code_generator_arm64.cc revision c0b601b5e4c1add5eefd45f2f4d2c376a20ba4d4
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "code_generator_arm64.h"
18
19#include "arch/arm64/instruction_set_features_arm64.h"
20#include "art_method.h"
21#include "code_generator_utils.h"
22#include "compiled_method.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24#include "entrypoints/quick/quick_entrypoints_enum.h"
25#include "gc/accounting/card_table.h"
26#include "intrinsics.h"
27#include "intrinsics_arm64.h"
28#include "mirror/array-inl.h"
29#include "mirror/class-inl.h"
30#include "offsets.h"
31#include "thread.h"
32#include "utils/arm64/assembler_arm64.h"
33#include "utils/assembler.h"
34#include "utils/stack_checks.h"
35
36
37using namespace vixl;   // NOLINT(build/namespaces)
38
39#ifdef __
40#error "ARM64 Codegen VIXL macro-assembler macro already defined."
41#endif
42
43namespace art {
44
45template<class MirrorType>
46class GcRoot;
47
48namespace arm64 {
49
50using helpers::CPURegisterFrom;
51using helpers::DRegisterFrom;
52using helpers::FPRegisterFrom;
53using helpers::HeapOperand;
54using helpers::HeapOperandFrom;
55using helpers::InputCPURegisterAt;
56using helpers::InputFPRegisterAt;
57using helpers::InputRegisterAt;
58using helpers::InputOperandAt;
59using helpers::Int64ConstantFrom;
60using helpers::LocationFrom;
61using helpers::OperandFromMemOperand;
62using helpers::OutputCPURegister;
63using helpers::OutputFPRegister;
64using helpers::OutputRegister;
65using helpers::RegisterFrom;
66using helpers::StackOperandFrom;
67using helpers::VIXLRegCodeFromART;
68using helpers::WRegisterFrom;
69using helpers::XRegisterFrom;
70using helpers::ARM64EncodableConstantOrRegister;
71using helpers::ArtVixlRegCodeCoherentForRegSet;
72
73static constexpr int kCurrentMethodStackOffset = 0;
74// The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
75// table version generates 7 instructions and num_entries literals. Compare/jump sequence will
76// generates less code/data with a small num_entries.
77static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
78
79inline Condition ARM64Condition(IfCondition cond) {
80  switch (cond) {
81    case kCondEQ: return eq;
82    case kCondNE: return ne;
83    case kCondLT: return lt;
84    case kCondLE: return le;
85    case kCondGT: return gt;
86    case kCondGE: return ge;
87    case kCondB:  return lo;
88    case kCondBE: return ls;
89    case kCondA:  return hi;
90    case kCondAE: return hs;
91  }
92  LOG(FATAL) << "Unreachable";
93  UNREACHABLE();
94}
95
96inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
97  // The ARM64 condition codes can express all the necessary branches, see the
98  // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
99  // There is no dex instruction or HIR that would need the missing conditions
100  // "equal or unordered" or "not equal".
101  switch (cond) {
102    case kCondEQ: return eq;
103    case kCondNE: return ne /* unordered */;
104    case kCondLT: return gt_bias ? cc : lt /* unordered */;
105    case kCondLE: return gt_bias ? ls : le /* unordered */;
106    case kCondGT: return gt_bias ? hi /* unordered */ : gt;
107    case kCondGE: return gt_bias ? cs /* unordered */ : ge;
108    default:
109      LOG(FATAL) << "UNREACHABLE";
110      UNREACHABLE();
111  }
112}
113
114Location ARM64ReturnLocation(Primitive::Type return_type) {
115  // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
116  // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
117  // but we use the exact registers for clarity.
118  if (return_type == Primitive::kPrimFloat) {
119    return LocationFrom(s0);
120  } else if (return_type == Primitive::kPrimDouble) {
121    return LocationFrom(d0);
122  } else if (return_type == Primitive::kPrimLong) {
123    return LocationFrom(x0);
124  } else if (return_type == Primitive::kPrimVoid) {
125    return Location::NoLocation();
126  } else {
127    return LocationFrom(w0);
128  }
129}
130
131Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type return_type) {
132  return ARM64ReturnLocation(return_type);
133}
134
135#define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()->
136#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64WordSize, x).Int32Value()
137
138// Calculate memory accessing operand for save/restore live registers.
