ValueAnimator.java revision fa21bdfd5a8a5da3ec0530f7cc884994f92dc597
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.annotation.CallSuper;
20import android.annotation.IntDef;
21import android.os.Looper;
22import android.os.Trace;
23import android.util.AndroidRuntimeException;
24import android.util.Log;
25import android.view.animation.AccelerateDecelerateInterpolator;
26import android.view.animation.AnimationUtils;
27import android.view.animation.LinearInterpolator;
28
29import java.lang.annotation.Retention;
30import java.lang.annotation.RetentionPolicy;
31import java.util.ArrayList;
32import java.util.HashMap;
33
34/**
35 * This class provides a simple timing engine for running animations
36 * which calculate animated values and set them on target objects.
37 *
38 * <p>There is a single timing pulse that all animations use. It runs in a
39 * custom handler to ensure that property changes happen on the UI thread.</p>
40 *
41 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
42 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
43 * out of an animation. This behavior can be changed by calling
44 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
45 *
46 * <p>Animators can be created from either code or resource files. Here is an example
47 * of a ValueAnimator resource file:</p>
48 *
49 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
50 *
51 * <p>It is also possible to use a combination of {@link PropertyValuesHolder} and
52 * {@link Keyframe} resource tags to create a multi-step animation.
53 * Note that you can specify explicit fractional values (from 0 to 1) for
54 * each keyframe to determine when, in the overall duration, the animation should arrive at that
55 * value. Alternatively, you can leave the fractions off and the keyframes will be equally
56 * distributed within the total duration:</p>
57 *
58 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
59 * ValueAnimatorKeyframeResources}
60 *
61 * <div class="special reference">
62 * <h3>Developer Guides</h3>
63 * <p>For more information about animating with {@code ValueAnimator}, read the
64 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
65 * Animation</a> developer guide.</p>
66 * </div>
67 */
68@SuppressWarnings("unchecked")
69public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
70    private static final String TAG = "ValueAnimator";
71    private static final boolean DEBUG = false;
72
73    /**
74     * Internal constants
75     */
76    private static float sDurationScale = 1.0f;
77
78    /**
79     * Internal variables
80     * NOTE: This object implements the clone() method, making a deep copy of any referenced
81     * objects. As other non-trivial fields are added to this class, make sure to add logic
82     * to clone() to make deep copies of them.
83     */
84
85    /**
86     * The first time that the animation's animateFrame() method is called. This time is used to
87     * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
88     * to animateFrame().
89     *
90     * Whenever mStartTime is set, you must also update mStartTimeCommitted.
91     */
92    long mStartTime;
93
94    /**
95     * When true, the start time has been firmly committed as a chosen reference point in
96     * time by which the progress of the animation will be evaluated.  When false, the
97     * start time may be updated when the first animation frame is committed so as
98     * to compensate for jank that may have occurred between when the start time was
99     * initialized and when the frame was actually drawn.
100     *
101     * This flag is generally set to false during the first frame of the animation
102     * when the animation playing state transitions from STOPPED to RUNNING or
103     * resumes after having been paused.  This flag is set to true when the start time
104     * is firmly committed and should not be further compensated for jank.
105     */
106    boolean mStartTimeCommitted;
107
108    /**
109     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
110     * to a value.
111     */
112    float mSeekFraction = -1;
113
114    /**
115     * Set on the next frame after pause() is called, used to calculate a new startTime
116     * or delayStartTime which allows the animator to continue from the point at which
117     * it was paused. If negative, has not yet been set.
118     */
119    private long mPauseTime;
120
121    /**
122     * Set when an animator is resumed. This triggers logic in the next frame which
123     * actually resumes the animator.
124     */
125    private boolean mResumed = false;
126
127    // The time interpolator to be used if none is set on the animation
128    private static final TimeInterpolator sDefaultInterpolator =
129            new AccelerateDecelerateInterpolator();
130
131    /**
132     * Flag to indicate whether this animator is playing in reverse mode, specifically
133     * by being started or interrupted by a call to reverse(). This flag is different than
134     * mPlayingBackwards, which indicates merely whether the current iteration of the
135     * animator is playing in reverse. It is used in corner cases to determine proper end
136     * behavior.
137     */
138    private boolean mReversing;
139
140    /**
141     * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1
142     */
143    private float mOverallFraction = 0f;
144
145    /**
146     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
147     * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration.
148     */
149    private float mCurrentFraction = 0f;
150
151    /**
152     * Tracks the time (in milliseconds) when the last frame arrived.
153     */
154    private long mLastFrameTime = 0;
155
156    /**
157     * Additional playing state to indicate whether an animator has been start()'d. There is
158     * some lag between a call to start() and the first animation frame. We should still note
159     * that the animation has been started, even if it's first animation frame has not yet
160     * happened, and reflect that state in isRunning().
161     * Note that delayed animations are different: they are not started until their first
162     * animation frame, which occurs after their delay elapses.
163     */
164    private boolean mRunning = false;
165
166    /**
167     * Additional playing state to indicate whether an animator has been start()'d, whether or
168     * not there is a nonzero startDelay.
169     */
170    private boolean mStarted = false;
171
172    /**
173     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
174     * complex to keep track of since we notify listeners at different times depending on
175     * startDelay and whether start() was called before end().
176     */
177    private boolean mStartListenersCalled = false;
178
179    /**
180     * Flag that denotes whether the animation is set up and ready to go. Used to
181     * set up animation that has not yet been started.
182     */
183    boolean mInitialized = false;
184
185    /**
186     * Flag that tracks whether animation has been requested to end.
187     */
188    private boolean mAnimationEndRequested = false;
189
190    //
191    // Backing variables
192    //
193
194    // How long the animation should last in ms
195    private long mDuration = 300;
196
197    // The amount of time in ms to delay starting the animation after start() is called. Note
198    // that this start delay is unscaled. When there is a duration scale set on the animator, the
199    // scaling factor will be applied to this delay.
