code_generator_arm64.cc revision 74eb1b264691c4eb399d0858015a7fc13c476ac6
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "code_generator_arm64.h"
18
19#include "arch/arm64/instruction_set_features_arm64.h"
20#include "art_method.h"
21#include "code_generator_utils.h"
22#include "compiled_method.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24#include "entrypoints/quick/quick_entrypoints_enum.h"
25#include "gc/accounting/card_table.h"
26#include "intrinsics.h"
27#include "intrinsics_arm64.h"
28#include "mirror/array-inl.h"
29#include "mirror/class-inl.h"
30#include "offsets.h"
31#include "thread.h"
32#include "utils/arm64/assembler_arm64.h"
33#include "utils/assembler.h"
34#include "utils/stack_checks.h"
35
36
37using namespace vixl;   // NOLINT(build/namespaces)
38
39#ifdef __
40#error "ARM64 Codegen VIXL macro-assembler macro already defined."
41#endif
42
43namespace art {
44
45template<class MirrorType>
46class GcRoot;
47
48namespace arm64 {
49
50using helpers::CPURegisterFrom;
51using helpers::DRegisterFrom;
52using helpers::FPRegisterFrom;
53using helpers::HeapOperand;
54using helpers::HeapOperandFrom;
55using helpers::InputCPURegisterAt;
56using helpers::InputFPRegisterAt;
57using helpers::InputRegisterAt;
58using helpers::InputOperandAt;
59using helpers::Int64ConstantFrom;
60using helpers::LocationFrom;
61using helpers::OperandFromMemOperand;
62using helpers::OutputCPURegister;
63using helpers::OutputFPRegister;
64using helpers::OutputRegister;
65using helpers::RegisterFrom;
66using helpers::StackOperandFrom;
67using helpers::VIXLRegCodeFromART;
68using helpers::WRegisterFrom;
69using helpers::XRegisterFrom;
70using helpers::ARM64EncodableConstantOrRegister;
71using helpers::ArtVixlRegCodeCoherentForRegSet;
72
73static constexpr int kCurrentMethodStackOffset = 0;
74// The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
75// table version generates 7 instructions and num_entries literals. Compare/jump sequence will
76// generates less code/data with a small num_entries.
77static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
78
79inline Condition ARM64Condition(IfCondition cond) {
80  switch (cond) {
81    case kCondEQ: return eq;
82    case kCondNE: return ne;
83    case kCondLT: return lt;
84    case kCondLE: return le;
85    case kCondGT: return gt;
86    case kCondGE: return ge;
87    case kCondB:  return lo;
88    case kCondBE: return ls;
89    case kCondA:  return hi;
90    case kCondAE: return hs;
91  }
92  LOG(FATAL) << "Unreachable";
93  UNREACHABLE();
94}
95
96inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
97  // The ARM64 condition codes can express all the necessary branches, see the
98  // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
99  // There is no dex instruction or HIR that would need the missing conditions
100  // "equal or unordered" or "not equal".
101  switch (cond) {
102    case kCondEQ: return eq;
103    case kCondNE: return ne /* unordered */;
104    case kCondLT: return gt_bias ? cc : lt /* unordered */;
105    case kCondLE: return gt_bias ? ls : le /* unordered */;
106    case kCondGT: return gt_bias ? hi /* unordered */ : gt;
107    case kCondGE: return gt_bias ? cs /* unordered */ : ge;
108    default:
109      LOG(FATAL) << "UNREACHABLE";
110      UNREACHABLE();
111  }
112}
113
114Location ARM64ReturnLocation(Primitive::Type return_type) {
115  // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
116  // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
117  // but we use the exact registers for clarity.
118  if (return_type == Primitive::kPrimFloat) {
119    return LocationFrom(s0);
120  } else if (return_type == Primitive::kPrimDouble) {
121    return LocationFrom(d0);
122  } else if (return_type == Primitive::kPrimLong) {
123    return LocationFrom(x0);
124  } else if (return_type == Primitive::kPrimVoid) {
125    return Location::NoLocation();
126  } else {
127    return LocationFrom(w0);
128  }
129}
130
131Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type return_type) {
132  return ARM64ReturnLocation(return_type);
133}
134
135#define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()->
136#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64WordSize, x).Int32Value()
137
138// Calculate memory accessing operand for save/restore live registers.
139static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen,
140                                           RegisterSet* register_set,
141                                           int64_t spill_offset,
142                                           bool is_save) {
143  DCHECK(ArtVixlRegCodeCoherentForRegSet(register_set->GetCoreRegisters(),
144                                         codegen->GetNumberOfCoreRegisters(),
145                                         register_set->GetFloatingPointRegisters(),
146                                         codegen->GetNumberOfFloatingPointRegisters()));
147
148  CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize,
149      register_set->GetCoreRegisters() & (~callee_saved_core_registers.list()));
150  CPURegList fp_list = CPURegList(CPURegister::kFPRegister, kDRegSize,
151      register_set->GetFloatingPointRegisters() & (~callee_saved_fp_registers.list()));
152
153  MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler();
154  UseScratchRegisterScope temps(masm);
155
156  Register base = masm->StackPointer();
157  int64_t core_spill_size = core_list.TotalSizeInBytes();
158  int64_t fp_spill_size = fp_list.TotalSizeInBytes();
159  int64_t reg_size = kXRegSizeInBytes;
160  int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size;
161  uint32_t ls_access_size = WhichPowerOf2(reg_size);
162  if (((core_list.Count() > 1) || (fp_list.Count() > 1)) &&
163      !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) {
164    // If the offset does not fit in the instruction's immediate field, use an alternate register
165    // to compute the base address(float point registers spill base address).
166    Register new_base = temps.AcquireSameSizeAs(base);
167    __ Add(new_base, base, Operand(spill_offset + core_spill_size));
168    base = new_base;
169    spill_offset = -core_spill_size;
170    int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size;
171    DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size));
172    DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size));
173  }
174
175  if (is_save) {
176    __ StoreCPURegList(core_list, MemOperand(base, spill_offset));
177    __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
178  } else {
179    __ LoadCPURegList(core_list, MemOperand(base, spill_offset));
180    __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
181  }
182}
183
184void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
185  RegisterSet* register_set = locations->GetLiveRegisters();
186  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
187  for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
188    if (!codegen->IsCoreCalleeSaveRegister(i) && register_set->ContainsCoreRegister(i)) {
189      // If the register holds an object, update the stack mask.
190      if (locations->RegisterContainsObject(i)) {
191        locations->SetStackBit(stack_offset / kVRegSize);
192      }
193      DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
194      DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
195      saved_core_stack_offsets_[i] = stack_offset;
196      stack_offset += kXRegSizeInBytes;
197    }
198  }
199
200  for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) {
201    if (!codegen->IsFloatingPointCalleeSaveRegister(i) &&
202        register_set->ContainsFloatingPointRegister(i)) {
203      DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
204      DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
205      saved_fpu_stack_offsets_[i] = stack_offset;
206      stack_offset += kDRegSizeInBytes;
207    }
208  }
209
210  SaveRestoreLiveRegistersHelper(codegen, register_set,
211                                 codegen->GetFirstRegisterSlotInSlowPath(), true /* is_save */);
212}
213
214void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
215  RegisterSet* register_set = locations->GetLiveRegisters();
216  SaveRestoreLiveRegistersHelper(codegen, register_set,
217                                 codegen->GetFirstRegisterSlotInSlowPath(), false /* is_save */);
218}
219
220class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
221 public:
222  explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : instruction_(instruction) {}
223
224  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
225    LocationSummary* locations = instruction_->GetLocations();
226    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
227
228    __ Bind(GetEntryLabel());
229    if (instruction_->CanThrowIntoCatchBlock()) {
230      // Live registers will be restored in the catch block if caught.
231      SaveLiveRegisters(codegen, instruction_->GetLocations());
232    }
233    // We're moving two locations to locations that could overlap, so we need a parallel
234    // move resolver.
235    InvokeRuntimeCallingConvention calling_convention;
236    codegen->EmitParallelMoves(
237        locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt,
238        locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt);
239    arm64_codegen->InvokeRuntime(
240        QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this);
241    CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
242  }
243
244  bool IsFatal() const OVERRIDE { return true; }
245
246  const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM64"; }
247
248 private:
249  HBoundsCheck* const instruction_;
250
251  DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
252};
253
254class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
255 public:
256  explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : instruction_(instruction) {}
257
258  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
259    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
260    __ Bind(GetEntryLabel());
261    if (instruction_->CanThrowIntoCatchBlock()) {
262      // Live registers will be restored in the catch block if caught.
263      SaveLiveRegisters(codegen, instruction_->GetLocations());
264    }
265    arm64_codegen->InvokeRuntime(
266        QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this);
267    CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
268  }
269
270  bool IsFatal() const OVERRIDE { return true; }
271
272  const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM64"; }
273
274 private:
275  HDivZeroCheck* const instruction_;
276  DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
277};
278
279class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
280 public:
281  LoadClassSlowPathARM64(HLoadClass* cls,
282                         HInstruction* at,
283                         uint32_t dex_pc,
284                         bool do_clinit)
285      : cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
286    DCHECK(at->IsLoadClass() || at->IsClinitCheck());
287  }
288
289  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
290    LocationSummary* locations = at_->GetLocations();
291    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
292
293    __ Bind(GetEntryLabel());
294    SaveLiveRegisters(codegen, locations);
295
296    InvokeRuntimeCallingConvention calling_convention;
297    __ Mov(calling_convention.GetRegisterAt(0).W(), cls_->GetTypeIndex());
298    int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
299                                            : QUICK_ENTRY_POINT(pInitializeType);
300    arm64_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this);
301    if (do_clinit_) {
302      CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
303    } else {
304      CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
305    }
306
307    // Move the class to the desired location.
308    Location out = locations->Out();
309    if (out.IsValid()) {
310      DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
311      Primitive::Type type = at_->GetType();
312      arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
313    }
314
315    RestoreLiveRegisters(codegen, locations);
316    __ B(GetExitLabel());
317  }
318
319  const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM64"; }
320
321 private:
322  // The class this slow path will load.
323  HLoadClass* const cls_;
324
325  // The instruction where this slow path is happening.
326  // (Might be the load class or an initialization check).
327  HInstruction* const at_;
328
329  // The dex PC of `at_`.
330  const uint32_t dex_pc_;
331
332  // Whether to initialize the class.
333  const bool do_clinit_;
334
335  DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
336};
337
338class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
339 public:
340  explicit LoadStringSlowPathARM64(HLoadString* instruction) : instruction_(instruction) {}
341
342  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
343    LocationSummary* locations = instruction_->GetLocations();
344    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
345    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
346
347    __ Bind(GetEntryLabel());
348    SaveLiveRegisters(codegen, locations);
349
350    InvokeRuntimeCallingConvention calling_convention;
351    __ Mov(calling_convention.GetRegisterAt(0).W(), instruction_->GetStringIndex());
352    arm64_codegen->InvokeRuntime(
353        QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this);
354    CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
355    Primitive::Type type = instruction_->GetType();
356    arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
357
358    RestoreLiveRegisters(codegen, locations);
359    __ B(GetExitLabel());
360  }
361
362  const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM64"; }
363
364 private:
365  HLoadString* const instruction_;
366
367  DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
368};
369
370class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
371 public:
372  explicit NullCheckSlowPathARM64(HNullCheck* instr) : instruction_(instr) {}
373
374  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
375    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
376    __ Bind(GetEntryLabel());
377    if (instruction_->CanThrowIntoCatchBlock()) {
378      // Live registers will be restored in the catch block if caught.
379      SaveLiveRegisters(codegen, instruction_->GetLocations());
380    }
381    arm64_codegen->InvokeRuntime(
382        QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this);
383    CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
384  }
385
386  bool IsFatal() const OVERRIDE { return true; }
387
388  const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM64"; }
389
390 private:
391  HNullCheck* const instruction_;
392
393  DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
394};
395
396class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
397 public:
398  SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
399      : instruction_(instruction), successor_(successor) {}
400
401  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
402    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
403    __ Bind(GetEntryLabel());
404    SaveLiveRegisters(codegen, instruction_->GetLocations());
405    arm64_codegen->InvokeRuntime(
406        QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this);
407    CheckEntrypointTypes<kQuickTestSuspend, void, void>();
408    RestoreLiveRegisters(codegen, instruction_->GetLocations());
409    if (successor_ == nullptr) {
410      __ B(GetReturnLabel());
411    } else {
412      __ B(arm64_codegen->GetLabelOf(successor_));
413    }
414  }
415
416  vixl::Label* GetReturnLabel() {
417    DCHECK(successor_ == nullptr);
418    return &return_label_;
419  }
420
421  HBasicBlock* GetSuccessor() const {
422    return successor_;
423  }
424
425  const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM64"; }
426
427 private:
428  HSuspendCheck* const instruction_;
429  // If not null, the block to branch to after the suspend check.
430  HBasicBlock* const successor_;
431
432  // If `successor_` is null, the label to branch to after the suspend check.
433  vixl::Label return_label_;
434
435  DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
436};
437
438class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
439 public:
440  TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
441      : instruction_(instruction), is_fatal_(is_fatal) {}
442
443  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
444    LocationSummary* locations = instruction_->GetLocations();
445    Location class_to_check = locations->InAt(1);
446    Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
447                                                        : locations->Out();
448    DCHECK(instruction_->IsCheckCast()
449           || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
450    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
451    uint32_t dex_pc = instruction_->GetDexPc();
452
453    __ Bind(GetEntryLabel());
454
455    if (!is_fatal_) {
456      SaveLiveRegisters(codegen, locations);
457    }
458
459    // We're moving two locations to locations that could overlap, so we need a parallel
460    // move resolver.
461    InvokeRuntimeCallingConvention calling_convention;
462    codegen->EmitParallelMoves(
463        class_to_check, LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot,
464        object_class, LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot);
465
466    if (instruction_->IsInstanceOf()) {
467      arm64_codegen->InvokeRuntime(
468          QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc, this);
469      CheckEntrypointTypes<kQuickInstanceofNonTrivial, uint32_t,
470                           const mirror::Class*, const mirror::Class*>();
471      Primitive::Type ret_type = instruction_->GetType();
472      Location ret_loc = calling_convention.GetReturnLocation(ret_type);
473      arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
474    } else {
475      DCHECK(instruction_->IsCheckCast());
476      arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc, this);
477      CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
478    }
479
480    if (!is_fatal_) {
481      RestoreLiveRegisters(codegen, locations);
482      __ B(GetExitLabel());
483    }
484  }
485
486  const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM64"; }
487  bool IsFatal() const { return is_fatal_; }
488
489 private:
490  HInstruction* const instruction_;
491  const bool is_fatal_;
492
493  DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
494};
495
496class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
497 public:
498  explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
499      : instruction_(instruction) {}
500
501  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
502    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
503    __ Bind(GetEntryLabel());
504    SaveLiveRegisters(codegen, instruction_->GetLocations());
505    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
506                                 instruction_,
507                                 instruction_->GetDexPc(),
508                                 this);
509    CheckEntrypointTypes<kQuickDeoptimize, void, void>();
510  }
511
512  const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM64"; }
513
514 private:
515  HDeoptimize* const instruction_;
516  DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
517};
518
519class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
520 public:
521  explicit ArraySetSlowPathARM64(HInstruction* instruction) : instruction_(instruction) {}
522
523  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
524    LocationSummary* locations = instruction_->GetLocations();
525    __ Bind(GetEntryLabel());
526    SaveLiveRegisters(codegen, locations);
527
528    InvokeRuntimeCallingConvention calling_convention;
529    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
530    parallel_move.AddMove(
531        locations->InAt(0),
532        LocationFrom(calling_convention.GetRegisterAt(0)),
533        Primitive::kPrimNot,
534        nullptr);
535    parallel_move.AddMove(
536        locations->InAt(1),
537        LocationFrom(calling_convention.GetRegisterAt(1)),
538        Primitive::kPrimInt,
539        nullptr);
540    parallel_move.AddMove(
541        locations->InAt(2),
542        LocationFrom(calling_convention.GetRegisterAt(2)),
543        Primitive::kPrimNot,
544        nullptr);
545    codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
546
547    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
548    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
549                                 instruction_,
550                                 instruction_->GetDexPc(),
551                                 this);
552    CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
553    RestoreLiveRegisters(codegen, locations);
554    __ B(GetExitLabel());
555  }
556
557  const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM64"; }
558
559 private:
560  HInstruction* const instruction_;
561
562  DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
563};
564
565void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
566  uint32_t num_entries = switch_instr_->GetNumEntries();
567  DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
568
569  // We are about to use the assembler to place literals directly. Make sure we have enough
570  // underlying code buffer and we have generated the jump table with right size.
571  CodeBufferCheckScope scope(codegen->GetVIXLAssembler(), num_entries * sizeof(int32_t),
572                             CodeBufferCheckScope::kCheck, CodeBufferCheckScope::kExactSize);
573
574  __ Bind(&table_start_);
575  const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
576  for (uint32_t i = 0; i < num_entries; i++) {
577    vixl::Label* target_label = codegen->GetLabelOf(successors[i]);
578    DCHECK(target_label->IsBound());
579    ptrdiff_t jump_offset = target_label->location() - table_start_.location();
580    DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
581    DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
582    Literal<int32_t> literal(jump_offset);
583    __ place(&literal);
584  }
585}
586
587// Slow path marking an object during a read barrier.
588class ReadBarrierMarkSlowPathARM64 : public SlowPathCodeARM64 {
589 public:
590  ReadBarrierMarkSlowPathARM64(HInstruction* instruction, Location out, Location obj)
591      : instruction_(instruction), out_(out), obj_(obj) {
592    DCHECK(kEmitCompilerReadBarrier);
593  }
594
595  const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM64"; }
596
597  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
598    LocationSummary* locations = instruction_->GetLocations();
599    Primitive::Type type = Primitive::kPrimNot;
600    DCHECK(locations->CanCall());
601    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
602    DCHECK(instruction_->IsInstanceFieldGet() ||
603           instruction_->IsStaticFieldGet() ||
604           instruction_->IsArrayGet() ||
605           instruction_->IsLoadClass() ||
606           instruction_->IsLoadString() ||
607           instruction_->IsInstanceOf() ||
608           instruction_->IsCheckCast())
609        << "Unexpected instruction in read barrier marking slow path: "
610        << instruction_->DebugName();
611
612    __ Bind(GetEntryLabel());
613    SaveLiveRegisters(codegen, locations);
614
615    InvokeRuntimeCallingConvention calling_convention;
616    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
617    arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), obj_, type);
618    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
619                                 instruction_,
620                                 instruction_->GetDexPc(),
621                                 this);
622    CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
623    arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
624
625    RestoreLiveRegisters(codegen, locations);
626    __ B(GetExitLabel());
627  }
628
629 private:
630  HInstruction* const instruction_;
631  const Location out_;
632  const Location obj_;
633
634  DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM64);
635};
636
637// Slow path generating a read barrier for a heap reference.
638class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
639 public:
640  ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
641                                           Location out,
642                                           Location ref,
643                                           Location obj,
644                                           uint32_t offset,
645                                           Location index)
646      : instruction_(instruction),
647        out_(out),
648        ref_(ref),
649        obj_(obj),
650        offset_(offset),
651        index_(index) {
652    DCHECK(kEmitCompilerReadBarrier);
653    // If `obj` is equal to `out` or `ref`, it means the initial object
654    // has been overwritten by (or after) the heap object reference load
655    // to be instrumented, e.g.:
656    //
657    //   __ Ldr(out, HeapOperand(out, class_offset);
658    //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
659    //
660    // In that case, we have lost the information about the original
661    // object, and the emitted read barrier cannot work properly.
662    DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
663    DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
664  }
665
666  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
667    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
668    LocationSummary* locations = instruction_->GetLocations();
669    Primitive::Type type = Primitive::kPrimNot;
670    DCHECK(locations->CanCall());
671    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
672    DCHECK(!instruction_->IsInvoke() ||
673           (instruction_->IsInvokeStaticOrDirect() &&
674            instruction_->GetLocations()->Intrinsified()))
675        << "Unexpected instruction in read barrier for heap reference slow path: "
676        << instruction_->DebugName();
677    // The read barrier instrumentation does not support the
678    // HArm64IntermediateAddress instruction yet.
679    DCHECK(!(instruction_->IsArrayGet() &&
680             instruction_->AsArrayGet()->GetArray()->IsArm64IntermediateAddress()));
681
682    __ Bind(GetEntryLabel());
683
684    SaveLiveRegisters(codegen, locations);
685
686    // We may have to change the index's value, but as `index_` is a
687    // constant member (like other "inputs" of this slow path),
688    // introduce a copy of it, `index`.
689    Location index = index_;
690    if (index_.IsValid()) {
691      // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
692      if (instruction_->IsArrayGet()) {
693        // Compute the actual memory offset and store it in `index`.
694        Register index_reg = RegisterFrom(index_, Primitive::kPrimInt);
695        DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
696        if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
697          // We are about to change the value of `index_reg` (see the
698          // calls to vixl::MacroAssembler::Lsl and
699          // vixl::MacroAssembler::Mov below), but it has
700          // not been saved by the previous call to
701          // art::SlowPathCode::SaveLiveRegisters, as it is a
702          // callee-save register --
703          // art::SlowPathCode::SaveLiveRegisters does not consider
704          // callee-save registers, as it has been designed with the
705          // assumption that callee-save registers are supposed to be
706          // handled by the called function.  So, as a callee-save
707          // register, `index_reg` _would_ eventually be saved onto
708          // the stack, but it would be too late: we would have
709          // changed its value earlier.  Therefore, we manually save
710          // it here into another freely available register,
711          // `free_reg`, chosen of course among the caller-save
712          // registers (as a callee-save `free_reg` register would
713          // exhibit the same problem).
