ValueAnimator.java revision d3de42cae84fadfa1befd082a2cf1bf72f9ad82a
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Looper;
20import android.os.Trace;
21import android.util.AndroidRuntimeException;
22import android.view.Choreographer;
23import android.view.animation.AccelerateDecelerateInterpolator;
24import android.view.animation.AnimationUtils;
25import android.view.animation.LinearInterpolator;
26
27import java.util.ArrayList;
28import java.util.HashMap;
29
30/**
31 * This class provides a simple timing engine for running animations
32 * which calculate animated values and set them on target objects.
33 *
34 * <p>There is a single timing pulse that all animations use. It runs in a
35 * custom handler to ensure that property changes happen on the UI thread.</p>
36 *
37 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
38 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
39 * out of an animation. This behavior can be changed by calling
40 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
41 *
42 * <div class="special reference">
43 * <h3>Developer Guides</h3>
44 * <p>For more information about animating with {@code ValueAnimator}, read the
45 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
46 * Animation</a> developer guide.</p>
47 * </div>
48 */
49@SuppressWarnings("unchecked")
50public class ValueAnimator extends Animator {
51
52    /**
53     * Internal constants
54     */
55    private static float sDurationScale = 1.0f;
56
57    /**
58     * Values used with internal variable mPlayingState to indicate the current state of an
59     * animation.
60     */
61    static final int STOPPED    = 0; // Not yet playing
62    static final int RUNNING    = 1; // Playing normally
63    static final int SEEKED     = 2; // Seeked to some time value
64
65    /**
66     * Internal variables
67     * NOTE: This object implements the clone() method, making a deep copy of any referenced
68     * objects. As other non-trivial fields are added to this class, make sure to add logic
69     * to clone() to make deep copies of them.
70     */
71
72    // The first time that the animation's animateFrame() method is called. This time is used to
73    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
74    // to animateFrame()
75    long mStartTime;
76
77    /**
78     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
79     * to a value.
80     */
81    long mSeekTime = -1;
82
83    /**
84     * Set on the next frame after pause() is called, used to calculate a new startTime
85     * or delayStartTime which allows the animator to continue from the point at which
86     * it was paused. If negative, has not yet been set.
87     */
88    private long mPauseTime;
89
90    /**
91     * Set when an animator is resumed. This triggers logic in the next frame which
92     * actually resumes the animator.
93     */
94    private boolean mResumed = false;
95
96
97    // The static sAnimationHandler processes the internal timing loop on which all animations
98    // are based
99    /**
100     * @hide
101     */
102    protected static ThreadLocal<AnimationHandler> sAnimationHandler =
103            new ThreadLocal<AnimationHandler>();
104
105    // The time interpolator to be used if none is set on the animation
106    private static final TimeInterpolator sDefaultInterpolator =
107            new AccelerateDecelerateInterpolator();
108
109    /**
110     * Used to indicate whether the animation is currently playing in reverse. This causes the
111     * elapsed fraction to be inverted to calculate the appropriate values.
112     */
113    private boolean mPlayingBackwards = false;
114
115    /**
116     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
117     * repeatCount (if repeatCount!=INFINITE), the animation ends
118     */
119    private int mCurrentIteration = 0;
120
121    /**
122     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
123     */
124    private float mCurrentFraction = 0f;
125
126    /**
127     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
128     */
129    private boolean mStartedDelay = false;
130
131    /**
132     * Tracks the time at which the animation began playing through its startDelay. This is
133     * different from the mStartTime variable, which is used to track when the animation became
134     * active (which is when the startDelay expired and the animation was added to the active
135     * animations list).
136     */
137    private long mDelayStartTime;
138
139    /**
140     * Flag that represents the current state of the animation. Used to figure out when to start
141     * an animation (if state == STOPPED). Also used to end an animation that
142     * has been cancel()'d or end()'d since the last animation frame. Possible values are
143     * STOPPED, RUNNING, SEEKED.
144     */
145    int mPlayingState = STOPPED;
146
147    /**
148     * Additional playing state to indicate whether an animator has been start()'d. There is
149     * some lag between a call to start() and the first animation frame. We should still note
150     * that the animation has been started, even if it's first animation frame has not yet
151     * happened, and reflect that state in isRunning().
152     * Note that delayed animations are different: they are not started until their first
153     * animation frame, which occurs after their delay elapses.
154     */
155    private boolean mRunning = false;
156
157    /**
158     * Additional playing state to indicate whether an animator has been start()'d, whether or
159     * not there is a nonzero startDelay.
160     */
161    private boolean mStarted = false;
162
163    /**
164     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
165     * complex to keep track of since we notify listeners at different times depending on
166     * startDelay and whether start() was called before end().
167     */
168    private boolean mStartListenersCalled = false;
169
170    /**
171     * Flag that denotes whether the animation is set up and ready to go. Used to
172     * set up animation that has not yet been started.
173     */
174    boolean mInitialized = false;
175
176    //
177    // Backing variables
178    //
179
180    // How long the animation should last in ms
181    private long mDuration = (long)(300 * sDurationScale);
182    private long mUnscaledDuration = 300;
183
184    // The amount of time in ms to delay starting the animation after start() is called
185    private long mStartDelay = 0;
186    private long mUnscaledStartDelay = 0;
187
188    // The number of times the animation will repeat. The default is 0, which means the animation
189    // will play only once
190    private int mRepeatCount = 0;
191
192    /**
193     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
194     * animation will start from the beginning on every new cycle. REVERSE means the animation
195     * will reverse directions on each iteration.
196     */
197    private int mRepeatMode = RESTART;
198
199    /**
200     * The time interpolator to be used. The elapsed fraction of the animation will be passed
201     * through this interpolator to calculate the interpolated fraction, which is then used to
202     * calculate the animated values.