139static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen,
140                                           RegisterSet* register_set,
141                                           int64_t spill_offset,
142                                           bool is_save) {
143  DCHECK(ArtVixlRegCodeCoherentForRegSet(register_set->GetCoreRegisters(),
144                                         codegen->GetNumberOfCoreRegisters(),
145                                         register_set->GetFloatingPointRegisters(),
146                                         codegen->GetNumberOfFloatingPointRegisters()));
147
148  CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize,
149      register_set->GetCoreRegisters() & (~callee_saved_core_registers.list()));
150  CPURegList fp_list = CPURegList(CPURegister::kFPRegister, kDRegSize,
151      register_set->GetFloatingPointRegisters() & (~callee_saved_fp_registers.list()));
152
153  MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler();
154  UseScratchRegisterScope temps(masm);
155
156  Register base = masm->StackPointer();
157  int64_t core_spill_size = core_list.TotalSizeInBytes();
158  int64_t fp_spill_size = fp_list.TotalSizeInBytes();
159  int64_t reg_size = kXRegSizeInBytes;
160  int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size;
161  uint32_t ls_access_size = WhichPowerOf2(reg_size);
162  if (((core_list.Count() > 1) || (fp_list.Count() > 1)) &&
163      !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) {
164    // If the offset does not fit in the instruction's immediate field, use an alternate register
165    // to compute the base address(float point registers spill base address).
166    Register new_base = temps.AcquireSameSizeAs(base);
167    __ Add(new_base, base, Operand(spill_offset + core_spill_size));
168    base = new_base;
169    spill_offset = -core_spill_size;
170    int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size;
171    DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size));
172    DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size));
173  }
174
175  if (is_save) {
176    __ StoreCPURegList(core_list, MemOperand(base, spill_offset));
177    __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
178  } else {
179    __ LoadCPURegList(core_list, MemOperand(base, spill_offset));
180    __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
181  }
182}
183
184void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
185  RegisterSet* register_set = locations->GetLiveRegisters();
186  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
187  for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
188    if (!codegen->IsCoreCalleeSaveRegister(i) && register_set->ContainsCoreRegister(i)) {
189      // If the register holds an object, update the stack mask.
190      if (locations->RegisterContainsObject(i)) {
191        locations->SetStackBit(stack_offset / kVRegSize);
192      }
193      DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
194      DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
195      saved_core_stack_offsets_[i] = stack_offset;
196      stack_offset += kXRegSizeInBytes;
197    }
198  }
199
200  for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) {
201    if (!codegen->IsFloatingPointCalleeSaveRegister(i) &&
202        register_set->ContainsFloatingPointRegister(i)) {
203      DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
204      DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
205      saved_fpu_stack_offsets_[i] = stack_offset;
206      stack_offset += kDRegSizeInBytes;
207    }
208  }
209
210  SaveRestoreLiveRegistersHelper(codegen, register_set,
211                                 codegen->GetFirstRegisterSlotInSlowPath(), true /* is_save */);
212}
213
214void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
215  RegisterSet* register_set = locations->GetLiveRegisters();
216  SaveRestoreLiveRegistersHelper(codegen, register_set,
217                                 codegen->GetFirstRegisterSlotInSlowPath(), false /* is_save */);
218}
219
220class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
221 public:
222  explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : instruction_(instruction) {}
223
224  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
225    LocationSummary* locations = instruction_->GetLocations();
226    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
227
228    __ Bind(GetEntryLabel());
229    if (instruction_->CanThrowIntoCatchBlock()) {
230      // Live registers will be restored in the catch block if caught.
231      SaveLiveRegisters(codegen, instruction_->GetLocations());
232    }
233    // We're moving two locations to locations that could overlap, so we need a parallel
234    // move resolver.
235    InvokeRuntimeCallingConvention calling_convention;
236    codegen->EmitParallelMoves(
237        locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt,
238        locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt);
239    arm64_codegen->InvokeRuntime(
240        QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this);
241    CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
242  }
243
244  bool IsFatal() const OVERRIDE { return true; }
245
246  const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM64"; }
247
248 private:
249  HBoundsCheck* const instruction_;
250
251  DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
252};
253
254class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
255 public:
256  explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : instruction_(instruction) {}
257
258  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
259    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
260    __ Bind(GetEntryLabel());
261    if (instruction_->CanThrowIntoCatchBlock()) {
262      // Live registers will be restored in the catch block if caught.