200    private long mStartDelay = 0;
201
202    // The number of times the animation will repeat. The default is 0, which means the animation
203    // will play only once
204    private int mRepeatCount = 0;
205
206    /**
207     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
208     * animation will start from the beginning on every new cycle. REVERSE means the animation
209     * will reverse directions on each iteration.
210     */
211    private int mRepeatMode = RESTART;
212
213    /**
214     * The time interpolator to be used. The elapsed fraction of the animation will be passed
215     * through this interpolator to calculate the interpolated fraction, which is then used to
216     * calculate the animated values.
217     */
218    private TimeInterpolator mInterpolator = sDefaultInterpolator;
219
220    /**
221     * The set of listeners to be sent events through the life of an animation.
222     */
223    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
224
225    /**
226     * The property/value sets being animated.
227     */
228    PropertyValuesHolder[] mValues;
229
230    /**
231     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
232     * by property name during calls to getAnimatedValue(String).
233     */
234    HashMap<String, PropertyValuesHolder> mValuesMap;
235
236    /**
237     * Public constants
238     */
239
240    /** @hide */
241    @IntDef({RESTART, REVERSE})
242    @Retention(RetentionPolicy.SOURCE)
243    public @interface RepeatMode {}
244
245    /**
246     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
247     * or a positive value, the animation restarts from the beginning.
248     */
249    public static final int RESTART = 1;
250    /**
251     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
252     * or a positive value, the animation reverses direction on every iteration.
253     */
254    public static final int REVERSE = 2;
255    /**
256     * This value used used with the {@link #setRepeatCount(int)} property to repeat
257     * the animation indefinitely.
258     */
259    public static final int INFINITE = -1;
260
261    /**
262     * @hide
263     */
264    public static void setDurationScale(float durationScale) {
265        sDurationScale = durationScale;
266    }
267
268    /**
269     * @hide
270     */
271    public static float getDurationScale() {
272        return sDurationScale;
273    }
274
275    /**
276     * Creates a new ValueAnimator object. This default constructor is primarily for
277     * use internally; the factory methods which take parameters are more generally
278     * useful.
279     */
280    public ValueAnimator() {
281    }
282
283    /**
284     * Constructs and returns a ValueAnimator that animates between int values. A single
285     * value implies that that value is the one being animated to. However, this is not typically
286     * useful in a ValueAnimator object because there is no way for the object to determine the
287     * starting value for the animation (unlike ObjectAnimator, which can derive that value
288     * from the target object and property being animated). Therefore, there should typically
289     * be two or more values.
290     *
291     * @param values A set of values that the animation will animate between over time.
292     * @return A ValueAnimator object that is set up to animate between the given values.
293     */
294    public static ValueAnimator ofInt(int... values) {
295        ValueAnimator anim = new ValueAnimator();
296        anim.setIntValues(values);
297        return anim;
298    }
299
300    /**
301     * Constructs and returns a ValueAnimator that animates between color values. A single
302     * value implies that that value is the one being animated to. However, this is not typically
303     * useful in a ValueAnimator object because there is no way for the object to determine the
304     * starting value for the animation (unlike ObjectAnimator, which can derive that value
305     * from the target object and property being animated). Therefore, there should typically
306     * be two or more values.
307     *
308     * @param values A set of values that the animation will animate between over time.
309     * @return A ValueAnimator object that is set up to animate between the given values.
310     */
311    public static ValueAnimator ofArgb(int... values) {
312        ValueAnimator anim = new ValueAnimator();
313        anim.setIntValues(values);
314        anim.setEvaluator(ArgbEvaluator.getInstance());
315        return anim;
316    }
317
318    /**
319     * Constructs and returns a ValueAnimator that animates between float values. A single
320     * value implies that that value is the one being animated to. However, this is not typically
321     * useful in a ValueAnimator object because there is no way for the object to determine the
322     * starting value for the animation (unlike ObjectAnimator, which can derive that value
323     * from the target object and property being animated). Therefore, there should typically
324     * be two or more values.
325     *
326     * @param values A set of values that the animation will animate between over time.
327     * @return A ValueAnimator object that is set up to animate between the given values.
328     */
329    public static ValueAnimator ofFloat(float... values) {
330        ValueAnimator anim = new ValueAnimator();
331        anim.setFloatValues(values);
332        return anim;
333    }
334
335    /**
336     * Constructs and returns a ValueAnimator that animates between the values
337     * specified in the PropertyValuesHolder objects.
338     *
339     * @param values A set of PropertyValuesHolder objects whose values will be animated
340     * between over time.
341     * @return A ValueAnimator object that is set up to animate between the given values.
342     */
343    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
344        ValueAnimator anim = new ValueAnimator();
345        anim.setValues(values);
346        return anim;
347    }
348    /**
349     * Constructs and returns a ValueAnimator that animates between Object values. A single
350     * value implies that that value is the one being animated to. However, this is not typically
351     * useful in a ValueAnimator object because there is no way for the object to determine the
352     * starting value for the animation (unlike ObjectAnimator, which can derive that value
353     * from the target object and property being animated). Therefore, there should typically
354     * be two or more values.
355     *
356     * <p><strong>Note:</strong> The Object values are stored as references to the original
357     * objects, which means that changes to those objects after this method is called will
358     * affect the values on the animator. If the objects will be mutated externally after
359     * this method is called, callers should pass a copy of those objects instead.
360     *
361     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
362     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
363     * to perform that interpolation.
364     *
365     * @param evaluator A TypeEvaluator that will be called on each animation frame to
366     * provide the ncessry interpolation between the Object values to derive the animated
367     * value.
368     * @param values A set of values that the animation will animate between over time.
369     * @return A ValueAnimator object that is set up to animate between the given values.