203     */
204    private TimeInterpolator mInterpolator = sDefaultInterpolator;
205
206    /**
207     * The set of listeners to be sent events through the life of an animation.
208     */
209    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
210
211    /**
212     * The property/value sets being animated.
213     */
214    PropertyValuesHolder[] mValues;
215
216    /**
217     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
218     * by property name during calls to getAnimatedValue(String).
219     */
220    HashMap<String, PropertyValuesHolder> mValuesMap;
221
222    /**
223     * Public constants
224     */
225
226    /**
227     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
228     * or a positive value, the animation restarts from the beginning.
229     */
230    public static final int RESTART = 1;
231    /**
232     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
233     * or a positive value, the animation reverses direction on every iteration.
234     */
235    public static final int REVERSE = 2;
236    /**
237     * This value used used with the {@link #setRepeatCount(int)} property to repeat
238     * the animation indefinitely.
239     */
240    public static final int INFINITE = -1;
241
242
243    /**
244     * @hide
245     */
246    public static void setDurationScale(float durationScale) {
247        sDurationScale = durationScale;
248    }
249
250    /**
251     * @hide
252     */
253    public static float getDurationScale() {
254        return sDurationScale;
255    }
256
257    /**
258     * Creates a new ValueAnimator object. This default constructor is primarily for
259     * use internally; the factory methods which take parameters are more generally
260     * useful.
261     */
262    public ValueAnimator() {
263    }
264
265    /**
266     * Constructs and returns a ValueAnimator that animates between int values. A single
267     * value implies that that value is the one being animated to. However, this is not typically
268     * useful in a ValueAnimator object because there is no way for the object to determine the
269     * starting value for the animation (unlike ObjectAnimator, which can derive that value
270     * from the target object and property being animated). Therefore, there should typically
271     * be two or more values.
272     *
273     * @param values A set of values that the animation will animate between over time.
274     * @return A ValueAnimator object that is set up to animate between the given values.
275     */
276    public static ValueAnimator ofInt(int... values) {
277        ValueAnimator anim = new ValueAnimator();
278        anim.setIntValues(values);
279        return anim;
280    }
281
282    /**
283     * Constructs and returns a ValueAnimator that animates between color values. A single
284     * value implies that that value is the one being animated to. However, this is not typically
285     * useful in a ValueAnimator object because there is no way for the object to determine the
286     * starting value for the animation (unlike ObjectAnimator, which can derive that value
287     * from the target object and property being animated). Therefore, there should typically
288     * be two or more values.
289     *
290     * @param values A set of values that the animation will animate between over time.
291     * @return A ValueAnimator object that is set up to animate between the given values.
292     */
293    public static ValueAnimator ofArgb(int... values) {
294        ValueAnimator anim = new ValueAnimator();
295        anim.setIntValues(values);
296        anim.setEvaluator(ArgbEvaluator.getInstance());
297        return anim;
298    }
299
300    /**
301     * Constructs and returns a ValueAnimator that animates between float values. A single
302     * value implies that that value is the one being animated to. However, this is not typically
303     * useful in a ValueAnimator object because there is no way for the object to determine the
304     * starting value for the animation (unlike ObjectAnimator, which can derive that value
305     * from the target object and property being animated). Therefore, there should typically
306     * be two or more values.
307     *
308     * @param values A set of values that the animation will animate between over time.
309     * @return A ValueAnimator object that is set up to animate between the given values.
310     */
311    public static ValueAnimator ofFloat(float... values) {
312        ValueAnimator anim = new ValueAnimator();
313        anim.setFloatValues(values);
314        return anim;
315    }
316
317    /**
318     * Constructs and returns a ValueAnimator that animates between the values
319     * specified in the PropertyValuesHolder objects.
320     *
321     * @param values A set of PropertyValuesHolder objects whose values will be animated
322     * between over time.
323     * @return A ValueAnimator object that is set up to animate between the given values.
324     */
325    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
326        ValueAnimator anim = new ValueAnimator();
327        anim.setValues(values);
328        return anim;
329    }
330    /**
331     * Constructs and returns a ValueAnimator that animates between Object values. A single
332     * value implies that that value is the one being animated to. However, this is not typically
333     * useful in a ValueAnimator object because there is no way for the object to determine the
334     * starting value for the animation (unlike ObjectAnimator, which can derive that value
335     * from the target object and property being animated). Therefore, there should typically
336     * be two or more values.
337     *
338     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
339     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
340     * to perform that interpolation.
341     *
342     * @param evaluator A TypeEvaluator that will be called on each animation frame to
343     * provide the ncessry interpolation between the Object values to derive the animated
344     * value.
345     * @param values A set of values that the animation will animate between over time.
346     * @return A ValueAnimator object that is set up to animate between the given values.
347     */
348    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
349        ValueAnimator anim = new ValueAnimator();
350        anim.setObjectValues(values);
351        anim.setEvaluator(evaluator);
352        return anim;
353    }
354
355    /**
356     * Sets int values that will be animated between. A single
357     * value implies that that value is the one being animated to. However, this is not typically
358     * useful in a ValueAnimator object because there is no way for the object to determine the
359     * starting value for the animation (unlike ObjectAnimator, which can derive that value
360     * from the target object and property being animated). Therefore, there should typically
361     * be two or more values.
362     *
363     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
364     * than one PropertyValuesHolder object, this method will set the values for the first
365     * of those objects.</p>
366     *
367     * @param values A set of values that the animation will animate between over time.
