LinkedBlockingDeque.java revision 8eb35c835be1345d3873a82cc9e42f944d698afd
1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7package java.util.concurrent;
8
9import java.util.AbstractQueue;
10import java.util.Collection;
11import java.util.Iterator;
12import java.util.NoSuchElementException;
13import java.util.concurrent.locks.Condition;
14import java.util.concurrent.locks.ReentrantLock;
15
16/**
17 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
18 * linked nodes.
19 *
20 * <p> The optional capacity bound constructor argument serves as a
21 * way to prevent excessive expansion. The capacity, if unspecified,
22 * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
23 * dynamically created upon each insertion unless this would bring the
24 * deque above capacity.
25 *
26 * <p>Most operations run in constant time (ignoring time spent
27 * blocking).  Exceptions include {@link #remove(Object) remove},
28 * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
29 * #removeLastOccurrence removeLastOccurrence}, {@link #contains
30 * contains}, {@link #iterator iterator.remove()}, and the bulk
31 * operations, all of which run in linear time.
32 *
33 * <p>This class and its iterator implement all of the
34 * <em>optional</em> methods of the {@link Collection} and {@link
35 * Iterator} interfaces.
36 *
37 * <p>This class is a member of the
38 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
39 * Java Collections Framework</a>.
40 *
41 * @since 1.6
42 * @author  Doug Lea
43 * @param <E> the type of elements held in this collection
44 */
45public class LinkedBlockingDeque<E>
46    extends AbstractQueue<E>
47    implements BlockingDeque<E>,  java.io.Serializable {
48
49    /*
50     * Implemented as a simple doubly-linked list protected by a
51     * single lock and using conditions to manage blocking.
52     *
53     * To implement weakly consistent iterators, it appears we need to
54     * keep all Nodes GC-reachable from a predecessor dequeued Node.
55     * That would cause two problems:
56     * - allow a rogue Iterator to cause unbounded memory retention
57     * - cause cross-generational linking of old Nodes to new Nodes if
58     *   a Node was tenured while live, which generational GCs have a
59     *   hard time dealing with, causing repeated major collections.
60     * However, only non-deleted Nodes need to be reachable from
61     * dequeued Nodes, and reachability does not necessarily have to
62     * be of the kind understood by the GC.  We use the trick of
63     * linking a Node that has just been dequeued to itself.  Such a
64     * self-link implicitly means to jump to "first" (for next links)
65     * or "last" (for prev links).
66     */
67
68    /*
69     * We have "diamond" multiple interface/abstract class inheritance
70     * here, and that introduces ambiguities. Often we want the
71     * BlockingDeque javadoc combined with the AbstractQueue
72     * implementation, so a lot of method specs are duplicated here.
73     */
74
75    private static final long serialVersionUID = -387911632671998426L;
76
77    /** Doubly-linked list node class */
78    static final class Node<E> {
79        /**
80         * The item, or null if this node has been removed.
81         */
82        E item;
83
84        /**
85         * One of:
86         * - the real predecessor Node
87         * - this Node, meaning the predecessor is tail
88         * - null, meaning there is no predecessor
89         */
90        Node<E> prev;
91
92        /**
93         * One of:
94         * - the real successor Node
95         * - this Node, meaning the successor is head
96         * - null, meaning there is no successor
97         */
98        Node<E> next;
99
100        Node(E x) {
101            item = x;
102        }
103    }
104
105    /**
106     * Pointer to first node.
107     * Invariant: (first == null && last == null) ||
108     *            (first.prev == null && first.item != null)
109     */
110    transient Node<E> first;
111
112    /**
113     * Pointer to last node.
114     * Invariant: (first == null && last == null) ||
115     *            (last.next == null && last.item != null)
116     */
117    transient Node<E> last;
118
119    /** Number of items in the deque */
120    private transient int count;
121
122    /** Maximum number of items in the deque */
123    private final int capacity;
124
125    /** Main lock guarding all access */
126    final ReentrantLock lock = new ReentrantLock();
127
128    /** Condition for waiting takes */
129    private final Condition notEmpty = lock.newCondition();
130
131    /** Condition for waiting puts */
132    private final Condition notFull = lock.newCondition();
133
134    /**
135     * Creates a {@code LinkedBlockingDeque} with a capacity of
136     * {@link Integer#MAX_VALUE}.