714          //
715          // Note we could have requested a temporary register from
716          // the register allocator instead; but we prefer not to, as
717          // this is a slow path, and we know we can find a
718          // caller-save register that is available.
719          Register free_reg = FindAvailableCallerSaveRegister(codegen);
720          __ Mov(free_reg.W(), index_reg);
721          index_reg = free_reg;
722          index = LocationFrom(index_reg);
723        } else {
724          // The initial register stored in `index_` has already been
725          // saved in the call to art::SlowPathCode::SaveLiveRegisters
726          // (as it is not a callee-save register), so we can freely
727          // use it.
728        }
729        // Shifting the index value contained in `index_reg` by the scale
730        // factor (2) cannot overflow in practice, as the runtime is
731        // unable to allocate object arrays with a size larger than
732        // 2^26 - 1 (that is, 2^28 - 4 bytes).
733        __ Lsl(index_reg, index_reg, Primitive::ComponentSizeShift(type));
734        static_assert(
735            sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
736            "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
737        __ Add(index_reg, index_reg, Operand(offset_));
738      } else {
739        DCHECK(instruction_->IsInvoke());
740        DCHECK(instruction_->GetLocations()->Intrinsified());
741        DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
742               (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
743            << instruction_->AsInvoke()->GetIntrinsic();
744        DCHECK_EQ(offset_, 0U);
745        DCHECK(index_.IsRegisterPair());
746        // UnsafeGet's offset location is a register pair, the low
747        // part contains the correct offset.
748        index = index_.ToLow();
749      }
750    }
751
752    // We're moving two or three locations to locations that could
753    // overlap, so we need a parallel move resolver.
754    InvokeRuntimeCallingConvention calling_convention;
755    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
756    parallel_move.AddMove(ref_,
757                          LocationFrom(calling_convention.GetRegisterAt(0)),
758                          type,
759                          nullptr);
760    parallel_move.AddMove(obj_,
761                          LocationFrom(calling_convention.GetRegisterAt(1)),
762                          type,
763                          nullptr);
764    if (index.IsValid()) {
765      parallel_move.AddMove(index,
766                            LocationFrom(calling_convention.GetRegisterAt(2)),
767                            Primitive::kPrimInt,
768                            nullptr);
769      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
770    } else {
771      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
772      arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
773    }
774    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
775                                 instruction_,
776                                 instruction_->GetDexPc(),
777                                 this);
778    CheckEntrypointTypes<
779        kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
780    arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
781
782    RestoreLiveRegisters(codegen, locations);
783
784    __ B(GetExitLabel());
785  }
786
787  const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
788
789 private:
790  Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
791    size_t ref = static_cast<int>(XRegisterFrom(ref_).code());
792    size_t obj = static_cast<int>(XRegisterFrom(obj_).code());
793    for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
794      if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
795        return Register(VIXLRegCodeFromART(i), kXRegSize);
796      }
797    }
798    // We shall never fail to find a free caller-save register, as
799    // there are more than two core caller-save registers on ARM64
800    // (meaning it is possible to find one which is different from
801    // `ref` and `obj`).
802    DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
803    LOG(FATAL) << "Could not find a free register";
804    UNREACHABLE();
805  }
806
807  HInstruction* const instruction_;
808  const Location out_;
809  const Location ref_;
810  const Location obj_;
811  const uint32_t offset_;
812  // An additional location containing an index to an array.
813  // Only used for HArrayGet and the UnsafeGetObject &
814  // UnsafeGetObjectVolatile intrinsics.
815  const Location index_;
816
817  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
818};
819
820// Slow path generating a read barrier for a GC root.
821class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
822 public:
823  ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
824      : instruction_(instruction), out_(out), root_(root) {
825    DCHECK(kEmitCompilerReadBarrier);
826  }
827
828  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
829    LocationSummary* locations = instruction_->GetLocations();
830    Primitive::Type type = Primitive::kPrimNot;
831    DCHECK(locations->CanCall());
832    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
833    DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
834        << "Unexpected instruction in read barrier for GC root slow path: "
835        << instruction_->DebugName();
836
837    __ Bind(GetEntryLabel());
838    SaveLiveRegisters(codegen, locations);
839
840    InvokeRuntimeCallingConvention calling_convention;
841    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
842    // The argument of the ReadBarrierForRootSlow is not a managed
843    // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
844    // thus we need a 64-bit move here, and we cannot use
845    //
846    //   arm64_codegen->MoveLocation(
847    //       LocationFrom(calling_convention.GetRegisterAt(0)),
848    //       root_,
849    //       type);
850    //
851    // which would emit a 32-bit move, as `type` is a (32-bit wide)
852    // reference type (`Primitive::kPrimNot`).
853    __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
854    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
855                                 instruction_,
856                                 instruction_->GetDexPc(),
857                                 this);
858    CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
859    arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
860
861    RestoreLiveRegisters(codegen, locations);
862    __ B(GetExitLabel());
863  }
864
865  const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM64"; }
866
867 private:
868  HInstruction* const instruction_;
869  const Location out_;
870  const Location root_;
871
872  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
873};
874
875#undef __
876
877Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(Primitive::Type type) {
878  Location next_location;
879  if (type == Primitive::kPrimVoid) {
880    LOG(FATAL) << "Unreachable type " << type;
881  }
882
883  if (Primitive::IsFloatingPointType(type) &&
884      (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
885    next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
886  } else if (!Primitive::IsFloatingPointType(type) &&
887             (gp_index_ < calling_convention.GetNumberOfRegisters())) {
888    next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
889  } else {
890    size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
891    next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
892                                                 : Location::StackSlot(stack_offset);
893  }
894
895  // Space on the stack is reserved for all arguments.
896  stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
897  return next_location;
898}
899
900Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
901  return LocationFrom(kArtMethodRegister);
902}
903
904CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
905                                       const Arm64InstructionSetFeatures& isa_features,
906                                       const CompilerOptions& compiler_options,
907                                       OptimizingCompilerStats* stats)
908    : CodeGenerator(graph,
909                    kNumberOfAllocatableRegisters,
910                    kNumberOfAllocatableFPRegisters,
911                    kNumberOfAllocatableRegisterPairs,
912                    callee_saved_core_registers.list(),
913                    callee_saved_fp_registers.list(),
914                    compiler_options,
915                    stats),
916      block_labels_(nullptr),
917      jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
918      location_builder_(graph, this),
919      instruction_visitor_(graph, this),
920      move_resolver_(graph->GetArena(), this),
921      isa_features_(isa_features),
922      uint64_literals_(std::less<uint64_t>(),
923                       graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
924      method_patches_(MethodReferenceComparator(),
925                      graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
926      call_patches_(MethodReferenceComparator(),
927                    graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
928      relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
929      pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
930  // Save the link register (containing the return address) to mimic Quick.
931  AddAllocatedRegister(LocationFrom(lr));
932}
933
934#define __ GetVIXLAssembler()->
935
936void CodeGeneratorARM64::EmitJumpTables() {
937  for (auto jump_table : jump_tables_) {
938    jump_table->EmitTable(this);
939  }
940}
941
942void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
943  EmitJumpTables();
944  // Ensure we emit the literal pool.
945  __ FinalizeCode();
946
947  CodeGenerator::Finalize(allocator);
948}
949
950void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
951  // Note: There are 6 kinds of moves:
952  // 1. constant -> GPR/FPR (non-cycle)
953  // 2. constant -> stack (non-cycle)
954  // 3. GPR/FPR -> GPR/FPR
955  // 4. GPR/FPR -> stack
956  // 5. stack -> GPR/FPR
957  // 6. stack -> stack (non-cycle)
958  // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
959  // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
960  // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
961  // dependency.
962  vixl_temps_.Open(GetVIXLAssembler());
963}
964
965void ParallelMoveResolverARM64::FinishEmitNativeCode() {
966  vixl_temps_.Close();
967}
968
969Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
970  DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister ||
971         kind == Location::kStackSlot || kind == Location::kDoubleStackSlot);
972  kind = (kind == Location::kFpuRegister) ? Location::kFpuRegister : Location::kRegister;
973  Location scratch = GetScratchLocation(kind);
974  if (!scratch.Equals(Location::NoLocation())) {
975    return scratch;
976  }
977  // Allocate from VIXL temp registers.
978  if (kind == Location::kRegister) {
979    scratch = LocationFrom(vixl_temps_.AcquireX());
980  } else {
981    DCHECK(kind == Location::kFpuRegister);
982    scratch = LocationFrom(vixl_temps_.AcquireD());
983  }
984  AddScratchLocation(scratch);
985  return scratch;
986}
987
988void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
989  if (loc.IsRegister()) {
990    vixl_temps_.Release(XRegisterFrom(loc));
991  } else {
992    DCHECK(loc.IsFpuRegister());
993    vixl_temps_.Release(DRegisterFrom(loc));
994  }
995  RemoveScratchLocation(loc);
996}
997
998void ParallelMoveResolverARM64::EmitMove(size_t index) {
999  MoveOperands* move = moves_[index];
1000  codegen_->MoveLocation(move->GetDestination(), move->GetSource(), Primitive::kPrimVoid);
1001}
1002
1003void CodeGeneratorARM64::GenerateFrameEntry() {
1004  MacroAssembler* masm = GetVIXLAssembler();
1005  BlockPoolsScope block_pools(masm);
1006  __ Bind(&frame_entry_label_);
1007
1008  bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kArm64) || !IsLeafMethod();
1009  if (do_overflow_check) {
1010    UseScratchRegisterScope temps(masm);
1011    Register temp = temps.AcquireX();
1012    DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1013    __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(kArm64)));
1014    __ Ldr(wzr, MemOperand(temp, 0));
1015    RecordPcInfo(nullptr, 0);
1016  }
1017
1018  if (!HasEmptyFrame()) {
1019    int frame_size = GetFrameSize();
1020    // Stack layout:
1021    //      sp[frame_size - 8]        : lr.
1022    //      ...                       : other preserved core registers.
1023    //      ...                       : other preserved fp registers.
1024    //      ...                       : reserved frame space.
1025    //      sp[0]                     : current method.
1026    __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
1027    GetAssembler()->cfi().AdjustCFAOffset(frame_size);
1028    GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(),
1029        frame_size - GetCoreSpillSize());
1030    GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(),
1031        frame_size - FrameEntrySpillSize());
1032  }
1033}
1034
1035void CodeGeneratorARM64::GenerateFrameExit() {
1036  BlockPoolsScope block_pools(GetVIXLAssembler());
1037  GetAssembler()->cfi().RememberState();
1038  if (!HasEmptyFrame()) {
1039    int frame_size = GetFrameSize();
1040    GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(),
1041        frame_size - FrameEntrySpillSize());
1042    GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(),
1043        frame_size - GetCoreSpillSize());
1044    __ Drop(frame_size);
1045    GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
1046  }
1047  __ Ret();
1048  GetAssembler()->cfi().RestoreState();
1049  GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
1050}
1051
1052vixl::CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
1053  DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
1054  return vixl::CPURegList(vixl::CPURegister::kRegister, vixl::kXRegSize,
1055                          core_spill_mask_);
1056}
1057
1058vixl::CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
1059  DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
1060                                         GetNumberOfFloatingPointRegisters()));
1061  return vixl::CPURegList(vixl::CPURegister::kFPRegister, vixl::kDRegSize,
1062                          fpu_spill_mask_);
1063}
1064
1065void CodeGeneratorARM64::Bind(HBasicBlock* block) {
1066  __ Bind(GetLabelOf(block));
1067}
1068
1069void CodeGeneratorARM64::Move(HInstruction* instruction,
1070                              Location location,
1071                              HInstruction* move_for) {
1072  LocationSummary* locations = instruction->GetLocations();
1073  Primitive::Type type = instruction->GetType();
1074  DCHECK_NE(type, Primitive::kPrimVoid);
1075
1076  if (instruction->IsCurrentMethod()) {
1077    MoveLocation(location,
1078                 Location::DoubleStackSlot(kCurrentMethodStackOffset),
1079                 Primitive::kPrimVoid);
1080  } else if (locations != nullptr && locations->Out().Equals(location)) {
1081    return;
1082  } else if (instruction->IsIntConstant()
1083             || instruction->IsLongConstant()
1084             || instruction->IsNullConstant()) {
1085    int64_t value = GetInt64ValueOf(instruction->AsConstant());
1086    if (location.IsRegister()) {
1087      Register dst = RegisterFrom(location, type);
1088      DCHECK(((instruction->IsIntConstant() || instruction->IsNullConstant()) && dst.Is32Bits()) ||
1089             (instruction->IsLongConstant() && dst.Is64Bits()));
1090      __ Mov(dst, value);
1091    } else {
1092      DCHECK(location.IsStackSlot() || location.IsDoubleStackSlot());
1093      UseScratchRegisterScope temps(GetVIXLAssembler());
1094      Register temp = (instruction->IsIntConstant() || instruction->IsNullConstant())
1095          ? temps.AcquireW()
1096          : temps.AcquireX();
1097      __ Mov(temp, value);
1098      __ Str(temp, StackOperandFrom(location));
1099    }
1100  } else if (instruction->IsTemporary()) {
1101    Location temp_location = GetTemporaryLocation(instruction->AsTemporary());
1102    MoveLocation(location, temp_location, type);
1103  } else if (instruction->IsLoadLocal()) {
1104    uint32_t stack_slot = GetStackSlot(instruction->AsLoadLocal()->GetLocal());
1105    if (Primitive::Is64BitType(type)) {
1106      MoveLocation(location, Location::DoubleStackSlot(stack_slot), type);
1107    } else {
1108      MoveLocation(location, Location::StackSlot(stack_slot), type);
1109    }
1110
1111  } else {
1112    DCHECK((instruction->GetNext() == move_for) || instruction->GetNext()->IsTemporary());
1113    MoveLocation(location, locations->Out(), type);
1114  }
1115}
1116
1117void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
1118  DCHECK(location.IsRegister());
1119  __ Mov(RegisterFrom(location, Primitive::kPrimInt), value);
1120}
1121
1122void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
1123  if (location.IsRegister()) {
1124    locations->AddTemp(location);
1125  } else {
1126    UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1127  }
1128}
1129
1130Location CodeGeneratorARM64::GetStackLocation(HLoadLocal* load) const {
1131  Primitive::Type type = load->GetType();
1132
1133  switch (type) {
1134    case Primitive::kPrimNot:
1135    case Primitive::kPrimInt:
1136    case Primitive::kPrimFloat:
1137      return Location::StackSlot(GetStackSlot(load->GetLocal()));
1138
1139    case Primitive::kPrimLong:
1140    case Primitive::kPrimDouble:
1141      return Location::DoubleStackSlot(GetStackSlot(load->GetLocal()));
1142
1143    case Primitive::kPrimBoolean:
1144    case Primitive::kPrimByte:
1145    case Primitive::kPrimChar:
1146    case Primitive::kPrimShort:
1147    case Primitive::kPrimVoid:
1148      LOG(FATAL) << "Unexpected type " << type;
1149  }
1150
1151  LOG(FATAL) << "Unreachable";
1152  return Location::NoLocation();
1153}
1154
1155void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) {
1156  UseScratchRegisterScope temps(GetVIXLAssembler());
1157  Register card = temps.AcquireX();
1158  Register temp = temps.AcquireW();   // Index within the CardTable - 32bit.
1159  vixl::Label done;
1160  if (value_can_be_null) {
1161    __ Cbz(value, &done);
1162  }
1163  __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64WordSize>().Int32Value()));
1164  __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1165  __ Strb(card, MemOperand(card, temp.X()));
1166  if (value_can_be_null) {
1167    __ Bind(&done);
1168  }
1169}
1170
1171void CodeGeneratorARM64::SetupBlockedRegisters() const {
1172  // Blocked core registers:
1173  //      lr        : Runtime reserved.
1174  //      tr        : Runtime reserved.
1175  //      xSuspend  : Runtime reserved. TODO: Unblock this when the runtime stops using it.
1176  //      ip1       : VIXL core temp.
1177  //      ip0       : VIXL core temp.
1178  //
1179  // Blocked fp registers:
1180  //      d31       : VIXL fp temp.
1181  CPURegList reserved_core_registers = vixl_reserved_core_registers;
1182  reserved_core_registers.Combine(runtime_reserved_core_registers);
1183  while (!reserved_core_registers.IsEmpty()) {
1184    blocked_core_registers_[reserved_core_registers.PopLowestIndex().code()] = true;
1185  }
1186
1187  CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
1188  while (!reserved_fp_registers.IsEmpty()) {
1189    blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().code()] = true;
1190  }
1191
1192  if (GetGraph()->IsDebuggable()) {
1193    // Stubs do not save callee-save floating point registers. If the graph
1194    // is debuggable, we need to deal with these registers differently. For
1195    // now, just block them.
1196    CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
1197    while (!reserved_fp_registers_debuggable.IsEmpty()) {
1198      blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().code()] = true;
1199    }
1200  }
1201}
1202
1203size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1204  Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1205  __ Str(reg, MemOperand(sp, stack_index));
1206  return kArm64WordSize;
1207}
1208
1209size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1210  Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1211  __ Ldr(reg, MemOperand(sp, stack_index));
1212  return kArm64WordSize;
1213}
1214
1215size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1216  FPRegister reg = FPRegister(reg_id, kDRegSize);
1217  __ Str(reg, MemOperand(sp, stack_index));
1218  return kArm64WordSize;
1219}
1220
1221size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1222  FPRegister reg = FPRegister(reg_id, kDRegSize);
1223  __ Ldr(reg, MemOperand(sp, stack_index));
1224  return kArm64WordSize;
1225}
1226
1227void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
1228  stream << XRegister(reg);
1229}
1230
1231void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1232  stream << DRegister(reg);
1233}
1234
1235void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
1236  if (constant->IsIntConstant()) {
1237    __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
1238  } else if (constant->IsLongConstant()) {
1239    __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
1240  } else if (constant->IsNullConstant()) {
1241    __ Mov(Register(destination), 0);
1242  } else if (constant->IsFloatConstant()) {
1243    __ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue());
1244  } else {
1245    DCHECK(constant->IsDoubleConstant());
1246    __ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue());
1247  }
1248}
1249
1250
1251static bool CoherentConstantAndType(Location constant, Primitive::Type type) {
1252  DCHECK(constant.IsConstant());
1253  HConstant* cst = constant.GetConstant();
1254  return (cst->IsIntConstant() && type == Primitive::kPrimInt) ||
1255         // Null is mapped to a core W register, which we associate with kPrimInt.
1256         (cst->IsNullConstant() && type == Primitive::kPrimInt) ||
1257         (cst->IsLongConstant() && type == Primitive::kPrimLong) ||
1258         (cst->IsFloatConstant() && type == Primitive::kPrimFloat) ||
1259         (cst->IsDoubleConstant() && type == Primitive::kPrimDouble);
1260}
1261
1262void CodeGeneratorARM64::MoveLocation(Location destination,
1263                                      Location source,
1264                                      Primitive::Type dst_type) {
1265  if (source.Equals(destination)) {
1266    return;
1267  }
1268
1269  // A valid move can always be inferred from the destination and source
1270  // locations. When moving from and to a register, the argument type can be
1271  // used to generate 32bit instead of 64bit moves. In debug mode we also
1272  // checks the coherency of the locations and the type.
1273  bool unspecified_type = (dst_type == Primitive::kPrimVoid);
1274
1275  if (destination.IsRegister() || destination.IsFpuRegister()) {
1276    if (unspecified_type) {
1277      HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
1278      if (source.IsStackSlot() ||
1279          (src_cst != nullptr && (src_cst->IsIntConstant()
1280                                  || src_cst->IsFloatConstant()
1281                                  || src_cst->IsNullConstant()))) {
1282        // For stack slots and 32bit constants, a 64bit type is appropriate.
1283        dst_type = destination.IsRegister() ? Primitive::kPrimInt : Primitive::kPrimFloat;
1284      } else {
1285        // If the source is a double stack slot or a 64bit constant, a 64bit
1286        // type is appropriate. Else the source is a register, and since the
1287        // type has not been specified, we chose a 64bit type to force a 64bit
1288        // move.
1289        dst_type = destination.IsRegister() ? Primitive::kPrimLong : Primitive::kPrimDouble;
1290      }
1291    }
1292    DCHECK((destination.IsFpuRegister() && Primitive::IsFloatingPointType(dst_type)) ||
1293           (destination.IsRegister() && !Primitive::IsFloatingPointType(dst_type)));
1294    CPURegister dst = CPURegisterFrom(destination, dst_type);
1295    if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
1296      DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
1297      __ Ldr(dst, StackOperandFrom(source));
1298    } else if (source.IsConstant()) {
1299      DCHECK(CoherentConstantAndType(source, dst_type));
1300      MoveConstant(dst, source.GetConstant());
1301    } else if (source.IsRegister()) {
1302      if (destination.IsRegister()) {
1303        __ Mov(Register(dst), RegisterFrom(source, dst_type));
1304      } else {
1305        DCHECK(destination.IsFpuRegister());
1306        Primitive::Type source_type = Primitive::Is64BitType(dst_type)
1307            ? Primitive::kPrimLong
1308            : Primitive::kPrimInt;
1309        __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
1310      }
1311    } else {
1312      DCHECK(source.IsFpuRegister());
1313      if (destination.IsRegister()) {
1314        Primitive::Type source_type = Primitive::Is64BitType(dst_type)
1315            ? Primitive::kPrimDouble
1316            : Primitive::kPrimFloat;
1317        __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
1318      } else {
1319        DCHECK(destination.IsFpuRegister());
1320        __ Fmov(FPRegister(dst), FPRegisterFrom(source, dst_type));
1321      }
1322    }
1323  } else {  // The destination is not a register. It must be a stack slot.