368     */
369    public void setIntValues(int... values) {
370        if (values == null || values.length == 0) {
371            return;
372        }
373        if (mValues == null || mValues.length == 0) {
374            setValues(PropertyValuesHolder.ofInt("", values));
375        } else {
376            PropertyValuesHolder valuesHolder = mValues[0];
377            valuesHolder.setIntValues(values);
378        }
379        // New property/values/target should cause re-initialization prior to starting
380        mInitialized = false;
381    }
382
383    /**
384     * Sets float values that will be animated between. A single
385     * value implies that that value is the one being animated to. However, this is not typically
386     * useful in a ValueAnimator object because there is no way for the object to determine the
387     * starting value for the animation (unlike ObjectAnimator, which can derive that value
388     * from the target object and property being animated). Therefore, there should typically
389     * be two or more values.
390     *
391     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
392     * than one PropertyValuesHolder object, this method will set the values for the first
393     * of those objects.</p>
394     *
395     * @param values A set of values that the animation will animate between over time.
396     */
397    public void setFloatValues(float... values) {
398        if (values == null || values.length == 0) {
399            return;
400        }
401        if (mValues == null || mValues.length == 0) {
402            setValues(PropertyValuesHolder.ofFloat("", values));
403        } else {
404            PropertyValuesHolder valuesHolder = mValues[0];
405            valuesHolder.setFloatValues(values);
406        }
407        // New property/values/target should cause re-initialization prior to starting
408        mInitialized = false;
409    }
410
411    /**
412     * Sets the values to animate between for this animation. A single
413     * value implies that that value is the one being animated to. However, this is not typically
414     * useful in a ValueAnimator object because there is no way for the object to determine the
415     * starting value for the animation (unlike ObjectAnimator, which can derive that value
416     * from the target object and property being animated). Therefore, there should typically
417     * be two or more values.
418     *
419     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
420     * than one PropertyValuesHolder object, this method will set the values for the first
421     * of those objects.</p>
422     *
423     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
424     * between these value objects. ValueAnimator only knows how to interpolate between the
425     * primitive types specified in the other setValues() methods.</p>
426     *
427     * @param values The set of values to animate between.
428     */
429    public void setObjectValues(Object... values) {
430        if (values == null || values.length == 0) {
431            return;
432        }
433        if (mValues == null || mValues.length == 0) {
434            setValues(PropertyValuesHolder.ofObject("", null, values));
435        } else {
436            PropertyValuesHolder valuesHolder = mValues[0];
437            valuesHolder.setObjectValues(values);
438        }
439        // New property/values/target should cause re-initialization prior to starting
440        mInitialized = false;
441    }
442
443    /**
444     * Sets the values, per property, being animated between. This function is called internally
445     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
446     * be constructed without values and this method can be called to set the values manually
447     * instead.
448     *
449     * @param values The set of values, per property, being animated between.
450     */
451    public void setValues(PropertyValuesHolder... values) {
452        int numValues = values.length;
453        mValues = values;
454        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
455        for (int i = 0; i < numValues; ++i) {
456            PropertyValuesHolder valuesHolder = values[i];
457            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
458        }
459        // New property/values/target should cause re-initialization prior to starting
460        mInitialized = false;
461    }
462
463    /**
464     * Returns the values that this ValueAnimator animates between. These values are stored in
465     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
466     * of value objects instead.
467     *
468     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
469     * values, per property, that define the animation.
470     */
471    public PropertyValuesHolder[] getValues() {
472        return mValues;
473    }
474
475    /**
476     * This function is called immediately before processing the first animation
477     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
478     * function is called after that delay ends.
479     * It takes care of the final initialization steps for the
480     * animation.
481     *
482     *  <p>Overrides of this method should call the superclass method to ensure
483     *  that internal mechanisms for the animation are set up correctly.</p>
484     */
485    void initAnimation() {
486        if (!mInitialized) {
487            int numValues = mValues.length;
488            for (int i = 0; i < numValues; ++i) {
489                mValues[i].init();
490            }
491            mInitialized = true;
492        }
493    }
494
495
496    /**
497     * Sets the length of the animation. The default duration is 300 milliseconds.
498     *
499     * @param duration The length of the animation, in milliseconds. This value cannot
500     * be negative.
501     * @return ValueAnimator The object called with setDuration(). This return
502     * value makes it easier to compose statements together that construct and then set the
503     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
504     */
505    public ValueAnimator setDuration(long duration) {
506        if (duration < 0) {
507            throw new IllegalArgumentException("Animators cannot have negative duration: " +
508                    duration);
509        }
510        mUnscaledDuration = duration;
511        mDuration = (long)(duration * sDurationScale);
512        return this;
513    }
514
515    /**
516     * Gets the length of the animation. The default duration is 300 milliseconds.
517     *
518     * @return The length of the animation, in milliseconds.
519     */
520    public long getDuration() {
521        return mUnscaledDuration;
522    }
523
524    /**
525     * Sets the position of the animation to the specified point in time. This time should
526     * be between 0 and the total duration of the animation, including any repetition. If
527     * the animation has not yet been started, then it will not advance forward after it is
528     * set to this time; it will simply set the time to this value and perform any appropriate
529     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
530     * will set the current playing time to this value and continue playing from that point.
531     *
532     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
533     */
534    public void setCurrentPlayTime(long playTime) {
535        initAnimation();
536        long currentTime = AnimationUtils.currentAnimationTimeMillis();
537        if (mPlayingState != RUNNING) {
538            mSeekTime = playTime;
539            mPlayingState = SEEKED;
540        }
541        mStartTime = currentTime - playTime;
542        doAnimationFrame(currentTime);
543    }
544
545    /**
546     * Gets the current position of the animation in time, which is equal to the current
547     * time minus the time that the animation started. An animation that is not yet started will
548     * return a value of zero.