137     */
138    public LinkedBlockingDeque() {
139        this(Integer.MAX_VALUE);
140    }
141
142    /**
143     * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
144     *
145     * @param capacity the capacity of this deque
146     * @throws IllegalArgumentException if {@code capacity} is less than 1
147     */
148    public LinkedBlockingDeque(int capacity) {
149        if (capacity <= 0) throw new IllegalArgumentException();
150        this.capacity = capacity;
151    }
152
153    /**
154     * Creates a {@code LinkedBlockingDeque} with a capacity of
155     * {@link Integer#MAX_VALUE}, initially containing the elements of
156     * the given collection, added in traversal order of the
157     * collection's iterator.
158     *
159     * @param c the collection of elements to initially contain
160     * @throws NullPointerException if the specified collection or any
161     *         of its elements are null
162     */
163    public LinkedBlockingDeque(Collection<? extends E> c) {
164        this(Integer.MAX_VALUE);
165        final ReentrantLock lock = this.lock;
166        lock.lock(); // Never contended, but necessary for visibility
167        try {
168            for (E e : c) {
169                if (e == null)
170                    throw new NullPointerException();
171                if (!linkLast(new Node<E>(e)))
172                    throw new IllegalStateException("Deque full");
173            }
174        } finally {
175            lock.unlock();
176        }
177    }
178
179
180    // Basic linking and unlinking operations, called only while holding lock
181
182    /**
183     * Links node as first element, or returns false if full.
184     */
185    private boolean linkFirst(Node<E> node) {
186        // assert lock.isHeldByCurrentThread();
187        if (count >= capacity)
188            return false;
189        Node<E> f = first;
190        node.next = f;
191        first = node;
192        if (last == null)
193            last = node;
194        else
195            f.prev = node;
196        ++count;
197        notEmpty.signal();
198        return true;
199    }
200
201    /**
202     * Links node as last element, or returns false if full.
203     */
204    private boolean linkLast(Node<E> node) {
205        // assert lock.isHeldByCurrentThread();
206        if (count >= capacity)
207            return false;
208        Node<E> l = last;
209        node.prev = l;
210        last = node;
211        if (first == null)
212            first = node;
213        else
214            l.next = node;
215        ++count;
216        notEmpty.signal();
217        return true;
218    }
219
220    /**
221     * Removes and returns first element, or null if empty.
222     */
223    private E unlinkFirst() {
224        // assert lock.isHeldByCurrentThread();
225        Node<E> f = first;
226        if (f == null)
227            return null;
228        Node<E> n = f.next;
229        E item = f.item;
230        f.item = null;
231        f.next = f; // help GC
232        first = n;
233        if (n == null)
234            last = null;
235        else
236            n.prev = null;
237        --count;
238        notFull.signal();
239        return item;
240    }
241
242    /**
243     * Removes and returns last element, or null if empty.
244     */
245    private E unlinkLast() {
246        // assert lock.isHeldByCurrentThread();
247        Node<E> l = last;
248        if (l == null)
249            return null;
250        Node<E> p = l.prev;
251        E item = l.item;
252        l.item = null;
253        l.prev = l; // help GC
254        last = p;
255        if (p == null)
256            first = null;
257        else
258            p.next = null;
259        --count;
260        notFull.signal();
261        return item;
262    }
263
264    /**
265     * Unlinks x.
266     */
267    void unlink(Node<E> x) {
268        // assert lock.isHeldByCurrentThread();
269        Node<E> p = x.prev;
270        Node<E> n = x.next;
271        if (p == null) {
272            unlinkFirst();
273        } else if (n == null) {
274            unlinkLast();
275        } else {
276            p.next = n;
277            n.prev = p;
278            x.item = null;
279            // Don't mess with x's links.  They may still be in use by
280            // an iterator.