1324    DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
1325    if (source.IsRegister() || source.IsFpuRegister()) {
1326      if (unspecified_type) {
1327        if (source.IsRegister()) {
1328          dst_type = destination.IsStackSlot() ? Primitive::kPrimInt : Primitive::kPrimLong;
1329        } else {
1330          dst_type = destination.IsStackSlot() ? Primitive::kPrimFloat : Primitive::kPrimDouble;
1331        }
1332      }
1333      DCHECK((destination.IsDoubleStackSlot() == Primitive::Is64BitType(dst_type)) &&
1334             (source.IsFpuRegister() == Primitive::IsFloatingPointType(dst_type)));
1335      __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
1336    } else if (source.IsConstant()) {
1337      DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
1338          << source << " " << dst_type;
1339      UseScratchRegisterScope temps(GetVIXLAssembler());
1340      HConstant* src_cst = source.GetConstant();
1341      CPURegister temp;
1342      if (src_cst->IsIntConstant() || src_cst->IsNullConstant()) {
1343        temp = temps.AcquireW();
1344      } else if (src_cst->IsLongConstant()) {
1345        temp = temps.AcquireX();
1346      } else if (src_cst->IsFloatConstant()) {
1347        temp = temps.AcquireS();
1348      } else {
1349        DCHECK(src_cst->IsDoubleConstant());
1350        temp = temps.AcquireD();
1351      }
1352      MoveConstant(temp, src_cst);
1353      __ Str(temp, StackOperandFrom(destination));
1354    } else {
1355      DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
1356      DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
1357      UseScratchRegisterScope temps(GetVIXLAssembler());
1358      // There is generally less pressure on FP registers.
1359      FPRegister temp = destination.IsDoubleStackSlot() ? temps.AcquireD() : temps.AcquireS();
1360      __ Ldr(temp, StackOperandFrom(source));
1361      __ Str(temp, StackOperandFrom(destination));
1362    }
1363  }
1364}
1365
1366void CodeGeneratorARM64::Load(Primitive::Type type,
1367                              CPURegister dst,
1368                              const MemOperand& src) {
1369  switch (type) {
1370    case Primitive::kPrimBoolean:
1371      __ Ldrb(Register(dst), src);
1372      break;
1373    case Primitive::kPrimByte:
1374      __ Ldrsb(Register(dst), src);
1375      break;
1376    case Primitive::kPrimShort:
1377      __ Ldrsh(Register(dst), src);
1378      break;
1379    case Primitive::kPrimChar:
1380      __ Ldrh(Register(dst), src);
1381      break;
1382    case Primitive::kPrimInt:
1383    case Primitive::kPrimNot:
1384    case Primitive::kPrimLong:
1385    case Primitive::kPrimFloat:
1386    case Primitive::kPrimDouble:
1387      DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
1388      __ Ldr(dst, src);
1389      break;
1390    case Primitive::kPrimVoid:
1391      LOG(FATAL) << "Unreachable type " << type;
1392  }
1393}
1394
1395void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
1396                                     CPURegister dst,
1397                                     const MemOperand& src,
1398                                     bool needs_null_check) {
1399  MacroAssembler* masm = GetVIXLAssembler();
1400  BlockPoolsScope block_pools(masm);
1401  UseScratchRegisterScope temps(masm);
1402  Register temp_base = temps.AcquireX();
1403  Primitive::Type type = instruction->GetType();
1404
1405  DCHECK(!src.IsPreIndex());
1406  DCHECK(!src.IsPostIndex());
1407
1408  // TODO(vixl): Let the MacroAssembler handle MemOperand.
1409  __ Add(temp_base, src.base(), OperandFromMemOperand(src));
1410  MemOperand base = MemOperand(temp_base);
1411  switch (type) {
1412    case Primitive::kPrimBoolean:
1413      __ Ldarb(Register(dst), base);
1414      if (needs_null_check) {
1415        MaybeRecordImplicitNullCheck(instruction);
1416      }
1417      break;
1418    case Primitive::kPrimByte:
1419      __ Ldarb(Register(dst), base);
1420      if (needs_null_check) {
1421        MaybeRecordImplicitNullCheck(instruction);
1422      }
1423      __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
1424      break;
1425    case Primitive::kPrimChar:
1426      __ Ldarh(Register(dst), base);
1427      if (needs_null_check) {
1428        MaybeRecordImplicitNullCheck(instruction);
1429      }
1430      break;
1431    case Primitive::kPrimShort:
1432      __ Ldarh(Register(dst), base);
1433      if (needs_null_check) {
1434        MaybeRecordImplicitNullCheck(instruction);
1435      }
1436      __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
1437      break;
1438    case Primitive::kPrimInt:
1439    case Primitive::kPrimNot:
1440    case Primitive::kPrimLong:
1441      DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
1442      __ Ldar(Register(dst), base);
1443      if (needs_null_check) {
1444        MaybeRecordImplicitNullCheck(instruction);
1445      }
1446      break;
1447    case Primitive::kPrimFloat:
1448    case Primitive::kPrimDouble: {
1449      DCHECK(dst.IsFPRegister());
1450      DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
1451
1452      Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1453      __ Ldar(temp, base);
1454      if (needs_null_check) {
1455        MaybeRecordImplicitNullCheck(instruction);
1456      }
1457      __ Fmov(FPRegister(dst), temp);
1458      break;
1459    }
1460    case Primitive::kPrimVoid:
1461      LOG(FATAL) << "Unreachable type " << type;
1462  }
1463}
1464
1465void CodeGeneratorARM64::Store(Primitive::Type type,
1466                               CPURegister src,
1467                               const MemOperand& dst) {
1468  switch (type) {
1469    case Primitive::kPrimBoolean:
1470    case Primitive::kPrimByte:
1471      __ Strb(Register(src), dst);
1472      break;
1473    case Primitive::kPrimChar:
1474    case Primitive::kPrimShort:
1475      __ Strh(Register(src), dst);
1476      break;
1477    case Primitive::kPrimInt:
1478    case Primitive::kPrimNot:
1479    case Primitive::kPrimLong:
1480    case Primitive::kPrimFloat:
1481    case Primitive::kPrimDouble:
1482      DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
1483      __ Str(src, dst);
1484      break;
1485    case Primitive::kPrimVoid:
1486      LOG(FATAL) << "Unreachable type " << type;
1487  }
1488}
1489
1490void CodeGeneratorARM64::StoreRelease(Primitive::Type type,
1491                                      CPURegister src,
1492                                      const MemOperand& dst) {
1493  UseScratchRegisterScope temps(GetVIXLAssembler());
1494  Register temp_base = temps.AcquireX();
1495
1496  DCHECK(!dst.IsPreIndex());
1497  DCHECK(!dst.IsPostIndex());
1498
1499  // TODO(vixl): Let the MacroAssembler handle this.
1500  Operand op = OperandFromMemOperand(dst);
1501  __ Add(temp_base, dst.base(), op);
1502  MemOperand base = MemOperand(temp_base);
1503  switch (type) {
1504    case Primitive::kPrimBoolean:
1505    case Primitive::kPrimByte:
1506      __ Stlrb(Register(src), base);
1507      break;
1508    case Primitive::kPrimChar:
1509    case Primitive::kPrimShort:
1510      __ Stlrh(Register(src), base);
1511      break;
1512    case Primitive::kPrimInt:
1513    case Primitive::kPrimNot:
1514    case Primitive::kPrimLong:
1515      DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
1516      __ Stlr(Register(src), base);
1517      break;
1518    case Primitive::kPrimFloat:
1519    case Primitive::kPrimDouble: {
1520      DCHECK(src.IsFPRegister());
1521      DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
1522
1523      Register temp = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1524      __ Fmov(temp, FPRegister(src));
1525      __ Stlr(temp, base);
1526      break;
1527    }
1528    case Primitive::kPrimVoid:
1529      LOG(FATAL) << "Unreachable type " << type;
1530  }
1531}
1532
1533void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
1534                                       HInstruction* instruction,
1535                                       uint32_t dex_pc,
1536                                       SlowPathCode* slow_path) {
1537  InvokeRuntime(GetThreadOffset<kArm64WordSize>(entrypoint).Int32Value(),
1538                instruction,
1539                dex_pc,
1540                slow_path);
1541}
1542
1543void CodeGeneratorARM64::InvokeRuntime(int32_t entry_point_offset,
1544                                       HInstruction* instruction,
1545                                       uint32_t dex_pc,
1546                                       SlowPathCode* slow_path) {
1547  ValidateInvokeRuntime(instruction, slow_path);
1548  BlockPoolsScope block_pools(GetVIXLAssembler());
1549  __ Ldr(lr, MemOperand(tr, entry_point_offset));
1550  __ Blr(lr);
1551  RecordPcInfo(instruction, dex_pc, slow_path);
1552}
1553
1554void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
1555                                                                     vixl::Register class_reg) {
1556  UseScratchRegisterScope temps(GetVIXLAssembler());
1557  Register temp = temps.AcquireW();
1558  size_t status_offset = mirror::Class::StatusOffset().SizeValue();
1559  bool use_acquire_release = codegen_->GetInstructionSetFeatures().PreferAcquireRelease();
1560
1561  // Even if the initialized flag is set, we need to ensure consistent memory ordering.
1562  if (use_acquire_release) {
1563    // TODO(vixl): Let the MacroAssembler handle MemOperand.
1564    __ Add(temp, class_reg, status_offset);
1565    __ Ldar(temp, HeapOperand(temp));
1566    __ Cmp(temp, mirror::Class::kStatusInitialized);
1567    __ B(lt, slow_path->GetEntryLabel());
1568  } else {
1569    __ Ldr(temp, HeapOperand(class_reg, status_offset));
1570    __ Cmp(temp, mirror::Class::kStatusInitialized);
1571    __ B(lt, slow_path->GetEntryLabel());
1572    __ Dmb(InnerShareable, BarrierReads);
1573  }
1574  __ Bind(slow_path->GetExitLabel());
1575}
1576
1577void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
1578  BarrierType type = BarrierAll;
1579
1580  switch (kind) {
1581    case MemBarrierKind::kAnyAny:
1582    case MemBarrierKind::kAnyStore: {
1583      type = BarrierAll;
1584      break;
1585    }
1586    case MemBarrierKind::kLoadAny: {
1587      type = BarrierReads;
1588      break;
1589    }
1590    case MemBarrierKind::kStoreStore: {
1591      type = BarrierWrites;
1592      break;
1593    }
1594    default:
1595      LOG(FATAL) << "Unexpected memory barrier " << kind;
1596  }
1597  __ Dmb(InnerShareable, type);
1598}
1599
1600void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
1601                                                         HBasicBlock* successor) {
1602  SuspendCheckSlowPathARM64* slow_path =
1603      down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
1604  if (slow_path == nullptr) {
1605    slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM64(instruction, successor);
1606    instruction->SetSlowPath(slow_path);
1607    codegen_->AddSlowPath(slow_path);
1608    if (successor != nullptr) {
1609      DCHECK(successor->IsLoopHeader());
1610      codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
1611    }
1612  } else {
1613    DCHECK_EQ(slow_path->GetSuccessor(), successor);
1614  }
1615
1616  UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
1617  Register temp = temps.AcquireW();
1618
1619  __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64WordSize>().SizeValue()));
1620  if (successor == nullptr) {
1621    __ Cbnz(temp, slow_path->GetEntryLabel());
1622    __ Bind(slow_path->GetReturnLabel());
1623  } else {
1624    __ Cbz(temp, codegen_->GetLabelOf(successor));
1625    __ B(slow_path->GetEntryLabel());
1626    // slow_path will return to GetLabelOf(successor).
1627  }
1628}
1629
1630InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
1631                                                             CodeGeneratorARM64* codegen)
1632      : InstructionCodeGenerator(graph, codegen),
1633        assembler_(codegen->GetAssembler()),
1634        codegen_(codegen) {}
1635
1636#define FOR_EACH_UNIMPLEMENTED_INSTRUCTION(M)              \
1637  /* No unimplemented IR. */
1638
1639#define UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name) name##UnimplementedInstructionBreakCode
1640
1641enum UnimplementedInstructionBreakCode {
1642  // Using a base helps identify when we hit such breakpoints.
1643  UnimplementedInstructionBreakCodeBaseCode = 0x900,
1644#define ENUM_UNIMPLEMENTED_INSTRUCTION(name) UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name),
1645  FOR_EACH_UNIMPLEMENTED_INSTRUCTION(ENUM_UNIMPLEMENTED_INSTRUCTION)
1646#undef ENUM_UNIMPLEMENTED_INSTRUCTION
1647};
1648
1649#define DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS(name)                               \
1650  void InstructionCodeGeneratorARM64::Visit##name(H##name* instr ATTRIBUTE_UNUSED) {  \
1651    __ Brk(UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name));                               \
1652  }                                                                                   \
1653  void LocationsBuilderARM64::Visit##name(H##name* instr) {                           \
1654    LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); \
1655    locations->SetOut(Location::Any());                                               \
1656  }
1657  FOR_EACH_UNIMPLEMENTED_INSTRUCTION(DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS)
1658#undef DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS
1659
1660#undef UNIMPLEMENTED_INSTRUCTION_BREAK_CODE
1661#undef FOR_EACH_UNIMPLEMENTED_INSTRUCTION
1662
1663void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
1664  DCHECK_EQ(instr->InputCount(), 2U);
1665  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
1666  Primitive::Type type = instr->GetResultType();
1667  switch (type) {
1668    case Primitive::kPrimInt:
1669    case Primitive::kPrimLong:
1670      locations->SetInAt(0, Location::RequiresRegister());
1671      locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
1672      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1673      break;
1674
1675    case Primitive::kPrimFloat:
1676    case Primitive::kPrimDouble:
1677      locations->SetInAt(0, Location::RequiresFpuRegister());
1678      locations->SetInAt(1, Location::RequiresFpuRegister());
1679      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
1680      break;
1681
1682    default:
1683      LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
1684  }
1685}
1686
1687void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction) {
1688  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
1689
1690  bool object_field_get_with_read_barrier =
1691      kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
1692  LocationSummary* locations =
1693      new (GetGraph()->GetArena()) LocationSummary(instruction,
1694                                                   object_field_get_with_read_barrier ?
1695                                                       LocationSummary::kCallOnSlowPath :
1696                                                       LocationSummary::kNoCall);
1697  locations->SetInAt(0, Location::RequiresRegister());
1698  if (Primitive::IsFloatingPointType(instruction->GetType())) {
1699    locations->SetOut(Location::RequiresFpuRegister());
1700  } else {
1701    // The output overlaps for an object field get when read barriers
1702    // are enabled: we do not want the load to overwrite the object's
1703    // location, as we need it to emit the read barrier.
1704    locations->SetOut(
1705        Location::RequiresRegister(),
1706        object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
1707  }
1708}
1709
1710void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
1711                                                   const FieldInfo& field_info) {
1712  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
1713  LocationSummary* locations = instruction->GetLocations();
1714  Location base_loc = locations->InAt(0);
1715  Location out = locations->Out();
1716  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
1717  Primitive::Type field_type = field_info.GetFieldType();
1718  BlockPoolsScope block_pools(GetVIXLAssembler());
1719
1720  MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset());
1721  bool use_acquire_release = codegen_->GetInstructionSetFeatures().PreferAcquireRelease();
1722
1723  if (field_type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1724    // Object FieldGet with Baker's read barrier case.
1725    MacroAssembler* masm = GetVIXLAssembler();
1726    UseScratchRegisterScope temps(masm);
1727    // /* HeapReference<Object> */ out = *(base + offset)
1728    Register base = RegisterFrom(base_loc, Primitive::kPrimNot);
1729    Register temp = temps.AcquireW();
1730    // Note that potential implicit null checks are handled in this
1731    // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
1732    codegen_->GenerateFieldLoadWithBakerReadBarrier(
1733        instruction,
1734        out,
1735        base,
1736        offset,
1737        temp,
1738        /* needs_null_check */ true,
1739        field_info.IsVolatile() && use_acquire_release);
1740    if (field_info.IsVolatile() && !use_acquire_release) {
1741      // For IRIW sequential consistency kLoadAny is not sufficient.
1742      codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
1743    }
1744  } else {
1745    // General case.
1746    if (field_info.IsVolatile()) {
1747      if (use_acquire_release) {
1748        // Note that a potential implicit null check is handled in this
1749        // CodeGeneratorARM64::LoadAcquire call.
1750        // NB: LoadAcquire will record the pc info if needed.
1751        codegen_->LoadAcquire(
1752            instruction, OutputCPURegister(instruction), field, /* needs_null_check */ true);
1753      } else {
1754        codegen_->Load(field_type, OutputCPURegister(instruction), field);
1755        codegen_->MaybeRecordImplicitNullCheck(instruction);
1756        // For IRIW sequential consistency kLoadAny is not sufficient.
1757        codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
1758      }
1759    } else {
1760      codegen_->Load(field_type, OutputCPURegister(instruction), field);
1761      codegen_->MaybeRecordImplicitNullCheck(instruction);
1762    }
1763    if (field_type == Primitive::kPrimNot) {
1764      // If read barriers are enabled, emit read barriers other than
1765      // Baker's using a slow path (and also unpoison the loaded
1766      // reference, if heap poisoning is enabled).
1767      codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
1768    }
1769  }
1770}
1771
1772void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
1773  LocationSummary* locations =
1774      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
1775  locations->SetInAt(0, Location::RequiresRegister());
1776  if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) {
1777    locations->SetInAt(1, Location::RequiresFpuRegister());
1778  } else {
1779    locations->SetInAt(1, Location::RequiresRegister());
1780  }
1781}
1782
1783void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
1784                                                   const FieldInfo& field_info,
1785                                                   bool value_can_be_null) {
1786  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
1787  BlockPoolsScope block_pools(GetVIXLAssembler());
1788
1789  Register obj = InputRegisterAt(instruction, 0);
1790  CPURegister value = InputCPURegisterAt(instruction, 1);
1791  CPURegister source = value;
1792  Offset offset = field_info.GetFieldOffset();
1793  Primitive::Type field_type = field_info.GetFieldType();
1794  bool use_acquire_release = codegen_->GetInstructionSetFeatures().PreferAcquireRelease();
1795
1796  {
1797    // We use a block to end the scratch scope before the write barrier, thus
1798    // freeing the temporary registers so they can be used in `MarkGCCard`.
1799    UseScratchRegisterScope temps(GetVIXLAssembler());
1800
1801    if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) {
1802      DCHECK(value.IsW());
1803      Register temp = temps.AcquireW();
1804      __ Mov(temp, value.W());
1805      GetAssembler()->PoisonHeapReference(temp.W());
1806      source = temp;
1807    }
1808
1809    if (field_info.IsVolatile()) {
1810      if (use_acquire_release) {
1811        codegen_->StoreRelease(field_type, source, HeapOperand(obj, offset));
1812        codegen_->MaybeRecordImplicitNullCheck(instruction);
1813      } else {
1814        codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
1815        codegen_->Store(field_type, source, HeapOperand(obj, offset));
1816        codegen_->MaybeRecordImplicitNullCheck(instruction);
1817        codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
1818      }
1819    } else {
1820      codegen_->Store(field_type, source, HeapOperand(obj, offset));
1821      codegen_->MaybeRecordImplicitNullCheck(instruction);
1822    }
1823  }
1824
1825  if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
1826    codegen_->MarkGCCard(obj, Register(value), value_can_be_null);
1827  }
1828}
1829
1830void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
1831  Primitive::Type type = instr->GetType();
1832
1833  switch (type) {
1834    case Primitive::kPrimInt:
1835    case Primitive::kPrimLong: {
1836      Register dst = OutputRegister(instr);
1837      Register lhs = InputRegisterAt(instr, 0);
1838      Operand rhs = InputOperandAt(instr, 1);
1839      if (instr->IsAdd()) {
1840        __ Add(dst, lhs, rhs);
1841      } else if (instr->IsAnd()) {
1842        __ And(dst, lhs, rhs);
1843      } else if (instr->IsOr()) {
1844        __ Orr(dst, lhs, rhs);
1845      } else if (instr->IsSub()) {
1846        __ Sub(dst, lhs, rhs);
1847      } else if (instr->IsRor()) {
1848        if (rhs.IsImmediate()) {
1849          uint32_t shift = rhs.immediate() & (lhs.SizeInBits() - 1);
1850          __ Ror(dst, lhs, shift);
1851        } else {
1852          // Ensure shift distance is in the same size register as the result. If
1853          // we are rotating a long and the shift comes in a w register originally,
1854          // we don't need to sxtw for use as an x since the shift distances are
1855          // all & reg_bits - 1.