263      SaveLiveRegisters(codegen, instruction_->GetLocations());
264    }
265    arm64_codegen->InvokeRuntime(
266        QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this);
267    CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
268  }
269
270  bool IsFatal() const OVERRIDE { return true; }
271
272  const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM64"; }
273
274 private:
275  HDivZeroCheck* const instruction_;
276  DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
277};
278
279class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
280 public:
281  LoadClassSlowPathARM64(HLoadClass* cls,
282                         HInstruction* at,
283                         uint32_t dex_pc,
284                         bool do_clinit)
285      : cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
286    DCHECK(at->IsLoadClass() || at->IsClinitCheck());
287  }
288
289  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
290    LocationSummary* locations = at_->GetLocations();
291    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
292
293    __ Bind(GetEntryLabel());
294    SaveLiveRegisters(codegen, locations);
295
296    InvokeRuntimeCallingConvention calling_convention;
297    __ Mov(calling_convention.GetRegisterAt(0).W(), cls_->GetTypeIndex());
298    int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
299                                            : QUICK_ENTRY_POINT(pInitializeType);
300    arm64_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this);
301    if (do_clinit_) {
302      CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
303    } else {
304      CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
305    }
306
307    // Move the class to the desired location.
308    Location out = locations->Out();
309    if (out.IsValid()) {
310      DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
311      Primitive::Type type = at_->GetType();
312      arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
313    }
314
315    RestoreLiveRegisters(codegen, locations);
316    __ B(GetExitLabel());
317  }
318
319  const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM64"; }
320
321 private:
322  // The class this slow path will load.
323  HLoadClass* const cls_;
324
325  // The instruction where this slow path is happening.
326  // (Might be the load class or an initialization check).
327  HInstruction* const at_;
328
329  // The dex PC of `at_`.
330  const uint32_t dex_pc_;
331
332  // Whether to initialize the class.
333  const bool do_clinit_;
334
335  DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
336};
337
338class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
339 public:
340  explicit LoadStringSlowPathARM64(HLoadString* instruction) : instruction_(instruction) {}
341
342  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
343    LocationSummary* locations = instruction_->GetLocations();
344    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
345    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
346
347    __ Bind(GetEntryLabel());
348    SaveLiveRegisters(codegen, locations);
349
350    InvokeRuntimeCallingConvention calling_convention;
351    __ Mov(calling_convention.GetRegisterAt(0).W(), instruction_->GetStringIndex());
352    arm64_codegen->InvokeRuntime(
353        QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this);
354    CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
355    Primitive::Type type = instruction_->GetType();
356    arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
357
358    RestoreLiveRegisters(codegen, locations);
359    __ B(GetExitLabel());
360  }
361
362  const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM64"; }
363
364 private:
365  HLoadString* const instruction_;
366
367  DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
368};
369
370class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
371 public:
372  explicit NullCheckSlowPathARM64(HNullCheck* instr) : instruction_(instr) {}
373
374  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
375    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
376    __ Bind(GetEntryLabel());
377    if (instruction_->CanThrowIntoCatchBlock()) {
378      // Live registers will be restored in the catch block if caught.
379      SaveLiveRegisters(codegen, instruction_->GetLocations());
380    }
381    arm64_codegen->InvokeRuntime(
382        QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this);
383    CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
384  }
385
386  bool IsFatal() const OVERRIDE { return true; }
387
388  const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM64"; }
389
390 private:
391  HNullCheck* const instruction_;
392
393  DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
394};
395
396class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
397 public:
398  SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
399      : instruction_(instruction), successor_(successor) {}
400
401  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
402    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
403    __ Bind(GetEntryLabel());
404    SaveLiveRegisters(codegen, instruction_->GetLocations());
405    arm64_codegen->InvokeRuntime(
406        QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this);
407    CheckEntrypointTypes<kQuickTestSuspend, void, void>();
408    RestoreLiveRegisters(codegen, instruction_->GetLocations());
409    if (successor_ == nullptr) {
410      __ B(GetReturnLabel());
411    } else {
412      __ B(arm64_codegen->GetLabelOf(successor_));
413    }
414  }
415
416  vixl::Label* GetReturnLabel() {
417    DCHECK(successor_ == nullptr);
418    return &return_label_;
419  }
420
421  HBasicBlock* GetSuccessor() const {
422    return successor_;
423  }
424
425  const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM64"; }
426
427 private:
428  HSuspendCheck* const instruction_;
429  // If not null, the block to branch to after the suspend check.