281            --count;
282            notFull.signal();
283        }
284    }
285
286    // BlockingDeque methods
287
288    /**
289     * @throws IllegalStateException {@inheritDoc}
290     * @throws NullPointerException  {@inheritDoc}
291     */
292    public void addFirst(E e) {
293        if (!offerFirst(e))
294            throw new IllegalStateException("Deque full");
295    }
296
297    /**
298     * @throws IllegalStateException {@inheritDoc}
299     * @throws NullPointerException  {@inheritDoc}
300     */
301    public void addLast(E e) {
302        if (!offerLast(e))
303            throw new IllegalStateException("Deque full");
304    }
305
306    /**
307     * @throws NullPointerException {@inheritDoc}
308     */
309    public boolean offerFirst(E e) {
310        if (e == null) throw new NullPointerException();
311        Node<E> node = new Node<E>(e);
312        final ReentrantLock lock = this.lock;
313        lock.lock();
314        try {
315            return linkFirst(node);
316        } finally {
317            lock.unlock();
318        }
319    }
320
321    /**
322     * @throws NullPointerException {@inheritDoc}
323     */
324    public boolean offerLast(E e) {
325        if (e == null) throw new NullPointerException();
326        Node<E> node = new Node<E>(e);
327        final ReentrantLock lock = this.lock;
328        lock.lock();
329        try {
330            return linkLast(node);
331        } finally {
332            lock.unlock();
333        }
334    }
335
336    /**
337     * @throws NullPointerException {@inheritDoc}
338     * @throws InterruptedException {@inheritDoc}
339     */
340    public void putFirst(E e) throws InterruptedException {
341        if (e == null) throw new NullPointerException();
342        Node<E> node = new Node<E>(e);
343        final ReentrantLock lock = this.lock;
344        lock.lock();
345        try {
346            while (!linkFirst(node))
347                notFull.await();
348        } finally {
349            lock.unlock();
350        }
351    }
352
353    /**
354     * @throws NullPointerException {@inheritDoc}
355     * @throws InterruptedException {@inheritDoc}
356     */
357    public void putLast(E e) throws InterruptedException {
358        if (e == null) throw new NullPointerException();
359        Node<E> node = new Node<E>(e);
360        final ReentrantLock lock = this.lock;
361        lock.lock();
362        try {
363            while (!linkLast(node))
364                notFull.await();
365        } finally {
366            lock.unlock();
367        }
368    }
369
370    /**
371     * @throws NullPointerException {@inheritDoc}
372     * @throws InterruptedException {@inheritDoc}
373     */
374    public boolean offerFirst(E e, long timeout, TimeUnit unit)
375        throws InterruptedException {
376        if (e == null) throw new NullPointerException();
377        Node<E> node = new Node<E>(e);
378        long nanos = unit.toNanos(timeout);
379        final ReentrantLock lock = this.lock;
380        lock.lockInterruptibly();
381        try {
382            while (!linkFirst(node)) {
383                if (nanos <= 0)
384                    return false;
385                nanos = notFull.awaitNanos(nanos);
386            }
387            return true;
388        } finally {
389            lock.unlock();
390        }
391    }
392
393    /**
394     * @throws NullPointerException {@inheritDoc}
395     * @throws InterruptedException {@inheritDoc}
396     */
397    public boolean offerLast(E e, long timeout, TimeUnit unit)
398        throws InterruptedException {
399        if (e == null) throw new NullPointerException();
400        Node<E> node = new Node<E>(e);
401        long nanos = unit.toNanos(timeout);
402        final ReentrantLock lock = this.lock;
403        lock.lockInterruptibly();
404        try {
405            while (!linkLast(node)) {
406                if (nanos <= 0)
407                    return false;
408                nanos = notFull.awaitNanos(nanos);
409            }
410            return true;
411        } finally {
412            lock.unlock();
413        }
414    }
415
416    /**
417     * @throws NoSuchElementException {@inheritDoc}
418     */
419    public E removeFirst() {
420        E x = pollFirst();
421        if (x == null) throw new NoSuchElementException();
422        return x;
423    }
424
425    /**
426     * @throws NoSuchElementException {@inheritDoc}
427     */
428    public E removeLast() {
429        E x = pollLast();
430        if (x == null) throw new NoSuchElementException();
431        return x;
432    }
433
434    public E pollFirst() {