1856          __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
1857        }
1858      } else {
1859        DCHECK(instr->IsXor());
1860        __ Eor(dst, lhs, rhs);
1861      }
1862      break;
1863    }
1864    case Primitive::kPrimFloat:
1865    case Primitive::kPrimDouble: {
1866      FPRegister dst = OutputFPRegister(instr);
1867      FPRegister lhs = InputFPRegisterAt(instr, 0);
1868      FPRegister rhs = InputFPRegisterAt(instr, 1);
1869      if (instr->IsAdd()) {
1870        __ Fadd(dst, lhs, rhs);
1871      } else if (instr->IsSub()) {
1872        __ Fsub(dst, lhs, rhs);
1873      } else {
1874        LOG(FATAL) << "Unexpected floating-point binary operation";
1875      }
1876      break;
1877    }
1878    default:
1879      LOG(FATAL) << "Unexpected binary operation type " << type;
1880  }
1881}
1882
1883void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
1884  DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
1885
1886  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
1887  Primitive::Type type = instr->GetResultType();
1888  switch (type) {
1889    case Primitive::kPrimInt:
1890    case Primitive::kPrimLong: {
1891      locations->SetInAt(0, Location::RequiresRegister());
1892      locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
1893      locations->SetOut(Location::RequiresRegister());
1894      break;
1895    }
1896    default:
1897      LOG(FATAL) << "Unexpected shift type " << type;
1898  }
1899}
1900
1901void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
1902  DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
1903
1904  Primitive::Type type = instr->GetType();
1905  switch (type) {
1906    case Primitive::kPrimInt:
1907    case Primitive::kPrimLong: {
1908      Register dst = OutputRegister(instr);
1909      Register lhs = InputRegisterAt(instr, 0);
1910      Operand rhs = InputOperandAt(instr, 1);
1911      if (rhs.IsImmediate()) {
1912        uint32_t shift_value = (type == Primitive::kPrimInt)
1913          ? static_cast<uint32_t>(rhs.immediate() & kMaxIntShiftValue)
1914          : static_cast<uint32_t>(rhs.immediate() & kMaxLongShiftValue);
1915        if (instr->IsShl()) {
1916          __ Lsl(dst, lhs, shift_value);
1917        } else if (instr->IsShr()) {
1918          __ Asr(dst, lhs, shift_value);
1919        } else {
1920          __ Lsr(dst, lhs, shift_value);
1921        }
1922      } else {
1923        Register rhs_reg = dst.IsX() ? rhs.reg().X() : rhs.reg().W();
1924
1925        if (instr->IsShl()) {
1926          __ Lsl(dst, lhs, rhs_reg);
1927        } else if (instr->IsShr()) {
1928          __ Asr(dst, lhs, rhs_reg);
1929        } else {
1930          __ Lsr(dst, lhs, rhs_reg);
1931        }
1932      }
1933      break;
1934    }
1935    default:
1936      LOG(FATAL) << "Unexpected shift operation type " << type;
1937  }
1938}
1939
1940void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
1941  HandleBinaryOp(instruction);
1942}
1943
1944void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
1945  HandleBinaryOp(instruction);
1946}
1947
1948void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
1949  HandleBinaryOp(instruction);
1950}
1951
1952void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
1953  HandleBinaryOp(instruction);
1954}
1955
1956void LocationsBuilderARM64::VisitArm64DataProcWithShifterOp(
1957    HArm64DataProcWithShifterOp* instruction) {
1958  DCHECK(instruction->GetType() == Primitive::kPrimInt ||
1959         instruction->GetType() == Primitive::kPrimLong);
1960  LocationSummary* locations =
1961      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
1962  if (instruction->GetInstrKind() == HInstruction::kNeg) {
1963    locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant()));
1964  } else {
1965    locations->SetInAt(0, Location::RequiresRegister());
1966  }
1967  locations->SetInAt(1, Location::RequiresRegister());
1968  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1969}
1970
1971void InstructionCodeGeneratorARM64::VisitArm64DataProcWithShifterOp(
1972    HArm64DataProcWithShifterOp* instruction) {
1973  Primitive::Type type = instruction->GetType();
1974  HInstruction::InstructionKind kind = instruction->GetInstrKind();
1975  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
1976  Register out = OutputRegister(instruction);
1977  Register left;
1978  if (kind != HInstruction::kNeg) {
1979    left = InputRegisterAt(instruction, 0);
1980  }
1981  // If this `HArm64DataProcWithShifterOp` was created by merging a type conversion as the
1982  // shifter operand operation, the IR generating `right_reg` (input to the type
1983  // conversion) can have a different type from the current instruction's type,
1984  // so we manually indicate the type.
1985  Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
1986  int64_t shift_amount = (type == Primitive::kPrimInt)
1987    ? static_cast<uint32_t>(instruction->GetShiftAmount() & kMaxIntShiftValue)
1988    : static_cast<uint32_t>(instruction->GetShiftAmount() & kMaxLongShiftValue);
1989
1990  Operand right_operand(0);
1991
1992  HArm64DataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
1993  if (HArm64DataProcWithShifterOp::IsExtensionOp(op_kind)) {
1994    right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
1995  } else {
1996    right_operand = Operand(right_reg, helpers::ShiftFromOpKind(op_kind), shift_amount);
1997  }
1998
1999  // Logical binary operations do not support extension operations in the
2000  // operand. Note that VIXL would still manage if it was passed by generating
2001  // the extension as a separate instruction.
2002  // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
2003  DCHECK(!right_operand.IsExtendedRegister() ||
2004         (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor &&
2005          kind != HInstruction::kNeg));
2006  switch (kind) {
2007    case HInstruction::kAdd:
2008      __ Add(out, left, right_operand);
2009      break;
2010    case HInstruction::kAnd:
2011      __ And(out, left, right_operand);
2012      break;
2013    case HInstruction::kNeg:
2014      DCHECK(instruction->InputAt(0)->AsConstant()->IsZero());
2015      __ Neg(out, right_operand);
2016      break;
2017    case HInstruction::kOr:
2018      __ Orr(out, left, right_operand);
2019      break;
2020    case HInstruction::kSub:
2021      __ Sub(out, left, right_operand);
2022      break;
2023    case HInstruction::kXor:
2024      __ Eor(out, left, right_operand);
2025      break;
2026    default:
2027      LOG(FATAL) << "Unexpected operation kind: " << kind;
2028      UNREACHABLE();
2029  }
2030}
2031
2032void LocationsBuilderARM64::VisitArm64IntermediateAddress(HArm64IntermediateAddress* instruction) {
2033  // The read barrier instrumentation does not support the
2034  // HArm64IntermediateAddress instruction yet.
2035  DCHECK(!kEmitCompilerReadBarrier);
2036  LocationSummary* locations =
2037      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
2038  locations->SetInAt(0, Location::RequiresRegister());
2039  locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
2040  locations->SetOut(Location::RequiresRegister());
2041}
2042
2043void InstructionCodeGeneratorARM64::VisitArm64IntermediateAddress(
2044    HArm64IntermediateAddress* instruction) {
2045  // The read barrier instrumentation does not support the
2046  // HArm64IntermediateAddress instruction yet.
2047  DCHECK(!kEmitCompilerReadBarrier);
2048  __ Add(OutputRegister(instruction),
2049         InputRegisterAt(instruction, 0),
2050         Operand(InputOperandAt(instruction, 1)));
2051}
2052
2053void LocationsBuilderARM64::VisitArm64MultiplyAccumulate(HArm64MultiplyAccumulate* instr) {
2054  LocationSummary* locations =
2055      new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
2056  locations->SetInAt(HArm64MultiplyAccumulate::kInputAccumulatorIndex,
2057                     Location::RequiresRegister());
2058  locations->SetInAt(HArm64MultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
2059  locations->SetInAt(HArm64MultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
2060  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2061}
2062
2063void InstructionCodeGeneratorARM64::VisitArm64MultiplyAccumulate(HArm64MultiplyAccumulate* instr) {
2064  Register res = OutputRegister(instr);
2065  Register accumulator = InputRegisterAt(instr, HArm64MultiplyAccumulate::kInputAccumulatorIndex);
2066  Register mul_left = InputRegisterAt(instr, HArm64MultiplyAccumulate::kInputMulLeftIndex);
2067  Register mul_right = InputRegisterAt(instr, HArm64MultiplyAccumulate::kInputMulRightIndex);
2068
2069  // Avoid emitting code that could trigger Cortex A53's erratum 835769.
2070  // This fixup should be carried out for all multiply-accumulate instructions:
2071  // madd, msub, smaddl, smsubl, umaddl and umsubl.
2072  if (instr->GetType() == Primitive::kPrimLong &&
2073      codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
2074    MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
2075    vixl::Instruction* prev = masm->GetCursorAddress<vixl::Instruction*>() - vixl::kInstructionSize;
2076    if (prev->IsLoadOrStore()) {
2077      // Make sure we emit only exactly one nop.
2078      vixl::CodeBufferCheckScope scope(masm,
2079                                       vixl::kInstructionSize,
2080                                       vixl::CodeBufferCheckScope::kCheck,
2081                                       vixl::CodeBufferCheckScope::kExactSize);
2082      __ nop();
2083    }
2084  }
2085
2086  if (instr->GetOpKind() == HInstruction::kAdd) {
2087    __ Madd(res, mul_left, mul_right, accumulator);
2088  } else {
2089    DCHECK(instr->GetOpKind() == HInstruction::kSub);
2090    __ Msub(res, mul_left, mul_right, accumulator);
2091  }
2092}
2093
2094void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
2095  bool object_array_get_with_read_barrier =
2096      kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
2097  LocationSummary* locations =
2098      new (GetGraph()->GetArena()) LocationSummary(instruction,
2099                                                   object_array_get_with_read_barrier ?
2100                                                       LocationSummary::kCallOnSlowPath :
2101                                                       LocationSummary::kNoCall);
2102  locations->SetInAt(0, Location::RequiresRegister());
2103  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2104  if (Primitive::IsFloatingPointType(instruction->GetType())) {
2105    locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2106  } else {
2107    // The output overlaps in the case of an object array get with
2108    // read barriers enabled: we do not want the move to overwrite the
2109    // array's location, as we need it to emit the read barrier.
2110    locations->SetOut(
2111        Location::RequiresRegister(),
2112        object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2113  }
2114}
2115
2116void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
2117  Primitive::Type type = instruction->GetType();
2118  Register obj = InputRegisterAt(instruction, 0);
2119  LocationSummary* locations = instruction->GetLocations();
2120  Location index = locations->InAt(1);
2121  uint32_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(type)).Uint32Value();
2122  Location out = locations->Out();
2123
2124  MacroAssembler* masm = GetVIXLAssembler();
2125  UseScratchRegisterScope temps(masm);
2126  // Block pools between `Load` and `MaybeRecordImplicitNullCheck`.
2127  BlockPoolsScope block_pools(masm);
2128
2129  if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2130    // Object ArrayGet with Baker's read barrier case.
2131    Register temp = temps.AcquireW();
2132    // The read barrier instrumentation does not support the
2133    // HArm64IntermediateAddress instruction yet.
2134    DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
2135    // Note that a potential implicit null check is handled in the
2136    // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
2137    codegen_->GenerateArrayLoadWithBakerReadBarrier(
2138        instruction, out, obj.W(), offset, index, temp, /* needs_null_check */ true);
2139  } else {
2140    // General case.
2141    MemOperand source = HeapOperand(obj);
2142    if (index.IsConstant()) {
2143      offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type);
2144      source = HeapOperand(obj, offset);
2145    } else {
2146      Register temp = temps.AcquireSameSizeAs(obj);
2147      if (instruction->GetArray()->IsArm64IntermediateAddress()) {
2148        // The read barrier instrumentation does not support the
2149        // HArm64IntermediateAddress instruction yet.
2150        DCHECK(!kEmitCompilerReadBarrier);
2151        // We do not need to compute the intermediate address from the array: the
2152        // input instruction has done it already. See the comment in
2153        // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
2154        if (kIsDebugBuild) {
2155          HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
2156          DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
2157        }
2158        temp = obj;
2159      } else {
2160        __ Add(temp, obj, offset);
2161      }
2162      source = HeapOperand(temp, XRegisterFrom(index), LSL, Primitive::ComponentSizeShift(type));
2163    }
2164
2165    codegen_->Load(type, OutputCPURegister(instruction), source);
2166    codegen_->MaybeRecordImplicitNullCheck(instruction);
2167
2168    if (type == Primitive::kPrimNot) {
2169      static_assert(
2170          sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2171          "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2172      Location obj_loc = locations->InAt(0);
2173      if (index.IsConstant()) {
2174        codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
2175      } else {
2176        codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
2177      }
2178    }
2179  }
2180}
2181
2182void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
2183  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
2184  locations->SetInAt(0, Location::RequiresRegister());
2185  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2186}
2187
2188void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
2189  BlockPoolsScope block_pools(GetVIXLAssembler());
2190  __ Ldr(OutputRegister(instruction),
2191         HeapOperand(InputRegisterAt(instruction, 0), mirror::Array::LengthOffset()));
2192  codegen_->MaybeRecordImplicitNullCheck(instruction);
2193}
2194
2195void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
2196  Primitive::Type value_type = instruction->GetComponentType();
2197
2198  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
2199  bool object_array_set_with_read_barrier =
2200      kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
2201  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
2202      instruction,
2203      (may_need_runtime_call_for_type_check  || object_array_set_with_read_barrier) ?
2204          LocationSummary::kCallOnSlowPath :
2205          LocationSummary::kNoCall);
2206  locations->SetInAt(0, Location::RequiresRegister());
2207  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2208  if (Primitive::IsFloatingPointType(value_type)) {
2209    locations->SetInAt(2, Location::RequiresFpuRegister());
2210  } else {
2211    locations->SetInAt(2, Location::RequiresRegister());
2212  }
2213}
2214
2215void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
2216  Primitive::Type value_type = instruction->GetComponentType();
2217  LocationSummary* locations = instruction->GetLocations();
2218  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
2219  bool needs_write_barrier =
2220      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
2221
2222  Register array = InputRegisterAt(instruction, 0);
2223  CPURegister value = InputCPURegisterAt(instruction, 2);
2224  CPURegister source = value;
2225  Location index = locations->InAt(1);
2226  size_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
2227  MemOperand destination = HeapOperand(array);
2228  MacroAssembler* masm = GetVIXLAssembler();
2229  BlockPoolsScope block_pools(masm);
2230
2231  if (!needs_write_barrier) {
2232    DCHECK(!may_need_runtime_call_for_type_check);
2233    if (index.IsConstant()) {
2234      offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
2235      destination = HeapOperand(array, offset);
2236    } else {
2237      UseScratchRegisterScope temps(masm);
2238      Register temp = temps.AcquireSameSizeAs(array);
2239      if (instruction->GetArray()->IsArm64IntermediateAddress()) {
2240        // The read barrier instrumentation does not support the
2241        // HArm64IntermediateAddress instruction yet.
2242        DCHECK(!kEmitCompilerReadBarrier);
2243        // We do not need to compute the intermediate address from the array: the
2244        // input instruction has done it already. See the comment in
2245        // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
2246        if (kIsDebugBuild) {
2247          HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
2248          DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
2249        }
2250        temp = array;
2251      } else {
2252        __ Add(temp, array, offset);
2253      }
2254      destination = HeapOperand(temp,
2255                                XRegisterFrom(index),
2256                                LSL,
2257                                Primitive::ComponentSizeShift(value_type));
2258    }
2259    codegen_->Store(value_type, value, destination);
2260    codegen_->MaybeRecordImplicitNullCheck(instruction);
2261  } else {
2262    DCHECK(needs_write_barrier);
2263    DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
2264    vixl::Label done;
2265    SlowPathCodeARM64* slow_path = nullptr;
2266    {
2267      // We use a block to end the scratch scope before the write barrier, thus
2268      // freeing the temporary registers so they can be used in `MarkGCCard`.
2269      UseScratchRegisterScope temps(masm);
2270      Register temp = temps.AcquireSameSizeAs(array);
2271      if (index.IsConstant()) {
2272        offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
2273        destination = HeapOperand(array, offset);
2274      } else {
2275        destination = HeapOperand(temp,
2276                                  XRegisterFrom(index),
2277                                  LSL,
2278                                  Primitive::ComponentSizeShift(value_type));
2279      }
2280
2281      uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2282      uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2283      uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2284
2285      if (may_need_runtime_call_for_type_check) {
2286        slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM64(instruction);
2287        codegen_->AddSlowPath(slow_path);
2288        if (instruction->GetValueCanBeNull()) {
2289          vixl::Label non_zero;
2290          __ Cbnz(Register(value), &non_zero);
2291          if (!index.IsConstant()) {
2292            __ Add(temp, array, offset);
2293          }
2294          __ Str(wzr, destination);
2295          codegen_->MaybeRecordImplicitNullCheck(instruction);
2296          __ B(&done);
2297          __ Bind(&non_zero);
2298        }
2299
2300        if (kEmitCompilerReadBarrier) {
2301          // When read barriers are enabled, the type checking
2302          // instrumentation requires two read barriers:
2303          //
2304          //   __ Mov(temp2, temp);
2305          //   // /* HeapReference<Class> */ temp = temp->component_type_
2306          //   __ Ldr(temp, HeapOperand(temp, component_offset));
2307          //   codegen_->GenerateReadBarrierSlow(
2308          //       instruction, temp_loc, temp_loc, temp2_loc, component_offset);
2309          //
2310          //   // /* HeapReference<Class> */ temp2 = value->klass_
2311          //   __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2312          //   codegen_->GenerateReadBarrierSlow(
2313          //       instruction, temp2_loc, temp2_loc, value_loc, class_offset, temp_loc);
2314          //
2315          //   __ Cmp(temp, temp2);
2316          //
2317          // However, the second read barrier may trash `temp`, as it
2318          // is a temporary register, and as such would not be saved
2319          // along with live registers before calling the runtime (nor
2320          // restored afterwards).  So in this case, we bail out and
2321          // delegate the work to the array set slow path.
2322          //
2323          // TODO: Extend the register allocator to support a new
2324          // "(locally) live temp" location so as to avoid always
2325          // going into the slow path when read barriers are enabled.
2326          __ B(slow_path->GetEntryLabel());
2327        } else {
2328          Register temp2 = temps.AcquireSameSizeAs(array);
2329          // /* HeapReference<Class> */ temp = array->klass_
2330          __ Ldr(temp, HeapOperand(array, class_offset));
2331          codegen_->MaybeRecordImplicitNullCheck(instruction);
2332          GetAssembler()->MaybeUnpoisonHeapReference(temp);
2333
2334          // /* HeapReference<Class> */ temp = temp->component_type_
2335          __ Ldr(temp, HeapOperand(temp, component_offset));
2336          // /* HeapReference<Class> */ temp2 = value->klass_
2337          __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2338          // If heap poisoning is enabled, no need to unpoison `temp`
2339          // nor `temp2`, as we are comparing two poisoned references.
2340          __ Cmp(temp, temp2);
2341
2342          if (instruction->StaticTypeOfArrayIsObjectArray()) {
2343            vixl::Label do_put;
2344            __ B(eq, &do_put);
2345            // If heap poisoning is enabled, the `temp` reference has
2346            // not been unpoisoned yet; unpoison it now.
2347            GetAssembler()->MaybeUnpoisonHeapReference(temp);
2348
2349            // /* HeapReference<Class> */ temp = temp->super_class_
2350            __ Ldr(temp, HeapOperand(temp, super_offset));
2351            // If heap poisoning is enabled, no need to unpoison
2352            // `temp`, as we are comparing against null below.
2353            __ Cbnz(temp, slow_path->GetEntryLabel());
2354            __ Bind(&do_put);
2355          } else {
2356            __ B(ne, slow_path->GetEntryLabel());
2357          }
2358          temps.Release(temp2);
2359        }
2360      }
2361
2362      if (kPoisonHeapReferences) {
2363        Register temp2 = temps.AcquireSameSizeAs(array);
2364          DCHECK(value.IsW());
2365        __ Mov(temp2, value.W());
2366        GetAssembler()->PoisonHeapReference(temp2);
2367        source = temp2;
2368      }
2369
2370      if (!index.IsConstant()) {
2371        __ Add(temp, array, offset);
2372      }
2373      __ Str(source, destination);
2374
2375      if (!may_need_runtime_call_for_type_check) {
2376        codegen_->MaybeRecordImplicitNullCheck(instruction);
2377      }
2378    }
2379
2380    codegen_->MarkGCCard(array, value.W(), instruction->GetValueCanBeNull());
2381
2382    if (done.IsLinked()) {
2383      __ Bind(&done);
2384    }
2385
2386    if (slow_path != nullptr) {
2387      __ Bind(slow_path->GetExitLabel());
2388    }
2389  }
2390}
2391
2392void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2393  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
2394      ? LocationSummary::kCallOnSlowPath
2395      : LocationSummary::kNoCall;
2396  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
2397  locations->SetInAt(0, Location::RequiresRegister());
2398  locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
2399  if (instruction->HasUses()) {
2400    locations->SetOut(Location::SameAsFirstInput());
2401  }
2402}
2403
2404void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2405  BoundsCheckSlowPathARM64* slow_path =
2406      new (GetGraph()->GetArena()) BoundsCheckSlowPathARM64(instruction);
2407  codegen_->AddSlowPath(slow_path);
2408
2409  __ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1));
2410  __ B(slow_path->GetEntryLabel(), hs);
2411}
2412
2413void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
2414  LocationSummary* locations =
2415      new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
2416  locations->SetInAt(0, Location::RequiresRegister());
2417  if (check->HasUses()) {
2418    locations->SetOut(Location::SameAsFirstInput());
2419  }
2420}
2421
2422void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
2423  // We assume the class is not null.
2424  SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
2425      check->GetLoadClass(), check, check->GetDexPc(), true);
2426  codegen_->AddSlowPath(slow_path);
2427  GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
2428}
2429
2430static bool IsFloatingPointZeroConstant(HInstruction* instruction) {
2431  return (instruction->IsFloatConstant() && (instruction->AsFloatConstant()->GetValue() == 0.0f))
2432      || (instruction->IsDoubleConstant() && (instruction->AsDoubleConstant()->GetValue() == 0.0));
2433}
2434
2435void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
2436  LocationSummary* locations =
2437      new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
2438  Primitive::Type in_type = compare->InputAt(0)->GetType();
2439  switch (in_type) {
2440    case Primitive::kPrimLong: {
2441      locations->SetInAt(0, Location::RequiresRegister());
2442      locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
2443      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2444      break;
2445    }
2446    case Primitive::kPrimFloat:
2447    case Primitive::kPrimDouble: {
2448      locations->SetInAt(0, Location::RequiresFpuRegister());
2449      locations->SetInAt(1,
2450                         IsFloatingPointZeroConstant(compare->InputAt(1))
2451                             ? Location::ConstantLocation(compare->InputAt(1)->AsConstant())
2452                             : Location::RequiresFpuRegister());
2453      locations->SetOut(Location::RequiresRegister());
2454      break;
2455    }
2456    default:
2457      LOG(FATAL) << "Unexpected type for compare operation " << in_type;
2458  }
2459}
2460
2461void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
2462  Primitive::Type in_type = compare->InputAt(0)->GetType();
2463
2464  //  0 if: left == right
2465  //  1 if: left  > right
2466  // -1 if: left  < right
2467  switch (in_type) {
2468    case Primitive::kPrimLong: {
2469      Register result = OutputRegister(compare);
2470      Register left = InputRegisterAt(compare, 0);
2471      Operand right = InputOperandAt(compare, 1);
2472
2473      __ Cmp(left, right);
2474      __ Cset(result, ne);
2475      __ Cneg(result, result, lt);
2476      break;
2477    }
2478    case Primitive::kPrimFloat:
2479    case Primitive::kPrimDouble: {
2480      Register result = OutputRegister(compare);
2481      FPRegister left = InputFPRegisterAt(compare, 0);
2482      if (compare->GetLocations()->InAt(1).IsConstant()) {
2483        DCHECK(IsFloatingPointZeroConstant(compare->GetLocations()->InAt(1).GetConstant()));
2484        // 0.0 is the only immediate that can be encoded directly in an FCMP instruction.