430  HBasicBlock* const successor_;
431
432  // If `successor_` is null, the label to branch to after the suspend check.
433  vixl::Label return_label_;
434
435  DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
436};
437
438class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
439 public:
440  TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
441      : instruction_(instruction), is_fatal_(is_fatal) {}
442
443  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
444    LocationSummary* locations = instruction_->GetLocations();
445    Location class_to_check = locations->InAt(1);
446    Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
447                                                        : locations->Out();
448    DCHECK(instruction_->IsCheckCast()
449           || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
450    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
451    uint32_t dex_pc = instruction_->GetDexPc();
452
453    __ Bind(GetEntryLabel());
454
455    if (!is_fatal_) {
456      SaveLiveRegisters(codegen, locations);
457    }
458
459    // We're moving two locations to locations that could overlap, so we need a parallel
460    // move resolver.
461    InvokeRuntimeCallingConvention calling_convention;
462    codegen->EmitParallelMoves(
463        class_to_check, LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot,
464        object_class, LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot);
465
466    if (instruction_->IsInstanceOf()) {
467      arm64_codegen->InvokeRuntime(
468          QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc, this);
469      CheckEntrypointTypes<kQuickInstanceofNonTrivial, uint32_t,
470                           const mirror::Class*, const mirror::Class*>();
471      Primitive::Type ret_type = instruction_->GetType();
472      Location ret_loc = calling_convention.GetReturnLocation(ret_type);
473      arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
474    } else {
475      DCHECK(instruction_->IsCheckCast());
476      arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc, this);
477      CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
478    }
479
480    if (!is_fatal_) {
481      RestoreLiveRegisters(codegen, locations);
482      __ B(GetExitLabel());
483    }
484  }
485
486  const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM64"; }
487  bool IsFatal() const { return is_fatal_; }
488
489 private:
490  HInstruction* const instruction_;
491  const bool is_fatal_;
492
493  DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
494};
495
496class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
497 public:
498  explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
499      : instruction_(instruction) {}
500
501  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
502    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
503    __ Bind(GetEntryLabel());
504    SaveLiveRegisters(codegen, instruction_->GetLocations());
505    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
506                                 instruction_,
507                                 instruction_->GetDexPc(),
508                                 this);
509    CheckEntrypointTypes<kQuickDeoptimize, void, void>();
510  }
511
512  const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM64"; }
513
514 private:
515  HDeoptimize* const instruction_;
516  DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
517};
518
519class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
520 public:
521  explicit ArraySetSlowPathARM64(HInstruction* instruction) : instruction_(instruction) {}
522
523  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
524    LocationSummary* locations = instruction_->GetLocations();
525    __ Bind(GetEntryLabel());
526    SaveLiveRegisters(codegen, locations);
527
528    InvokeRuntimeCallingConvention calling_convention;
529    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
530    parallel_move.AddMove(
531        locations->InAt(0),
532        LocationFrom(calling_convention.GetRegisterAt(0)),
533        Primitive::kPrimNot,
534        nullptr);
535    parallel_move.AddMove(
536        locations->InAt(1),
537        LocationFrom(calling_convention.GetRegisterAt(1)),
538        Primitive::kPrimInt,
539        nullptr);
540    parallel_move.AddMove(
541        locations->InAt(2),
542        LocationFrom(calling_convention.GetRegisterAt(2)),
543        Primitive::kPrimNot,
544        nullptr);
545    codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
546
547    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
548    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
549                                 instruction_,
550                                 instruction_->GetDexPc(),
551                                 this);
552    CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
553    RestoreLiveRegisters(codegen, locations);
554    __ B(GetExitLabel());
555  }
556
557  const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM64"; }
558
559 private:
560  HInstruction* const instruction_;
561
562  DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
563};
564
565void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
566  uint32_t num_entries = switch_instr_->GetNumEntries();
567  DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
568
569  // We are about to use the assembler to place literals directly. Make sure we have enough
570  // underlying code buffer and we have generated the jump table with right size.