435        final ReentrantLock lock = this.lock;
436        lock.lock();
437        try {
438            return unlinkFirst();
439        } finally {
440            lock.unlock();
441        }
442    }
443
444    public E pollLast() {
445        final ReentrantLock lock = this.lock;
446        lock.lock();
447        try {
448            return unlinkLast();
449        } finally {
450            lock.unlock();
451        }
452    }
453
454    public E takeFirst() throws InterruptedException {
455        final ReentrantLock lock = this.lock;
456        lock.lock();
457        try {
458            E x;
459            while ( (x = unlinkFirst()) == null)
460                notEmpty.await();
461            return x;
462        } finally {
463            lock.unlock();
464        }
465    }
466
467    public E takeLast() throws InterruptedException {
468        final ReentrantLock lock = this.lock;
469        lock.lock();
470        try {
471            E x;
472            while ( (x = unlinkLast()) == null)
473                notEmpty.await();
474            return x;
475        } finally {
476            lock.unlock();
477        }
478    }
479
480    public E pollFirst(long timeout, TimeUnit unit)
481        throws InterruptedException {
482        long nanos = unit.toNanos(timeout);
483        final ReentrantLock lock = this.lock;
484        lock.lockInterruptibly();
485        try {
486            E x;
487            while ( (x = unlinkFirst()) == null) {
488                if (nanos <= 0)
489                    return null;
490                nanos = notEmpty.awaitNanos(nanos);
491            }
492            return x;
493        } finally {
494            lock.unlock();
495        }
496    }
497
498    public E pollLast(long timeout, TimeUnit unit)
499        throws InterruptedException {
500        long nanos = unit.toNanos(timeout);
501        final ReentrantLock lock = this.lock;
502        lock.lockInterruptibly();
503        try {
504            E x;
505            while ( (x = unlinkLast()) == null) {
506                if (nanos <= 0)
507                    return null;
508                nanos = notEmpty.awaitNanos(nanos);
509            }
510            return x;
511        } finally {
512            lock.unlock();
513        }
514    }
515
516    /**
517     * @throws NoSuchElementException {@inheritDoc}
518     */
519    public E getFirst() {
520        E x = peekFirst();
521        if (x == null) throw new NoSuchElementException();
522        return x;
523    }
524
525    /**
526     * @throws NoSuchElementException {@inheritDoc}
527     */
528    public E getLast() {
529        E x = peekLast();
530        if (x == null) throw new NoSuchElementException();
531        return x;
532    }
533
534    public E peekFirst() {
535        final ReentrantLock lock = this.lock;
536        lock.lock();
537        try {
538            return (first == null) ? null : first.item;
539        } finally {
540            lock.unlock();
541        }
542    }
543
544    public E peekLast() {
545        final ReentrantLock lock = this.lock;
546        lock.lock();
547        try {
548            return (last == null) ? null : last.item;
549        } finally {
550            lock.unlock();
551        }
552    }
553
554    public boolean removeFirstOccurrence(Object o) {
555        if (o == null) return false;
556        final ReentrantLock lock = this.lock;
557        lock.lock();
558        try {
559            for (Node<E> p = first; p != null; p = p.next) {
560                if (o.equals(p.item)) {
561                    unlink(p);
562                    return true;
563                }
564            }
565            return false;
566        } finally {
567            lock.unlock();
568        }
569    }
570
571    public boolean removeLastOccurrence(Object o) {
572        if (o == null) return false;
573        final ReentrantLock lock = this.lock;
574        lock.lock();
575        try {
576            for (Node<E> p = last; p != null; p = p.prev) {
577                if (o.equals(p.item)) {
578                    unlink(p);
579                    return true;
580                }
581            }
582            return false;
583        } finally {
584            lock.unlock();
585        }
586    }
587
588    // BlockingQueue methods
589
590    /**
591     * Inserts the specified element at the end of this deque unless it would
592     * violate capacity restrictions.  When using a capacity-restricted deque,
593     * it is generally preferable to use method {@link #offer(Object) offer}.
594     *
595     * <p>This method is equivalent to {@link #addLast}.