370     */
371    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
372        ValueAnimator anim = new ValueAnimator();
373        anim.setObjectValues(values);
374        anim.setEvaluator(evaluator);
375        return anim;
376    }
377
378    /**
379     * Sets int values that will be animated between. A single
380     * value implies that that value is the one being animated to. However, this is not typically
381     * useful in a ValueAnimator object because there is no way for the object to determine the
382     * starting value for the animation (unlike ObjectAnimator, which can derive that value
383     * from the target object and property being animated). Therefore, there should typically
384     * be two or more values.
385     *
386     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
387     * than one PropertyValuesHolder object, this method will set the values for the first
388     * of those objects.</p>
389     *
390     * @param values A set of values that the animation will animate between over time.
391     */
392    public void setIntValues(int... values) {
393        if (values == null || values.length == 0) {
394            return;
395        }
396        if (mValues == null || mValues.length == 0) {
397            setValues(PropertyValuesHolder.ofInt("", values));
398        } else {
399            PropertyValuesHolder valuesHolder = mValues[0];
400            valuesHolder.setIntValues(values);
401        }
402        // New property/values/target should cause re-initialization prior to starting
403        mInitialized = false;
404    }
405
406    /**
407     * Sets float values that will be animated between. A single
408     * value implies that that value is the one being animated to. However, this is not typically
409     * useful in a ValueAnimator object because there is no way for the object to determine the
410     * starting value for the animation (unlike ObjectAnimator, which can derive that value
411     * from the target object and property being animated). Therefore, there should typically
412     * be two or more values.
413     *
414     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
415     * than one PropertyValuesHolder object, this method will set the values for the first
416     * of those objects.</p>
417     *
418     * @param values A set of values that the animation will animate between over time.
419     */
420    public void setFloatValues(float... values) {
421        if (values == null || values.length == 0) {
422            return;
423        }
424        if (mValues == null || mValues.length == 0) {
425            setValues(PropertyValuesHolder.ofFloat("", values));
426        } else {
427            PropertyValuesHolder valuesHolder = mValues[0];
428            valuesHolder.setFloatValues(values);
429        }
430        // New property/values/target should cause re-initialization prior to starting
431        mInitialized = false;
432    }
433
434    /**
435     * Sets the values to animate between for this animation. A single
436     * value implies that that value is the one being animated to. However, this is not typically
437     * useful in a ValueAnimator object because there is no way for the object to determine the
438     * starting value for the animation (unlike ObjectAnimator, which can derive that value
439     * from the target object and property being animated). Therefore, there should typically
440     * be two or more values.
441     *
442     * <p><strong>Note:</strong> The Object values are stored as references to the original
443     * objects, which means that changes to those objects after this method is called will
444     * affect the values on the animator. If the objects will be mutated externally after
445     * this method is called, callers should pass a copy of those objects instead.
446     *
447     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
448     * than one PropertyValuesHolder object, this method will set the values for the first
449     * of those objects.</p>
450     *
451     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
452     * between these value objects. ValueAnimator only knows how to interpolate between the
453     * primitive types specified in the other setValues() methods.</p>
454     *
455     * @param values The set of values to animate between.
456     */
457    public void setObjectValues(Object... values) {
458        if (values == null || values.length == 0) {
459            return;
460        }
461        if (mValues == null || mValues.length == 0) {
462            setValues(PropertyValuesHolder.ofObject("", null, values));
463        } else {
464            PropertyValuesHolder valuesHolder = mValues[0];
465            valuesHolder.setObjectValues(values);
466        }
467        // New property/values/target should cause re-initialization prior to starting
468        mInitialized = false;
469    }
470
471    /**
472     * Sets the values, per property, being animated between. This function is called internally
473     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
474     * be constructed without values and this method can be called to set the values manually
475     * instead.
476     *
477     * @param values The set of values, per property, being animated between.
478     */
479    public void setValues(PropertyValuesHolder... values) {
480        int numValues = values.length;
481        mValues = values;
482        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
483        for (int i = 0; i < numValues; ++i) {
484            PropertyValuesHolder valuesHolder = values[i];
485            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
486        }
487        // New property/values/target should cause re-initialization prior to starting
488        mInitialized = false;
489    }
490
491    /**
492     * Returns the values that this ValueAnimator animates between. These values are stored in
493     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
494     * of value objects instead.
495     *
496     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
497     * values, per property, that define the animation.
498     */
499    public PropertyValuesHolder[] getValues() {
500        return mValues;
501    }
502
503    /**
504     * This function is called immediately before processing the first animation
505     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
506     * function is called after that delay ends.
507     * It takes care of the final initialization steps for the
508     * animation.
509     *
510     *  <p>Overrides of this method should call the superclass method to ensure
511     *  that internal mechanisms for the animation are set up correctly.</p>
512     */
513    @CallSuper
514    void initAnimation() {
515        if (!mInitialized) {
516            int numValues = mValues.length;
517            for (int i = 0; i < numValues; ++i) {
518                mValues[i].init();
519            }
520            mInitialized = true;
521        }
522    }
523
524    /**
525     * Sets the length of the animation. The default duration is 300 milliseconds.
526     *
527     * @param duration The length of the animation, in milliseconds. This value cannot
528     * be negative.
529     * @return ValueAnimator The object called with setDuration(). This return
530     * value makes it easier to compose statements together that construct and then set the
531     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
532     */
533    @Override
534    public ValueAnimator setDuration(long duration) {
535        if (duration < 0) {
536            throw new IllegalArgumentException("Animators cannot have negative duration: " +
537                    duration);
538        }
539        mDuration = duration;
540        return this;
541    }
542
543    private long getScaledDuration() {
544        return (long)(mDuration * sDurationScale);
545    }
546
547    /**
548     * Gets the length of the animation. The default duration is 300 milliseconds.
549     *
550     * @return The length of the animation, in milliseconds.