571  CodeBufferCheckScope scope(codegen->GetVIXLAssembler(), num_entries * sizeof(int32_t),
572                             CodeBufferCheckScope::kCheck, CodeBufferCheckScope::kExactSize);
573
574  __ Bind(&table_start_);
575  const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
576  for (uint32_t i = 0; i < num_entries; i++) {
577    vixl::Label* target_label = codegen->GetLabelOf(successors[i]);
578    DCHECK(target_label->IsBound());
579    ptrdiff_t jump_offset = target_label->location() - table_start_.location();
580    DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
581    DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
582    Literal<int32_t> literal(jump_offset);
583    __ place(&literal);
584  }
585}
586
587// Slow path marking an object during a read barrier.
588class ReadBarrierMarkSlowPathARM64 : public SlowPathCodeARM64 {
589 public:
590  ReadBarrierMarkSlowPathARM64(HInstruction* instruction, Location out, Location obj)
591      : instruction_(instruction), out_(out), obj_(obj) {
592    DCHECK(kEmitCompilerReadBarrier);
593  }
594
595  const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM64"; }
596
597  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
598    LocationSummary* locations = instruction_->GetLocations();
599    Primitive::Type type = Primitive::kPrimNot;
600    DCHECK(locations->CanCall());
601    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
602    DCHECK(instruction_->IsInstanceFieldGet() ||
603           instruction_->IsStaticFieldGet() ||
604           instruction_->IsArrayGet() ||
605           instruction_->IsLoadClass() ||
606           instruction_->IsLoadString() ||
607           instruction_->IsInstanceOf() ||
608           instruction_->IsCheckCast())
609        << "Unexpected instruction in read barrier marking slow path: "
610        << instruction_->DebugName();
611
612    __ Bind(GetEntryLabel());
613    SaveLiveRegisters(codegen, locations);
614
615    InvokeRuntimeCallingConvention calling_convention;
616    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
617    arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), obj_, type);
618    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
619                                 instruction_,
620                                 instruction_->GetDexPc(),
621                                 this);
622    CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
623    arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
624
625    RestoreLiveRegisters(codegen, locations);
626    __ B(GetExitLabel());
627  }
628
629 private:
630  HInstruction* const instruction_;
631  const Location out_;
632  const Location obj_;
633
634  DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM64);
635};
636
637// Slow path generating a read barrier for a heap reference.
638class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
639 public:
640  ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
641                                           Location out,
642                                           Location ref,
643                                           Location obj,
644                                           uint32_t offset,
645                                           Location index)
646      : instruction_(instruction),
647        out_(out),
648        ref_(ref),
649        obj_(obj),
650        offset_(offset),
651        index_(index) {
652    DCHECK(kEmitCompilerReadBarrier);
653    // If `obj` is equal to `out` or `ref`, it means the initial object
654    // has been overwritten by (or after) the heap object reference load
655    // to be instrumented, e.g.:
656    //
657    //   __ Ldr(out, HeapOperand(out, class_offset);
658    //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
659    //
660    // In that case, we have lost the information about the original
661    // object, and the emitted read barrier cannot work properly.
662    DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
663    DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
664  }
665
666  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
667    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
668    LocationSummary* locations = instruction_->GetLocations();
669    Primitive::Type type = Primitive::kPrimNot;
670    DCHECK(locations->CanCall());
671    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
672    DCHECK(!instruction_->IsInvoke() ||
673           (instruction_->IsInvokeStaticOrDirect() &&
674            instruction_->GetLocations()->Intrinsified()))
675        << "Unexpected instruction in read barrier for heap reference slow path: "
676        << instruction_->DebugName();
677    // The read barrier instrumentation does not support the
678    // HArm64IntermediateAddress instruction yet.
679    DCHECK(!(instruction_->IsArrayGet() &&
680             instruction_->AsArrayGet()->GetArray()->IsArm64IntermediateAddress()));
681
682    __ Bind(GetEntryLabel());
683
684    SaveLiveRegisters(codegen, locations);
685
686    // We may have to change the index's value, but as `index_` is a
687    // constant member (like other "inputs" of this slow path),
688    // introduce a copy of it, `index`.
689    Location index = index_;
690    if (index_.IsValid()) {
691      // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
692      if (instruction_->IsArrayGet()) {
693        // Compute the actual memory offset and store it in `index`.