596     *
597     * @throws IllegalStateException if the element cannot be added at this
598     *         time due to capacity restrictions
599     * @throws NullPointerException if the specified element is null
600     */
601    public boolean add(E e) {
602        addLast(e);
603        return true;
604    }
605
606    /**
607     * @throws NullPointerException if the specified element is null
608     */
609    public boolean offer(E e) {
610        return offerLast(e);
611    }
612
613    /**
614     * @throws NullPointerException {@inheritDoc}
615     * @throws InterruptedException {@inheritDoc}
616     */
617    public void put(E e) throws InterruptedException {
618        putLast(e);
619    }
620
621    /**
622     * @throws NullPointerException {@inheritDoc}
623     * @throws InterruptedException {@inheritDoc}
624     */
625    public boolean offer(E e, long timeout, TimeUnit unit)
626        throws InterruptedException {
627        return offerLast(e, timeout, unit);
628    }
629
630    /**
631     * Retrieves and removes the head of the queue represented by this deque.
632     * This method differs from {@link #poll poll} only in that it throws an
633     * exception if this deque is empty.
634     *
635     * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
636     *
637     * @return the head of the queue represented by this deque
638     * @throws NoSuchElementException if this deque is empty
639     */
640    public E remove() {
641        return removeFirst();
642    }
643
644    public E poll() {
645        return pollFirst();
646    }
647
648    public E take() throws InterruptedException {
649        return takeFirst();
650    }
651
652    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
653        return pollFirst(timeout, unit);
654    }
655
656    /**
657     * Retrieves, but does not remove, the head of the queue represented by
658     * this deque.  This method differs from {@link #peek peek} only in that
659     * it throws an exception if this deque is empty.
660     *
661     * <p>This method is equivalent to {@link #getFirst() getFirst}.
662     *
663     * @return the head of the queue represented by this deque
664     * @throws NoSuchElementException if this deque is empty
665     */
666    public E element() {
667        return getFirst();
668    }
669
670    public E peek() {
671        return peekFirst();
672    }
673
674    /**
675     * Returns the number of additional elements that this deque can ideally
676     * (in the absence of memory or resource constraints) accept without
677     * blocking. This is always equal to the initial capacity of this deque
678     * less the current {@code size} of this deque.
679     *
680     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
681     * an element will succeed by inspecting {@code remainingCapacity}
682     * because it may be the case that another thread is about to
683     * insert or remove an element.
684     */
685    public int remainingCapacity() {
686        final ReentrantLock lock = this.lock;
687        lock.lock();
688        try {
689            return capacity - count;
690        } finally {
691            lock.unlock();
692        }
693    }
694
695    /**
696     * @throws UnsupportedOperationException {@inheritDoc}
697     * @throws ClassCastException            {@inheritDoc}
698     * @throws NullPointerException          {@inheritDoc}
699     * @throws IllegalArgumentException      {@inheritDoc}
700     */
701    public int drainTo(Collection<? super E> c) {
702        return drainTo(c, Integer.MAX_VALUE);
703    }
704
705    /**
706     * @throws UnsupportedOperationException {@inheritDoc}
707     * @throws ClassCastException            {@inheritDoc}
708     * @throws NullPointerException          {@inheritDoc}
709     * @throws IllegalArgumentException      {@inheritDoc}
710     */
711    public int drainTo(Collection<? super E> c, int maxElements) {
712        if (c == null)
713            throw new NullPointerException();
714        if (c == this)
715            throw new IllegalArgumentException();
716        final ReentrantLock lock = this.lock;
717        lock.lock();
718        try {
719            int n = Math.min(maxElements, count);
720            for (int i = 0; i < n; i++) {
721                c.add(first.item);   // In this order, in case add() throws.
722                unlinkFirst();
723            }
724            return n;
725        } finally {
726            lock.unlock();
727        }
728    }
729
730    // Stack methods
731
732    /**
733     * @throws IllegalStateException {@inheritDoc}
734     * @throws NullPointerException  {@inheritDoc}
735     */
736    public void push(E e) {
737        addFirst(e);
738    }
739
740    /**
741     * @throws NoSuchElementException {@inheritDoc}
742     */
743    public E pop() {
744        return removeFirst();
745    }
746
747    // Collection methods
748
749    /**
750     * Removes the first occurrence of the specified element from this deque.
751     * If the deque does not contain the element, it is unchanged.
752     * More formally, removes the first element {@code e} such that
753     * {@code o.equals(e)} (if such an element exists).
754     * Returns {@code true} if this deque contained the specified element
755     * (or equivalently, if this deque changed as a result of the call).