551     */
552    @Override
553    public long getDuration() {
554        return mDuration;
555    }
556
557    @Override
558    public long getTotalDuration() {
559        if (mRepeatCount == INFINITE) {
560            return DURATION_INFINITE;
561        } else {
562            return mStartDelay + (mDuration * (mRepeatCount + 1));
563        }
564    }
565
566    /**
567     * Sets the position of the animation to the specified point in time. This time should
568     * be between 0 and the total duration of the animation, including any repetition. If
569     * the animation has not yet been started, then it will not advance forward after it is
570     * set to this time; it will simply set the time to this value and perform any appropriate
571     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
572     * will set the current playing time to this value and continue playing from that point.
573     *
574     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
575     */
576    public void setCurrentPlayTime(long playTime) {
577        float fraction = mDuration > 0 ? (float) playTime / mDuration : 1;
578        setCurrentFraction(fraction);
579    }
580
581    /**
582     * Sets the position of the animation to the specified fraction. This fraction should
583     * be between 0 and the total fraction of the animation, including any repetition. That is,
584     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
585     * and a value of 2 at the end of a reversing animator that repeats once. If
586     * the animation has not yet been started, then it will not advance forward after it is
587     * set to this fraction; it will simply set the fraction to this value and perform any
588     * appropriate actions based on that fraction. If the animation is already running, then
589     * setCurrentFraction() will set the current fraction to this value and continue
590     * playing from that point. {@link Animator.AnimatorListener} events are not called
591     * due to changing the fraction; those events are only processed while the animation
592     * is running.
593     *
594     * @param fraction The fraction to which the animation is advanced or rewound. Values
595     * outside the range of 0 to the maximum fraction for the animator will be clamped to
596     * the correct range.
597     */
598    public void setCurrentFraction(float fraction) {
599        initAnimation();
600        fraction = clampFraction(fraction);
601        long seekTime = (long) (getScaledDuration() * fraction);
602        long currentTime = AnimationUtils.currentAnimationTimeMillis();
603        mStartTime = currentTime - seekTime;
604        mStartTimeCommitted = true; // do not allow start time to be compensated for jank
605        if (!mRunning) {
606            mSeekFraction = fraction;
607        }
608        mOverallFraction = fraction;
609        final float currentIterationFraction = getCurrentIterationFraction(fraction);
610        animateValue(currentIterationFraction);
611    }
612
613    /**
614     * Calculates current iteration based on the overall fraction. The overall fraction will be
615     * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current
616     * iteration can be derived from it.
617     */
618    private int getCurrentIteration(float fraction) {
619        fraction = clampFraction(fraction);
620        // If the overall fraction is a positive integer, we consider the current iteration to be
621        // complete. In other words, the fraction for the current iteration would be 1, and the
622        // current iteration would be overall fraction - 1.
623        double iteration = Math.floor(fraction);
624        if (fraction == iteration && fraction > 0) {
625            iteration--;
626        }
627        return (int) iteration;
628    }
629
630    /**
631     * Calculates the fraction of the current iteration, taking into account whether the animation
632     * should be played backwards. E.g. When the animation is played backwards in an iteration,
633     * the fraction for that iteration will go from 1f to 0f.
634     */
635    private float getCurrentIterationFraction(float fraction) {
636        fraction = clampFraction(fraction);
637        int iteration = getCurrentIteration(fraction);
638        float currentFraction = fraction - iteration;
639        return shouldPlayBackward(iteration) ? 1f - currentFraction : currentFraction;
640    }
641
642    /**
643     * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite,
644     * no upper bound will be set for the fraction.
645     *
646     * @param fraction fraction to be clamped
647     * @return fraction clamped into the range of [0, mRepeatCount + 1]
648     */
649    private float clampFraction(float fraction) {
650        if (fraction < 0) {
651            fraction = 0;
652        } else if (mRepeatCount != INFINITE) {
653            fraction = Math.min(fraction, mRepeatCount + 1);
654        }
655        return fraction;
656    }
657
658    /**
659     * Calculates the direction of animation playing (i.e. forward or backward), based on 1)
660     * whether the entire animation is being reversed, 2) repeat mode applied to the current
661     * iteration.
662     */
663    private boolean shouldPlayBackward(int iteration) {
664        if (iteration > 0 && mRepeatMode == REVERSE &&
665                (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
666            // if we were seeked to some other iteration in a reversing animator,
667            // figure out the correct direction to start playing based on the iteration
668            if (mReversing) {
669                return (iteration % 2) == 0;
670            } else {
671                return (iteration % 2) != 0;
672            }
673        } else {
674            return mReversing;
675        }
676    }
677
678    /**
679     * Gets the current position of the animation in time, which is equal to the current
680     * time minus the time that the animation started. An animation that is not yet started will
681     * return a value of zero, unless the animation has has its play time set via
682     * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
683     * it will return the time that was set.
684     *
685     * @return The current position in time of the animation.
686     */
687    public long getCurrentPlayTime() {
688        if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
689            return 0;
690        }
691        if (mSeekFraction >= 0) {
692            return (long) (mDuration * mSeekFraction);
693        }
694        float durationScale = sDurationScale == 0 ? 1 : sDurationScale;
695        return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale);
696    }
697
698    /**
699     * The amount of time, in milliseconds, to delay starting the animation after
700     * {@link #start()} is called.
701     *
702     * @return the number of milliseconds to delay running the animation
703     */
704    @Override
705    public long getStartDelay() {
706        return mStartDelay;
707    }
708
709    /**
710     * The amount of time, in milliseconds, to delay starting the animation after
711     * {@link #start()} is called.
712
713     * @param startDelay The amount of the delay, in milliseconds
714     */
715    @Override
716    public void setStartDelay(long startDelay) {
717        mStartDelay = startDelay;
718    }
719
720    /**
721     * The amount of time, in milliseconds, between each frame of the animation. This is a
722     * requested time that the animation will attempt to honor, but the actual delay between
723     * frames may be different, depending on system load and capabilities. This is a static
724     * function because the same delay will be applied to all animations, since they are all
725     * run off of a single timing loop.