694        Register index_reg = RegisterFrom(index_, Primitive::kPrimInt);
695        DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
696        if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
697          // We are about to change the value of `index_reg` (see the
698          // calls to vixl::MacroAssembler::Lsl and
699          // vixl::MacroAssembler::Mov below), but it has
700          // not been saved by the previous call to
701          // art::SlowPathCode::SaveLiveRegisters, as it is a
702          // callee-save register --
703          // art::SlowPathCode::SaveLiveRegisters does not consider
704          // callee-save registers, as it has been designed with the
705          // assumption that callee-save registers are supposed to be
706          // handled by the called function.  So, as a callee-save
707          // register, `index_reg` _would_ eventually be saved onto
708          // the stack, but it would be too late: we would have
709          // changed its value earlier.  Therefore, we manually save
710          // it here into another freely available register,
711          // `free_reg`, chosen of course among the caller-save
712          // registers (as a callee-save `free_reg` register would
713          // exhibit the same problem).
714          //
715          // Note we could have requested a temporary register from
716          // the register allocator instead; but we prefer not to, as
717          // this is a slow path, and we know we can find a
718          // caller-save register that is available.
719          Register free_reg = FindAvailableCallerSaveRegister(codegen);
720          __ Mov(free_reg.W(), index_reg);
721          index_reg = free_reg;
722          index = LocationFrom(index_reg);
723        } else {
724          // The initial register stored in `index_` has already been
725          // saved in the call to art::SlowPathCode::SaveLiveRegisters
726          // (as it is not a callee-save register), so we can freely
727          // use it.
728        }
729        // Shifting the index value contained in `index_reg` by the scale
730        // factor (2) cannot overflow in practice, as the runtime is
731        // unable to allocate object arrays with a size larger than
732        // 2^26 - 1 (that is, 2^28 - 4 bytes).
733        __ Lsl(index_reg, index_reg, Primitive::ComponentSizeShift(type));
734        static_assert(
735            sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
736            "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
737        __ Add(index_reg, index_reg, Operand(offset_));
738      } else {
739        DCHECK(instruction_->IsInvoke());
740        DCHECK(instruction_->GetLocations()->Intrinsified());
741        DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
742               (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
743            << instruction_->AsInvoke()->GetIntrinsic();
744        DCHECK_EQ(offset_, 0U);
745        DCHECK(index_.IsRegisterPair());
746        // UnsafeGet's offset location is a register pair, the low
747        // part contains the correct offset.
748        index = index_.ToLow();
749      }
750    }
751
752    // We're moving two or three locations to locations that could
753    // overlap, so we need a parallel move resolver.
754    InvokeRuntimeCallingConvention calling_convention;
755    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
756    parallel_move.AddMove(ref_,
757                          LocationFrom(calling_convention.GetRegisterAt(0)),
758                          type,
759                          nullptr);
760    parallel_move.AddMove(obj_,
761                          LocationFrom(calling_convention.GetRegisterAt(1)),
762                          type,
763                          nullptr);
764    if (index.IsValid()) {
765      parallel_move.AddMove(index,
766                            LocationFrom(calling_convention.GetRegisterAt(2)),
767                            Primitive::kPrimInt,
768                            nullptr);
769      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
770    } else {
771      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
772      arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
773    }
774    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
775                                 instruction_,
776                                 instruction_->GetDexPc(),
777                                 this);
778    CheckEntrypointTypes<
779        kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
780    arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
781
782    RestoreLiveRegisters(codegen, locations);
783
784    __ B(GetExitLabel());
785  }
786
787  const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
788
789 private:
790  Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
791    size_t ref = static_cast<int>(XRegisterFrom(ref_).code());
792    size_t obj = static_cast<int>(XRegisterFrom(obj_).code());
793    for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
794      if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
795        return Register(VIXLRegCodeFromART(i), kXRegSize);
796      }
797    }
798    // We shall never fail to find a free caller-save register, as
799    // there are more than two core caller-save registers on ARM64
800    // (meaning it is possible to find one which is different from
801    // `ref` and `obj`).
802    DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
803    LOG(FATAL) << "Could not find a free register";
804    UNREACHABLE();
805  }
806
807  HInstruction* const instruction_;
808  const Location out_;
809  const Location ref_;
810  const Location obj_;
811  const uint32_t offset_;
812  // An additional location containing an index to an array.
813  // Only used for HArrayGet and the UnsafeGetObject &
814  // UnsafeGetObjectVolatile intrinsics.
815  const Location index_;
816
817  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
818};
819
820// Slow path generating a read barrier for a GC root.
