ValueAnimator.java revision fdd3ad7018ebb054c0288b8cd92739703a973181
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.os.Looper;
20import android.os.Trace;
21import android.util.AndroidRuntimeException;
22import android.view.Choreographer;
23import android.view.animation.AccelerateDecelerateInterpolator;
24import android.view.animation.AnimationUtils;
25import android.view.animation.LinearInterpolator;
26
27import java.util.ArrayList;
28import java.util.HashMap;
29
30/**
31 * This class provides a simple timing engine for running animations
32 * which calculate animated values and set them on target objects.
33 *
34 * <p>There is a single timing pulse that all animations use. It runs in a
35 * custom handler to ensure that property changes happen on the UI thread.</p>
36 *
37 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
38 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
39 * out of an animation. This behavior can be changed by calling
40 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
41 *
42 * <div class="special reference">
43 * <h3>Developer Guides</h3>
44 * <p>For more information about animating with {@code ValueAnimator}, read the
45 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
46 * Animation</a> developer guide.</p>
47 * </div>
48 */
49@SuppressWarnings("unchecked")
50public class ValueAnimator extends Animator {
51
52    /**
53     * Internal constants
54     */
55    private static float sDurationScale = 1.0f;
56
57    /**
58     * Values used with internal variable mPlayingState to indicate the current state of an
59     * animation.
60     */
61    static final int STOPPED    = 0; // Not yet playing
62    static final int RUNNING    = 1; // Playing normally
63    static final int SEEKED     = 2; // Seeked to some time value
64
65    /**
66     * Internal variables
67     * NOTE: This object implements the clone() method, making a deep copy of any referenced
68     * objects. As other non-trivial fields are added to this class, make sure to add logic
69     * to clone() to make deep copies of them.
70     */
71
72    // The first time that the animation's animateFrame() method is called. This time is used to
73    // determine elapsed time (and therefore the elapsed fraction) in subsequent calls
74    // to animateFrame()
75    long mStartTime;
76
77    /**
78     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
79     * to a value.
80     */
81    long mSeekTime = -1;
82
83    // The static sAnimationHandler processes the internal timing loop on which all animations
84    // are based
85    /**
86     * @hide
87     */
88    protected static ThreadLocal<AnimationHandler> sAnimationHandler =
89            new ThreadLocal<AnimationHandler>();
90
91    // The time interpolator to be used if none is set on the animation
92    private static final TimeInterpolator sDefaultInterpolator =
93            new AccelerateDecelerateInterpolator();
94
95    /**
96     * Used to indicate whether the animation is currently playing in reverse. This causes the
97     * elapsed fraction to be inverted to calculate the appropriate values.
98     */
99    private boolean mPlayingBackwards = false;
100
101    /**
102     * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the
103     * repeatCount (if repeatCount!=INFINITE), the animation ends
104     */
105    private int mCurrentIteration = 0;
106
107    /**
108     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
109     */
110    private float mCurrentFraction = 0f;
111
112    /**
113     * Tracks whether a startDelay'd animation has begun playing through the startDelay.
114     */
115    private boolean mStartedDelay = false;
116
117    /**
118     * Tracks the time at which the animation began playing through its startDelay. This is
119     * different from the mStartTime variable, which is used to track when the animation became
120     * active (which is when the startDelay expired and the animation was added to the active
121     * animations list).
122     */
123    private long mDelayStartTime;
124
125    /**
126     * Flag that represents the current state of the animation. Used to figure out when to start
127     * an animation (if state == STOPPED). Also used to end an animation that
128     * has been cancel()'d or end()'d since the last animation frame. Possible values are
129     * STOPPED, RUNNING, SEEKED.
130     */
131    int mPlayingState = STOPPED;
132
133    /**
134     * Additional playing state to indicate whether an animator has been start()'d. There is
135     * some lag between a call to start() and the first animation frame. We should still note
136     * that the animation has been started, even if it's first animation frame has not yet
137     * happened, and reflect that state in isRunning().
138     * Note that delayed animations are different: they are not started until their first
139     * animation frame, which occurs after their delay elapses.
140     */
141    private boolean mRunning = false;
142
143    /**
144     * Additional playing state to indicate whether an animator has been start()'d, whether or
145     * not there is a nonzero startDelay.
146     */
147    private boolean mStarted = false;
148
149    /**
150     * Tracks whether we've notified listeners of the onAnimationSTart() event. This can be
151     * complex to keep track of since we notify listeners at different times depending on
152     * startDelay and whether start() was called before end().
153     */
154    private boolean mStartListenersCalled = false;
155
156    /**
157     * Flag that denotes whether the animation is set up and ready to go. Used to
158     * set up animation that has not yet been started.
159     */
160    boolean mInitialized = false;
161
162    //
163    // Backing variables
164    //
165
166    // How long the animation should last in ms
167    private long mDuration = (long)(300 * sDurationScale);
168    private long mUnscaledDuration = 300;
169
170    // The amount of time in ms to delay starting the animation after start() is called
171    private long mStartDelay = 0;
172    private long mUnscaledStartDelay = 0;
173
174    // The number of times the animation will repeat. The default is 0, which means the animation
175    // will play only once
176    private int mRepeatCount = 0;
177
178    /**
179     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
180     * animation will start from the beginning on every new cycle. REVERSE means the animation
181     * will reverse directions on each iteration.