726     *
727     * The frame delay may be ignored when the animation system uses an external timing
728     * source, such as the display refresh rate (vsync), to govern animations.
729     *
730     * Note that this method should be called from the same thread that {@link #start()} is
731     * called in order to check the frame delay for that animation. A runtime exception will be
732     * thrown if the calling thread does not have a Looper.
733     *
734     * @return the requested time between frames, in milliseconds
735     */
736    public static long getFrameDelay() {
737        return AnimationHandler.getInstance().getFrameDelay();
738    }
739
740    /**
741     * The amount of time, in milliseconds, between each frame of the animation. This is a
742     * requested time that the animation will attempt to honor, but the actual delay between
743     * frames may be different, depending on system load and capabilities. This is a static
744     * function because the same delay will be applied to all animations, since they are all
745     * run off of a single timing loop.
746     *
747     * The frame delay may be ignored when the animation system uses an external timing
748     * source, such as the display refresh rate (vsync), to govern animations.
749     *
750     * Note that this method should be called from the same thread that {@link #start()} is
751     * called in order to have the new frame delay take effect on that animation. A runtime
752     * exception will be thrown if the calling thread does not have a Looper.
753     *
754     * @param frameDelay the requested time between frames, in milliseconds
755     */
756    public static void setFrameDelay(long frameDelay) {
757        AnimationHandler.getInstance().setFrameDelay(frameDelay);
758    }
759
760    /**
761     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
762     * property being animated. This value is only sensible while the animation is running. The main
763     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
764     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
765     * is called during each animation frame, immediately after the value is calculated.
766     *
767     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
768     * the single property being animated. If there are several properties being animated
769     * (specified by several PropertyValuesHolder objects in the constructor), this function
770     * returns the animated value for the first of those objects.
771     */
772    public Object getAnimatedValue() {
773        if (mValues != null && mValues.length > 0) {
774            return mValues[0].getAnimatedValue();
775        }
776        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
777        return null;
778    }
779
780    /**
781     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
782     * The main purpose for this read-only property is to retrieve the value from the
783     * <code>ValueAnimator</code> during a call to
784     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
785     * is called during each animation frame, immediately after the value is calculated.
786     *
787     * @return animatedValue The value most recently calculated for the named property
788     * by this <code>ValueAnimator</code>.
789     */
790    public Object getAnimatedValue(String propertyName) {
791        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
792        if (valuesHolder != null) {
793            return valuesHolder.getAnimatedValue();
794        } else {
795            // At least avoid crashing if called with bogus propertyName
796            return null;
797        }
798    }
799
800    /**
801     * Sets how many times the animation should be repeated. If the repeat
802     * count is 0, the animation is never repeated. If the repeat count is
803     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
804     * into account. The repeat count is 0 by default.
805     *
806     * @param value the number of times the animation should be repeated
807     */
808    public void setRepeatCount(int value) {
809        mRepeatCount = value;
810    }
811    /**
812     * Defines how many times the animation should repeat. The default value
813     * is 0.
814     *
815     * @return the number of times the animation should repeat, or {@link #INFINITE}
816     */
817    public int getRepeatCount() {
818        return mRepeatCount;
819    }
820
821    /**
822     * Defines what this animation should do when it reaches the end. This
823     * setting is applied only when the repeat count is either greater than
824     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
825     *
826     * @param value {@link #RESTART} or {@link #REVERSE}
827     */
828    public void setRepeatMode(@RepeatMode int value) {
829        mRepeatMode = value;
830    }
831
832    /**
833     * Defines what this animation should do when it reaches the end.
834     *
835     * @return either one of {@link #REVERSE} or {@link #RESTART}
836     */
837    @RepeatMode
838    public int getRepeatMode() {
839        return mRepeatMode;
840    }
841
842    /**
843     * Adds a listener to the set of listeners that are sent update events through the life of
844     * an animation. This method is called on all listeners for every frame of the animation,
845     * after the values for the animation have been calculated.
846     *
847     * @param listener the listener to be added to the current set of listeners for this animation.
848     */
849    public void addUpdateListener(AnimatorUpdateListener listener) {
850        if (mUpdateListeners == null) {
851            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
852        }
853        mUpdateListeners.add(listener);
854    }
855
856    /**
857     * Removes all listeners from the set listening to frame updates for this animation.
858     */
859    public void removeAllUpdateListeners() {
860        if (mUpdateListeners == null) {
861            return;
862        }
863        mUpdateListeners.clear();
864        mUpdateListeners = null;
865    }
866
867    /**
868     * Removes a listener from the set listening to frame updates for this animation.
869     *
870     * @param listener the listener to be removed from the current set of update listeners
871     * for this animation.
872     */
873    public void removeUpdateListener(AnimatorUpdateListener listener) {
874        if (mUpdateListeners == null) {
875            return;
876        }
877        mUpdateListeners.remove(listener);
878        if (mUpdateListeners.size() == 0) {
879            mUpdateListeners = null;
880        }
881    }
882
883
884    /**
885     * The time interpolator used in calculating the elapsed fraction of this animation. The
886     * interpolator determines whether the animation runs with linear or non-linear motion,
887     * such as acceleration and deceleration. The default value is
888     * {@link android.view.animation.AccelerateDecelerateInterpolator}
889     *
890     * @param value the interpolator to be used by this animation. A value of <code>null</code>
891     * will result in linear interpolation.
892     */
893    @Override
894    public void setInterpolator(TimeInterpolator value) {
895        if (value != null) {
896            mInterpolator = value;
897        } else {
898            mInterpolator = new LinearInterpolator();
899        }
900    }
901
902    /**
903     * Returns the timing interpolator that this ValueAnimator uses.
904     *
905     * @return The timing interpolator for this ValueAnimator.
906     */
907    @Override
908    public TimeInterpolator getInterpolator() {
909        return mInterpolator;
910    }
911
912    /**
913     * The type evaluator to be used when calculating the animated values of this animation.