2485        __ Fcmp(left, 0.0);
2486      } else {
2487        __ Fcmp(left, InputFPRegisterAt(compare, 1));
2488      }
2489      __ Cset(result, ne);
2490      __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
2491      break;
2492    }
2493    default:
2494      LOG(FATAL) << "Unimplemented compare type " << in_type;
2495  }
2496}
2497
2498void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
2499  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
2500
2501  if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
2502    locations->SetInAt(0, Location::RequiresFpuRegister());
2503    locations->SetInAt(1,
2504                       IsFloatingPointZeroConstant(instruction->InputAt(1))
2505                           ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant())
2506                           : Location::RequiresFpuRegister());
2507  } else {
2508    // Integer cases.
2509    locations->SetInAt(0, Location::RequiresRegister());
2510    locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
2511  }
2512
2513  if (!instruction->IsEmittedAtUseSite()) {
2514    locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2515  }
2516}
2517
2518void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
2519  if (instruction->IsEmittedAtUseSite()) {
2520    return;
2521  }
2522
2523  LocationSummary* locations = instruction->GetLocations();
2524  Register res = RegisterFrom(locations->Out(), instruction->GetType());
2525  IfCondition if_cond = instruction->GetCondition();
2526
2527  if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
2528    FPRegister lhs = InputFPRegisterAt(instruction, 0);
2529    if (locations->InAt(1).IsConstant()) {
2530      DCHECK(IsFloatingPointZeroConstant(locations->InAt(1).GetConstant()));
2531      // 0.0 is the only immediate that can be encoded directly in an FCMP instruction.
2532      __ Fcmp(lhs, 0.0);
2533    } else {
2534      __ Fcmp(lhs, InputFPRegisterAt(instruction, 1));
2535    }
2536    __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
2537  } else {
2538    // Integer cases.
2539    Register lhs = InputRegisterAt(instruction, 0);
2540    Operand rhs = InputOperandAt(instruction, 1);
2541    __ Cmp(lhs, rhs);
2542    __ Cset(res, ARM64Condition(if_cond));
2543  }
2544}
2545
2546#define FOR_EACH_CONDITION_INSTRUCTION(M)                                                \
2547  M(Equal)                                                                               \
2548  M(NotEqual)                                                                            \
2549  M(LessThan)                                                                            \
2550  M(LessThanOrEqual)                                                                     \
2551  M(GreaterThan)                                                                         \
2552  M(GreaterThanOrEqual)                                                                  \
2553  M(Below)                                                                               \
2554  M(BelowOrEqual)                                                                        \
2555  M(Above)                                                                               \
2556  M(AboveOrEqual)
2557#define DEFINE_CONDITION_VISITORS(Name)                                                  \
2558void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }         \
2559void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
2560FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
2561#undef DEFINE_CONDITION_VISITORS
2562#undef FOR_EACH_CONDITION_INSTRUCTION
2563
2564void InstructionCodeGeneratorARM64::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
2565  DCHECK(instruction->IsDiv() || instruction->IsRem());
2566
2567  LocationSummary* locations = instruction->GetLocations();
2568  Location second = locations->InAt(1);
2569  DCHECK(second.IsConstant());
2570
2571  Register out = OutputRegister(instruction);
2572  Register dividend = InputRegisterAt(instruction, 0);
2573  int64_t imm = Int64FromConstant(second.GetConstant());
2574  DCHECK(imm == 1 || imm == -1);
2575
2576  if (instruction->IsRem()) {
2577    __ Mov(out, 0);
2578  } else {
2579    if (imm == 1) {
2580      __ Mov(out, dividend);
2581    } else {
2582      __ Neg(out, dividend);
2583    }
2584  }
2585}
2586
2587void InstructionCodeGeneratorARM64::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
2588  DCHECK(instruction->IsDiv() || instruction->IsRem());
2589
2590  LocationSummary* locations = instruction->GetLocations();
2591  Location second = locations->InAt(1);
2592  DCHECK(second.IsConstant());
2593
2594  Register out = OutputRegister(instruction);
2595  Register dividend = InputRegisterAt(instruction, 0);
2596  int64_t imm = Int64FromConstant(second.GetConstant());
2597  uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
2598  int ctz_imm = CTZ(abs_imm);
2599
2600  UseScratchRegisterScope temps(GetVIXLAssembler());
2601  Register temp = temps.AcquireSameSizeAs(out);
2602
2603  if (instruction->IsDiv()) {
2604    __ Add(temp, dividend, abs_imm - 1);
2605    __ Cmp(dividend, 0);
2606    __ Csel(out, temp, dividend, lt);
2607    if (imm > 0) {
2608      __ Asr(out, out, ctz_imm);
2609    } else {
2610      __ Neg(out, Operand(out, ASR, ctz_imm));
2611    }
2612  } else {
2613    int bits = instruction->GetResultType() == Primitive::kPrimInt ? 32 : 64;
2614    __ Asr(temp, dividend, bits - 1);
2615    __ Lsr(temp, temp, bits - ctz_imm);
2616    __ Add(out, dividend, temp);
2617    __ And(out, out, abs_imm - 1);
2618    __ Sub(out, out, temp);
2619  }
2620}
2621
2622void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
2623  DCHECK(instruction->IsDiv() || instruction->IsRem());
2624
2625  LocationSummary* locations = instruction->GetLocations();
2626  Location second = locations->InAt(1);
2627  DCHECK(second.IsConstant());
2628
2629  Register out = OutputRegister(instruction);
2630  Register dividend = InputRegisterAt(instruction, 0);
2631  int64_t imm = Int64FromConstant(second.GetConstant());
2632
2633  Primitive::Type type = instruction->GetResultType();
2634  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
2635
2636  int64_t magic;
2637  int shift;
2638  CalculateMagicAndShiftForDivRem(imm, type == Primitive::kPrimLong /* is_long */, &magic, &shift);
2639
2640  UseScratchRegisterScope temps(GetVIXLAssembler());
2641  Register temp = temps.AcquireSameSizeAs(out);
2642
2643  // temp = get_high(dividend * magic)
2644  __ Mov(temp, magic);
2645  if (type == Primitive::kPrimLong) {
2646    __ Smulh(temp, dividend, temp);
2647  } else {
2648    __ Smull(temp.X(), dividend, temp);
2649    __ Lsr(temp.X(), temp.X(), 32);
2650  }
2651
2652  if (imm > 0 && magic < 0) {
2653    __ Add(temp, temp, dividend);
2654  } else if (imm < 0 && magic > 0) {
2655    __ Sub(temp, temp, dividend);
2656  }
2657
2658  if (shift != 0) {
2659    __ Asr(temp, temp, shift);
2660  }
2661
2662  if (instruction->IsDiv()) {
2663    __ Sub(out, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
2664  } else {
2665    __ Sub(temp, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
2666    // TODO: Strength reduction for msub.
2667    Register temp_imm = temps.AcquireSameSizeAs(out);
2668    __ Mov(temp_imm, imm);
2669    __ Msub(out, temp, temp_imm, dividend);
2670  }
2671}
2672
2673void InstructionCodeGeneratorARM64::GenerateDivRemIntegral(HBinaryOperation* instruction) {
2674  DCHECK(instruction->IsDiv() || instruction->IsRem());
2675  Primitive::Type type = instruction->GetResultType();
2676  DCHECK(type == Primitive::kPrimInt || Primitive::kPrimLong);
2677
2678  LocationSummary* locations = instruction->GetLocations();
2679  Register out = OutputRegister(instruction);
2680  Location second = locations->InAt(1);
2681
2682  if (second.IsConstant()) {
2683    int64_t imm = Int64FromConstant(second.GetConstant());
2684
2685    if (imm == 0) {
2686      // Do not generate anything. DivZeroCheck would prevent any code to be executed.
2687    } else if (imm == 1 || imm == -1) {
2688      DivRemOneOrMinusOne(instruction);
2689    } else if (IsPowerOfTwo(AbsOrMin(imm))) {
2690      DivRemByPowerOfTwo(instruction);
2691    } else {
2692      DCHECK(imm <= -2 || imm >= 2);
2693      GenerateDivRemWithAnyConstant(instruction);
2694    }
2695  } else {
2696    Register dividend = InputRegisterAt(instruction, 0);
2697    Register divisor = InputRegisterAt(instruction, 1);
2698    if (instruction->IsDiv()) {
2699      __ Sdiv(out, dividend, divisor);
2700    } else {
2701      UseScratchRegisterScope temps(GetVIXLAssembler());
2702      Register temp = temps.AcquireSameSizeAs(out);
2703      __ Sdiv(temp, dividend, divisor);
2704      __ Msub(out, temp, divisor, dividend);
2705    }
2706  }
2707}
2708
2709void LocationsBuilderARM64::VisitDiv(HDiv* div) {
2710  LocationSummary* locations =
2711      new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall);
2712  switch (div->GetResultType()) {
2713    case Primitive::kPrimInt:
2714    case Primitive::kPrimLong:
2715      locations->SetInAt(0, Location::RequiresRegister());
2716      locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
2717      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2718      break;
2719
2720    case Primitive::kPrimFloat:
2721    case Primitive::kPrimDouble:
2722      locations->SetInAt(0, Location::RequiresFpuRegister());
2723      locations->SetInAt(1, Location::RequiresFpuRegister());
2724      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2725      break;
2726
2727    default:
2728      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
2729  }
2730}
2731
2732void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
2733  Primitive::Type type = div->GetResultType();
2734  switch (type) {
2735    case Primitive::kPrimInt:
2736    case Primitive::kPrimLong:
2737      GenerateDivRemIntegral(div);
2738      break;
2739
2740    case Primitive::kPrimFloat:
2741    case Primitive::kPrimDouble:
2742      __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
2743      break;
2744
2745    default:
2746      LOG(FATAL) << "Unexpected div type " << type;
2747  }
2748}
2749
2750void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
2751  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
2752      ? LocationSummary::kCallOnSlowPath
2753      : LocationSummary::kNoCall;
2754  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
2755  locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
2756  if (instruction->HasUses()) {
2757    locations->SetOut(Location::SameAsFirstInput());
2758  }
2759}
2760
2761void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
2762  SlowPathCodeARM64* slow_path =
2763      new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM64(instruction);
2764  codegen_->AddSlowPath(slow_path);
2765  Location value = instruction->GetLocations()->InAt(0);
2766
2767  Primitive::Type type = instruction->GetType();
2768
2769  if ((type == Primitive::kPrimBoolean) || !Primitive::IsIntegralType(type)) {
2770      LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
2771    return;
2772  }
2773
2774  if (value.IsConstant()) {
2775    int64_t divisor = Int64ConstantFrom(value);
2776    if (divisor == 0) {
2777      __ B(slow_path->GetEntryLabel());
2778    } else {
2779      // A division by a non-null constant is valid. We don't need to perform
2780      // any check, so simply fall through.
2781    }
2782  } else {
2783    __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
2784  }
2785}
2786
2787void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
2788  LocationSummary* locations =
2789      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2790  locations->SetOut(Location::ConstantLocation(constant));
2791}
2792
2793void InstructionCodeGeneratorARM64::VisitDoubleConstant(
2794    HDoubleConstant* constant ATTRIBUTE_UNUSED) {
2795  // Will be generated at use site.
2796}
2797
2798void LocationsBuilderARM64::VisitExit(HExit* exit) {
2799  exit->SetLocations(nullptr);
2800}
2801
2802void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
2803}
2804
2805void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
2806  LocationSummary* locations =
2807      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2808  locations->SetOut(Location::ConstantLocation(constant));
2809}
2810
2811void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
2812  // Will be generated at use site.
2813}
2814
2815void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
2816  DCHECK(!successor->IsExitBlock());
2817  HBasicBlock* block = got->GetBlock();
2818  HInstruction* previous = got->GetPrevious();
2819  HLoopInformation* info = block->GetLoopInformation();
2820
2821  if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
2822    codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
2823    GenerateSuspendCheck(info->GetSuspendCheck(), successor);
2824    return;
2825  }
2826  if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
2827    GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
2828  }
2829  if (!codegen_->GoesToNextBlock(block, successor)) {
2830    __ B(codegen_->GetLabelOf(successor));
2831  }
2832}
2833
2834void LocationsBuilderARM64::VisitGoto(HGoto* got) {
2835  got->SetLocations(nullptr);
2836}
2837
2838void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
2839  HandleGoto(got, got->GetSuccessor());
2840}
2841
2842void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
2843  try_boundary->SetLocations(nullptr);
2844}
2845
2846void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
2847  HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
2848  if (!successor->IsExitBlock()) {
2849    HandleGoto(try_boundary, successor);
2850  }
2851}
2852
2853void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
2854                                                          size_t condition_input_index,
2855                                                          vixl::Label* true_target,
2856                                                          vixl::Label* false_target) {
2857  // FP branching requires both targets to be explicit. If either of the targets
2858  // is nullptr (fallthrough) use and bind `fallthrough_target` instead.
2859  vixl::Label fallthrough_target;
2860  HInstruction* cond = instruction->InputAt(condition_input_index);
2861
2862  if (true_target == nullptr && false_target == nullptr) {
2863    // Nothing to do. The code always falls through.
2864    return;
2865  } else if (cond->IsIntConstant()) {
2866    // Constant condition, statically compared against 1.
2867    if (cond->AsIntConstant()->IsOne()) {
2868      if (true_target != nullptr) {
2869        __ B(true_target);
2870      }
2871    } else {
2872      DCHECK(cond->AsIntConstant()->IsZero());
2873      if (false_target != nullptr) {
2874        __ B(false_target);
2875      }
2876    }
2877    return;
2878  }
2879
2880  // The following code generates these patterns:
2881  //  (1) true_target == nullptr && false_target != nullptr
2882  //        - opposite condition true => branch to false_target
2883  //  (2) true_target != nullptr && false_target == nullptr
2884  //        - condition true => branch to true_target
2885  //  (3) true_target != nullptr && false_target != nullptr
2886  //        - condition true => branch to true_target
2887  //        - branch to false_target
2888  if (IsBooleanValueOrMaterializedCondition(cond)) {
2889    // The condition instruction has been materialized, compare the output to 0.
2890    Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
2891    DCHECK(cond_val.IsRegister());
2892      if (true_target == nullptr) {
2893      __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
2894    } else {
2895      __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
2896    }
2897  } else {
2898    // The condition instruction has not been materialized, use its inputs as
2899    // the comparison and its condition as the branch condition.
2900    HCondition* condition = cond->AsCondition();
2901
2902    Primitive::Type type = condition->InputAt(0)->GetType();
2903    if (Primitive::IsFloatingPointType(type)) {
2904      FPRegister lhs = InputFPRegisterAt(condition, 0);
2905      if (condition->GetLocations()->InAt(1).IsConstant()) {
2906        DCHECK(IsFloatingPointZeroConstant(condition->GetLocations()->InAt(1).GetConstant()));
2907        // 0.0 is the only immediate that can be encoded directly in an FCMP instruction.
2908        __ Fcmp(lhs, 0.0);
2909      } else {
2910        __ Fcmp(lhs, InputFPRegisterAt(condition, 1));
2911      }
2912      if (true_target == nullptr) {
2913        IfCondition opposite_condition = condition->GetOppositeCondition();
2914        __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
2915      } else {
2916        __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
2917      }
2918    } else {
2919      // Integer cases.
2920      Register lhs = InputRegisterAt(condition, 0);
2921      Operand rhs = InputOperandAt(condition, 1);
2922
2923      Condition arm64_cond;
2924      vixl::Label* non_fallthrough_target;
2925      if (true_target == nullptr) {
2926        arm64_cond = ARM64Condition(condition->GetOppositeCondition());
2927        non_fallthrough_target = false_target;
2928      } else {
2929        arm64_cond = ARM64Condition(condition->GetCondition());
2930        non_fallthrough_target = true_target;
2931      }
2932
2933      if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
2934          rhs.IsImmediate() && (rhs.immediate() == 0)) {
2935        switch (arm64_cond) {
2936          case eq:
2937            __ Cbz(lhs, non_fallthrough_target);
2938            break;
2939          case ne:
2940            __ Cbnz(lhs, non_fallthrough_target);
2941            break;
2942          case lt:
2943            // Test the sign bit and branch accordingly.
2944            __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
2945            break;
2946          case ge:
2947            // Test the sign bit and branch accordingly.
2948            __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
2949            break;
2950          default:
2951            // Without the `static_cast` the compiler throws an error for
2952            // `-Werror=sign-promo`.
2953            LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
2954        }
2955      } else {
2956        __ Cmp(lhs, rhs);
2957        __ B(arm64_cond, non_fallthrough_target);
2958      }
2959    }
2960  }
2961
2962  // If neither branch falls through (case 3), the conditional branch to `true_target`
2963  // was already emitted (case 2) and we need to emit a jump to `false_target`.
2964  if (true_target != nullptr && false_target != nullptr) {
2965    __ B(false_target);
2966  }
2967
2968  if (fallthrough_target.IsLinked()) {
2969    __ Bind(&fallthrough_target);
2970  }
2971}
2972
2973void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
2974  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
2975  if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
2976    locations->SetInAt(0, Location::RequiresRegister());
2977  }
2978}
2979
2980void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
2981  HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
2982  HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
2983  vixl::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
2984      nullptr : codegen_->GetLabelOf(true_successor);
2985  vixl::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
2986      nullptr : codegen_->GetLabelOf(false_successor);
2987  GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
2988}
2989
2990void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
2991  LocationSummary* locations = new (GetGraph()->GetArena())
2992      LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
2993  if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
2994    locations->SetInAt(0, Location::RequiresRegister());
2995  }
2996}
2997
2998void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
2999  SlowPathCodeARM64* slow_path =
3000      deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
3001  GenerateTestAndBranch(deoptimize,
3002                        /* condition_input_index */ 0,
3003                        slow_path->GetEntryLabel(),
3004                        /* false_target */ nullptr);
3005}
3006
3007void LocationsBuilderARM64::VisitSelect(HSelect* select) {
3008  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
3009  if (Primitive::IsFloatingPointType(select->GetType())) {
3010    locations->SetInAt(0, Location::RequiresFpuRegister());
3011    locations->SetInAt(1, Location::RequiresFpuRegister());
3012  } else {
3013    locations->SetInAt(0, Location::RequiresRegister());
3014    locations->SetInAt(1, Location::RequiresRegister());
3015  }
3016  if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
3017    locations->SetInAt(2, Location::RequiresRegister());
3018  }
3019  locations->SetOut(Location::SameAsFirstInput());
3020}
3021
3022void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
3023  LocationSummary* locations = select->GetLocations();
3024  vixl::Label false_target;
3025  GenerateTestAndBranch(select,
3026                        /* condition_input_index */ 2,
3027                        /* true_target */ nullptr,
3028                        &false_target);
3029  codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
3030  __ Bind(&false_target);
3031}
3032
3033void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3034  new (GetGraph()->GetArena()) LocationSummary(info);
3035}
3036
3037void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3038  if (codegen_->HasStackMapAtCurrentPc()) {
3039    // Ensure that we do not collide with the stack map of the previous instruction.
3040    __ Nop();
3041  }
3042  codegen_->RecordPcInfo(info, info->GetDexPc());
3043}
3044
3045void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3046  HandleFieldGet(instruction);
3047}
3048
3049void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3050  HandleFieldGet(instruction, instruction->GetFieldInfo());
3051}
3052
3053void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3054  HandleFieldSet(instruction);
3055}
3056
3057void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3058  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
3059}
3060
3061static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
3062  return kEmitCompilerReadBarrier &&
3063      (kUseBakerReadBarrier ||
3064       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3065       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3066       type_check_kind == TypeCheckKind::kArrayObjectCheck);
3067}
3068
3069void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
3070  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3071  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3072  switch (type_check_kind) {
3073    case TypeCheckKind::kExactCheck:
3074    case TypeCheckKind::kAbstractClassCheck:
3075    case TypeCheckKind::kClassHierarchyCheck:
3076    case TypeCheckKind::kArrayObjectCheck:
3077      call_kind =
3078          kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
3079      break;
3080    case TypeCheckKind::kArrayCheck:
3081    case TypeCheckKind::kUnresolvedCheck:
3082    case TypeCheckKind::kInterfaceCheck:
3083      call_kind = LocationSummary::kCallOnSlowPath;
3084      break;
3085  }
3086
3087  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3088  locations->SetInAt(0, Location::RequiresRegister());
3089  locations->SetInAt(1, Location::RequiresRegister());
3090  // The "out" register is used as a temporary, so it overlaps with the inputs.
3091  // Note that TypeCheckSlowPathARM64 uses this register too.
3092  locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3093  // When read barriers are enabled, we need a temporary register for
3094  // some cases.
