) {
651                    mIsChoreographed = true;
652                    mChoreographer.addOnAnimateListener(this);
653                }
654                mChoreographer.scheduleAnimation();
655            } else {
656                if (mIsChoreographed) {
657                    mIsChoreographed = false;
658                    mChoreographer.removeOnAnimateListener(this);
659                }
660            }
661        }
662
663        @Override
664        public void onAnimate() {
665            doAnimationFrame();
666        }
667    }
668
669    /**
670     * The amount of time, in milliseconds, to delay starting the animation after
671     * {@link #start()} is called.
672     *
673     * @return the number of milliseconds to delay running the animation
674     */
675    public long getStartDelay() {
676        return mUnscaledStartDelay;
677    }
678
679    /**
680     * The amount of time, in milliseconds, to delay starting the animation after
681     * {@link #start()} is called.
682
683     * @param startDelay The amount of the delay, in milliseconds
684     */
685    public void setStartDelay(long startDelay) {
686        this.mStartDelay = (long)(startDelay * sDurationScale);
687        mUnscaledStartDelay = startDelay;
688    }
689
690    /**
691     * The amount of time, in milliseconds, between each frame of the animation. This is a
692     * requested time that the animation will attempt to honor, but the actual delay between
693     * frames may be different, depending on system load and capabilities. This is a static
694     * function because the same delay will be applied to all animations, since they are all
695     * run off of a single timing loop.
696     *
697     * The frame delay may be ignored when the animation system uses an external timing
698     * source, such as the display refresh rate (vsync), to govern animations.
699     *
700     * @return the requested time between frames, in milliseconds
701     */
702    public static long getFrameDelay() {
703        return Choreographer.getFrameDelay();
704    }
705
706    /**
707     * The amount of time, in milliseconds, between each frame of the animation. This is a
708     * requested time that the animation will attempt to honor, but the actual delay between
709     * frames may be different, depending on system load and capabilities. This is a static
710     * function because the same delay will be applied to all animations, since they are all
711     * run off of a single timing loop.
712     *
713     * The frame delay may be ignored when the animation system uses an external timing
714     * source, such as the display refresh rate (vsync), to govern animations.
715     *
716     * @param frameDelay the requested time between frames, in milliseconds
717     */
718    public static void setFrameDelay(long frameDelay) {
719        Choreographer.setFrameDelay(frameDelay);
720    }
721
722    /**
723     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
724     * property being animated. This value is only sensible while the animation is running. The main
725     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
726     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
727     * is called during each animation frame, immediately after the value is calculated.
728     *
729     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
730     * the single property being animated. If there are several properties being animated
731     * (specified by several PropertyValuesHolder objects in the constructor), this function
732     * returns the animated value for the first of those objects.
733     */
734    public Object getAnimatedValue() {
735        if (mValues != null && mValues.length > 0) {
736            return mValues[0].getAnimatedValue();
737        }
738        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
739        return null;
740    }
741
742    /**
743     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
744     * The main purpose for this read-only property is to retrieve the value from the
745     * <code>ValueAnimator</code> during a call to
746     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
747     * is called during each animation frame, immediately after the value is calculated.
748     *
749     * @return animatedValue The value most recently calculated for the named property
750     * by this <code>ValueAnimator</code>.
751     */
752    public Object getAnimatedValue(String propertyName) {
753        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
754        if (valuesHolder != null) {
755            return valuesHolder.getAnimatedValue();
756        } else {
757            // At least avoid crashing if called with bogus propertyName
758            return null;
759        }
760    }
761
762    /**
763     * Sets how many times the animation should be repeated. If the repeat
764     * count is 0, the animation is never repeated. If the repeat count is
765     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
766     * into account. The repeat count is 0 by default.
767     *
768     * @param value the number of times the animation should be repeated
769     */
770    public void setRepeatCount(int value) {
771        mRepeatCount = value;
772    }
773    /**
774     * Defines how many times the animation should repeat. The default value
775     * is 0.