914     * The system will automatically assign a float or int evaluator based on the type
915     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
916     * are not one of these primitive types, or if different evaluation is desired (such as is
917     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
918     * For example, when running an animation on color values, the {@link ArgbEvaluator}
919     * should be used to get correct RGB color interpolation.
920     *
921     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
922     * will be used for that set. If there are several sets of values being animated, which is
923     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
924     * is assigned just to the first PropertyValuesHolder object.</p>
925     *
926     * @param value the evaluator to be used this animation
927     */
928    public void setEvaluator(TypeEvaluator value) {
929        if (value != null && mValues != null && mValues.length > 0) {
930            mValues[0].setEvaluator(value);
931        }
932    }
933
934    private void notifyStartListeners() {
935        if (mListeners != null && !mStartListenersCalled) {
936            ArrayList<AnimatorListener> tmpListeners =
937                    (ArrayList<AnimatorListener>) mListeners.clone();
938            int numListeners = tmpListeners.size();
939            for (int i = 0; i < numListeners; ++i) {
940                tmpListeners.get(i).onAnimationStart(this);
941            }
942        }
943        mStartListenersCalled = true;
944    }
945
946    /**
947     * Start the animation playing. This version of start() takes a boolean flag that indicates
948     * whether the animation should play in reverse. The flag is usually false, but may be set
949     * to true if called from the reverse() method.
950     *
951     * <p>The animation started by calling this method will be run on the thread that called
952     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
953     * this is not the case). Also, if the animation will animate
954     * properties of objects in the view hierarchy, then the calling thread should be the UI
955     * thread for that view hierarchy.</p>
956     *
957     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
958     */
959    private void start(boolean playBackwards) {
960        if (Looper.myLooper() == null) {
961            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
962        }
963        mReversing = playBackwards;
964        // Special case: reversing from seek-to-0 should act as if not seeked at all.
965        if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) {
966            if (mRepeatCount == INFINITE) {
967                // Calculate the fraction of the current iteration.
968                float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction));
969                mSeekFraction = 1 - fraction;
970            } else {
971                mSeekFraction = 1 + mRepeatCount - mSeekFraction;
972            }
973        }
974        mStarted = true;
975        mPaused = false;
976        mRunning = false;
977        AnimationHandler animationHandler = AnimationHandler.getInstance();
978        animationHandler.addAnimationFrameCallback(this, (long) (mStartDelay * sDurationScale));
979
980        if (mStartDelay == 0 || mSeekFraction >= 0) {
981            // If there's no start delay, init the animation and notify start listeners right away
982            // to be consistent with the previous behavior. Otherwise, postpone this until the first
983            // frame after the start delay.
984            startAnimation();
985            if (mSeekFraction == -1) {
986                // No seek, start at play time 0. Note that the reason we are not using fraction 0
987                // is because for animations with 0 duration, we want to be consistent with pre-N
988                // behavior: skip to the final value immediately.
989                setCurrentPlayTime(0);
990            } else {
991                setCurrentFraction(mSeekFraction);
992            }
993        }
994    }
995
996    @Override
997    public void start() {
998        start(false);
999    }
1000
1001    @Override
1002    public void cancel() {
1003        if (Looper.myLooper() == null) {
1004            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1005        }
1006
1007        // If end has already been requested, through a previous end() or cancel() call, no-op
1008        // until animation starts again.
1009        if (mAnimationEndRequested) {
1010            return;
1011        }
1012
1013        // Only cancel if the animation is actually running or has been started and is about
1014        // to run
1015        // Only notify listeners if the animator has actually started
1016        if ((mStarted || mRunning) && mListeners != null) {
1017            if (!mRunning) {
1018                // If it's not yet running, then start listeners weren't called. Call them now.
1019                notifyStartListeners();
1020            }
1021            ArrayList<AnimatorListener> tmpListeners =
1022                    (ArrayList<AnimatorListener>) mListeners.clone();
1023            for (AnimatorListener listener : tmpListeners) {
1024                listener.onAnimationCancel(this);
1025            }
1026        }
1027        endAnimation();
1028
1029    }
1030
1031    @Override
1032    public void end() {
1033        if (Looper.myLooper() == null) {
1034            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1035        }
1036        if (!mRunning) {
1037            // Special case if the animation has not yet started; get it ready for ending
1038            startAnimation();
1039            mStarted = true;
1040        } else if (!mInitialized) {
1041            initAnimation();
1042        }
1043        animateValue(shouldPlayBackward(mRepeatCount) ? 0f : 1f);
1044        endAnimation();
1045    }
1046
1047    @Override
1048    public void resume() {
1049        if (Looper.myLooper() == null) {
1050            throw new AndroidRuntimeException("Animators may only be resumed from the same " +
1051                    "thread that the animator was started on");
1052        }
1053        if (mPaused && !mResumed) {
1054            mResumed = true;
1055            if (mPauseTime > 0) {
1056                AnimationHandler handler = AnimationHandler.getInstance();
1057                handler.addAnimationFrameCallback(this, 0);
1058            }
1059        }
1060        super.resume();
1061    }
1062
1063    @Override
1064    public void pause() {
1065        boolean previouslyPaused = mPaused;
1066        super.pause();
1067        if (!previouslyPaused && mPaused) {
1068            mPauseTime = -1;
1069            mResumed = false;
1070        }
1071    }
1072
1073    @Override
1074    public boolean isRunning() {
1075        return mRunning;
1076    }
1077
1078    @Override
1079    public boolean isStarted() {
1080        return mStarted;
1081    }
1082
1083    /**
1084     * Plays the ValueAnimator in reverse. If the animation is already running,
1085     * it will stop itself and play backwards from the point reached when reverse was called.
1086     * If the animation is not currently running, then it will start from the end and
1087     * play backwards. This behavior is only set for the current animation; future playing
1088     * of the animation will use the default behavior of playing forward.