3095  if (TypeCheckNeedsATemporary(type_check_kind)) {
3096    locations->AddTemp(Location::RequiresRegister());
3097  }
3098}
3099
3100void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
3101  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3102  LocationSummary* locations = instruction->GetLocations();
3103  Location obj_loc = locations->InAt(0);
3104  Register obj = InputRegisterAt(instruction, 0);
3105  Register cls = InputRegisterAt(instruction, 1);
3106  Location out_loc = locations->Out();
3107  Register out = OutputRegister(instruction);
3108  Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
3109      locations->GetTemp(0) :
3110      Location::NoLocation();
3111  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3112  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3113  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3114  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3115
3116  vixl::Label done, zero;
3117  SlowPathCodeARM64* slow_path = nullptr;
3118
3119  // Return 0 if `obj` is null.
3120  // Avoid null check if we know `obj` is not null.
3121  if (instruction->MustDoNullCheck()) {
3122    __ Cbz(obj, &zero);
3123  }
3124
3125  // /* HeapReference<Class> */ out = obj->klass_
3126  GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
3127
3128  switch (type_check_kind) {
3129    case TypeCheckKind::kExactCheck: {
3130      __ Cmp(out, cls);
3131      __ Cset(out, eq);
3132      if (zero.IsLinked()) {
3133        __ B(&done);
3134      }
3135      break;
3136    }
3137
3138    case TypeCheckKind::kAbstractClassCheck: {
3139      // If the class is abstract, we eagerly fetch the super class of the
3140      // object to avoid doing a comparison we know will fail.
3141      vixl::Label loop, success;
3142      __ Bind(&loop);
3143      // /* HeapReference<Class> */ out = out->super_class_
3144      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
3145      // If `out` is null, we use it for the result, and jump to `done`.
3146      __ Cbz(out, &done);
3147      __ Cmp(out, cls);
3148      __ B(ne, &loop);
3149      __ Mov(out, 1);
3150      if (zero.IsLinked()) {
3151        __ B(&done);
3152      }
3153      break;
3154    }
3155
3156    case TypeCheckKind::kClassHierarchyCheck: {
3157      // Walk over the class hierarchy to find a match.
3158      vixl::Label loop, success;
3159      __ Bind(&loop);
3160      __ Cmp(out, cls);
3161      __ B(eq, &success);
3162      // /* HeapReference<Class> */ out = out->super_class_
3163      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
3164      __ Cbnz(out, &loop);
3165      // If `out` is null, we use it for the result, and jump to `done`.
3166      __ B(&done);
3167      __ Bind(&success);
3168      __ Mov(out, 1);
3169      if (zero.IsLinked()) {
3170        __ B(&done);
3171      }
3172      break;
3173    }
3174
3175    case TypeCheckKind::kArrayObjectCheck: {
3176      // Do an exact check.
3177      vixl::Label exact_check;
3178      __ Cmp(out, cls);
3179      __ B(eq, &exact_check);
3180      // Otherwise, we need to check that the object's class is a non-primitive array.
3181      // /* HeapReference<Class> */ out = out->component_type_
3182      GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
3183      // If `out` is null, we use it for the result, and jump to `done`.
3184      __ Cbz(out, &done);
3185      __ Ldrh(out, HeapOperand(out, primitive_offset));
3186      static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3187      __ Cbnz(out, &zero);
3188      __ Bind(&exact_check);
3189      __ Mov(out, 1);
3190      __ B(&done);
3191      break;
3192    }
3193
3194    case TypeCheckKind::kArrayCheck: {
3195      __ Cmp(out, cls);
3196      DCHECK(locations->OnlyCallsOnSlowPath());
3197      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
3198                                                                      /* is_fatal */ false);
3199      codegen_->AddSlowPath(slow_path);
3200      __ B(ne, slow_path->GetEntryLabel());
3201      __ Mov(out, 1);
3202      if (zero.IsLinked()) {
3203        __ B(&done);
3204      }
3205      break;
3206    }
3207
3208    case TypeCheckKind::kUnresolvedCheck:
3209    case TypeCheckKind::kInterfaceCheck: {
3210      // Note that we indeed only call on slow path, but we always go
3211      // into the slow path for the unresolved and interface check
3212      // cases.
3213      //
3214      // We cannot directly call the InstanceofNonTrivial runtime
3215      // entry point without resorting to a type checking slow path
3216      // here (i.e. by calling InvokeRuntime directly), as it would
3217      // require to assign fixed registers for the inputs of this
3218      // HInstanceOf instruction (following the runtime calling
3219      // convention), which might be cluttered by the potential first
3220      // read barrier emission at the beginning of this method.
3221      //
3222      // TODO: Introduce a new runtime entry point taking the object
3223      // to test (instead of its class) as argument, and let it deal
3224      // with the read barrier issues. This will let us refactor this
3225      // case of the `switch` code as it was previously (with a direct
3226      // call to the runtime not using a type checking slow path).
3227      // This should also be beneficial for the other cases above.
3228      DCHECK(locations->OnlyCallsOnSlowPath());
3229      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
3230                                                                      /* is_fatal */ false);
3231      codegen_->AddSlowPath(slow_path);
3232      __ B(slow_path->GetEntryLabel());
3233      if (zero.IsLinked()) {
3234        __ B(&done);
3235      }
3236      break;
3237    }
3238  }
3239
3240  if (zero.IsLinked()) {
3241    __ Bind(&zero);
3242    __ Mov(out, 0);
3243  }
3244
3245  if (done.IsLinked()) {
3246    __ Bind(&done);
3247  }
3248
3249  if (slow_path != nullptr) {
3250    __ Bind(slow_path->GetExitLabel());
3251  }
3252}
3253
3254void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
3255  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3256  bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
3257
3258  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3259  switch (type_check_kind) {
3260    case TypeCheckKind::kExactCheck:
3261    case TypeCheckKind::kAbstractClassCheck:
3262    case TypeCheckKind::kClassHierarchyCheck:
3263    case TypeCheckKind::kArrayObjectCheck:
3264      call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
3265          LocationSummary::kCallOnSlowPath :
3266          LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
3267      break;
3268    case TypeCheckKind::kArrayCheck:
3269    case TypeCheckKind::kUnresolvedCheck:
3270    case TypeCheckKind::kInterfaceCheck:
3271      call_kind = LocationSummary::kCallOnSlowPath;
3272      break;
3273  }
3274
3275  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3276  locations->SetInAt(0, Location::RequiresRegister());
3277  locations->SetInAt(1, Location::RequiresRegister());
3278  // Note that TypeCheckSlowPathARM64 uses this "temp" register too.
3279  locations->AddTemp(Location::RequiresRegister());
3280  // When read barriers are enabled, we need an additional temporary
3281  // register for some cases.
3282  if (TypeCheckNeedsATemporary(type_check_kind)) {
3283    locations->AddTemp(Location::RequiresRegister());
3284  }
3285}
3286
3287void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
3288  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3289  LocationSummary* locations = instruction->GetLocations();
3290  Location obj_loc = locations->InAt(0);
3291  Register obj = InputRegisterAt(instruction, 0);
3292  Register cls = InputRegisterAt(instruction, 1);
3293  Location temp_loc = locations->GetTemp(0);
3294  Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
3295      locations->GetTemp(1) :
3296      Location::NoLocation();
3297  Register temp = WRegisterFrom(temp_loc);
3298  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3299  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3300  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3301  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3302
3303  bool is_type_check_slow_path_fatal =
3304      (type_check_kind == TypeCheckKind::kExactCheck ||
3305       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3306       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3307       type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
3308      !instruction->CanThrowIntoCatchBlock();
3309  SlowPathCodeARM64* type_check_slow_path =
3310      new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
3311                                                          is_type_check_slow_path_fatal);
3312  codegen_->AddSlowPath(type_check_slow_path);
3313
3314  vixl::Label done;
3315  // Avoid null check if we know obj is not null.
3316  if (instruction->MustDoNullCheck()) {
3317    __ Cbz(obj, &done);
3318  }
3319
3320  // /* HeapReference<Class> */ temp = obj->klass_
3321  GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3322
3323  switch (type_check_kind) {
3324    case TypeCheckKind::kExactCheck:
3325    case TypeCheckKind::kArrayCheck: {
3326      __ Cmp(temp, cls);
3327      // Jump to slow path for throwing the exception or doing a
3328      // more involved array check.
3329      __ B(ne, type_check_slow_path->GetEntryLabel());
3330      break;
3331    }
3332
3333    case TypeCheckKind::kAbstractClassCheck: {
3334      // If the class is abstract, we eagerly fetch the super class of the
3335      // object to avoid doing a comparison we know will fail.
3336      vixl::Label loop, compare_classes;
3337      __ Bind(&loop);
3338      // /* HeapReference<Class> */ temp = temp->super_class_
3339      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
3340
3341      // If the class reference currently in `temp` is not null, jump
3342      // to the `compare_classes` label to compare it with the checked
3343      // class.
3344      __ Cbnz(temp, &compare_classes);
3345      // Otherwise, jump to the slow path to throw the exception.
3346      //
3347      // But before, move back the object's class into `temp` before
3348      // going into the slow path, as it has been overwritten in the
3349      // meantime.
3350      // /* HeapReference<Class> */ temp = obj->klass_
3351      GenerateReferenceLoadTwoRegisters(
3352          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3353      __ B(type_check_slow_path->GetEntryLabel());
3354
3355      __ Bind(&compare_classes);
3356      __ Cmp(temp, cls);
3357      __ B(ne, &loop);
3358      break;
3359    }
3360
3361    case TypeCheckKind::kClassHierarchyCheck: {
3362      // Walk over the class hierarchy to find a match.
3363      vixl::Label loop;
3364      __ Bind(&loop);
3365      __ Cmp(temp, cls);
3366      __ B(eq, &done);
3367
3368      // /* HeapReference<Class> */ temp = temp->super_class_
3369      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
3370
3371      // If the class reference currently in `temp` is not null, jump
3372      // back at the beginning of the loop.
3373      __ Cbnz(temp, &loop);
3374      // Otherwise, jump to the slow path to throw the exception.
3375      //
3376      // But before, move back the object's class into `temp` before
3377      // going into the slow path, as it has been overwritten in the
3378      // meantime.
3379      // /* HeapReference<Class> */ temp = obj->klass_
3380      GenerateReferenceLoadTwoRegisters(
3381          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3382      __ B(type_check_slow_path->GetEntryLabel());
3383      break;
3384    }
3385
3386    case TypeCheckKind::kArrayObjectCheck: {
3387      // Do an exact check.
3388      vixl::Label check_non_primitive_component_type;
3389      __ Cmp(temp, cls);
3390      __ B(eq, &done);
3391
3392      // Otherwise, we need to check that the object's class is a non-primitive array.
3393      // /* HeapReference<Class> */ temp = temp->component_type_
3394      GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
3395
3396      // If the component type is not null (i.e. the object is indeed
3397      // an array), jump to label `check_non_primitive_component_type`
3398      // to further check that this component type is not a primitive
3399      // type.
3400      __ Cbnz(temp, &check_non_primitive_component_type);
3401      // Otherwise, jump to the slow path to throw the exception.
3402      //
3403      // But before, move back the object's class into `temp` before
3404      // going into the slow path, as it has been overwritten in the
3405      // meantime.
3406      // /* HeapReference<Class> */ temp = obj->klass_
3407      GenerateReferenceLoadTwoRegisters(
3408          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3409      __ B(type_check_slow_path->GetEntryLabel());
3410
3411      __ Bind(&check_non_primitive_component_type);
3412      __ Ldrh(temp, HeapOperand(temp, primitive_offset));
3413      static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3414      __ Cbz(temp, &done);
3415      // Same comment as above regarding `temp` and the slow path.
3416      // /* HeapReference<Class> */ temp = obj->klass_
3417      GenerateReferenceLoadTwoRegisters(
3418          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3419      __ B(type_check_slow_path->GetEntryLabel());
3420      break;
3421    }
3422
3423    case TypeCheckKind::kUnresolvedCheck:
3424    case TypeCheckKind::kInterfaceCheck:
3425      // We always go into the type check slow path for the unresolved
3426      // and interface check cases.
3427      //
3428      // We cannot directly call the CheckCast runtime entry point
3429      // without resorting to a type checking slow path here (i.e. by
3430      // calling InvokeRuntime directly), as it would require to
3431      // assign fixed registers for the inputs of this HInstanceOf
3432      // instruction (following the runtime calling convention), which
3433      // might be cluttered by the potential first read barrier
3434      // emission at the beginning of this method.
3435      //
3436      // TODO: Introduce a new runtime entry point taking the object
3437      // to test (instead of its class) as argument, and let it deal
3438      // with the read barrier issues. This will let us refactor this
3439      // case of the `switch` code as it was previously (with a direct
3440      // call to the runtime not using a type checking slow path).
3441      // This should also be beneficial for the other cases above.
3442      __ B(type_check_slow_path->GetEntryLabel());
3443      break;
3444  }
3445  __ Bind(&done);
3446
3447  __ Bind(type_check_slow_path->GetExitLabel());
3448}
3449
3450void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
3451  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
3452  locations->SetOut(Location::ConstantLocation(constant));
3453}
3454
3455void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
3456  // Will be generated at use site.
3457}
3458
3459void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
3460  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
3461  locations->SetOut(Location::ConstantLocation(constant));
3462}
3463
3464void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
3465  // Will be generated at use site.
3466}
3467
3468void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3469  // The trampoline uses the same calling convention as dex calling conventions,
3470  // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
3471  // the method_idx.
3472  HandleInvoke(invoke);
3473}
3474
3475void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3476  codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
3477}
3478
3479void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
3480  InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
3481  CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3482}
3483
3484void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
3485  HandleInvoke(invoke);
3486}
3487
3488void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
3489  // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
3490  LocationSummary* locations = invoke->GetLocations();
3491  Register temp = XRegisterFrom(locations->GetTemp(0));
3492  uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset(
3493      invoke->GetImtIndex() % mirror::Class::kImtSize, kArm64PointerSize).Uint32Value();
3494  Location receiver = locations->InAt(0);
3495  Offset class_offset = mirror::Object::ClassOffset();
3496  Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
3497
3498  // The register ip1 is required to be used for the hidden argument in
3499  // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
3500  MacroAssembler* masm = GetVIXLAssembler();
3501  UseScratchRegisterScope scratch_scope(masm);
3502  BlockPoolsScope block_pools(masm);
3503  scratch_scope.Exclude(ip1);
3504  __ Mov(ip1, invoke->GetDexMethodIndex());
3505
3506  if (receiver.IsStackSlot()) {
3507    __ Ldr(temp.W(), StackOperandFrom(receiver));
3508    // /* HeapReference<Class> */ temp = temp->klass_
3509    __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
3510  } else {
3511    // /* HeapReference<Class> */ temp = receiver->klass_
3512    __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
3513  }
3514  codegen_->MaybeRecordImplicitNullCheck(invoke);
3515  // Instead of simply (possibly) unpoisoning `temp` here, we should
3516  // emit a read barrier for the previous class reference load.
3517  // However this is not required in practice, as this is an
3518  // intermediate/temporary reference and because the current
3519  // concurrent copying collector keeps the from-space memory
3520  // intact/accessible until the end of the marking phase (the
3521  // concurrent copying collector may not in the future).
3522  GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
3523  // temp = temp->GetImtEntryAt(method_offset);
3524  __ Ldr(temp, MemOperand(temp, method_offset));
3525  // lr = temp->GetEntryPoint();
3526  __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
3527  // lr();
3528  __ Blr(lr);
3529  DCHECK(!codegen_->IsLeafMethod());
3530  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3531}
3532
3533void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3534  IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
3535  if (intrinsic.TryDispatch(invoke)) {
3536    return;
3537  }
3538
3539  HandleInvoke(invoke);
3540}
3541
3542void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3543  // Explicit clinit checks triggered by static invokes must have been pruned by
3544  // art::PrepareForRegisterAllocation.
3545  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3546
3547  IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
3548  if (intrinsic.TryDispatch(invoke)) {
3549    return;
3550  }
3551
3552  HandleInvoke(invoke);
3553}
3554
3555static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
3556  if (invoke->GetLocations()->Intrinsified()) {
3557    IntrinsicCodeGeneratorARM64 intrinsic(codegen);
3558    intrinsic.Dispatch(invoke);
3559    return true;
3560  }
3561  return false;
3562}
3563
3564HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
3565      const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
3566      MethodReference target_method ATTRIBUTE_UNUSED) {
3567  // On ARM64 we support all dispatch types.
3568  return desired_dispatch_info;
3569}
3570
3571void CodeGeneratorARM64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
3572  // For better instruction scheduling we load the direct code pointer before the method pointer.
3573  bool direct_code_loaded = false;
3574  switch (invoke->GetCodePtrLocation()) {
3575    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
3576      // LR = code address from literal pool with link-time patch.
3577      __ Ldr(lr, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
3578      direct_code_loaded = true;
3579      break;
3580    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
3581      // LR = invoke->GetDirectCodePtr();
3582      __ Ldr(lr, DeduplicateUint64Literal(invoke->GetDirectCodePtr()));
3583      direct_code_loaded = true;
3584      break;
3585    default:
3586      break;
3587  }
3588
3589  // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
3590  Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
3591  switch (invoke->GetMethodLoadKind()) {
3592    case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
3593      // temp = thread->string_init_entrypoint
3594      __ Ldr(XRegisterFrom(temp), MemOperand(tr, invoke->GetStringInitOffset()));
3595      break;
3596    case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
3597      callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
3598      break;
3599    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
3600      // Load method address from literal pool.
3601      __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress()));
3602      break;
3603    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
3604      // Load method address from literal pool with a link-time patch.
3605      __ Ldr(XRegisterFrom(temp),
3606             DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
3607      break;
3608    case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
3609      // Add ADRP with its PC-relative DexCache access patch.
3610      pc_relative_dex_cache_patches_.emplace_back(*invoke->GetTargetMethod().dex_file,
3611                                                  invoke->GetDexCacheArrayOffset());
3612      vixl::Label* pc_insn_label = &pc_relative_dex_cache_patches_.back().label;
3613      {
3614        vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
3615        __ Bind(pc_insn_label);
3616        __ adrp(XRegisterFrom(temp), 0);
3617      }
3618      pc_relative_dex_cache_patches_.back().pc_insn_label = pc_insn_label;
3619      // Add LDR with its PC-relative DexCache access patch.
3620      pc_relative_dex_cache_patches_.emplace_back(*invoke->GetTargetMethod().dex_file,
3621                                                  invoke->GetDexCacheArrayOffset());
3622      {
3623        vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
3624        __ Bind(&pc_relative_dex_cache_patches_.back().label);
3625        __ ldr(XRegisterFrom(temp), MemOperand(XRegisterFrom(temp), 0));
3626        pc_relative_dex_cache_patches_.back().pc_insn_label = pc_insn_label;
3627      }
3628      break;
3629    }
3630    case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
3631      Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
3632      Register reg = XRegisterFrom(temp);
3633      Register method_reg;
3634      if (current_method.IsRegister()) {
3635        method_reg = XRegisterFrom(current_method);
3636      } else {
3637        DCHECK(invoke->GetLocations()->Intrinsified());
3638        DCHECK(!current_method.IsValid());
3639        method_reg = reg;
3640        __ Ldr(reg.X(), MemOperand(sp, kCurrentMethodStackOffset));
3641      }
3642
3643      // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
3644      __ Ldr(reg.X(),
3645             MemOperand(method_reg.X(),
3646                        ArtMethod::DexCacheResolvedMethodsOffset(kArm64WordSize).Int32Value()));
3647      // temp = temp[index_in_cache];
3648      uint32_t index_in_cache = invoke->GetTargetMethod().dex_method_index;
3649    __ Ldr(reg.X(), MemOperand(reg.X(), GetCachePointerOffset(index_in_cache)));
3650      break;
3651    }
3652  }
3653
3654  switch (invoke->GetCodePtrLocation()) {
3655    case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
3656      __ Bl(&frame_entry_label_);
3657      break;
3658    case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
3659      relative_call_patches_.emplace_back(invoke->GetTargetMethod());
3660      vixl::Label* label = &relative_call_patches_.back().label;
3661      vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
3662      __ Bind(label);
3663      __ bl(0);  // Branch and link to itself. This will be overriden at link time.
3664      break;
3665    }
3666    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
3667    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
3668      // LR prepared above for better instruction scheduling.
3669      DCHECK(direct_code_loaded);
3670      // lr()
3671      __ Blr(lr);
3672      break;
3673    case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
3674      // LR = callee_method->entry_point_from_quick_compiled_code_;
3675      __ Ldr(lr, MemOperand(
3676          XRegisterFrom(callee_method),
3677          ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize).Int32Value()));
3678      // lr()
3679      __ Blr(lr);
3680      break;
3681  }
3682
3683  DCHECK(!IsLeafMethod());
3684}
3685
3686void CodeGeneratorARM64::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
3687  // Use the calling convention instead of the location of the receiver, as
3688  // intrinsics may have put the receiver in a different register. In the intrinsics
3689  // slow path, the arguments have been moved to the right place, so here we are
3690  // guaranteed that the receiver is the first register of the calling convention.
3691  InvokeDexCallingConvention calling_convention;
3692  Register receiver = calling_convention.GetRegisterAt(0);
3693  Register temp = XRegisterFrom(temp_in);
3694  size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
3695      invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
3696  Offset class_offset = mirror::Object::ClassOffset();
3697  Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
3698
3699  BlockPoolsScope block_pools(GetVIXLAssembler());
3700
3701  DCHECK(receiver.IsRegister());
3702  // /* HeapReference<Class> */ temp = receiver->klass_
3703  __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
3704  MaybeRecordImplicitNullCheck(invoke);
3705  // Instead of simply (possibly) unpoisoning `temp` here, we should
3706  // emit a read barrier for the previous class reference load.
3707  // intermediate/temporary reference and because the current
3708  // concurrent copying collector keeps the from-space memory
3709  // intact/accessible until the end of the marking phase (the
3710  // concurrent copying collector may not in the future).