549     *
550     * @return The current position in time of the animation.
551     */
552    public long getCurrentPlayTime() {
553        if (!mInitialized || mPlayingState == STOPPED) {
554            return 0;
555        }
556        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
557    }
558
559    /**
560     * This custom, static handler handles the timing pulse that is shared by
561     * all active animations. This approach ensures that the setting of animation
562     * values will happen on the UI thread and that all animations will share
563     * the same times for calculating their values, which makes synchronizing
564     * animations possible.
565     *
566     * The handler uses the Choreographer for executing periodic callbacks.
567     *
568     * @hide
569     */
570    @SuppressWarnings("unchecked")
571    protected static class AnimationHandler implements Runnable {
572        // The per-thread list of all active animations
573        /** @hide */
574        protected final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
575
576        // Used in doAnimationFrame() to avoid concurrent modifications of mAnimations
577        private final ArrayList<ValueAnimator> mTmpAnimations = new ArrayList<ValueAnimator>();
578
579        // The per-thread set of animations to be started on the next animation frame
580        /** @hide */
581        protected final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
582
583        /**
584         * Internal per-thread collections used to avoid set collisions as animations start and end
585         * while being processed.
586         * @hide
587         */
588        protected final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
589        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
590        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
591
592        private final Choreographer mChoreographer;
593        private boolean mAnimationScheduled;
594
595        private AnimationHandler() {
596            mChoreographer = Choreographer.getInstance();
597        }
598
599        /**
600         * Start animating on the next frame.
601         */
602        public void start() {
603            scheduleAnimation();
604        }
605
606        private void doAnimationFrame(long frameTime) {
607            // mPendingAnimations holds any animations that have requested to be started
608            // We're going to clear mPendingAnimations, but starting animation may
609            // cause more to be added to the pending list (for example, if one animation
610            // starting triggers another starting). So we loop until mPendingAnimations
611            // is empty.
612            while (mPendingAnimations.size() > 0) {
613                ArrayList<ValueAnimator> pendingCopy =
614                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
615                mPendingAnimations.clear();
616                int count = pendingCopy.size();
617                for (int i = 0; i < count; ++i) {
618                    ValueAnimator anim = pendingCopy.get(i);
619                    // If the animation has a startDelay, place it on the delayed list
620                    if (anim.mStartDelay == 0) {
621                        anim.startAnimation(this);
622                    } else {
623                        mDelayedAnims.add(anim);
624                    }
625                }
626            }
627            // Next, process animations currently sitting on the delayed queue, adding
628            // them to the active animations if they are ready
629            int numDelayedAnims = mDelayedAnims.size();
630            for (int i = 0; i < numDelayedAnims; ++i) {
631                ValueAnimator anim = mDelayedAnims.get(i);
632                if (anim.delayedAnimationFrame(frameTime)) {
633                    mReadyAnims.add(anim);
634                }
635            }
636            int numReadyAnims = mReadyAnims.size();
637            if (numReadyAnims > 0) {
638                for (int i = 0; i < numReadyAnims; ++i) {
639                    ValueAnimator anim = mReadyAnims.get(i);
640                    anim.startAnimation(this);
641                    anim.mRunning = true;
642                    mDelayedAnims.remove(anim);
643                }
644                mReadyAnims.clear();
645            }
646
647            // Now process all active animations. The return value from animationFrame()
648            // tells the handler whether it should now be ended
649            int numAnims = mAnimations.size();
650            for (int i = 0; i < numAnims; ++i) {
651                mTmpAnimations.add(mAnimations.get(i));
652            }
653            for (int i = 0; i < numAnims; ++i) {
654                ValueAnimator anim = mTmpAnimations.get(i);
655                if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
656                    mEndingAnims.add(anim);
657                }
658            }
659            mTmpAnimations.clear();
660            if (mEndingAnims.size() > 0) {
661                for (int i = 0; i < mEndingAnims.size(); ++i) {
662                    mEndingAnims.get(i).endAnimation(this);
663                }
664                mEndingAnims.clear();
665            }
666
667            // If there are still active or delayed animations, schedule a future call to
668            // onAnimate to process the next frame of the animations.
669            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
670                scheduleAnimation();
671            }
672        }
673
674        // Called by the Choreographer.
675        @Override
676        public void run() {
677            mAnimationScheduled = false;
678            doAnimationFrame(mChoreographer.getFrameTime());
679        }
680
681        private void scheduleAnimation() {
682            if (!mAnimationScheduled) {
683                mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, this, null);
684                mAnimationScheduled = true;
685            }
686        }
687    }
688
689    /**
690     * The amount of time, in milliseconds, to delay starting the animation after
691     * {@link #start()} is called.
692     *
693     * @return the number of milliseconds to delay running the animation
694     */
695    public long getStartDelay() {
696        return mUnscaledStartDelay;
697    }
698
699    /**
700     * The amount of time, in milliseconds, to delay starting the animation after
701     * {@link #start()} is called.
702
703     * @param startDelay The amount of the delay, in milliseconds
704     */
705    public void setStartDelay(long startDelay) {
706        this.mStartDelay = (long)(startDelay * sDurationScale);
707        mUnscaledStartDelay = startDelay;
708    }
709
710    /**
711     * The amount of time, in milliseconds, between each frame of the animation. This is a
712     * requested time that the animation will attempt to honor, but the actual delay between
713     * frames may be different, depending on system load and capabilities. This is a static
714     * function because the same delay will be applied to all animations, since they are all
715     * run off of a single timing loop.
716     *
717     * The frame delay may be ignored when the animation system uses an external timing
718     * source, such as the display refresh rate (vsync), to govern animations.