776     *
777     * @return the number of times the animation should repeat, or {@link #INFINITE}
778     */
779    public int getRepeatCount() {
780        return mRepeatCount;
781    }
782
783    /**
784     * Defines what this animation should do when it reaches the end. This
785     * setting is applied only when the repeat count is either greater than
786     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
787     *
788     * @param value {@link #RESTART} or {@link #REVERSE}
789     */
790    public void setRepeatMode(int value) {
791        mRepeatMode = value;
792    }
793
794    /**
795     * Defines what this animation should do when it reaches the end.
796     *
797     * @return either one of {@link #REVERSE} or {@link #RESTART}
798     */
799    public int getRepeatMode() {
800        return mRepeatMode;
801    }
802
803    /**
804     * Adds a listener to the set of listeners that are sent update events through the life of
805     * an animation. This method is called on all listeners for every frame of the animation,
806     * after the values for the animation have been calculated.
807     *
808     * @param listener the listener to be added to the current set of listeners for this animation.
809     */
810    public void addUpdateListener(AnimatorUpdateListener listener) {
811        if (mUpdateListeners == null) {
812            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
813        }
814        mUpdateListeners.add(listener);
815    }
816
817    /**
818     * Removes all listeners from the set listening to frame updates for this animation.
819     */
820    public void removeAllUpdateListeners() {
821        if (mUpdateListeners == null) {
822            return;
823        }
824        mUpdateListeners.clear();
825        mUpdateListeners = null;
826    }
827
828    /**
829     * Removes a listener from the set listening to frame updates for this animation.
830     *
831     * @param listener the listener to be removed from the current set of update listeners
832     * for this animation.
833     */
834    public void removeUpdateListener(AnimatorUpdateListener listener) {
835        if (mUpdateListeners == null) {
836            return;
837        }
838        mUpdateListeners.remove(listener);
839        if (mUpdateListeners.size() == 0) {
840            mUpdateListeners = null;
841        }
842    }
843
844
845    /**
846     * The time interpolator used in calculating the elapsed fraction of this animation. The
847     * interpolator determines whether the animation runs with linear or non-linear motion,
848     * such as acceleration and deceleration. The default value is
849     * {@link android.view.animation.AccelerateDecelerateInterpolator}
850     *
851     * @param value the interpolator to be used by this animation. A value of <code>null</code>
852     * will result in linear interpolation.
853     */
854    @Override
855    public void setInterpolator(TimeInterpolator value) {
856        if (value != null) {
857            mInterpolator = value;
858        } else {
859            mInterpolator = new LinearInterpolator();
860        }
861    }
862
863    /**
864     * Returns the timing interpolator that this ValueAnimator uses.
865     *
866     * @return The timing interpolator for this ValueAnimator.
867     */
868    public TimeInterpolator getInterpolator() {
869        return mInterpolator;
870    }
871
872    /**
873     * The type evaluator to be used when calculating the animated values of this animation.
874     * The system will automatically assign a float or int evaluator based on the type
875     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
876     * are not one of these primitive types, or if different evaluation is desired (such as is
877     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
878     * For example, when running an animation on color values, the {@link ArgbEvaluator}
879     * should be used to get correct RGB color interpolation.
880     *
881     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
882     * will be used for that set. If there are several sets of values being animated, which is
883     * the case if PropertyValuesHOlder objects were set on the ValueAnimator, then the evaluator
884     * is assigned just to the first PropertyValuesHolder object.</p>
885     *
886     * @param value the evaluator to be used this animation
887     */
888    public void setEvaluator(TypeEvaluator value) {
889        if (value != null && mValues != null && mValues.length > 0) {
890            mValues[0].setEvaluator(value);
891        }
892    }
893
894    /**
895     * Start the animation playing. This version of start() takes a boolean flag that indicates
896     * whether the animation should play in reverse. The flag is usually false, but may be set
897     * to true if called from the reverse() method.