182     */
183    private int mRepeatMode = RESTART;
184
185    /**
186     * The time interpolator to be used. The elapsed fraction of the animation will be passed
187     * through this interpolator to calculate the interpolated fraction, which is then used to
188     * calculate the animated values.
189     */
190    private TimeInterpolator mInterpolator = sDefaultInterpolator;
191
192    /**
193     * The set of listeners to be sent events through the life of an animation.
194     */
195    private ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
196
197    /**
198     * The property/value sets being animated.
199     */
200    PropertyValuesHolder[] mValues;
201
202    /**
203     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
204     * by property name during calls to getAnimatedValue(String).
205     */
206    HashMap<String, PropertyValuesHolder> mValuesMap;
207
208    /**
209     * Public constants
210     */
211
212    /**
213     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
214     * or a positive value, the animation restarts from the beginning.
215     */
216    public static final int RESTART = 1;
217    /**
218     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
219     * or a positive value, the animation reverses direction on every iteration.
220     */
221    public static final int REVERSE = 2;
222    /**
223     * This value used used with the {@link #setRepeatCount(int)} property to repeat
224     * the animation indefinitely.
225     */
226    public static final int INFINITE = -1;
227
228
229    /**
230     * @hide
231     */
232    public static void setDurationScale(float durationScale) {
233        sDurationScale = durationScale;
234    }
235
236    /**
237     * @hide
238     */
239    public static float getDurationScale() {
240        return sDurationScale;
241    }
242
243    /**
244     * Creates a new ValueAnimator object. This default constructor is primarily for
245     * use internally; the factory methods which take parameters are more generally
246     * useful.
247     */
248    public ValueAnimator() {
249    }
250
251    /**
252     * Constructs and returns a ValueAnimator that animates between int values. A single
253     * value implies that that value is the one being animated to. However, this is not typically
254     * useful in a ValueAnimator object because there is no way for the object to determine the
255     * starting value for the animation (unlike ObjectAnimator, which can derive that value
256     * from the target object and property being animated). Therefore, there should typically
257     * be two or more values.
258     *
259     * @param values A set of values that the animation will animate between over time.
260     * @return A ValueAnimator object that is set up to animate between the given values.
261     */
262    public static ValueAnimator ofInt(int... values) {
263        ValueAnimator anim = new ValueAnimator();
264        anim.setIntValues(values);
265        return anim;
266    }
267
268    /**
269     * Constructs and returns a ValueAnimator that animates between float values. A single
270     * value implies that that value is the one being animated to. However, this is not typically
271     * useful in a ValueAnimator object because there is no way for the object to determine the
272     * starting value for the animation (unlike ObjectAnimator, which can derive that value
273     * from the target object and property being animated). Therefore, there should typically
274     * be two or more values.
275     *
276     * @param values A set of values that the animation will animate between over time.
277     * @return A ValueAnimator object that is set up to animate between the given values.
278     */
279    public static ValueAnimator ofFloat(float... values) {
280        ValueAnimator anim = new ValueAnimator();
281        anim.setFloatValues(values);
282        return anim;
283    }
284
285    /**
286     * Constructs and returns a ValueAnimator that animates between the values
287     * specified in the PropertyValuesHolder objects.
288     *
289     * @param values A set of PropertyValuesHolder objects whose values will be animated
290     * between over time.
291     * @return A ValueAnimator object that is set up to animate between the given values.
292     */
293    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
294        ValueAnimator anim = new ValueAnimator();
295        anim.setValues(values);
296        return anim;
297    }
298    /**
299     * Constructs and returns a ValueAnimator that animates between Object values. A single
300     * value implies that that value is the one being animated to. However, this is not typically
301     * useful in a ValueAnimator object because there is no way for the object to determine the
302     * starting value for the animation (unlike ObjectAnimator, which can derive that value
303     * from the target object and property being animated). Therefore, there should typically
304     * be two or more values.
305     *
306     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
307     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
308     * to perform that interpolation.
309     *
310     * @param evaluator A TypeEvaluator that will be called on each animation frame to
311     * provide the ncessry interpolation between the Object values to derive the animated
312     * value.
313     * @param values A set of values that the animation will animate between over time.
314     * @return A ValueAnimator object that is set up to animate between the given values.
315     */
316    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
317        ValueAnimator anim = new ValueAnimator();
318        anim.setObjectValues(values);
319        anim.setEvaluator(evaluator);
320        return anim;
321    }
322
323    /**
324     * Sets int values that will be animated between. A single
325     * value implies that that value is the one being animated to. However, this is not typically
326     * useful in a ValueAnimator object because there is no way for the object to determine the
327     * starting value for the animation (unlike ObjectAnimator, which can derive that value
328     * from the target object and property being animated). Therefore, there should typically
329     * be two or more values.
330     *
331     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
332     * than one PropertyValuesHolder object, this method will set the values for the first
333     * of those objects.</p>
334     *
335     * @param values A set of values that the animation will animate between over time.