719     *
720     * @return the requested time between frames, in milliseconds
721     */
722    public static long getFrameDelay() {
723        return Choreographer.getFrameDelay();
724    }
725
726    /**
727     * The amount of time, in milliseconds, between each frame of the animation. This is a
728     * requested time that the animation will attempt to honor, but the actual delay between
729     * frames may be different, depending on system load and capabilities. This is a static
730     * function because the same delay will be applied to all animations, since they are all
731     * run off of a single timing loop.
732     *
733     * The frame delay may be ignored when the animation system uses an external timing
734     * source, such as the display refresh rate (vsync), to govern animations.
735     *
736     * @param frameDelay the requested time between frames, in milliseconds
737     */
738    public static void setFrameDelay(long frameDelay) {
739        Choreographer.setFrameDelay(frameDelay);
740    }
741
742    /**
743     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
744     * property being animated. This value is only sensible while the animation is running. The main
745     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
746     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
747     * is called during each animation frame, immediately after the value is calculated.
748     *
749     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
750     * the single property being animated. If there are several properties being animated
751     * (specified by several PropertyValuesHolder objects in the constructor), this function
752     * returns the animated value for the first of those objects.
753     */
754    public Object getAnimatedValue() {
755        if (mValues != null && mValues.length > 0) {
756            return mValues[0].getAnimatedValue();
757        }
758        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
759        return null;
760    }
761
762    /**
763     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
764     * The main purpose for this read-only property is to retrieve the value from the
765     * <code>ValueAnimator</code> during a call to
766     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
767     * is called during each animation frame, immediately after the value is calculated.
768     *
769     * @return animatedValue The value most recently calculated for the named property
770     * by this <code>ValueAnimator</code>.
771     */
772    public Object getAnimatedValue(String propertyName) {
773        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
774        if (valuesHolder != null) {
775            return valuesHolder.getAnimatedValue();
776        } else {
777            // At least avoid crashing if called with bogus propertyName
778            return null;
779        }
780    }
781
782    /**
783     * Sets how many times the animation should be repeated. If the repeat
784     * count is 0, the animation is never repeated. If the repeat count is
785     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
786     * into account. The repeat count is 0 by default.
787     *
788     * @param value the number of times the animation should be repeated
789     */
790    public void setRepeatCount(int value) {
791        mRepeatCount = value;
792    }
793    /**
794     * Defines how many times the animation should repeat. The default value
795     * is 0.
796     *
797     * @return the number of times the animation should repeat, or {@link #INFINITE}
798     */
799    public int getRepeatCount() {
800        return mRepeatCount;
801    }
802
803    /**
804     * Defines what this animation should do when it reaches the end. This
805     * setting is applied only when the repeat count is either greater than
806     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
807     *
808     * @param value {@link #RESTART} or {@link #REVERSE}
809     */
810    public void setRepeatMode(int value) {
811        mRepeatMode = value;
812    }
813
814    /**
815     * Defines what this animation should do when it reaches the end.
816     *
817     * @return either one of {@link #REVERSE} or {@link #RESTART}
818     */
819    public int getRepeatMode() {
820        return mRepeatMode;
821    }
822
823    /**
824     * Adds a listener to the set of listeners that are sent update events through the life of
825     * an animation. This method is called on all listeners for every frame of the animation,
826     * after the values for the animation have been calculated.
827     *
828     * @param listener the listener to be added to the current set of listeners for this animation.
829     */
830    public void addUpdateListener(AnimatorUpdateListener listener) {
831        if (mUpdateListeners == null) {
832            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
833        }
834        mUpdateListeners.add(listener);
835    }
836
837    /**
838     * Removes all listeners from the set listening to frame updates for this animation.
839     */
840    public void removeAllUpdateListeners() {
841        if (mUpdateListeners == null) {
842            return;
843        }
844        mUpdateListeners.clear();
845        mUpdateListeners = null;
846    }
847
848    /**
849     * Removes a listener from the set listening to frame updates for this animation.
850     *
851     * @param listener the listener to be removed from the current set of update listeners
852     * for this animation.
853     */
854    public void removeUpdateListener(AnimatorUpdateListener listener) {
855        if (mUpdateListeners == null) {
856            return;
857        }
858        mUpdateListeners.remove(listener);
859        if (mUpdateListeners.size() == 0) {
860            mUpdateListeners = null;
861        }
862    }
863
864
865    /**
866     * The time interpolator used in calculating the elapsed fraction of this animation. The
867     * interpolator determines whether the animation runs with linear or non-linear motion,
868     * such as acceleration and deceleration. The default value is
869     * {@link android.view.animation.AccelerateDecelerateInterpolator}
870     *
871     * @param value the interpolator to be used by this animation. A value of <code>null</code>
872     * will result in linear interpolation.
873     */
874    @Override
875    public void setInterpolator(TimeInterpolator value) {
876        if (value != null) {
877            mInterpolator = value;
878        } else {
879            mInterpolator = new LinearInterpolator();
880        }
881    }
882
883    /**
884     * Returns the timing interpolator that this ValueAnimator uses.
885     *
886     * @return The timing interpolator for this ValueAnimator.
887     */
888    @Override
889    public TimeInterpolator getInterpolator() {
890        return mInterpolator;
891    }
892
893    /**
894     * The type evaluator to be used when calculating the animated values of this animation.
895     * The system will automatically assign a float or int evaluator based on the type
896     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
897     * are not one of these primitive types, or if different evaluation is desired (such as is
898     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
899     * For example, when running an animation on color values, the {@link ArgbEvaluator}
900     * should be used to get correct RGB color interpolation.