3711  GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
3712  // temp = temp->GetMethodAt(method_offset);
3713  __ Ldr(temp, MemOperand(temp, method_offset));
3714  // lr = temp->GetEntryPoint();
3715  __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
3716  // lr();
3717  __ Blr(lr);
3718}
3719
3720void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
3721  DCHECK(linker_patches->empty());
3722  size_t size =
3723      method_patches_.size() +
3724      call_patches_.size() +
3725      relative_call_patches_.size() +
3726      pc_relative_dex_cache_patches_.size();
3727  linker_patches->reserve(size);
3728  for (const auto& entry : method_patches_) {
3729    const MethodReference& target_method = entry.first;
3730    vixl::Literal<uint64_t>* literal = entry.second;
3731    linker_patches->push_back(LinkerPatch::MethodPatch(literal->offset(),
3732                                                       target_method.dex_file,
3733                                                       target_method.dex_method_index));
3734  }
3735  for (const auto& entry : call_patches_) {
3736    const MethodReference& target_method = entry.first;
3737    vixl::Literal<uint64_t>* literal = entry.second;
3738    linker_patches->push_back(LinkerPatch::CodePatch(literal->offset(),
3739                                                     target_method.dex_file,
3740                                                     target_method.dex_method_index));
3741  }
3742  for (const MethodPatchInfo<vixl::Label>& info : relative_call_patches_) {
3743    linker_patches->push_back(LinkerPatch::RelativeCodePatch(info.label.location(),
3744                                                             info.target_method.dex_file,
3745                                                             info.target_method.dex_method_index));
3746  }
3747  for (const PcRelativeDexCacheAccessInfo& info : pc_relative_dex_cache_patches_) {
3748    linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(info.label.location(),
3749                                                              &info.target_dex_file,
3750                                                              info.pc_insn_label->location(),
3751                                                              info.element_offset));
3752  }
3753}
3754
3755vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
3756  // Look up the literal for value.
3757  auto lb = uint64_literals_.lower_bound(value);
3758  if (lb != uint64_literals_.end() && !uint64_literals_.key_comp()(value, lb->first)) {
3759    return lb->second;
3760  }
3761  // We don't have a literal for this value, insert a new one.
3762  vixl::Literal<uint64_t>* literal = __ CreateLiteralDestroyedWithPool<uint64_t>(value);
3763  uint64_literals_.PutBefore(lb, value, literal);
3764  return literal;
3765}
3766
3767vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodLiteral(
3768    MethodReference target_method,
3769    MethodToLiteralMap* map) {
3770  // Look up the literal for target_method.
3771  auto lb = map->lower_bound(target_method);
3772  if (lb != map->end() && !map->key_comp()(target_method, lb->first)) {
3773    return lb->second;
3774  }
3775  // We don't have a literal for this method yet, insert a new one.
3776  vixl::Literal<uint64_t>* literal = __ CreateLiteralDestroyedWithPool<uint64_t>(0u);
3777  map->PutBefore(lb, target_method, literal);
3778  return literal;
3779}
3780
3781vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodAddressLiteral(
3782    MethodReference target_method) {
3783  return DeduplicateMethodLiteral(target_method, &method_patches_);
3784}
3785
3786vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodCodeLiteral(
3787    MethodReference target_method) {
3788  return DeduplicateMethodLiteral(target_method, &call_patches_);
3789}
3790
3791
3792void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3793  // Explicit clinit checks triggered by static invokes must have been pruned by
3794  // art::PrepareForRegisterAllocation.
3795  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3796
3797  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3798    return;
3799  }
3800
3801  BlockPoolsScope block_pools(GetVIXLAssembler());
3802  LocationSummary* locations = invoke->GetLocations();
3803  codegen_->GenerateStaticOrDirectCall(
3804      invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
3805  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3806}
3807
3808void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3809  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3810    return;
3811  }
3812
3813  codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
3814  DCHECK(!codegen_->IsLeafMethod());
3815  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3816}
3817
3818void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
3819  InvokeRuntimeCallingConvention calling_convention;
3820  CodeGenerator::CreateLoadClassLocationSummary(
3821      cls,
3822      LocationFrom(calling_convention.GetRegisterAt(0)),
3823      LocationFrom(vixl::x0),
3824      /* code_generator_supports_read_barrier */ true);
3825}
3826
3827void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) {
3828  if (cls->NeedsAccessCheck()) {
3829    codegen_->MoveConstant(cls->GetLocations()->GetTemp(0), cls->GetTypeIndex());
3830    codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
3831                            cls,
3832                            cls->GetDexPc(),
3833                            nullptr);
3834    CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
3835    return;
3836  }
3837
3838  Location out_loc = cls->GetLocations()->Out();
3839  Register out = OutputRegister(cls);
3840  Register current_method = InputRegisterAt(cls, 0);
3841  if (cls->IsReferrersClass()) {
3842    DCHECK(!cls->CanCallRuntime());
3843    DCHECK(!cls->MustGenerateClinitCheck());
3844    // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
3845    GenerateGcRootFieldLoad(
3846        cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
3847  } else {
3848    MemberOffset resolved_types_offset = ArtMethod::DexCacheResolvedTypesOffset(kArm64PointerSize);
3849    // /* GcRoot<mirror::Class>[] */ out =
3850    //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
3851    __ Ldr(out.X(), MemOperand(current_method, resolved_types_offset.Int32Value()));
3852    // /* GcRoot<mirror::Class> */ out = out[type_index]
3853    GenerateGcRootFieldLoad(
3854        cls, out_loc, out.X(), CodeGenerator::GetCacheOffset(cls->GetTypeIndex()));
3855
3856    if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
3857      DCHECK(cls->CanCallRuntime());
3858      SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
3859          cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
3860      codegen_->AddSlowPath(slow_path);
3861      if (!cls->IsInDexCache()) {
3862        __ Cbz(out, slow_path->GetEntryLabel());
3863      }
3864      if (cls->MustGenerateClinitCheck()) {
3865        GenerateClassInitializationCheck(slow_path, out);
3866      } else {
3867        __ Bind(slow_path->GetExitLabel());
3868      }
3869    }
3870  }
3871}
3872
3873static MemOperand GetExceptionTlsAddress() {
3874  return MemOperand(tr, Thread::ExceptionOffset<kArm64WordSize>().Int32Value());
3875}
3876
3877void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
3878  LocationSummary* locations =
3879      new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
3880  locations->SetOut(Location::RequiresRegister());
3881}
3882
3883void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
3884  __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
3885}
3886
3887void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
3888  new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
3889}
3890
3891void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
3892  __ Str(wzr, GetExceptionTlsAddress());
3893}
3894
3895void LocationsBuilderARM64::VisitLoadLocal(HLoadLocal* load) {
3896  load->SetLocations(nullptr);
3897}
3898
3899void InstructionCodeGeneratorARM64::VisitLoadLocal(HLoadLocal* load ATTRIBUTE_UNUSED) {
3900  // Nothing to do, this is driven by the code generator.
3901}
3902
3903void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
3904  LocationSummary::CallKind call_kind = (!load->IsInDexCache() || kEmitCompilerReadBarrier)
3905      ? LocationSummary::kCallOnSlowPath
3906      : LocationSummary::kNoCall;
3907  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
3908  locations->SetInAt(0, Location::RequiresRegister());
3909  locations->SetOut(Location::RequiresRegister());
3910}
3911
3912void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) {
3913  Location out_loc = load->GetLocations()->Out();
3914  Register out = OutputRegister(load);
3915  Register current_method = InputRegisterAt(load, 0);
3916
3917  // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
3918  GenerateGcRootFieldLoad(
3919      load, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
3920  // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
3921  __ Ldr(out.X(), HeapOperand(out, mirror::Class::DexCacheStringsOffset().Uint32Value()));
3922  // /* GcRoot<mirror::String> */ out = out[string_index]
3923  GenerateGcRootFieldLoad(
3924      load, out_loc, out.X(), CodeGenerator::GetCacheOffset(load->GetStringIndex()));
3925
3926  if (!load->IsInDexCache()) {
3927    SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM64(load);
3928    codegen_->AddSlowPath(slow_path);
3929    __ Cbz(out, slow_path->GetEntryLabel());
3930    __ Bind(slow_path->GetExitLabel());
3931  }
3932}
3933
3934void LocationsBuilderARM64::VisitLocal(HLocal* local) {
3935  local->SetLocations(nullptr);
3936}
3937
3938void InstructionCodeGeneratorARM64::VisitLocal(HLocal* local) {
3939  DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock());
3940}
3941
3942void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
3943  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
3944  locations->SetOut(Location::ConstantLocation(constant));
3945}
3946
3947void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
3948  // Will be generated at use site.
3949}
3950
3951void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
3952  LocationSummary* locations =
3953      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
3954  InvokeRuntimeCallingConvention calling_convention;
3955  locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
3956}
3957
3958void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
3959  codegen_->InvokeRuntime(instruction->IsEnter()
3960        ? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject),
3961      instruction,
3962      instruction->GetDexPc(),
3963      nullptr);
3964  if (instruction->IsEnter()) {
3965    CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
3966  } else {
3967    CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
3968  }
3969}
3970
3971void LocationsBuilderARM64::VisitMul(HMul* mul) {
3972  LocationSummary* locations =
3973      new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
3974  switch (mul->GetResultType()) {
3975    case Primitive::kPrimInt:
3976    case Primitive::kPrimLong:
3977      locations->SetInAt(0, Location::RequiresRegister());
3978      locations->SetInAt(1, Location::RequiresRegister());
3979      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3980      break;
3981
3982    case Primitive::kPrimFloat:
3983    case Primitive::kPrimDouble:
3984      locations->SetInAt(0, Location::RequiresFpuRegister());
3985      locations->SetInAt(1, Location::RequiresFpuRegister());
3986      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3987      break;
3988
3989    default:
3990      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3991  }
3992}
3993
3994void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
3995  switch (mul->GetResultType()) {
3996    case Primitive::kPrimInt:
3997    case Primitive::kPrimLong:
3998      __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
3999      break;
4000
4001    case Primitive::kPrimFloat:
4002    case Primitive::kPrimDouble:
4003      __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
4004      break;
4005
4006    default:
4007      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4008  }
4009}
4010
4011void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
4012  LocationSummary* locations =
4013      new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
4014  switch (neg->GetResultType()) {
4015    case Primitive::kPrimInt:
4016    case Primitive::kPrimLong:
4017      locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
4018      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4019      break;
4020
4021    case Primitive::kPrimFloat:
4022    case Primitive::kPrimDouble:
4023      locations->SetInAt(0, Location::RequiresFpuRegister());
4024      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4025      break;
4026
4027    default:
4028      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
4029  }
4030}
4031
4032void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
4033  switch (neg->GetResultType()) {
4034    case Primitive::kPrimInt:
4035    case Primitive::kPrimLong:
4036      __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
4037      break;
4038
4039    case Primitive::kPrimFloat:
4040    case Primitive::kPrimDouble:
4041      __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
4042      break;
4043
4044    default:
4045      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
4046  }
4047}
4048
4049void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
4050  LocationSummary* locations =
4051      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4052  InvokeRuntimeCallingConvention calling_convention;
4053  locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
4054  locations->SetOut(LocationFrom(x0));
4055  locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(1)));
4056  locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(2)));
4057}
4058
4059void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
4060  LocationSummary* locations = instruction->GetLocations();
4061  InvokeRuntimeCallingConvention calling_convention;
4062  Register type_index = RegisterFrom(locations->GetTemp(0), Primitive::kPrimInt);
4063  DCHECK(type_index.Is(w0));
4064  __ Mov(type_index, instruction->GetTypeIndex());
4065  // Note: if heap poisoning is enabled, the entry point takes cares
4066  // of poisoning the reference.
4067  codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4068                          instruction,
4069                          instruction->GetDexPc(),
4070                          nullptr);
4071  CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
4072}
4073
4074void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
4075  LocationSummary* locations =
4076      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4077  InvokeRuntimeCallingConvention calling_convention;
4078  if (instruction->IsStringAlloc()) {
4079    locations->AddTemp(LocationFrom(kArtMethodRegister));
4080  } else {
4081    locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4082    locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4083  }
4084  locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
4085}
4086
4087void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
4088  // Note: if heap poisoning is enabled, the entry point takes cares
4089  // of poisoning the reference.
4090  if (instruction->IsStringAlloc()) {
4091    // String is allocated through StringFactory. Call NewEmptyString entry point.
4092    Location temp = instruction->GetLocations()->GetTemp(0);
4093    MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
4094    __ Ldr(XRegisterFrom(temp), MemOperand(tr, QUICK_ENTRY_POINT(pNewEmptyString)));
4095    __ Ldr(lr, MemOperand(XRegisterFrom(temp), code_offset.Int32Value()));
4096    __ Blr(lr);
4097    codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4098  } else {
4099    codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4100                            instruction,
4101                            instruction->GetDexPc(),
4102                            nullptr);
4103    CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
4104  }
4105}
4106
4107void LocationsBuilderARM64::VisitNot(HNot* instruction) {
4108  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4109  locations->SetInAt(0, Location::RequiresRegister());
4110  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4111}
4112
4113void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
4114  switch (instruction->GetResultType()) {
4115    case Primitive::kPrimInt:
4116    case Primitive::kPrimLong:
4117      __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
4118      break;
4119
4120    default:
4121      LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
4122  }
4123}
4124
4125void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
4126  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4127  locations->SetInAt(0, Location::RequiresRegister());
4128  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4129}
4130
4131void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
4132  __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::Operand(1));
4133}
4134
4135void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
4136  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
4137      ? LocationSummary::kCallOnSlowPath
4138      : LocationSummary::kNoCall;
4139  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
4140  locations->SetInAt(0, Location::RequiresRegister());
4141  if (instruction->HasUses()) {
4142    locations->SetOut(Location::SameAsFirstInput());
4143  }
4144}
4145
4146void InstructionCodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
4147  if (codegen_->CanMoveNullCheckToUser(instruction)) {
4148    return;
4149  }
4150
4151  BlockPoolsScope block_pools(GetVIXLAssembler());
4152  Location obj = instruction->GetLocations()->InAt(0);
4153  __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
4154  codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4155}
4156
4157void InstructionCodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
4158  SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM64(instruction);
4159  codegen_->AddSlowPath(slow_path);
4160
4161  LocationSummary* locations = instruction->GetLocations();
4162  Location obj = locations->InAt(0);
4163
4164  __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
4165}
4166
4167void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
4168  if (codegen_->IsImplicitNullCheckAllowed(instruction)) {
4169    GenerateImplicitNullCheck(instruction);
4170  } else {
4171    GenerateExplicitNullCheck(instruction);
4172  }
4173}
4174
4175void LocationsBuilderARM64::VisitOr(HOr* instruction) {
4176  HandleBinaryOp(instruction);
4177}
4178
4179void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
4180  HandleBinaryOp(instruction);
4181}
4182
4183void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
4184  LOG(FATAL) << "Unreachable";
4185}
4186
4187void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
4188  codegen_->GetMoveResolver()->EmitNativeCode(instruction);
4189}
4190
4191void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
4192  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4193  Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4194  if (location.IsStackSlot()) {
4195    location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4196  } else if (location.IsDoubleStackSlot()) {
4197    location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4198  }
4199  locations->SetOut(location);
4200}
4201
4202void InstructionCodeGeneratorARM64::VisitParameterValue(
4203    HParameterValue* instruction ATTRIBUTE_UNUSED) {
4204  // Nothing to do, the parameter is already at its location.
4205}
4206
4207void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
4208  LocationSummary* locations =
4209      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4210  locations->SetOut(LocationFrom(kArtMethodRegister));
4211}
4212
4213void InstructionCodeGeneratorARM64::VisitCurrentMethod(
4214    HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
4215  // Nothing to do, the method is already at its location.
4216}
4217
4218void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
4219  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4220  for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
4221    locations->SetInAt(i, Location::Any());
4222  }
4223  locations->SetOut(Location::Any());
4224}
4225
4226void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
4227  LOG(FATAL) << "Unreachable";
4228}
4229
4230void LocationsBuilderARM64::VisitRem(HRem* rem) {
4231  Primitive::Type type = rem->GetResultType();
4232  LocationSummary::CallKind call_kind =
4233      Primitive::IsFloatingPointType(type) ? LocationSummary::kCall : LocationSummary::kNoCall;
4234  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
4235
4236  switch (type) {
4237    case Primitive::kPrimInt:
4238    case Primitive::kPrimLong:
4239      locations->SetInAt(0, Location::RequiresRegister());
4240      locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
4241      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4242      break;
4243
4244    case Primitive::kPrimFloat:
4245    case Primitive::kPrimDouble: {
4246      InvokeRuntimeCallingConvention calling_convention;
4247      locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
4248      locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
4249      locations->SetOut(calling_convention.GetReturnLocation(type));
4250
4251      break;
4252    }
4253
4254    default:
4255      LOG(FATAL) << "Unexpected rem type " << type;
4256  }
4257}
4258
4259void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
4260  Primitive::Type type = rem->GetResultType();
4261
4262  switch (type) {
4263    case Primitive::kPrimInt:
4264    case Primitive::kPrimLong: {
4265      GenerateDivRemIntegral(rem);
4266      break;
4267    }
4268
4269    case Primitive::kPrimFloat:
4270    case Primitive::kPrimDouble: {
4271      int32_t entry_offset = (type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pFmodf)
4272                                                             : QUICK_ENTRY_POINT(pFmod);
4273      codegen_->InvokeRuntime(entry_offset, rem, rem->GetDexPc(), nullptr);
4274      if (type == Primitive::kPrimFloat) {
4275        CheckEntrypointTypes<kQuickFmodf, float, float, float>();
4276      } else {
4277        CheckEntrypointTypes<kQuickFmod, double, double, double>();
4278      }
4279      break;
4280    }
4281
4282    default:
4283      LOG(FATAL) << "Unexpected rem type " << type;
4284      UNREACHABLE();
4285  }
4286}
4287
4288void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
4289  memory_barrier->SetLocations(nullptr);
4290}
4291
4292void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
4293  codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
4294}
4295
4296void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
4297  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4298  Primitive::Type return_type = instruction->InputAt(0)->GetType();
4299  locations->SetInAt(0, ARM64ReturnLocation(return_type));
4300}
4301
4302void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction ATTRIBUTE_UNUSED) {
4303  codegen_->GenerateFrameExit();
4304}
4305
4306void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
4307  instruction->SetLocations(nullptr);
4308}
4309
4310void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
4311  codegen_->GenerateFrameExit();
4312}
4313
4314void LocationsBuilderARM64::VisitRor(HRor* ror) {
4315  HandleBinaryOp(ror);
4316}
4317
4318void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
4319  HandleBinaryOp(ror);
4320}
4321
4322void LocationsBuilderARM64::VisitShl(HShl* shl) {
4323  HandleShift(shl);
4324}
4325
4326void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
4327  HandleShift(shl);
4328}
4329
4330void LocationsBuilderARM64::VisitShr(HShr* shr) {
4331  HandleShift(shr);
4332}
4333
4334void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
4335  HandleShift(shr);
4336}
4337
4338void LocationsBuilderARM64::VisitStoreLocal(HStoreLocal* store) {
4339  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(store);
4340  Primitive::Type field_type = store->InputAt(1)->GetType();
4341  switch (field_type) {
4342    case Primitive::kPrimNot:
4343    case Primitive::kPrimBoolean:
4344    case Primitive::kPrimByte:
4345    case Primitive::kPrimChar:
4346    case Primitive::kPrimShort:
4347    case Primitive::kPrimInt:
4348    case Primitive::kPrimFloat:
4349      locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal())));
4350      break;
4351
4352    case Primitive::kPrimLong:
4353    case Primitive::kPrimDouble:
4354      locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal())));
4355      break;
4356
4357    default:
4358      LOG(FATAL) << "Unimplemented local type " << field_type;
4359      UNREACHABLE();
4360  }
4361}
4362
4363void InstructionCodeGeneratorARM64::VisitStoreLocal(HStoreLocal* store ATTRIBUTE_UNUSED) {
4364}
4365
4366void LocationsBuilderARM64::VisitSub(HSub* instruction) {
4367  HandleBinaryOp(instruction);
4368}
4369
4370void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
4371  HandleBinaryOp(instruction);
4372}
4373
4374void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4375  HandleFieldGet(instruction);
4376}
4377
4378void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4379  HandleFieldGet(instruction, instruction->GetFieldInfo());
4380}
4381
4382void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4383  HandleFieldSet(instruction);
4384}
4385
4386void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4387  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4388}
4389
4390void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
4391    HUnresolvedInstanceFieldGet* instruction) {
4392  FieldAccessCallingConventionARM64 calling_convention;
4393  codegen_->CreateUnresolvedFieldLocationSummary(
4394      instruction, instruction->GetFieldType(), calling_convention);
4395}
4396
4397void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
4398    HUnresolvedInstanceFieldGet* instruction) {
4399  FieldAccessCallingConventionARM64 calling_convention;
4400  codegen_->GenerateUnresolvedFieldAccess(instruction,
4401                                          instruction->GetFieldType(),
4402                                          instruction->GetFieldIndex(),
4403                                          instruction->GetDexPc(),
4404                                          calling_convention);
4405}
4406
4407void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
4408    HUnresolvedInstanceFieldSet* instruction) {
4409  FieldAccessCallingConventionARM64 calling_convention;
4410  codegen_->CreateUnresolvedFieldLocationSummary(
4411      instruction, instruction->GetFieldType(), calling_convention);
4412}
4413
4414void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
4415    HUnresolvedInstanceFieldSet* instruction) {
4416  FieldAccessCallingConventionARM64 calling_convention;
4417  codegen_->GenerateUnresolvedFieldAccess(instruction,
4418                                          instruction->GetFieldType(),
4419                                          instruction->GetFieldIndex(),
4420                                          instruction->GetDexPc(),
4421                                          calling_convention);
4422}
4423
4424void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
4425    HUnresolvedStaticFieldGet* instruction) {
4426  FieldAccessCallingConventionARM64 calling_convention;
4427  codegen_->CreateUnresolvedFieldLocationSummary(
4428      instruction, instruction->GetFieldType(), calling_convention);
4429}
4430
4431void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
4432    HUnresolvedStaticFieldGet* instruction) {
4433  FieldAccessCallingConventionARM64 calling_convention;
4434  codegen_->GenerateUnresolvedFieldAccess(instruction,
4435                                          instruction->GetFieldType(),
4436                                          instruction->GetFieldIndex(),
4437                                          instruction->GetDexPc(),
4438                                          calling_convention);
4439}
4440
4441void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
4442    HUnresolvedStaticFieldSet* instruction) {
4443  FieldAccessCallingConventionARM64 calling_convention;
4444  codegen_->CreateUnresolvedFieldLocationSummary(
4445      instruction, instruction->GetFieldType(), calling_convention);
4446}
4447
4448void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
4449    HUnresolvedStaticFieldSet* instruction) {
4450  FieldAccessCallingConventionARM64 calling_convention;
4451  codegen_->GenerateUnresolvedFieldAccess(instruction,
4452                                          instruction->GetFieldType(),
4453                                          instruction->GetFieldIndex(),
4454                                          instruction->GetDexPc(),
4455                                          calling_convention);
4456}
4457
4458void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
4459  new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
4460}
4461
4462void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
4463  HBasicBlock* block = instruction->GetBlock();
4464  if (block->GetLoopInformation() != nullptr) {
4465    DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
4466    // The back edge will generate the suspend check.