336     */
337    public void setIntValues(int... values) {
338        if (values == null || values.length == 0) {
339            return;
340        }
341        if (mValues == null || mValues.length == 0) {
342            setValues(PropertyValuesHolder.ofInt("", values));
343        } else {
344            PropertyValuesHolder valuesHolder = mValues[0];
345            valuesHolder.setIntValues(values);
346        }
347        // New property/values/target should cause re-initialization prior to starting
348        mInitialized = false;
349    }
350
351    /**
352     * Sets float values that will be animated between. A single
353     * value implies that that value is the one being animated to. However, this is not typically
354     * useful in a ValueAnimator object because there is no way for the object to determine the
355     * starting value for the animation (unlike ObjectAnimator, which can derive that value
356     * from the target object and property being animated). Therefore, there should typically
357     * be two or more values.
358     *
359     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
360     * than one PropertyValuesHolder object, this method will set the values for the first
361     * of those objects.</p>
362     *
363     * @param values A set of values that the animation will animate between over time.
364     */
365    public void setFloatValues(float... values) {
366        if (values == null || values.length == 0) {
367            return;
368        }
369        if (mValues == null || mValues.length == 0) {
370            setValues(PropertyValuesHolder.ofFloat("", values));
371        } else {
372            PropertyValuesHolder valuesHolder = mValues[0];
373            valuesHolder.setFloatValues(values);
374        }
375        // New property/values/target should cause re-initialization prior to starting
376        mInitialized = false;
377    }
378
379    /**
380     * Sets the values to animate between for this animation. A single
381     * value implies that that value is the one being animated to. However, this is not typically
382     * useful in a ValueAnimator object because there is no way for the object to determine the
383     * starting value for the animation (unlike ObjectAnimator, which can derive that value
384     * from the target object and property being animated). Therefore, there should typically
385     * be two or more values.
386     *
387     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
388     * than one PropertyValuesHolder object, this method will set the values for the first
389     * of those objects.</p>
390     *
391     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
392     * between these value objects. ValueAnimator only knows how to interpolate between the
393     * primitive types specified in the other setValues() methods.</p>
394     *
395     * @param values The set of values to animate between.
396     */
397    public void setObjectValues(Object... values) {
398        if (values == null || values.length == 0) {
399            return;
400        }
401        if (mValues == null || mValues.length == 0) {
402            setValues(PropertyValuesHolder.ofObject("", null, values));
403        } else {
404            PropertyValuesHolder valuesHolder = mValues[0];
405            valuesHolder.setObjectValues(values);
406        }
407        // New property/values/target should cause re-initialization prior to starting
408        mInitialized = false;
409    }
410
411    /**
412     * Sets the values, per property, being animated between. This function is called internally
413     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
414     * be constructed without values and this method can be called to set the values manually
415     * instead.
416     *
417     * @param values The set of values, per property, being animated between.
418     */
419    public void setValues(PropertyValuesHolder... values) {
420        int numValues = values.length;
421        mValues = values;
422        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
423        for (int i = 0; i < numValues; ++i) {
424            PropertyValuesHolder valuesHolder = values[i];
425            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
426        }
427        // New property/values/target should cause re-initialization prior to starting
428        mInitialized = false;
429    }
430
431    /**
432     * Returns the values that this ValueAnimator animates between. These values are stored in
433     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
434     * of value objects instead.
435     *
436     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
437     * values, per property, that define the animation.
438     */
439    public PropertyValuesHolder[] getValues() {
440        return mValues;
441    }
442
443    /**
444     * This function is called immediately before processing the first animation
445     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
446     * function is called after that delay ends.
447     * It takes care of the final initialization steps for the
448     * animation.
449     *
450     *  <p>Overrides of this method should call the superclass method to ensure
451     *  that internal mechanisms for the animation are set up correctly.</p>
452     */
453    void initAnimation() {
454        if (!mInitialized) {
455            int numValues = mValues.length;
456            for (int i = 0; i < numValues; ++i) {
457                mValues[i].init();
458            }
459            mInitialized = true;
460        }
461    }
462
463
464    /**
465     * Sets the length of the animation. The default duration is 300 milliseconds.
466     *
467     * @param duration The length of the animation, in milliseconds. This value cannot
468     * be negative.
469     * @return ValueAnimator The object called with setDuration(). This return
470     * value makes it easier to compose statements together that construct and then set the
471     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
472     */
473    public ValueAnimator setDuration(long duration) {
474        if (duration < 0) {
475            throw new IllegalArgumentException("Animators cannot have negative duration: " +
476                    duration);
477        }
478        mUnscaledDuration = duration;
479        mDuration = (long)(duration * sDurationScale);
480        return this;
481    }
482
483    /**
484     * Gets the length of the animation. The default duration is 300 milliseconds.
485     *
486     * @return The length of the animation, in milliseconds.
487     */
488    public long getDuration() {
489        return mUnscaledDuration;
490    }
491
492    /**
493     * Sets the position of the animation to the specified point in time. This time should
494     * be between 0 and the total duration of the animation, including any repetition. If
495     * the animation has not yet been started, then it will not advance forward after it is
496     * set to this time; it will simply set the time to this value and perform any appropriate
497     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
498     * will set the current playing time to this value and continue playing from that point.
499     *
500     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
501     */
502    public void setCurrentPlayTime(long playTime) {
503        initAnimation();
504        long currentTime = AnimationUtils.currentAnimationTimeMillis();
505        if (mPlayingState != RUNNING) {
506            mSeekTime = playTime;
507            mPlayingState = SEEKED;
508        }
509        mStartTime = currentTime - playTime;
510        doAnimationFrame(currentTime);
511    }
512
513    /**
514     * Gets the current position of the animation in time, which is equal to the current
515     * time minus the time that the animation started. An animation that is not yet started will
516     * return a value of zero.