901     *
902     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
903     * will be used for that set. If there are several sets of values being animated, which is
904     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
905     * is assigned just to the first PropertyValuesHolder object.</p>
906     *
907     * @param value the evaluator to be used this animation
908     */
909    public void setEvaluator(TypeEvaluator value) {
910        if (value != null && mValues != null && mValues.length > 0) {
911            mValues[0].setEvaluator(value);
912        }
913    }
914
915    private void notifyStartListeners() {
916        if (mListeners != null && !mStartListenersCalled) {
917            ArrayList<AnimatorListener> tmpListeners =
918                    (ArrayList<AnimatorListener>) mListeners.clone();
919            int numListeners = tmpListeners.size();
920            for (int i = 0; i < numListeners; ++i) {
921                tmpListeners.get(i).onAnimationStart(this);
922            }
923        }
924        mStartListenersCalled = true;
925    }
926
927    /**
928     * Start the animation playing. This version of start() takes a boolean flag that indicates
929     * whether the animation should play in reverse. The flag is usually false, but may be set
930     * to true if called from the reverse() method.
931     *
932     * <p>The animation started by calling this method will be run on the thread that called
933     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
934     * this is not the case). Also, if the animation will animate
935     * properties of objects in the view hierarchy, then the calling thread should be the UI
936     * thread for that view hierarchy.</p>
937     *
938     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
939     */
940    private void start(boolean playBackwards) {
941        if (Looper.myLooper() == null) {
942            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
943        }
944        mPlayingBackwards = playBackwards;
945        mCurrentIteration = 0;
946        mPlayingState = STOPPED;
947        mStarted = true;
948        mStartedDelay = false;
949        mPaused = false;
950        AnimationHandler animationHandler = getOrCreateAnimationHandler();
951        animationHandler.mPendingAnimations.add(this);
952        if (mStartDelay == 0) {
953            // This sets the initial value of the animation, prior to actually starting it running
954            setCurrentPlayTime(0);
955            mPlayingState = STOPPED;
956            mRunning = true;
957            notifyStartListeners();
958        }
959        animationHandler.start();
960    }
961
962    @Override
963    public void start() {
964        start(false);
965    }
966
967    @Override
968    public void cancel() {
969        // Only cancel if the animation is actually running or has been started and is about
970        // to run
971        AnimationHandler handler = getOrCreateAnimationHandler();
972        if (mPlayingState != STOPPED
973                || handler.mPendingAnimations.contains(this)
974                || handler.mDelayedAnims.contains(this)) {
975            // Only notify listeners if the animator has actually started
976            if ((mStarted || mRunning) && mListeners != null) {
977                if (!mRunning) {
978                    // If it's not yet running, then start listeners weren't called. Call them now.
979                    notifyStartListeners();
980                }
981                ArrayList<AnimatorListener> tmpListeners =
982                        (ArrayList<AnimatorListener>) mListeners.clone();
983                for (AnimatorListener listener : tmpListeners) {
984                    listener.onAnimationCancel(this);
985                }
986            }
987            endAnimation(handler);
988        }
989    }
990
991    @Override
992    public void end() {
993        AnimationHandler handler = getOrCreateAnimationHandler();
994        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
995            // Special case if the animation has not yet started; get it ready for ending
996            mStartedDelay = false;
997            startAnimation(handler);
998            mStarted = true;
999        } else if (!mInitialized) {
1000            initAnimation();
1001        }
1002        animateValue(mPlayingBackwards ? 0f : 1f);
1003        endAnimation(handler);
1004    }
1005
1006    @Override
1007    public void resume() {
1008        if (mPaused) {
1009            mResumed = true;
1010        }
1011        super.resume();
1012    }
1013
1014    @Override
1015    public void pause() {
1016        boolean previouslyPaused = mPaused;
1017        super.pause();
1018        if (!previouslyPaused && mPaused) {
1019            mPauseTime = -1;
1020            mResumed = false;
1021        }
1022    }
1023
1024    @Override
1025    public boolean isRunning() {
1026        return (mPlayingState == RUNNING || mRunning);
1027    }
1028
1029    @Override
1030    public boolean isStarted() {
1031        return mStarted;
1032    }
1033
1034    /**
1035     * Plays the ValueAnimator in reverse. If the animation is already running,
1036     * it will stop itself and play backwards from the point reached when reverse was called.
1037     * If the animation is not currently running, then it will start from the end and
1038     * play backwards. This behavior is only set for the current animation; future playing
1039     * of the animation will use the default behavior of playing forward.
1040     */
1041    @Override
1042    public void reverse() {
1043        mPlayingBackwards = !mPlayingBackwards;
1044        if (mPlayingState == RUNNING) {
1045            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1046            long currentPlayTime = currentTime - mStartTime;
1047            long timeLeft = mDuration - currentPlayTime;
1048            mStartTime = currentTime - timeLeft;
1049        } else if (mStarted) {
1050            end();
1051        } else {
1052            start(true);
1053        }
1054    }
1055
1056    /**
1057     * @hide
1058     */
1059    @Override
1060    public boolean canReverse() {
1061        return true;
1062    }
1063
1064    /**
1065     * Called internally to end an animation by removing it from the animations list. Must be
1066     * called on the UI thread.
1067     * @hide
1068     */
1069    protected void endAnimation(AnimationHandler handler) {
1070        handler.mAnimations.remove(this);
1071        handler.mPendingAnimations.remove(this);
1072        handler.mDelayedAnims.remove(this);
1073        mPlayingState = STOPPED;
1074        mPaused = false;
1075        if ((mStarted || mRunning) && mListeners != null) {
1076            if (!mRunning) {
1077                // If it's not yet running, then start listeners weren't called. Call them now.