898     *
899     * <p>The animation started by calling this method will be run on the thread that called
900     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
901     * this is not the case). Also, if the animation will animate
902     * properties of objects in the view hierarchy, then the calling thread should be the UI
903     * thread for that view hierarchy.</p>
904     *
905     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
906     */
907    private void start(boolean playBackwards) {
908        if (Looper.myLooper() == null) {
909            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
910        }
911        mPlayingBackwards = playBackwards;
912        mCurrentIteration = 0;
913        mPlayingState = STOPPED;
914        mStarted = true;
915        mStartedDelay = false;
916        AnimationHandler animationHandler = getOrCreateAnimationHandler();
917        animationHandler.mPendingAnimations.add(this);
918        if (mStartDelay == 0) {
919            // This sets the initial value of the animation, prior to actually starting it running
920            setCurrentPlayTime(getCurrentPlayTime());
921            mPlayingState = STOPPED;
922            mRunning = true;
923
924            if (mListeners != null) {
925                ArrayList<AnimatorListener> tmpListeners =
926                        (ArrayList<AnimatorListener>) mListeners.clone();
927                int numListeners = tmpListeners.size();
928                for (int i = 0; i < numListeners; ++i) {
929                    tmpListeners.get(i).onAnimationStart(this);
930                }
931            }
932        }
933        animationHandler.sendEmptyMessage(ANIMATION_START);
934    }
935
936    @Override
937    public void start() {
938        start(false);
939    }
940
941    @Override
942    public void cancel() {
943        // Only cancel if the animation is actually running or has been started and is about
944        // to run
945        AnimationHandler handler = getOrCreateAnimationHandler();
946        if (mPlayingState != STOPPED
947                || handler.mPendingAnimations.contains(this)
948                || handler.mDelayedAnims.contains(this)) {
949            // Only notify listeners if the animator has actually started
950            if (mRunning && mListeners != null) {
951                ArrayList<AnimatorListener> tmpListeners =
952                        (ArrayList<AnimatorListener>) mListeners.clone();
953                for (AnimatorListener listener : tmpListeners) {
954                    listener.onAnimationCancel(this);
955                }
956            }
957            endAnimation(handler);
958        }
959    }
960
961    @Override
962    public void end() {
963        AnimationHandler handler = getOrCreateAnimationHandler();
964        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
965            // Special case if the animation has not yet started; get it ready for ending
966            mStartedDelay = false;
967            startAnimation(handler);
968        } else if (!mInitialized) {
969            initAnimation();
970        }
971        // The final value set on the target varies, depending on whether the animation
972        // was supposed to repeat an odd number of times
973        if (mRepeatCount > 0 && (mRepeatCount & 0x01) == 1) {
974            animateValue(0f);
975        } else {
976            animateValue(1f);
977        }
978        endAnimation(handler);
979    }
980
981    @Override
982    public boolean isRunning() {
983        return (mPlayingState == RUNNING || mRunning);
984    }
985
986    @Override
987    public boolean isStarted() {
988        return mStarted;
989    }
990
991    /**
992     * Plays the ValueAnimator in reverse. If the animation is already running,
993     * it will stop itself and play backwards from the point reached when reverse was called.
994     * If the animation is not currently running, then it will start from the end and
995     * play backwards. This behavior is only set for the current animation; future playing
996     * of the animation will use the default behavior of playing forward.
997     */
998    public void reverse() {
999        mPlayingBackwards = !mPlayingBackwards;
1000        if (mPlayingState == RUNNING) {
1001            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1002            long currentPlayTime = currentTime - mStartTime;
1003            long timeLeft = mDuration - currentPlayTime;
1004            mStartTime = currentTime - timeLeft;
1005        } else {
1006            start(true);
1007        }
1008    }
1009
1010    /**
1011     * Called internally to end an animation by removing it from the animations list. Must be
1012     * called on the UI thread.
1013     */
1014    private void endAnimation(AnimationHandler handler) {
1015        handler.mAnimations.remove(this);
1016        handler.mPendingAnimations.remove(this);
1017        handler.mDelayedAnims.remove(this);
1018        mPlayingState = STOPPED;
1019        if (mRunning && mListeners != null) {
1020            ArrayList<AnimatorListener> tmpListeners =
1021                    (ArrayList<AnimatorListener>) mListeners.clone();
1022            int numListeners = tmpListeners.size();
1023            for (int i = 0; i < numListeners; ++i) {
1024                tmpListeners.get(i).onAnimationEnd(this);
1025            }
1026        }
1027        mRunning = false;
1028        mStarted = false;
1029    }
1030
1031    /**
1032     * Called internally to start an animation by adding it to the active animations list. Must be
1033     * called on the UI thread.