517     *
518     * @return The current position in time of the animation.
519     */
520    public long getCurrentPlayTime() {
521        if (!mInitialized || mPlayingState == STOPPED) {
522            return 0;
523        }
524        return AnimationUtils.currentAnimationTimeMillis() - mStartTime;
525    }
526
527    /**
528     * This custom, static handler handles the timing pulse that is shared by
529     * all active animations. This approach ensures that the setting of animation
530     * values will happen on the UI thread and that all animations will share
531     * the same times for calculating their values, which makes synchronizing
532     * animations possible.
533     *
534     * The handler uses the Choreographer for executing periodic callbacks.
535     *
536     * @hide
537     */
538    @SuppressWarnings("unchecked")
539    protected static class AnimationHandler implements Runnable {
540        // The per-thread list of all active animations
541        /** @hide */
542        protected final ArrayList<ValueAnimator> mAnimations = new ArrayList<ValueAnimator>();
543
544        // Used in doAnimationFrame() to avoid concurrent modifications of mAnimations
545        private final ArrayList<ValueAnimator> mTmpAnimations = new ArrayList<ValueAnimator>();
546
547        // The per-thread set of animations to be started on the next animation frame
548        /** @hide */
549        protected final ArrayList<ValueAnimator> mPendingAnimations = new ArrayList<ValueAnimator>();
550
551        /**
552         * Internal per-thread collections used to avoid set collisions as animations start and end
553         * while being processed.
554         * @hide
555         */
556        protected final ArrayList<ValueAnimator> mDelayedAnims = new ArrayList<ValueAnimator>();
557        private final ArrayList<ValueAnimator> mEndingAnims = new ArrayList<ValueAnimator>();
558        private final ArrayList<ValueAnimator> mReadyAnims = new ArrayList<ValueAnimator>();
559
560        private final Choreographer mChoreographer;
561        private boolean mAnimationScheduled;
562
563        private AnimationHandler() {
564            mChoreographer = Choreographer.getInstance();
565        }
566
567        /**
568         * Start animating on the next frame.
569         */
570        public void start() {
571            scheduleAnimation();
572        }
573
574        private void doAnimationFrame(long frameTime) {
575            // mPendingAnimations holds any animations that have requested to be started
576            // We're going to clear mPendingAnimations, but starting animation may
577            // cause more to be added to the pending list (for example, if one animation
578            // starting triggers another starting). So we loop until mPendingAnimations
579            // is empty.
580            while (mPendingAnimations.size() > 0) {
581                ArrayList<ValueAnimator> pendingCopy =
582                        (ArrayList<ValueAnimator>) mPendingAnimations.clone();
583                mPendingAnimations.clear();
584                int count = pendingCopy.size();
585                for (int i = 0; i < count; ++i) {
586                    ValueAnimator anim = pendingCopy.get(i);
587                    // If the animation has a startDelay, place it on the delayed list
588                    if (anim.mStartDelay == 0) {
589                        anim.startAnimation(this);
590                    } else {
591                        mDelayedAnims.add(anim);
592                    }
593                }
594            }
595            // Next, process animations currently sitting on the delayed queue, adding
596            // them to the active animations if they are ready
597            int numDelayedAnims = mDelayedAnims.size();
598            for (int i = 0; i < numDelayedAnims; ++i) {
599                ValueAnimator anim = mDelayedAnims.get(i);
600                if (anim.delayedAnimationFrame(frameTime)) {
601                    mReadyAnims.add(anim);
602                }
603            }
604            int numReadyAnims = mReadyAnims.size();
605            if (numReadyAnims > 0) {
606                for (int i = 0; i < numReadyAnims; ++i) {
607                    ValueAnimator anim = mReadyAnims.get(i);
608                    anim.startAnimation(this);
609                    anim.mRunning = true;
610                    mDelayedAnims.remove(anim);
611                }
612                mReadyAnims.clear();
613            }
614
615            // Now process all active animations. The return value from animationFrame()
616            // tells the handler whether it should now be ended
617            int numAnims = mAnimations.size();
618            for (int i = 0; i < numAnims; ++i) {
619                mTmpAnimations.add(mAnimations.get(i));
620            }
621            for (int i = 0; i < numAnims; ++i) {
622                ValueAnimator anim = mTmpAnimations.get(i);
623                if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
624                    mEndingAnims.add(anim);
625                }
626            }
627            mTmpAnimations.clear();
628            if (mEndingAnims.size() > 0) {
629                for (int i = 0; i < mEndingAnims.size(); ++i) {
630                    mEndingAnims.get(i).endAnimation(this);
631                }
632                mEndingAnims.clear();
633            }
634
635            // If there are still active or delayed animations, schedule a future call to
636            // onAnimate to process the next frame of the animations.
637            if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
638                scheduleAnimation();
639            }
640        }
641
642        // Called by the Choreographer.