756     *
757     * <p>This method is equivalent to
758     * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
759     *
760     * @param o element to be removed from this deque, if present
761     * @return {@code true} if this deque changed as a result of the call
762     */
763    public boolean remove(Object o) {
764        return removeFirstOccurrence(o);
765    }
766
767    /**
768     * Returns the number of elements in this deque.
769     *
770     * @return the number of elements in this deque
771     */
772    public int size() {
773        final ReentrantLock lock = this.lock;
774        lock.lock();
775        try {
776            return count;
777        } finally {
778            lock.unlock();
779        }
780    }
781
782    /**
783     * Returns {@code true} if this deque contains the specified element.
784     * More formally, returns {@code true} if and only if this deque contains
785     * at least one element {@code e} such that {@code o.equals(e)}.
786     *
787     * @param o object to be checked for containment in this deque
788     * @return {@code true} if this deque contains the specified element
789     */
790    public boolean contains(Object o) {
791        if (o == null) return false;
792        final ReentrantLock lock = this.lock;
793        lock.lock();
794        try {
795            for (Node<E> p = first; p != null; p = p.next)
796                if (o.equals(p.item))
797                    return true;
798            return false;
799        } finally {
800            lock.unlock();
801        }
802    }
803
804    /*
805     * TODO: Add support for more efficient bulk operations.
806     *
807     * We don't want to acquire the lock for every iteration, but we
808     * also want other threads a chance to interact with the
809     * collection, especially when count is close to capacity.
810     */
811
812//     /**
813//      * Adds all of the elements in the specified collection to this
814//      * queue.  Attempts to addAll of a queue to itself result in
815//      * {@code IllegalArgumentException}. Further, the behavior of
816//      * this operation is undefined if the specified collection is
817//      * modified while the operation is in progress.
818//      *
819//      * @param c collection containing elements to be added to this queue
820//      * @return {@code true} if this queue changed as a result of the call
821//      * @throws ClassCastException            {@inheritDoc}
822//      * @throws NullPointerException          {@inheritDoc}
823//      * @throws IllegalArgumentException      {@inheritDoc}
824//      * @throws IllegalStateException         {@inheritDoc}
825//      * @see #add(Object)
826//      */
827//     public boolean addAll(Collection<? extends E> c) {
828//         if (c == null)
829//             throw new NullPointerException();
830//         if (c == this)
831//             throw new IllegalArgumentException();
832//         final ReentrantLock lock = this.lock;
833//         lock.lock();
834//         try {
835//             boolean modified = false;
836//             for (E e : c)
837//                 if (linkLast(e))
838//                     modified = true;
839//             return modified;
840//         } finally {
841//             lock.unlock();
842//         }
843//     }
844
845    /**
846     * Returns an array containing all of the elements in this deque, in
847     * proper sequence (from first to last element).
848     *
849     * <p>The returned array will be "safe" in that no references to it are
850     * maintained by this deque.  (In other words, this method must allocate
851     * a new array).  The caller is thus free to modify the returned array.
852     *
853     * <p>This method acts as bridge between array-based and collection-based
854     * APIs.
855     *
856     * @return an array containing all of the elements in this deque
857     */
858    @SuppressWarnings("unchecked")
859    public Object[] toArray() {
860        final ReentrantLock lock = this.lock;
861        lock.lock();
862        try {
863            Object[] a = new Object[count];
864            int k = 0;
865            for (Node<E> p = first; p != null; p = p.next)
866                a[k++] = p.item;
867            return a;
868        } finally {
869            lock.unlock();
870        }
871    }
872
873    /**
874     * Returns an array containing all of the elements in this deque, in
875     * proper sequence; the runtime type of the returned array is that of
876     * the specified array.  If the deque fits in the specified array, it
877     * is returned therein.  Otherwise, a new array is allocated with the
878     * runtime type of the specified array and the size of this deque.
879     *
880     * <p>If this deque fits in the specified array with room to spare
881     * (i.e., the array has more elements than this deque), the element in
882     * the array immediately following the end of the deque is set to
883     * {@code null}.
884     *
885     * <p>Like the {@link #toArray()} method, this method acts as bridge between
886     * array-based and collection-based APIs.  Further, this method allows
887     * precise control over the runtime type of the output array, and may,
888     * under certain circumstances, be used to save allocation costs.