1034     */
1035    private void startAnimation(AnimationHandler handler) {
1036        initAnimation();
1037        handler.mAnimations.add(this);
1038        if (mStartDelay > 0 && mListeners != null) {
1039            // Listeners were already notified in start() if startDelay is 0; this is
1040            // just for delayed animations
1041            ArrayList<AnimatorListener> tmpListeners =
1042                    (ArrayList<AnimatorListener>) mListeners.clone();
1043            int numListeners = tmpListeners.size();
1044            for (int i = 0; i < numListeners; ++i) {
1045                tmpListeners.get(i).onAnimationStart(this);
1046            }
1047        }
1048    }
1049
1050    /**
1051     * Internal function called to process an animation frame on an animation that is currently
1052     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1053     * should be woken up and put on the active animations queue.
1054     *
1055     * @param currentTime The current animation time, used to calculate whether the animation
1056     * has exceeded its <code>startDelay</code> and should be started.
1057     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1058     * should be added to the set of active animations.
1059     */
1060    private boolean delayedAnimationFrame(long currentTime) {
1061        if (!mStartedDelay) {
1062            mStartedDelay = true;
1063            mDelayStartTime = currentTime;
1064        } else {
1065            long deltaTime = currentTime - mDelayStartTime;
1066            if (deltaTime > mStartDelay) {
1067                // startDelay ended - start the anim and record the
1068                // mStartTime appropriately
1069                mStartTime = currentTime - (deltaTime - mStartDelay);
1070                mPlayingState = RUNNING;
1071                return true;
1072            }
1073        }
1074        return false;
1075    }
1076
1077    /**
1078     * This internal function processes a single animation frame for a given animation. The
1079     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1080     * elapsed duration, and therefore
1081     * the elapsed fraction, of the animation. The return value indicates whether the animation
1082     * should be ended (which happens when the elapsed time of the animation exceeds the
1083     * animation's duration, including the repeatCount).
1084     *
1085     * @param currentTime The current time, as tracked by the static timing handler
1086     * @return true if the animation's duration, including any repetitions due to
1087     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1088     */
1089    boolean animationFrame(long currentTime) {
1090        boolean done = false;
1091
1092        if (mPlayingState == STOPPED) {
1093            mPlayingState = RUNNING;
1094            if (mSeekTime < 0) {
1095                mStartTime = currentTime;
1096            } else {
1097                mStartTime = currentTime - mSeekTime;
1098                // Now that we're playing, reset the seek time
1099                mSeekTime = -1;
1100            }
1101        }
1102        switch (mPlayingState) {
1103        case RUNNING:
1104        case SEEKED:
1105            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1106            if (fraction >= 1f) {
1107                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1108                    // Time to repeat
1109                    if (mListeners != null) {
1110                        int numListeners = mListeners.size();
1111                        for (int i = 0; i < numListeners; ++i) {
1112                            mListeners.get(i).onAnimationRepeat(this);
1113                        }
1114                    }
1115                    if (mRepeatMode == REVERSE) {
1116                        mPlayingBackwards = mPlayingBackwards ? false : true;
1117                    }
1118                    mCurrentIteration += (int)fraction;
1119                    fraction = fraction % 1f;
1120                    mStartTime += mDuration;
1121                } else {
1122                    done = true;
1123                    fraction = Math.min(fraction, 1.0f);
1124                }
1125            }
1126            if (mPlayingBackwards) {
1127                fraction = 1f - fraction;
1128            }
1129            animateValue(fraction);
1130            break;
1131        }
1132
1133        return done;
1134    }
1135
1136    /**
1137     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1138     * the most recent frame update on the animation.
1139     *
1140     * @return Elapsed/interpolated fraction of the animation.