643        @Override
644        public void run() {
645            mAnimationScheduled = false;
646            doAnimationFrame(mChoreographer.getFrameTime());
647        }
648
649        private void scheduleAnimation() {
650            if (!mAnimationScheduled) {
651                mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, this, null);
652                mAnimationScheduled = true;
653            }
654        }
655    }
656
657    /**
658     * The amount of time, in milliseconds, to delay starting the animation after
659     * {@link #start()} is called.
660     *
661     * @return the number of milliseconds to delay running the animation
662     */
663    public long getStartDelay() {
664        return mUnscaledStartDelay;
665    }
666
667    /**
668     * The amount of time, in milliseconds, to delay starting the animation after
669     * {@link #start()} is called.
670
671     * @param startDelay The amount of the delay, in milliseconds
672     */
673    public void setStartDelay(long startDelay) {
674        this.mStartDelay = (long)(startDelay * sDurationScale);
675        mUnscaledStartDelay = startDelay;
676    }
677
678    /**
679     * The amount of time, in milliseconds, between each frame of the animation. This is a
680     * requested time that the animation will attempt to honor, but the actual delay between
681     * frames may be different, depending on system load and capabilities. This is a static
682     * function because the same delay will be applied to all animations, since they are all
683     * run off of a single timing loop.
684     *
685     * The frame delay may be ignored when the animation system uses an external timing
686     * source, such as the display refresh rate (vsync), to govern animations.
687     *
688     * @return the requested time between frames, in milliseconds
689     */
690    public static long getFrameDelay() {
691        return Choreographer.getFrameDelay();
692    }
693
694    /**
695     * The amount of time, in milliseconds, between each frame of the animation. This is a
696     * requested time that the animation will attempt to honor, but the actual delay between
697     * frames may be different, depending on system load and capabilities. This is a static
698     * function because the same delay will be applied to all animations, since they are all
699     * run off of a single timing loop.
700     *
701     * The frame delay may be ignored when the animation system uses an external timing
702     * source, such as the display refresh rate (vsync), to govern animations.
703     *
704     * @param frameDelay the requested time between frames, in milliseconds
705     */
706    public static void setFrameDelay(long frameDelay) {
707        Choreographer.setFrameDelay(frameDelay);
708    }
709
710    /**
711     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
712     * property being animated. This value is only sensible while the animation is running. The main
713     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
714     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
715     * is called during each animation frame, immediately after the value is calculated.
716     *
717     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
718     * the single property being animated. If there are several properties being animated
719     * (specified by several PropertyValuesHolder objects in the constructor), this function
720     * returns the animated value for the first of those objects.
721     */
722    public Object getAnimatedValue() {
723        if (mValues != null && mValues.length > 0) {
724            return mValues[0].getAnimatedValue();
725        }
726        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
727        return null;
728    }
729
730    /**
731     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
732     * The main purpose for this read-only property is to retrieve the value from the
733     * <code>ValueAnimator</code> during a call to
734     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
735     * is called during each animation frame, immediately after the value is calculated.
736     *
737     * @return animatedValue The value most recently calculated for the named property
738     * by this <code>ValueAnimator</code>.
739     */
740    public Object getAnimatedValue(String propertyName) {
741        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
742        if (valuesHolder != null) {
743            return valuesHolder.getAnimatedValue();
744        } else {
745            // At least avoid crashing if called with bogus propertyName
746            return null;
747        }
748    }
749
750    /**
751     * Sets how many times the animation should be repeated. If the repeat
752     * count is 0, the animation is never repeated. If the repeat count is
753     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
754     * into account. The repeat count is 0 by default.
755     *
756     * @param value the number of times the animation should be repeated
757     */
758    public void setRepeatCount(int value) {
759        mRepeatCount = value;
760    }
761    /**
762     * Defines how many times the animation should repeat. The default value
763     * is 0.
764     *
765     * @return the number of times the animation should repeat, or {@link #INFINITE}
766     */
767    public int getRepeatCount() {
768        return mRepeatCount;
769    }
770
771    /**
772     * Defines what this animation should do when it reaches the end. This
773     * setting is applied only when the repeat count is either greater than
774     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
775     *
776     * @param value {@link #RESTART} or {@link #REVERSE}
777     */
778    public void setRepeatMode(int value) {
779        mRepeatMode = value;
780    }
781
782    /**
783     * Defines what this animation should do when it reaches the end.
784     *
785     * @return either one of {@link #REVERSE} or {@link #RESTART}
786     */
787    public int getRepeatMode() {
788        return mRepeatMode;
789    }
790
791    /**
792     * Adds a listener to the set of listeners that are sent update events through the life of
793     * an animation. This method is called on all listeners for every frame of the animation,
794     * after the values for the animation have been calculated.
795     *
796     * @param listener the listener to be added to the current set of listeners for this animation.
797     */
798    public void addUpdateListener(AnimatorUpdateListener listener) {
799        if (mUpdateListeners == null) {
800            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
801        }
802        mUpdateListeners.add(listener);
803    }
804
805    /**
806     * Removes all listeners from the set listening to frame updates for this animation.
807     */
808    public void removeAllUpdateListeners() {
809        if (mUpdateListeners == null) {
810            return;
811        }
812        mUpdateListeners.clear();
813        mUpdateListeners = null;
814    }
815
816    /**
817     * Removes a listener from the set listening to frame updates for this animation.
818     *
819     * @param listener the listener to be removed from the current set of update listeners
820     * for this animation.