1089     */
1090    @Override
1091    public void reverse() {
1092        if (mRunning) {
1093            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1094            long currentPlayTime = currentTime - mStartTime;
1095            long timeLeft = getScaledDuration() - currentPlayTime;
1096            mStartTime = currentTime - timeLeft;
1097            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1098            mReversing = !mReversing;
1099        } else if (mStarted) {
1100            end();
1101        } else {
1102            start(true);
1103        }
1104    }
1105
1106    /**
1107     * @hide
1108     */
1109    @Override
1110    public boolean canReverse() {
1111        return true;
1112    }
1113
1114    /**
1115     * Called internally to end an animation by removing it from the animations list. Must be
1116     * called on the UI thread.
1117     */
1118    private void endAnimation() {
1119        if (mAnimationEndRequested) {
1120            return;
1121        }
1122        AnimationHandler handler = AnimationHandler.getInstance();
1123        handler.removeCallback(this);
1124
1125        mAnimationEndRequested = true;
1126        mPaused = false;
1127        if ((mStarted || mRunning) && mListeners != null) {
1128            if (!mRunning) {
1129                // If it's not yet running, then start listeners weren't called. Call them now.
1130                notifyStartListeners();
1131             }
1132            ArrayList<AnimatorListener> tmpListeners =
1133                    (ArrayList<AnimatorListener>) mListeners.clone();
1134            int numListeners = tmpListeners.size();
1135            for (int i = 0; i < numListeners; ++i) {
1136                tmpListeners.get(i).onAnimationEnd(this);
1137            }
1138        }
1139        mRunning = false;
1140        mStarted = false;
1141        mStartListenersCalled = false;
1142        mReversing = false;
1143        mLastFrameTime = 0;
1144        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1145            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1146                    System.identityHashCode(this));
1147        }
1148    }
1149
1150    /**
1151     * Called internally to start an animation by adding it to the active animations list. Must be
1152     * called on the UI thread.
1153     */
1154    private void startAnimation() {
1155        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1156            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1157                    System.identityHashCode(this));
1158        }
1159
1160        mAnimationEndRequested = false;
1161        initAnimation();
1162        mRunning = true;
1163        if (mSeekFraction >= 0) {
1164            mOverallFraction = mSeekFraction;
1165        } else {
1166            mOverallFraction = 0f;
1167        }
1168        if (mListeners != null) {
1169            notifyStartListeners();
1170        }
1171    }
1172
1173    /**
1174     * Returns the name of this animator for debugging purposes.
1175     */
1176    String getNameForTrace() {
1177        return "animator";
1178    }
1179
1180    /**
1181     * Applies an adjustment to the animation to compensate for jank between when
1182     * the animation first ran and when the frame was drawn.
1183     * @hide
1184     */
1185    public void commitAnimationFrame(long frameTime) {
1186        if (!mStartTimeCommitted) {
1187            mStartTimeCommitted = true;
1188            long adjustment = frameTime - mLastFrameTime;
1189            if (adjustment > 0) {
1190                mStartTime += adjustment;
1191                if (DEBUG) {
1192                    Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1193                }
1194            }
1195        }
1196    }
1197
1198    /**
1199     * This internal function processes a single animation frame for a given animation. The
1200     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1201     * elapsed duration, and therefore
1202     * the elapsed fraction, of the animation. The return value indicates whether the animation
1203     * should be ended (which happens when the elapsed time of the animation exceeds the
1204     * animation's duration, including the repeatCount).
1205     *
1206     * @param currentTime The current time, as tracked by the static timing handler
1207     * @return true if the animation's duration, including any repetitions due to
1208     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1209     */
1210    boolean animateBasedOnTime(long currentTime) {
1211        boolean done = false;
1212        if (mRunning) {
1213            final long scaledDuration = getScaledDuration();
1214            final float fraction = scaledDuration > 0 ?
1215                    (float)(currentTime - mStartTime) / scaledDuration : 1f;
1216            final float lastFraction = mOverallFraction;
1217            final boolean newIteration = (int) fraction > (int) lastFraction;
1218            final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) &&
1219                    (mRepeatCount != INFINITE);
1220            if (scaledDuration == 0) {
1221                // 0 duration animator, ignore the repeat count and skip to the end
1222                done = true;
1223            } else if (newIteration && !lastIterationFinished) {
1224                // Time to repeat
1225                if (mListeners != null) {
1226                    int numListeners = mListeners.size();
1227                    for (int i = 0; i < numListeners; ++i) {
1228                        mListeners.get(i).onAnimationRepeat(this);
1229                    }
1230                }
1231            } else if (lastIterationFinished) {
1232                done = true;
1233            }
1234            mOverallFraction = clampFraction(fraction);
1235            float currentIterationFraction = getCurrentIterationFraction(mOverallFraction);
1236            animateValue(currentIterationFraction);
1237        }
1238        return done;
1239    }
1240
1241    /**
1242     * Processes a frame of the animation, adjusting the start time if needed.
1243     *
1244     * @param frameTime The frame time.
1245     * @return true if the animation has ended.
1246     * @hide
1247     */
1248    public final void doAnimationFrame(long frameTime) {
1249        AnimationHandler handler = AnimationHandler.getInstance();
1250        if (mLastFrameTime == 0) {
1251            // First frame
1252            handler.addOneShotCommitCallback(this);
1253            if (mStartDelay > 0) {
1254                startAnimation();
1255            }
1256            if (mSeekFraction < 0) {
1257                mStartTime = frameTime;
1258            } else {
1259                long seekTime = (long) (getScaledDuration() * mSeekFraction);
1260                mStartTime = frameTime - seekTime;
1261                mSeekFraction = -1;
1262            }
1263            mStartTimeCommitted = false; // allow start time to be compensated for jank
1264        }
1265        mLastFrameTime = frameTime;
1266        if (mPaused) {
1267            mPauseTime = frameTime;
1268            handler.removeCallback(this);
1269            return;
1270        } else if (mResumed) {
1271            mResumed = false;
1272            if (mPauseTime > 0) {
1273                // Offset by the duration that the animation was paused
1274                mStartTime += (frameTime - mPauseTime);
1275                mStartTimeCommitted = false; // allow start time to be compensated for jank
1276            }
1277            handler.addOneShotCommitCallback(this);
1278        }
1279        // The frame time might be before the start time during the first frame of
1280        // an animation.  The "current time" must always be on or after the start
1281        // time to avoid animating frames at negative time intervals.  In practice, this
1282        // is very rare and only happens when seeking backwards.