1078                notifyStartListeners();
1079             }
1080            ArrayList<AnimatorListener> tmpListeners =
1081                    (ArrayList<AnimatorListener>) mListeners.clone();
1082            int numListeners = tmpListeners.size();
1083            for (int i = 0; i < numListeners; ++i) {
1084                tmpListeners.get(i).onAnimationEnd(this);
1085            }
1086        }
1087        mRunning = false;
1088        mStarted = false;
1089        mStartListenersCalled = false;
1090        mPlayingBackwards = false;
1091        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1092            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1093                    System.identityHashCode(this));
1094        }
1095    }
1096
1097    /**
1098     * Called internally to start an animation by adding it to the active animations list. Must be
1099     * called on the UI thread.
1100     */
1101    private void startAnimation(AnimationHandler handler) {
1102        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1103            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1104                    System.identityHashCode(this));
1105        }
1106        initAnimation();
1107        handler.mAnimations.add(this);
1108        if (mStartDelay > 0 && mListeners != null) {
1109            // Listeners were already notified in start() if startDelay is 0; this is
1110            // just for delayed animations
1111            notifyStartListeners();
1112        }
1113    }
1114
1115    /**
1116     * Returns the name of this animator for debugging purposes.
1117     */
1118    String getNameForTrace() {
1119        return "animator";
1120    }
1121
1122
1123    /**
1124     * Internal function called to process an animation frame on an animation that is currently
1125     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1126     * should be woken up and put on the active animations queue.
1127     *
1128     * @param currentTime The current animation time, used to calculate whether the animation
1129     * has exceeded its <code>startDelay</code> and should be started.
1130     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1131     * should be added to the set of active animations.
1132     */
1133    private boolean delayedAnimationFrame(long currentTime) {
1134        if (!mStartedDelay) {
1135            mStartedDelay = true;
1136            mDelayStartTime = currentTime;
1137        }
1138        if (mPaused) {
1139            if (mPauseTime < 0) {
1140                mPauseTime = currentTime;
1141            }
1142            return false;
1143        } else if (mResumed) {
1144            mResumed = false;
1145            if (mPauseTime > 0) {
1146                // Offset by the duration that the animation was paused
1147                mDelayStartTime += (currentTime - mPauseTime);
1148            }
1149        }
1150        long deltaTime = currentTime - mDelayStartTime;
1151        if (deltaTime > mStartDelay) {
1152            // startDelay ended - start the anim and record the
1153            // mStartTime appropriately
1154            mStartTime = currentTime - (deltaTime - mStartDelay);
1155            mPlayingState = RUNNING;
1156            return true;
1157        }
1158        return false;
1159    }
1160
1161    /**
1162     * This internal function processes a single animation frame for a given animation. The
1163     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1164     * elapsed duration, and therefore
1165     * the elapsed fraction, of the animation. The return value indicates whether the animation
1166     * should be ended (which happens when the elapsed time of the animation exceeds the
1167     * animation's duration, including the repeatCount).
1168     *
1169     * @param currentTime The current time, as tracked by the static timing handler
1170     * @return true if the animation's duration, including any repetitions due to
1171     * <code>repeatCount</code>, has been exceeded and the animation should be ended.
1172     */
1173    boolean animationFrame(long currentTime) {
1174        boolean done = false;
1175        switch (mPlayingState) {
1176        case RUNNING:
1177        case SEEKED:
1178            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1179            if (fraction >= 1f) {
1180                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1181                    // Time to repeat
1182                    if (mListeners != null) {
1183                        int numListeners = mListeners.size();
1184                        for (int i = 0; i < numListeners; ++i) {
1185                            mListeners.get(i).onAnimationRepeat(this);
1186                        }
1187                    }
1188                    if (mRepeatMode == REVERSE) {
1189                        mPlayingBackwards = !mPlayingBackwards;
1190                    }
1191                    mCurrentIteration += (int)fraction;
1192                    fraction = fraction % 1f;
1193                    mStartTime += mDuration;
1194                } else {
1195                    done = true;
1196                    fraction = Math.min(fraction, 1.0f);
1197                }
1198            }
1199            if (mPlayingBackwards) {
1200                fraction = 1f - fraction;
1201            }
1202            animateValue(fraction);
1203            break;
1204        }
1205
1206        return done;
1207    }
1208
1209    /**
1210     * Processes a frame of the animation, adjusting the start time if needed.
1211     *
1212     * @param frameTime The frame time.
1213     * @return true if the animation has ended.
1214     */
1215    final boolean doAnimationFrame(long frameTime) {
1216        if (mPlayingState == STOPPED) {
1217            mPlayingState = RUNNING;
1218            if (mSeekTime < 0) {
1219                mStartTime = frameTime;
1220            } else {
1221                mStartTime = frameTime - mSeekTime;
1222                // Now that we're playing, reset the seek time
1223                mSeekTime = -1;
1224            }
1225        }
1226        if (mPaused) {
1227            if (mPauseTime < 0) {
1228                mPauseTime = frameTime;
1229            }
1230            return false;
1231        } else if (mResumed) {
1232            mResumed = false;
1233            if (mPauseTime > 0) {
1234                // Offset by the duration that the animation was paused
1235                mStartTime += (frameTime - mPauseTime);
1236            }
1237        }
1238        // The frame time might be before the start time during the first frame of
1239        // an animation.  The "current time" must always be on or after the start
1240        // time to avoid animating frames at negative time intervals.  In practice, this
1241        // is very rare and only happens when seeking backwards.
1242        final long currentTime = Math.max(frameTime, mStartTime);
1243        return animationFrame(currentTime);
1244    }
1245
1246    /**
1247     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1248     * the most recent frame update on the animation.