821     */
822    public void removeUpdateListener(AnimatorUpdateListener listener) {
823        if (mUpdateListeners == null) {
824            return;
825        }
826        mUpdateListeners.remove(listener);
827        if (mUpdateListeners.size() == 0) {
828            mUpdateListeners = null;
829        }
830    }
831
832
833    /**
834     * The time interpolator used in calculating the elapsed fraction of this animation. The
835     * interpolator determines whether the animation runs with linear or non-linear motion,
836     * such as acceleration and deceleration. The default value is
837     * {@link android.view.animation.AccelerateDecelerateInterpolator}
838     *
839     * @param value the interpolator to be used by this animation. A value of <code>null</code>
840     * will result in linear interpolation.
841     */
842    @Override
843    public void setInterpolator(TimeInterpolator value) {
844        if (value != null) {
845            mInterpolator = value;
846        } else {
847            mInterpolator = new LinearInterpolator();
848        }
849    }
850
851    /**
852     * Returns the timing interpolator that this ValueAnimator uses.
853     *
854     * @return The timing interpolator for this ValueAnimator.
855     */
856    @Override
857    public TimeInterpolator getInterpolator() {
858        return mInterpolator;
859    }
860
861    /**
862     * The type evaluator to be used when calculating the animated values of this animation.
863     * The system will automatically assign a float or int evaluator based on the type
864     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
865     * are not one of these primitive types, or if different evaluation is desired (such as is
866     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
867     * For example, when running an animation on color values, the {@link ArgbEvaluator}
868     * should be used to get correct RGB color interpolation.
869     *
870     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
871     * will be used for that set. If there are several sets of values being animated, which is
872     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
873     * is assigned just to the first PropertyValuesHolder object.</p>
874     *
875     * @param value the evaluator to be used this animation
876     */
877    public void setEvaluator(TypeEvaluator value) {
878        if (value != null && mValues != null && mValues.length > 0) {
879            mValues[0].setEvaluator(value);
880        }
881    }
882
883    private void notifyStartListeners() {
884        if (mListeners != null && !mStartListenersCalled) {
885            ArrayList<AnimatorListener> tmpListeners =
886                    (ArrayList<AnimatorListener>) mListeners.clone();
887            int numListeners = tmpListeners.size();
888            for (int i = 0; i < numListeners; ++i) {
889                tmpListeners.get(i).onAnimationStart(this);
890            }
891        }
892        mStartListenersCalled = true;
893    }
894
895    /**
896     * Start the animation playing. This version of start() takes a boolean flag that indicates
897     * whether the animation should play in reverse. The flag is usually false, but may be set
898     * to true if called from the reverse() method.
899     *
900     * <p>The animation started by calling this method will be run on the thread that called
901     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
902     * this is not the case). Also, if the animation will animate
903     * properties of objects in the view hierarchy, then the calling thread should be the UI
904     * thread for that view hierarchy.</p>
905     *
906     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
907     */
908    private void start(boolean playBackwards) {
909        if (Looper.myLooper() == null) {
910            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
911        }
912        mPlayingBackwards = playBackwards;
913        mCurrentIteration = 0;
914        mPlayingState = STOPPED;
915        mStarted = true;
916        mStartedDelay = false;
917        AnimationHandler animationHandler = getOrCreateAnimationHandler();
918        animationHandler.mPendingAnimations.add(this);
919        if (mStartDelay == 0) {
920            // This sets the initial value of the animation, prior to actually starting it running
921            setCurrentPlayTime(0);
922            mPlayingState = STOPPED;
923            mRunning = true;
924            notifyStartListeners();
925        }
926        animationHandler.start();
927    }
928
929    @Override
930    public void start() {
931        start(false);
932    }
933
934    @Override
935    public void cancel() {
936        // Only cancel if the animation is actually running or has been started and is about
937        // to run
938        AnimationHandler handler = getOrCreateAnimationHandler();
939        if (mPlayingState != STOPPED
940                || handler.mPendingAnimations.contains(this)
941                || handler.mDelayedAnims.contains(this)) {
942            // Only notify listeners if the animator has actually started
943            if ((mStarted || mRunning) && mListeners != null) {
944                if (!mRunning) {
945                    // If it's not yet running, then start listeners weren't called. Call them now.
946                    notifyStartListeners();
947                }
948                ArrayList<AnimatorListener> tmpListeners =
949                        (ArrayList<AnimatorListener>) mListeners.clone();
950                for (AnimatorListener listener : tmpListeners) {
951                    listener.onAnimationCancel(this);
952                }
953            }
954            endAnimation(handler);
955        }
956    }
957
958    @Override
959    public void end() {
960        AnimationHandler handler = getOrCreateAnimationHandler();
961        if (!handler.mAnimations.contains(this) && !handler.mPendingAnimations.contains(this)) {
962            // Special case if the animation has not yet started; get it ready for ending
963            mStartedDelay = false;
964            startAnimation(handler);
965            mStarted = true;
966        } else if (!mInitialized) {
967            initAnimation();
968        }
969        animateValue(mPlayingBackwards ? 0f : 1f);
970        endAnimation(handler);
971    }
972
973    @Override
974    public boolean isRunning() {
975        return (mPlayingState == RUNNING || mRunning);
976    }
977
978    @Override
979    public boolean isStarted() {
980        return mStarted;
981    }
982
983    /**
984     * Plays the ValueAnimator in reverse. If the animation is already running,
985     * it will stop itself and play backwards from the point reached when reverse was called.