1283        final long currentTime = Math.max(frameTime, mStartTime);
1284        boolean finished = animateBasedOnTime(currentTime);
1285
1286        if (finished) {
1287            endAnimation();
1288        }
1289    }
1290
1291    /**
1292     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1293     * the most recent frame update on the animation.
1294     *
1295     * @return Elapsed/interpolated fraction of the animation.
1296     */
1297    public float getAnimatedFraction() {
1298        return mCurrentFraction;
1299    }
1300
1301    /**
1302     * This method is called with the elapsed fraction of the animation during every
1303     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1304     * and then into an animated value (from the evaluator. The function is called mostly during
1305     * animation updates, but it is also called when the <code>end()</code>
1306     * function is called, to set the final value on the property.
1307     *
1308     * <p>Overrides of this method must call the superclass to perform the calculation
1309     * of the animated value.</p>
1310     *
1311     * @param fraction The elapsed fraction of the animation.
1312     */
1313    @CallSuper
1314    void animateValue(float fraction) {
1315        fraction = mInterpolator.getInterpolation(fraction);
1316        mCurrentFraction = fraction;
1317        int numValues = mValues.length;
1318        for (int i = 0; i < numValues; ++i) {
1319            mValues[i].calculateValue(fraction);
1320        }
1321        if (mUpdateListeners != null) {
1322            int numListeners = mUpdateListeners.size();
1323            for (int i = 0; i < numListeners; ++i) {
1324                mUpdateListeners.get(i).onAnimationUpdate(this);
1325            }
1326        }
1327    }
1328
1329    @Override
1330    public ValueAnimator clone() {
1331        final ValueAnimator anim = (ValueAnimator) super.clone();
1332        if (mUpdateListeners != null) {
1333            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1334        }
1335        anim.mSeekFraction = -1;
1336        anim.mReversing = false;
1337        anim.mInitialized = false;
1338        anim.mStarted = false;
1339        anim.mRunning = false;
1340        anim.mPaused = false;
1341        anim.mResumed = false;
1342        anim.mStartListenersCalled = false;
1343        anim.mStartTime = 0;
1344        anim.mStartTimeCommitted = false;
1345        anim.mAnimationEndRequested = false;
1346        anim.mPauseTime = 0;
1347        anim.mLastFrameTime = 0;
1348        anim.mOverallFraction = 0;
1349        anim.mCurrentFraction = 0;
1350
1351        PropertyValuesHolder[] oldValues = mValues;
1352        if (oldValues != null) {
1353            int numValues = oldValues.length;
1354            anim.mValues = new PropertyValuesHolder[numValues];
1355            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1356            for (int i = 0; i < numValues; ++i) {
1357                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1358                anim.mValues[i] = newValuesHolder;
1359                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1360            }
1361        }
1362        return anim;
1363    }
1364
1365    /**
1366     * Implementors of this interface can add themselves as update listeners
1367     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1368     * frame, after the current frame's values have been calculated for that
1369     * <code>ValueAnimator</code>.
1370     */
1371    public static interface AnimatorUpdateListener {
1372        /**
1373         * <p>Notifies the occurrence of another frame of the animation.</p>
1374         *
1375         * @param animation The animation which was repeated.
1376         */
1377        void onAnimationUpdate(ValueAnimator animation);
1378
1379    }
1380
1381    /**
1382     * Return the number of animations currently running.
1383     *
1384     * Used by StrictMode internally to annotate violations.
1385     * May be called on arbitrary threads!
1386     *
1387     * @hide
1388     */
1389    public static int getCurrentAnimationsCount() {
1390        return AnimationHandler.getAnimationCount();
1391    }
1392
1393    @Override
1394    public String toString() {
1395        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1396        if (mValues != null) {
1397            for (int i = 0; i < mValues.length; ++i) {
1398                returnVal += "\n    " + mValues[i].toString();
1399            }
1400        }
1401        return returnVal;
1402    }
1403
1404    /**
1405     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1406     * the UI thread. This is a hint that informs the ValueAnimator that it is
1407     * OK to run the animation off-thread, however ValueAnimator may decide
1408     * that it must run the animation on the UI thread anyway. For example if there
1409     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1410     * regardless of the value of this hint.</p>
1411     *
1412     * <p>Regardless of whether or not the animation runs asynchronously, all
1413     * listener callbacks will be called on the UI thread.</p>
1414     *
1415     * <p>To be able to use this hint the following must be true:</p>
1416     * <ol>
1417     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1418     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1419     *    to change values, duration, delay, etc... may be ignored.</li>
1420     * <li>Lifecycle callback events may be asynchronous. Events such as
1421     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1422     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1423     *    as they must be posted back to the UI thread, and any actions performed
1424     *    by those callbacks (such as starting new animations) will not happen
1425     *    in the same frame.</li>
1426     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1427     *    may be asynchronous. It is guaranteed that all state changes that are
1428     *    performed on the UI thread in the same frame will be applied as a single
1429     *    atomic update, however that frame may be the current frame,
1430     *    the next frame, or some future frame. This will also impact the observed
1431     *    state of the Animator. For example, {@link #isStarted()} may still return true
1432     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1433     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1434     *    for this reason.</li>
1435     * </ol>
1436     * @hide
1437     */
1438    @Override
1439    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1440        // It is up to subclasses to support this, if they can.
1441    }
1442}
1443