1249     *
1250     * @return Elapsed/interpolated fraction of the animation.
1251     */
1252    public float getAnimatedFraction() {
1253        return mCurrentFraction;
1254    }
1255
1256    /**
1257     * This method is called with the elapsed fraction of the animation during every
1258     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1259     * and then into an animated value (from the evaluator. The function is called mostly during
1260     * animation updates, but it is also called when the <code>end()</code>
1261     * function is called, to set the final value on the property.
1262     *
1263     * <p>Overrides of this method must call the superclass to perform the calculation
1264     * of the animated value.</p>
1265     *
1266     * @param fraction The elapsed fraction of the animation.
1267     */
1268    void animateValue(float fraction) {
1269        fraction = mInterpolator.getInterpolation(fraction);
1270        mCurrentFraction = fraction;
1271        int numValues = mValues.length;
1272        for (int i = 0; i < numValues; ++i) {
1273            mValues[i].calculateValue(fraction);
1274        }
1275        if (mUpdateListeners != null) {
1276            int numListeners = mUpdateListeners.size();
1277            for (int i = 0; i < numListeners; ++i) {
1278                mUpdateListeners.get(i).onAnimationUpdate(this);
1279            }
1280        }
1281    }
1282
1283    @Override
1284    public ValueAnimator clone() {
1285        final ValueAnimator anim = (ValueAnimator) super.clone();
1286        if (mUpdateListeners != null) {
1287            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1288            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1289            int numListeners = oldListeners.size();
1290            for (int i = 0; i < numListeners; ++i) {
1291                anim.mUpdateListeners.add(oldListeners.get(i));
1292            }
1293        }
1294        anim.mSeekTime = -1;
1295        anim.mPlayingBackwards = false;
1296        anim.mCurrentIteration = 0;
1297        anim.mInitialized = false;
1298        anim.mPlayingState = STOPPED;
1299        anim.mStartedDelay = false;
1300        PropertyValuesHolder[] oldValues = mValues;
1301        if (oldValues != null) {
1302            int numValues = oldValues.length;
1303            anim.mValues = new PropertyValuesHolder[numValues];
1304            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1305            for (int i = 0; i < numValues; ++i) {
1306                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1307                anim.mValues[i] = newValuesHolder;
1308                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1309            }
1310        }
1311        return anim;
1312    }
1313
1314    /**
1315     * Implementors of this interface can add themselves as update listeners
1316     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1317     * frame, after the current frame's values have been calculated for that
1318     * <code>ValueAnimator</code>.
1319     */
1320    public static interface AnimatorUpdateListener {
1321        /**
1322         * <p>Notifies the occurrence of another frame of the animation.</p>
1323         *
1324         * @param animation The animation which was repeated.
1325         */
1326        void onAnimationUpdate(ValueAnimator animation);
1327
1328    }
1329
1330    /**
1331     * Return the number of animations currently running.
1332     *
1333     * Used by StrictMode internally to annotate violations.
1334     * May be called on arbitrary threads!
1335     *
1336     * @hide
1337     */
1338    public static int getCurrentAnimationsCount() {
1339        AnimationHandler handler = sAnimationHandler.get();
1340        return handler != null ? handler.mAnimations.size() : 0;
1341    }
1342
1343    /**
1344     * Clear all animations on this thread, without canceling or ending them.
1345     * This should be used with caution.
1346     *
1347     * @hide
1348     */
1349    public static void clearAllAnimations() {
1350        AnimationHandler handler = sAnimationHandler.get();
1351        if (handler != null) {
1352            handler.mAnimations.clear();
1353            handler.mPendingAnimations.clear();
1354            handler.mDelayedAnims.clear();
1355        }
1356    }
1357
1358    private static AnimationHandler getOrCreateAnimationHandler() {
1359        AnimationHandler handler = sAnimationHandler.get();
1360        if (handler == null) {
1361            handler = new AnimationHandler();
1362            sAnimationHandler.set(handler);
1363        }
1364        return handler;
1365    }
1366
1367    @Override
1368    public String toString() {
1369        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1370        if (mValues != null) {
1371            for (int i = 0; i < mValues.length; ++i) {
1372                returnVal += "\n    " + mValues[i].toString();
1373            }
1374        }
1375        return returnVal;
1376    }
1377
1378    /**
1379     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1380     * the UI thread. This is a hint that informs the ValueAnimator that it is
1381     * OK to run the animation off-thread, however ValueAnimator may decide
1382     * that it must run the animation on the UI thread anyway. For example if there
1383     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1384     * regardless of the value of this hint.</p>
1385     *
1386     * <p>Regardless of whether or not the animation runs asynchronously, all
1387     * listener callbacks will be called on the UI thread.</p>
1388     *
1389     * <p>To be able to use this hint the following must be true:</p>
1390     * <ol>
1391     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1392     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1393     *    to change values, duration, delay, etc... may be ignored.</li>
1394     * <li>Lifecycle callback events may be asynchronous. Events such as
1395     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1396     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1397     *    as they must be posted back to the UI thread, and any actions performed
1398     *    by those callbacks (such as starting new animations) will not happen
1399     *    in the same frame.</li>
1400     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1401     *    may be asynchronous. It is guaranteed that all state changes that are
1402     *    performed on the UI thread in the same frame will be applied as a single
1403     *    atomic update, however that frame may be the current frame,
1404     *    the next frame, or some future frame. This will also impact the observed
1405     *    state of the Animator. For example, {@link #isStarted()} may still return true
1406     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1407     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1408     *    for this reason.</li>
1409     * </ol>
1410     * @hide
1411     */
1412    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1413        // It is up to subclasses to support this, if they can.
1414    }
1415}
1416