986     * If the animation is not currently running, then it will start from the end and
987     * play backwards. This behavior is only set for the current animation; future playing
988     * of the animation will use the default behavior of playing forward.
989     */
990    public void reverse() {
991        mPlayingBackwards = !mPlayingBackwards;
992        if (mPlayingState == RUNNING) {
993            long currentTime = AnimationUtils.currentAnimationTimeMillis();
994            long currentPlayTime = currentTime - mStartTime;
995            long timeLeft = mDuration - currentPlayTime;
996            mStartTime = currentTime - timeLeft;
997        } else {
998            start(true);
999        }
1000    }
1001
1002    /**
1003     * Called internally to end an animation by removing it from the animations list. Must be
1004     * called on the UI thread.
1005     */
1006    private void endAnimation(AnimationHandler handler) {
1007        handler.mAnimations.remove(this);
1008        handler.mPendingAnimations.remove(this);
1009        handler.mDelayedAnims.remove(this);
1010        mPlayingState = STOPPED;
1011        if ((mStarted || mRunning) && mListeners != null) {
1012            if (!mRunning) {
1013                // If it's not yet running, then start listeners weren't called. Call them now.
1014                notifyStartListeners();
1015             }
1016            ArrayList<AnimatorListener> tmpListeners =
1017                    (ArrayList<AnimatorListener>) mListeners.clone();
1018            int numListeners = tmpListeners.size();
1019            for (int i = 0; i < numListeners; ++i) {
1020                tmpListeners.get(i).onAnimationEnd(this);
1021            }
1022        }
1023        mRunning = false;
1024        mStarted = false;
1025        mStartListenersCalled = false;
1026        mPlayingBackwards = false;
1027        Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1028                System.identityHashCode(this));
1029    }
1030
1031    /**
1032     * Called internally to start an animation by adding it to the active animations list. Must be
1033     * called on the UI thread.
1034     */
1035    private void startAnimation(AnimationHandler handler) {
1036        Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1037                System.identityHashCode(this));
1038        initAnimation();
1039        handler.mAnimations.add(this);
1040        if (mStartDelay > 0 && mListeners != null) {
1041            // Listeners were already notified in start() if startDelay is 0; this is
1042            // just for delayed animations
1043            notifyStartListeners();
1044        }
1045    }
1046
1047    /**
1048     * Returns the name of this animator for debugging purposes.
1049     */
1050    String getNameForTrace() {
1051        return "animator";
1052    }
1053
1054
1055    /**
1056     * Internal function called to process an animation frame on an animation that is currently
1057     * sleeping through its <code>startDelay</code> phase. The return value indicates whether it
1058     * should be woken up and put on the active animations queue.
1059     *
1060     * @param currentTime The current animation time, used to calculate whether the animation
1061     * has exceeded its <code>startDelay</code> and should be started.
1062     * @return True if the animation's <code>startDelay</code> has been exceeded and the animation
1063     * should be added to the set of active animations.
1064     */
1065    private boolean delayedAnimationFrame(long currentTime) {
1066        if (!mStartedDelay) {
1067            mStartedDelay = true;
1068            mDelayStartTime = currentTime;
1069        } else {
1070            long deltaTime = currentTime - mDelayStartTime;
1071            if (deltaTime > mStartDelay) {
1072                // startDelay ended - start the anim and record the
1073                // mStartTime appropriately
1074                mStartTime = currentTime - (deltaTime - mStartDelay);
1075                mPlayingState = RUNNING;
1076                return true;
1077            }
1078        }
1079        return false;
1080    }
1081
1082    /**
1083     * This internal function processes a single animation frame for a given animation. The
1084     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1085     * elapsed duration, and therefore
1086     * the elapsed fraction, of the animation. The return value indicates whether the animation
1087     * should be ended (which happens when the elapsed time of the animation exceeds the
1088     * animation's duration, including the repeatCount).
1089     *
1090     * @param currentTime The current time, as tracked by the static timing handler
1091     * @return true if the animation's duration, including any repetitions due to
1092     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1093     */
1094    boolean animationFrame(long currentTime) {
1095        boolean done = false;
1096        switch (mPlayingState) {
1097        case RUNNING:
1098        case SEEKED:
1099            float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
1100            if (fraction >= 1f) {
1101                if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
1102                    // Time to repeat
1103                    if (mListeners != null) {
1104                        int numListeners = mListeners.size();
1105                        for (int i = 0; i < numListeners; ++i) {
1106                            mListeners.get(i).onAnimationRepeat(this);
1107                        }
1108                    }
1109                    if (mRepeatMode == REVERSE) {
1110                        mPlayingBackwards = !mPlayingBackwards;
1111                    }
1112                    mCurrentIteration += (int)fraction;
1113                    fraction = fraction % 1f;
1114                    mStartTime += mDuration;
1115                } else {
1116                    done = true;
1117                    fraction = Math.min(fraction, 1.0f);
1118                }
1119            }
1120            if (mPlayingBackwards) {
1121                fraction = 1f - fraction;
1122            }
1123            animateValue(fraction);
1124            break;
1125        }
1126
1127        return done;
1128    }
1129
1130    /**
1131     * Processes a frame of the animation, adjusting the start time if needed.
