/* * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; /** *
Hash table and linked list implementation of the Set interface, * with predictable iteration order. This implementation differs from * HashSet in that it maintains a doubly-linked list running through * all of its entries. This linked list defines the iteration ordering, * which is the order in which elements were inserted into the set * (insertion-order). Note that insertion order is not affected * if an element is re-inserted into the set. (An element e * is reinserted into a set s if s.add(e) is invoked when * s.contains(e) would return true immediately prior to * the invocation.) * *
This implementation spares its clients from the unspecified, generally * chaotic ordering provided by {@link HashSet}, without incurring the * increased cost associated with {@link TreeSet}. It can be used to * produce a copy of a set that has the same order as the original, regardless * of the original set's implementation: *
* void foo(Set s) { * Set copy = new LinkedHashSet(s); * ... * } ** This technique is particularly useful if a module takes a set on input, * copies it, and later returns results whose order is determined by that of * the copy. (Clients generally appreciate having things returned in the same * order they were presented.) * *
This class provides all of the optional Set operations, and * permits null elements. Like HashSet, it provides constant-time * performance for the basic operations (add, contains and * remove), assuming the hash function disperses elements * properly among the buckets. Performance is likely to be just slightly * below that of HashSet, due to the added expense of maintaining the * linked list, with one exception: Iteration over a LinkedHashSet * requires time proportional to the size of the set, regardless of * its capacity. Iteration over a HashSet is likely to be more * expensive, requiring time proportional to its capacity. * *
A linked hash set has two parameters that affect its performance: * initial capacity and load factor. They are defined precisely * as for HashSet. Note, however, that the penalty for choosing an * excessively high value for initial capacity is less severe for this class * than for HashSet, as iteration times for this class are unaffected * by capacity. * *
Note that this implementation is not synchronized. * If multiple threads access a linked hash set concurrently, and at least * one of the threads modifies the set, it must be synchronized * externally. This is typically accomplished by synchronizing on some * object that naturally encapsulates the set. * * If no such object exists, the set should be "wrapped" using the * {@link Collections#synchronizedSet Collections.synchronizedSet} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the set:
* Set s = Collections.synchronizedSet(new LinkedHashSet(...));* *
The iterators returned by this class's iterator method are * fail-fast: if the set is modified at any time after the iterator * is created, in any way except through the iterator's own remove * method, the iterator will throw a {@link ConcurrentModificationException}. * Thus, in the face of concurrent modification, the iterator fails quickly * and cleanly, rather than risking arbitrary, non-deterministic behavior at * an undetermined time in the future. * *
Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw ConcurrentModificationException on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *
This class is a member of the
*
* Java Collections Framework.
*
* @param The {@code Spliterator} reports {@link Spliterator#SIZED},
* {@link Spliterator#DISTINCT}, and {@code ORDERED}. Implementations
* should document the reporting of additional characteristic values.
*
* @implNote
* The implementation creates a
* late-binding spliterator
* from the set's {@code Iterator}. The spliterator inherits the
* fail-fast properties of the set's iterator.
* The created {@code Spliterator} additionally reports
* {@link Spliterator#SUBSIZED}.
*
* @return a {@code Spliterator} over the elements in this set
* @since 1.8
*/
@Override
public Spliterator