4467    return;
4468  }
4469  if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
4470    // The goto will generate the suspend check.
4471    return;
4472  }
4473  GenerateSuspendCheck(instruction, nullptr);
4474}
4475
4476void LocationsBuilderARM64::VisitTemporary(HTemporary* temp) {
4477  temp->SetLocations(nullptr);
4478}
4479
4480void InstructionCodeGeneratorARM64::VisitTemporary(HTemporary* temp ATTRIBUTE_UNUSED) {
4481  // Nothing to do, this is driven by the code generator.
4482}
4483
4484void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
4485  LocationSummary* locations =
4486      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4487  InvokeRuntimeCallingConvention calling_convention;
4488  locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4489}
4490
4491void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
4492  codegen_->InvokeRuntime(
4493      QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr);
4494  CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
4495}
4496
4497void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
4498  LocationSummary* locations =
4499      new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall);
4500  Primitive::Type input_type = conversion->GetInputType();
4501  Primitive::Type result_type = conversion->GetResultType();
4502  DCHECK_NE(input_type, result_type);
4503  if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
4504      (result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
4505    LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
4506  }
4507
4508  if (Primitive::IsFloatingPointType(input_type)) {
4509    locations->SetInAt(0, Location::RequiresFpuRegister());
4510  } else {
4511    locations->SetInAt(0, Location::RequiresRegister());
4512  }
4513
4514  if (Primitive::IsFloatingPointType(result_type)) {
4515    locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4516  } else {
4517    locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4518  }
4519}
4520
4521void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
4522  Primitive::Type result_type = conversion->GetResultType();
4523  Primitive::Type input_type = conversion->GetInputType();
4524
4525  DCHECK_NE(input_type, result_type);
4526
4527  if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
4528    int result_size = Primitive::ComponentSize(result_type);
4529    int input_size = Primitive::ComponentSize(input_type);
4530    int min_size = std::min(result_size, input_size);
4531    Register output = OutputRegister(conversion);
4532    Register source = InputRegisterAt(conversion, 0);
4533    if (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimLong) {
4534      // 'int' values are used directly as W registers, discarding the top
4535      // bits, so we don't need to sign-extend and can just perform a move.
4536      // We do not pass the `kDiscardForSameWReg` argument to force clearing the
4537      // top 32 bits of the target register. We theoretically could leave those
4538      // bits unchanged, but we would have to make sure that no code uses a
4539      // 32bit input value as a 64bit value assuming that the top 32 bits are
4540      // zero.
4541      __ Mov(output.W(), source.W());
4542    } else if (result_type == Primitive::kPrimChar ||
4543               (input_type == Primitive::kPrimChar && input_size < result_size)) {
4544      __ Ubfx(output,
4545              output.IsX() ? source.X() : source.W(),
4546              0, Primitive::ComponentSize(Primitive::kPrimChar) * kBitsPerByte);
4547    } else {
4548      __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
4549    }
4550  } else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
4551    __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
4552  } else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
4553    CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
4554    __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
4555  } else if (Primitive::IsFloatingPointType(result_type) &&
4556             Primitive::IsFloatingPointType(input_type)) {
4557    __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
4558  } else {
4559    LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
4560                << " to " << result_type;
4561  }
4562}
4563
4564void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
4565  HandleShift(ushr);
4566}
4567
4568void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
4569  HandleShift(ushr);
4570}
4571
4572void LocationsBuilderARM64::VisitXor(HXor* instruction) {
4573  HandleBinaryOp(instruction);
4574}
4575
4576void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
4577  HandleBinaryOp(instruction);
4578}
4579
4580void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
4581  // Nothing to do, this should be removed during prepare for register allocator.
4582  LOG(FATAL) << "Unreachable";
4583}
4584
4585void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
4586  // Nothing to do, this should be removed during prepare for register allocator.
4587  LOG(FATAL) << "Unreachable";
4588}
4589
4590// Simple implementation of packed switch - generate cascaded compare/jumps.
4591void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
4592  LocationSummary* locations =
4593      new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
4594  locations->SetInAt(0, Location::RequiresRegister());
4595}
4596
4597void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
4598  int32_t lower_bound = switch_instr->GetStartValue();
4599  uint32_t num_entries = switch_instr->GetNumEntries();
4600  Register value_reg = InputRegisterAt(switch_instr, 0);
4601  HBasicBlock* default_block = switch_instr->GetDefaultBlock();
4602
4603  // Roughly set 16 as max average assemblies generated per HIR in a graph.
4604  static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * vixl::kInstructionSize;
4605  // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
4606  // make sure we don't emit it if the target may run out of range.
4607  // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
4608  // ranges and emit the tables only as required.
4609  static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
4610
4611  if (num_entries <= kPackedSwitchCompareJumpThreshold ||
4612      // Current instruction id is an upper bound of the number of HIRs in the graph.
4613      GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
4614    // Create a series of compare/jumps.
4615    UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
4616    Register temp = temps.AcquireW();
4617    __ Subs(temp, value_reg, Operand(lower_bound));
4618
4619    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
4620    // Jump to successors[0] if value == lower_bound.
4621    __ B(eq, codegen_->GetLabelOf(successors[0]));
4622    int32_t last_index = 0;
4623    for (; num_entries - last_index > 2; last_index += 2) {
4624      __ Subs(temp, temp, Operand(2));
4625      // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
4626      __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
4627      // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
4628      __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
4629    }
4630    if (num_entries - last_index == 2) {
4631      // The last missing case_value.
4632      __ Cmp(temp, Operand(1));
4633      __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
4634    }
4635
4636    // And the default for any other value.
4637    if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
4638      __ B(codegen_->GetLabelOf(default_block));
4639    }
4640  } else {
4641    JumpTableARM64* jump_table = new (GetGraph()->GetArena()) JumpTableARM64(switch_instr);
4642    codegen_->AddJumpTable(jump_table);
4643
4644    UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
4645
4646    // Below instructions should use at most one blocked register. Since there are two blocked
4647    // registers, we are free to block one.
4648    Register temp_w = temps.AcquireW();
4649    Register index;
4650    // Remove the bias.
4651    if (lower_bound != 0) {
4652      index = temp_w;
4653      __ Sub(index, value_reg, Operand(lower_bound));
4654    } else {
4655      index = value_reg;
4656    }
4657
4658    // Jump to default block if index is out of the range.
4659    __ Cmp(index, Operand(num_entries));
4660    __ B(hs, codegen_->GetLabelOf(default_block));
4661
4662    // In current VIXL implementation, it won't require any blocked registers to encode the
4663    // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
4664    // register pressure.
4665    Register table_base = temps.AcquireX();
4666    // Load jump offset from the table.
4667    __ Adr(table_base, jump_table->GetTableStartLabel());
4668    Register jump_offset = temp_w;
4669    __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
4670
4671    // Jump to target block by branching to table_base(pc related) + offset.
4672    Register target_address = table_base;
4673    __ Add(target_address, table_base, Operand(jump_offset, SXTW));
4674    __ Br(target_address);
4675  }
4676}
4677
4678void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(HInstruction* instruction,
4679                                                                     Location out,
4680                                                                     uint32_t offset,
4681                                                                     Location maybe_temp) {
4682  Primitive::Type type = Primitive::kPrimNot;
4683  Register out_reg = RegisterFrom(out, type);
4684  if (kEmitCompilerReadBarrier) {
4685    Register temp_reg = RegisterFrom(maybe_temp, type);
4686    if (kUseBakerReadBarrier) {
4687      // Load with fast path based Baker's read barrier.
4688      // /* HeapReference<Object> */ out = *(out + offset)
4689      codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
4690                                                      out,
4691                                                      out_reg,
4692                                                      offset,
4693                                                      temp_reg,
4694                                                      /* needs_null_check */ false,
4695                                                      /* use_load_acquire */ false);
4696    } else {
4697      // Load with slow path based read barrier.
4698      // Save the value of `out` into `maybe_temp` before overwriting it
4699      // in the following move operation, as we will need it for the
4700      // read barrier below.
4701      __ Mov(temp_reg, out_reg);
4702      // /* HeapReference<Object> */ out = *(out + offset)
4703      __ Ldr(out_reg, HeapOperand(out_reg, offset));
4704      codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
4705    }
4706  } else {
4707    // Plain load with no read barrier.
4708    // /* HeapReference<Object> */ out = *(out + offset)
4709    __ Ldr(out_reg, HeapOperand(out_reg, offset));
4710    GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
4711  }
4712}
4713
4714void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
4715                                                                      Location out,
4716                                                                      Location obj,
4717                                                                      uint32_t offset,
4718                                                                      Location maybe_temp) {
4719  Primitive::Type type = Primitive::kPrimNot;
4720  Register out_reg = RegisterFrom(out, type);
4721  Register obj_reg = RegisterFrom(obj, type);
4722  if (kEmitCompilerReadBarrier) {
4723    if (kUseBakerReadBarrier) {
4724      // Load with fast path based Baker's read barrier.
4725      Register temp_reg = RegisterFrom(maybe_temp, type);
4726      // /* HeapReference<Object> */ out = *(obj + offset)
4727      codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
4728                                                      out,
4729                                                      obj_reg,
4730                                                      offset,
4731                                                      temp_reg,
4732                                                      /* needs_null_check */ false,
4733                                                      /* use_load_acquire */ false);
4734    } else {
4735      // Load with slow path based read barrier.
4736      // /* HeapReference<Object> */ out = *(obj + offset)
4737      __ Ldr(out_reg, HeapOperand(obj_reg, offset));
4738      codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
4739    }
4740  } else {
4741    // Plain load with no read barrier.
4742    // /* HeapReference<Object> */ out = *(obj + offset)
4743    __ Ldr(out_reg, HeapOperand(obj_reg, offset));
4744    GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
4745  }
4746}
4747
4748void InstructionCodeGeneratorARM64::GenerateGcRootFieldLoad(HInstruction* instruction,
4749                                                            Location root,
4750                                                            vixl::Register obj,
4751                                                            uint32_t offset) {
4752  Register root_reg = RegisterFrom(root, Primitive::kPrimNot);
4753  if (kEmitCompilerReadBarrier) {
4754    if (kUseBakerReadBarrier) {
4755      // Fast path implementation of art::ReadBarrier::BarrierForRoot when
4756      // Baker's read barrier are used:
4757      //
4758      //   root = obj.field;
4759      //   if (Thread::Current()->GetIsGcMarking()) {
4760      //     root = ReadBarrier::Mark(root)
4761      //   }
4762
4763      // /* GcRoot<mirror::Object> */ root = *(obj + offset)
4764      __ Ldr(root_reg, MemOperand(obj, offset));
4765      static_assert(
4766          sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
4767          "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
4768          "have different sizes.");
4769      static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
4770                    "art::mirror::CompressedReference<mirror::Object> and int32_t "
4771                    "have different sizes.");
4772
4773      // Slow path used to mark the GC root `root`.
4774      SlowPathCodeARM64* slow_path =
4775          new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, root, root);
4776      codegen_->AddSlowPath(slow_path);
4777
4778      MacroAssembler* masm = GetVIXLAssembler();
4779      UseScratchRegisterScope temps(masm);
4780      Register temp = temps.AcquireW();
4781      // temp = Thread::Current()->GetIsGcMarking()
4782      __ Ldr(temp, MemOperand(tr, Thread::IsGcMarkingOffset<kArm64WordSize>().Int32Value()));
4783      __ Cbnz(temp, slow_path->GetEntryLabel());
4784      __ Bind(slow_path->GetExitLabel());
4785    } else {
4786      // GC root loaded through a slow path for read barriers other
4787      // than Baker's.
4788      // /* GcRoot<mirror::Object>* */ root = obj + offset
4789      __ Add(root_reg.X(), obj.X(), offset);
4790      // /* mirror::Object* */ root = root->Read()
4791      codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
4792    }
4793  } else {
4794    // Plain GC root load with no read barrier.
4795    // /* GcRoot<mirror::Object> */ root = *(obj + offset)
4796    __ Ldr(root_reg, MemOperand(obj, offset));
4797    // Note that GC roots are not affected by heap poisoning, thus we
4798    // do not have to unpoison `root_reg` here.
4799  }
4800}
4801
4802void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
4803                                                               Location ref,
4804                                                               vixl::Register obj,
4805                                                               uint32_t offset,
4806                                                               Register temp,
4807                                                               bool needs_null_check,
4808                                                               bool use_load_acquire) {
4809  DCHECK(kEmitCompilerReadBarrier);
4810  DCHECK(kUseBakerReadBarrier);
4811
4812  // /* HeapReference<Object> */ ref = *(obj + offset)
4813  Location no_index = Location::NoLocation();
4814  GenerateReferenceLoadWithBakerReadBarrier(
4815      instruction, ref, obj, offset, no_index, temp, needs_null_check, use_load_acquire);
4816}
4817
4818void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
4819                                                               Location ref,
4820                                                               vixl::Register obj,
4821                                                               uint32_t data_offset,
4822                                                               Location index,
4823                                                               Register temp,
4824                                                               bool needs_null_check) {
4825  DCHECK(kEmitCompilerReadBarrier);
4826  DCHECK(kUseBakerReadBarrier);
4827
4828  // Array cells are never volatile variables, therefore array loads
4829  // never use Load-Acquire instructions on ARM64.
4830  const bool use_load_acquire = false;
4831
4832  // /* HeapReference<Object> */ ref =
4833  //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
4834  GenerateReferenceLoadWithBakerReadBarrier(
4835      instruction, ref, obj, data_offset, index, temp, needs_null_check, use_load_acquire);
4836}
4837
4838void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
4839                                                                   Location ref,
4840                                                                   vixl::Register obj,
4841                                                                   uint32_t offset,
4842                                                                   Location index,
4843                                                                   Register temp,
4844                                                                   bool needs_null_check,
4845                                                                   bool use_load_acquire) {
4846  DCHECK(kEmitCompilerReadBarrier);
4847  DCHECK(kUseBakerReadBarrier);
4848  // If `index` is a valid location, then we are emitting an array
4849  // load, so we shouldn't be using a Load Acquire instruction.
4850  // In other words: `index.IsValid()` => `!use_load_acquire`.
4851  DCHECK(!index.IsValid() || !use_load_acquire);
4852
4853  MacroAssembler* masm = GetVIXLAssembler();
4854  UseScratchRegisterScope temps(masm);
4855
4856  // In slow path based read barriers, the read barrier call is
4857  // inserted after the original load. However, in fast path based
4858  // Baker's read barriers, we need to perform the load of
4859  // mirror::Object::monitor_ *before* the original reference load.
4860  // This load-load ordering is required by the read barrier.
4861  // The fast path/slow path (for Baker's algorithm) should look like:
4862  //
4863  //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
4864  //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
4865  //   HeapReference<Object> ref = *src;  // Original reference load.
4866  //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
4867  //   if (is_gray) {
4868  //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
4869  //   }
4870  //
4871  // Note: the original implementation in ReadBarrier::Barrier is
4872  // slightly more complex as it performs additional checks that we do
4873  // not do here for performance reasons.
4874
4875  Primitive::Type type = Primitive::kPrimNot;
4876  Register ref_reg = RegisterFrom(ref, type);
4877  DCHECK(obj.IsW());
4878  uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
4879
4880  // /* int32_t */ monitor = obj->monitor_
4881  __ Ldr(temp, HeapOperand(obj, monitor_offset));
4882  if (needs_null_check) {
4883    MaybeRecordImplicitNullCheck(instruction);
4884  }
4885  // /* LockWord */ lock_word = LockWord(monitor)
4886  static_assert(sizeof(LockWord) == sizeof(int32_t),
4887                "art::LockWord and int32_t have different sizes.");
4888  // /* uint32_t */ rb_state = lock_word.ReadBarrierState()
4889  __ Lsr(temp, temp, LockWord::kReadBarrierStateShift);
4890  __ And(temp, temp, Operand(LockWord::kReadBarrierStateMask));
4891  static_assert(
4892      LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
4893      "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
4894
4895  // Introduce a dependency on the high bits of rb_state, which shall
4896  // be all zeroes, to prevent load-load reordering, and without using
4897  // a memory barrier (which would be more expensive).
4898  // temp2 = rb_state & ~LockWord::kReadBarrierStateMask = 0
4899  Register temp2 = temps.AcquireW();
4900  __ Bic(temp2, temp, Operand(LockWord::kReadBarrierStateMask));
4901  // obj is unchanged by this operation, but its value now depends on
4902  // temp2, which depends on temp.
4903  __ Add(obj, obj, Operand(temp2));
4904  temps.Release(temp2);
4905
4906  // The actual reference load.
4907  if (index.IsValid()) {
4908    static_assert(
4909        sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
4910        "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
4911    temp2 = temps.AcquireW();
4912    // /* HeapReference<Object> */ ref =
4913    //     *(obj + offset + index * sizeof(HeapReference<Object>))
4914    MemOperand source = HeapOperand(obj);
4915    if (index.IsConstant()) {
4916      uint32_t computed_offset =
4917          offset + (Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type));
4918      source = HeapOperand(obj, computed_offset);
4919    } else {
4920      __ Add(temp2, obj, offset);
4921      source = HeapOperand(temp2, XRegisterFrom(index), LSL, Primitive::ComponentSizeShift(type));
4922    }
4923    Load(type, ref_reg, source);
4924    temps.Release(temp2);
4925  } else {
4926    // /* HeapReference<Object> */ ref = *(obj + offset)
4927    MemOperand field = HeapOperand(obj, offset);
4928    if (use_load_acquire) {
4929      LoadAcquire(instruction, ref_reg, field, /* needs_null_check */ false);
4930    } else {
4931      Load(type, ref_reg, field);
4932    }
4933  }
4934
4935  // Object* ref = ref_addr->AsMirrorPtr()
4936  GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
4937
4938  // Slow path used to mark the object `ref` when it is gray.
4939  SlowPathCodeARM64* slow_path =
4940      new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, ref, ref);
4941  AddSlowPath(slow_path);
4942
4943  // if (rb_state == ReadBarrier::gray_ptr_)
4944  //   ref = ReadBarrier::Mark(ref);
4945  __ Cmp(temp, ReadBarrier::gray_ptr_);
4946  __ B(eq, slow_path->GetEntryLabel());
4947  __ Bind(slow_path->GetExitLabel());
4948}
4949
4950void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
4951                                                 Location out,
4952                                                 Location ref,
4953                                                 Location obj,
4954                                                 uint32_t offset,
4955                                                 Location index) {
4956  DCHECK(kEmitCompilerReadBarrier);
4957
4958  // Insert a slow path based read barrier *after* the reference load.
4959  //
4960  // If heap poisoning is enabled, the unpoisoning of the loaded
4961  // reference will be carried out by the runtime within the slow
4962  // path.
4963  //
4964  // Note that `ref` currently does not get unpoisoned (when heap
4965  // poisoning is enabled), which is alright as the `ref` argument is
4966  // not used by the artReadBarrierSlow entry point.
4967  //
4968  // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
4969  SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena())
4970      ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
4971  AddSlowPath(slow_path);
4972
4973  __ B(slow_path->GetEntryLabel());
4974  __ Bind(slow_path->GetExitLabel());
4975}
4976
4977void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
4978                                                      Location out,
4979                                                      Location ref,
4980                                                      Location obj,
4981                                                      uint32_t offset,
4982                                                      Location index) {
4983  if (kEmitCompilerReadBarrier) {
4984    // Baker's read barriers shall be handled by the fast path
4985    // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
4986    DCHECK(!kUseBakerReadBarrier);
4987    // If heap poisoning is enabled, unpoisoning will be taken care of
4988    // by the runtime within the slow path.
4989    GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
4990  } else if (kPoisonHeapReferences) {
4991    GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
4992  }
4993}
4994
4995void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
4996                                                        Location out,
4997                                                        Location root) {
4998  DCHECK(kEmitCompilerReadBarrier);
4999
5000  // Insert a slow path based read barrier *after* the GC root load.
5001  //
5002  // Note that GC roots are not affected by heap poisoning, so we do
5003  // not need to do anything special for this here.
5004  SlowPathCodeARM64* slow_path =
5005      new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
5006  AddSlowPath(slow_path);
5007
5008  __ B(slow_path->GetEntryLabel());
5009  __ Bind(slow_path->GetExitLabel());
5010}
5011
5012#undef __
5013#undef QUICK_ENTRY_POINT
5014
5015}  // namespace arm64
5016}  // namespace art
5017