1132     *
1133     * @param frameTime The frame time.
1134     * @return true if the animation has ended.
1135     */
1136    final boolean doAnimationFrame(long frameTime) {
1137        if (mPlayingState == STOPPED) {
1138            mPlayingState = RUNNING;
1139            if (mSeekTime < 0) {
1140                mStartTime = frameTime;
1141            } else {
1142                mStartTime = frameTime - mSeekTime;
1143                // Now that we're playing, reset the seek time
1144                mSeekTime = -1;
1145            }
1146        }
1147        // The frame time might be before the start time during the first frame of
1148        // an animation.  The "current time" must always be on or after the start
1149        // time to avoid animating frames at negative time intervals.  In practice, this
1150        // is very rare and only happens when seeking backwards.
1151        final long currentTime = Math.max(frameTime, mStartTime);
1152        return animationFrame(currentTime);
1153    }
1154
1155    /**
1156     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1157     * the most recent frame update on the animation.
1158     *
1159     * @return Elapsed/interpolated fraction of the animation.
1160     */
1161    public float getAnimatedFraction() {
1162        return mCurrentFraction;
1163    }
1164
1165    /**
1166     * This method is called with the elapsed fraction of the animation during every
1167     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1168     * and then into an animated value (from the evaluator. The function is called mostly during
1169     * animation updates, but it is also called when the <code>end()</code>
1170     * function is called, to set the final value on the property.
1171     *
1172     * <p>Overrides of this method must call the superclass to perform the calculation
1173     * of the animated value.</p>
1174     *
1175     * @param fraction The elapsed fraction of the animation.
1176     */
1177    void animateValue(float fraction) {
1178        fraction = mInterpolator.getInterpolation(fraction);
1179        mCurrentFraction = fraction;
1180        int numValues = mValues.length;
1181        for (int i = 0; i < numValues; ++i) {
1182            mValues[i].calculateValue(fraction);
1183        }
1184        if (mUpdateListeners != null) {
1185            int numListeners = mUpdateListeners.size();
1186            for (int i = 0; i < numListeners; ++i) {
1187                mUpdateListeners.get(i).onAnimationUpdate(this);
1188            }
1189        }
1190    }
1191
1192    @Override
1193    public ValueAnimator clone() {
1194        final ValueAnimator anim = (ValueAnimator) super.clone();
1195        if (mUpdateListeners != null) {
1196            ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners;
1197            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1198            int numListeners = oldListeners.size();
1199            for (int i = 0; i < numListeners; ++i) {
1200                anim.mUpdateListeners.add(oldListeners.get(i));
1201            }
1202        }
1203        anim.mSeekTime = -1;
1204        anim.mPlayingBackwards = false;
1205        anim.mCurrentIteration = 0;
1206        anim.mInitialized = false;
1207        anim.mPlayingState = STOPPED;
1208        anim.mStartedDelay = false;
1209        PropertyValuesHolder[] oldValues = mValues;
1210        if (oldValues != null) {
1211            int numValues = oldValues.length;
1212            anim.mValues = new PropertyValuesHolder[numValues];
1213            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1214            for (int i = 0; i < numValues; ++i) {
1215                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1216                anim.mValues[i] = newValuesHolder;
1217                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1218            }
1219        }
1220        return anim;
1221    }
1222
1223    /**
1224     * Implementors of this interface can add themselves as update listeners
1225     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1226     * frame, after the current frame's values have been calculated for that
1227     * <code>ValueAnimator</code>.
1228     */
1229    public static interface AnimatorUpdateListener {
1230        /**
1231         * <p>Notifies the occurrence of another frame of the animation.</p>
1232         *
1233         * @param animation The animation which was repeated.
1234         */
1235        void onAnimationUpdate(ValueAnimator animation);
1236
1237    }
1238
1239    /**
1240     * Return the number of animations currently running.
1241     *
1242     * Used by StrictMode internally to annotate violations.
1243     * May be called on arbitrary threads!
1244     *
1245     * @hide
1246     */
1247    public static int getCurrentAnimationsCount() {
1248        AnimationHandler handler = sAnimationHandler.get();
1249        return handler != null ? handler.mAnimations.size() : 0;
1250    }
1251
1252    /**
1253     * Clear all animations on this thread, without canceling or ending them.
1254     * This should be used with caution.
1255     *
1256     * @hide
1257     */
1258    public static void clearAllAnimations() {
1259        AnimationHandler handler = sAnimationHandler.get();
1260        if (handler != null) {
1261            handler.mAnimations.clear();
1262            handler.mPendingAnimations.clear();
1263            handler.mDelayedAnims.clear();
1264        }
1265    }
1266
1267    private static AnimationHandler getOrCreateAnimationHandler() {
1268        AnimationHandler handler = sAnimationHandler.get();
1269        if (handler == null) {
1270            handler = new AnimationHandler();
1271            sAnimationHandler.set(handler);
1272        }
1273        return handler;
1274    }
1275
1276    @Override
1277    public String toString() {
1278        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1279        if (mValues != null) {
1280            for (int i = 0; i < mValues.length; ++i) {
1281                returnVal += "\n    " + mValues[i].toString();
1282            }
1283        }
1284        return returnVal;
1285    }
1286}
1287