1141     */
1142    public float getAnimatedFraction() {
1143        return mCurrentFraction;
1144    }
1145
1146    /**
1147     * This method is called with the elapsed fraction of the animation during every
1148     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1149     * and then into an animated value (from the evaluator. The function is called mostly during
1150     * animation updates, but it is also called when the <code>end()</code>
1151     * function is called, to set the final value on the property.
1152     *
1153     * <p>Overrides of this method must call the superclass to perform the calculation
1154     * of the animated value.</p>
1155     *
1156     * @param fraction The elapsed fraction of the animation.
1157     */
1158    void animateValue(float fraction) {
1159        fraction = mInterpolator.getInterpolation(fraction);
1160        mCurrentFraction = fraction;
1161        int numValues = mValues.length;
1162        for (int i = 0; i < numValues; ++i) {
1163            mValues[i].calculateValue(fraction);
1164        }
1165        if (mUpdateListeners != null) {
1166            int numListeners = mUpdateListeners.size();
1167            for (int i = 0; i < numListeners; ++i) {
1168                mUpdateListeners.get(i).onAnimationUpdate(this);
1169            }
1170        }
1171    }
1172
1173    @Override
1174    public ValueAnimator clone() {
1175        final ValueAnimator anim = (ValueAnimator) super.clone();
1176        if (mUpdateListeners != null) {
1177            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1178            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1179            int numListeners = oldListeners.size();
1180            for (int i = 0; i < numListeners; ++i) {
1181                anim.mUpdateListeners.add(oldListeners.get(i));
1182            }
1183        }
1184        anim.mSeekTime = -1;
1185        anim.mPlayingBackwards = false;
1186        anim.mCurrentIteration = 0;
1187        anim.mInitialized = false;
1188        anim.mPlayingState = STOPPED;
1189        anim.mStartedDelay = false;
1190        PropertyValuesHolder[] oldValues = mValues;
1191        if (oldValues != null) {
1192            int numValues = oldValues.length;
1193            anim.mValues = new PropertyValuesHolder[numValues];
1194            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1195            for (int i = 0; i < numValues; ++i) {
1196                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1197                anim.mValues[i] = newValuesHolder;
1198                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1199            }
1200        }
1201        return anim;
1202    }
1203
1204    /**
1205     * Implementors of this interface can add themselves as update listeners
1206     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1207     * frame, after the current frame's values have been calculated for that
1208     * <code>ValueAnimator</code>.
1209     */
1210    public static interface AnimatorUpdateListener {
1211        /**
1212         * <p>Notifies the occurrence of another frame of the animation.</p>
1213         *
1214         * @param animation The animation which was repeated.
1215         */
1216        void onAnimationUpdate(ValueAnimator animation);
1217
1218    }
1219
1220    /**
1221     * Return the number of animations currently running.
1222     *
1223     * Used by StrictMode internally to annotate violations.
1224     * May be called on arbitrary threads!
1225     *
1226     * @hide
1227     */
1228    public static int getCurrentAnimationsCount() {
1229        AnimationHandler handler = sAnimationHandler.get();
1230        return handler != null ? handler.mAnimations.size() : 0;
1231    }
1232
1233    /**
1234     * Clear all animations on this thread, without canceling or ending them.
1235     * This should be used with caution.
1236     *
1237     * @hide
1238     */
1239    public static void clearAllAnimations() {
1240        AnimationHandler handler = sAnimationHandler.get();
1241        if (handler != null) {
1242            handler.mAnimations.clear();
1243            handler.mPendingAnimations.clear();
1244            handler.mDelayedAnims.clear();
1245        }
1246    }
1247
1248    private AnimationHandler getOrCreateAnimationHandler() {
1249        AnimationHandler handler = sAnimationHandler.get();
1250        if (handler == null) {
1251            handler = new AnimationHandler();
1252            sAnimationHandler.set(handler);
1253        }
1254        return handler;
1255    }
1256
1257    @Override
1258    public String toString() {
1259        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1260        if (mValues != null) {
1261            for (int i = 0; i < mValues.length; ++i) {
1262                returnVal += "\n    " + mValues[i].toString();
1263            }
1264        }
1265        return returnVal;
1266    }
1267}
1268