889     *
890     * <p>Suppose {@code x} is a deque known to contain only strings.
891     * The following code can be used to dump the deque into a newly
892     * allocated array of {@code String}:
893     *
894     * <pre>
895     *     String[] y = x.toArray(new String[0]);</pre>
896     *
897     * Note that {@code toArray(new Object[0])} is identical in function to
898     * {@code toArray()}.
899     *
900     * @param a the array into which the elements of the deque are to
901     *          be stored, if it is big enough; otherwise, a new array of the
902     *          same runtime type is allocated for this purpose
903     * @return an array containing all of the elements in this deque
904     * @throws ArrayStoreException if the runtime type of the specified array
905     *         is not a supertype of the runtime type of every element in
906     *         this deque
907     * @throws NullPointerException if the specified array is null
908     */
909    @SuppressWarnings("unchecked")
910    public <T> T[] toArray(T[] a) {
911        final ReentrantLock lock = this.lock;
912        lock.lock();
913        try {
914            if (a.length < count)
915                a = (T[])java.lang.reflect.Array.newInstance
916                    (a.getClass().getComponentType(), count);
917
918            int k = 0;
919            for (Node<E> p = first; p != null; p = p.next)
920                a[k++] = (T)p.item;
921            if (a.length > k)
922                a[k] = null;
923            return a;
924        } finally {
925            lock.unlock();
926        }
927    }
928
929    public String toString() {
930        final ReentrantLock lock = this.lock;
931        lock.lock();
932        try {
933            Node<E> p = first;
934            if (p == null)
935                return "[]";
936
937            StringBuilder sb = new StringBuilder();
938            sb.append('[');
939            for (;;) {
940                E e = p.item;
941                sb.append(e == this ? "(this Collection)" : e);
942                p = p.next;
943                if (p == null)
944                    return sb.append(']').toString();
945                sb.append(',').append(' ');
946            }
947        } finally {
948            lock.unlock();
949        }
950    }
951
952    /**
953     * Atomically removes all of the elements from this deque.
954     * The deque will be empty after this call returns.
955     */
956    public void clear() {
957        final ReentrantLock lock = this.lock;
958        lock.lock();
959        try {
960            for (Node<E> f = first; f != null; ) {
961                f.item = null;
962                Node<E> n = f.next;
963                f.prev = null;
964                f.next = null;
965                f = n;
966            }
967            first = last = null;
968            count = 0;
969            notFull.signalAll();
970        } finally {
971            lock.unlock();
972        }
973    }
974
975    /**
976     * Returns an iterator over the elements in this deque in proper sequence.
977     * The elements will be returned in order from first (head) to last (tail).
978     *
979     * <p>The returned iterator is a "weakly consistent" iterator that
980     * will never throw {@link java.util.ConcurrentModificationException
981     * ConcurrentModificationException}, and guarantees to traverse
982     * elements as they existed upon construction of the iterator, and
983     * may (but is not guaranteed to) reflect any modifications
984     * subsequent to construction.
985     *
986     * @return an iterator over the elements in this deque in proper sequence
987     */
988    public Iterator<E> iterator() {
989        return new Itr();
990    }
991
992    /**
993     * Returns an iterator over the elements in this deque in reverse
994     * sequential order.  The elements will be returned in order from
995     * last (tail) to first (head).
996     *
997     * <p>The returned iterator is a "weakly consistent" iterator that
998     * will never throw {@link java.util.ConcurrentModificationException
999     * ConcurrentModificationException}, and guarantees to traverse
1000     * elements as they existed upon construction of the iterator, and
1001     * may (but is not guaranteed to) reflect any modifications
1002     * subsequent to construction.
1003     *
1004     * @return an iterator over the elements in this deque in reverse order
1005     */
1006    public Iterator<E> descendingIterator() {
1007        return new DescendingItr();
1008    }
1009
1010    /**
1011     * Base class for Iterators for LinkedBlockingDeque
1012     */
1013    private abstract class AbstractItr implements Iterator<E> {
1014        /**
1015         * The next node to return in next()
1016         */
1017         Node<E> next;
1018
1019        /**
1020         * nextItem holds on to item fields because once we claim that
1021         * an element exists in hasNext(), we must return item read
1022         * under lock (in advance()) even if it was in the process of
1023         * being removed when hasNext() was called.
1024         */
1025        E nextItem;
1026
1027        /**
1028         * Node returned by most recent call to next. Needed by remove.
1029         * Reset to null if this element is deleted by a call to remove.
1030         */
1031        private Node<E> lastRet;
1032
1033        abstract Node<E> firstNode();
1034        abstract Node<E> nextNode(Node<E> n);
1035
1036        AbstractItr() {
1037            // set to initial position
1038            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1039            lock.lock();
1040            try {
1041                next = firstNode();
1042                nextItem = (next == null) ? null : next.item;
1043            } finally {
1044                lock.unlock();
1045            }
1046        }
1047
1048        /**
1049         * Returns the successor node of the given non-null, but
1050         * possibly previously deleted, node.
1051         */
1052        private Node<E> succ(Node<E> n) {
1053            // Chains of deleted nodes ending in null or self-links
1054            // are possible if multiple interior nodes are removed.
1055            for (;;) {
1056                Node<E> s = nextNode(n);
1057                if (s == null)
1058                    return null;
1059                else if (s.item != null)
1060                    return s;
1061                else if (s == n)
1062                    return firstNode();
1063                else
1064                    n = s;
1065            }
1066        }
1067
1068        /**
1069         * Advances next.
1070         */
1071        void advance() {
1072            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1073            lock.lock();
1074            try {
1075                // assert next != null;
1076                next = succ(next);
1077                nextItem = (next == null) ? null : next.item;
1078            } finally {
1079                lock.unlock();
1080            }
1081        }
1082
1083        public boolean hasNext() {
1084            return next != null;
1085        }
1086
1087        public E next() {
1088            if (next == null)
1089                throw new NoSuchElementException();
1090            lastRet = next;
1091            E x = nextItem;
1092            advance();
1093            return x;
1094        }
1095
1096        public void remove() {
1097            Node<E> n = lastRet;
1098            if (n == null)
1099                throw new IllegalStateException();
1100            lastRet = null;
1101            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1102            lock.lock();
1103            try {
1104                if (n.item != null)
1105                    unlink(n);
1106            } finally {
1107                lock.unlock();
1108            }
1109        }
1110    }
1111
1112    /** Forward iterator */
1113    private class Itr extends AbstractItr {
1114        Node<E> firstNode() { return first; }
1115        Node<E> nextNode(Node<E> n) { return n.next; }
1116    }
1117
1118    /** Descending iterator */
1119    private class DescendingItr extends AbstractItr {
1120        Node<E> firstNode() { return last; }
1121        Node<E> nextNode(Node<E> n) { return n.prev; }
1122    }
1123
1124    /**
1125     * Save the state of this deque to a stream (that is, serialize it).
1126     *
1127     * @serialData The capacity (int), followed by elements (each an
1128     * {@code Object}) in the proper order, followed by a null
1129     * @param s the stream
1130     */
1131    private void writeObject(java.io.ObjectOutputStream s)
1132        throws java.io.IOException {
1133        final ReentrantLock lock = this.lock;
1134        lock.lock();
1135        try {
1136            // Write out capacity and any hidden stuff
1137            s.defaultWriteObject();
1138            // Write out all elements in the proper order.
1139            for (Node<E> p = first; p != null; p = p.next)
1140                s.writeObject(p.item);
1141            // Use trailing null as sentinel
1142            s.writeObject(null);
1143        } finally {
1144            lock.unlock();
1145        }
1146    }
1147
1148    /**
1149     * Reconstitute this deque from a stream (that is,
1150     * deserialize it).
1151     * @param s the stream
1152     */
1153    private void readObject(java.io.ObjectInputStream s)
1154        throws java.io.IOException, ClassNotFoundException {
1155        s.defaultReadObject();
1156        count = 0;
1157        first = null;
1158        last = null;
1159        // Read in all elements and place in queue
1160        for (;;) {
1161            @SuppressWarnings("unchecked")
1162            E item = (E)s.readObject();
1163            if (item == null)
1164                break;
1165            add(item);
1166        }
1167    }
1168
1169}
1170