821class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
822 public:
823  ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
824      : instruction_(instruction), out_(out), root_(root) {
825    DCHECK(kEmitCompilerReadBarrier);
826  }
827
828  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
829    LocationSummary* locations = instruction_->GetLocations();
830    Primitive::Type type = Primitive::kPrimNot;
831    DCHECK(locations->CanCall());
832    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
833    DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
834        << "Unexpected instruction in read barrier for GC root slow path: "
835        << instruction_->DebugName();
836
837    __ Bind(GetEntryLabel());
838    SaveLiveRegisters(codegen, locations);
839
840    InvokeRuntimeCallingConvention calling_convention;
841    CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
842    // The argument of the ReadBarrierForRootSlow is not a managed
843    // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
844    // thus we need a 64-bit move here, and we cannot use
845    //
846    //   arm64_codegen->MoveLocation(
847    //       LocationFrom(calling_convention.GetRegisterAt(0)),
848    //       root_,
849    //       type);
850    //
851    // which would emit a 32-bit move, as `type` is a (32-bit wide)
852    // reference type (`Primitive::kPrimNot`).
853    __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
854    arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
855                                 instruction_,
856                                 instruction_->GetDexPc(),
857                                 this);
858    CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
859    arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
860
861    RestoreLiveRegisters(codegen, locations);
862    __ B(GetExitLabel());
863  }
864
865  const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM64"; }
866
867 private:
868  HInstruction* const instruction_;
869  const Location out_;
870  const Location root_;
871
872  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
873};
874
875#undef __
876
877Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(Primitive::Type type) {
878  Location next_location;
879  if (type == Primitive::kPrimVoid) {
880    LOG(FATAL) << "Unreachable type " << type;
881  }
882
883  if (Primitive::IsFloatingPointType(type) &&
884      (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
885    next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
886  } else if (!Primitive::IsFloatingPointType(type) &&
887             (gp_index_ < calling_convention.GetNumberOfRegisters())) {
888    next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
889  } else {
890    size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
891    next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
892                                                 : Location::StackSlot(stack_offset);
893  }
894
895  // Space on the stack is reserved for all arguments.
896  stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
897  return next_location;
898}
899
900Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
901  return LocationFrom(kArtMethodRegister);
902}
903
904CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
905                                       const Arm64InstructionSetFeatures& isa_features,
906                                       const CompilerOptions& compiler_options,
907                                       OptimizingCompilerStats* stats)
908    : CodeGenerator(graph,
909                    kNumberOfAllocatableRegisters,
910                    kNumberOfAllocatableFPRegisters,
911                    kNumberOfAllocatableRegisterPairs,
912                    callee_saved_core_registers.list(),
913                    callee_saved_fp_registers.list(),
914                    compiler_options,
915                    stats),
916      block_labels_(nullptr),
917      jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
918      location_builder_(graph, this),
919      instruction_visitor_(graph, this),
920      move_resolver_(graph->GetArena(), this),
921      isa_features_(isa_features),
922      uint64_literals_(std::less<uint64_t>(),
923                       graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
924      method_patches_(MethodReferenceComparator(),
925                      graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
926      call_patches_(MethodReferenceComparator(),
927                    graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
928      relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
929      pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
930  // Save the link register (containing the return address) to mimic Quick.
931  AddAllocatedRegister(LocationFrom(lr));
932}
933
934#define __ GetVIXLAssembler()->
935
936void CodeGeneratorARM64::EmitJumpTables() {
937  for (auto jump_table : jump_tables_) {
938    jump_table->EmitTable(this);
939  }
940}
941
942void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
943  EmitJumpTables();
944  // Ensure we emit the literal pool.
945  __ FinalizeCode();
946
947  CodeGenerator::Finalize(allocator);
948}
949
950void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
951  // Note: There are 6 kinds of moves:
952  // 1. constant -> GPR/FPR (non-cycle)
953  // 2. constant -> stack (non-cycle)
954  // 3. GPR/FPR -> GPR/FPR
955  // 4. GPR/FPR -> stack
956  // 5. stack -> GPR/FPR
957  // 6. stack -> stack (non-cycle)
958  // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
959  // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
960  // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
961  // dependency.
962  vixl_temps_.Open(GetVIXLAssembler());
963}
964
965void ParallelMoveResolverARM64::FinishEmitNativeCode() {
966  vixl_temps_.Close();
967}
968
969Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
970  DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister ||
971         kind == Location::kStackSlot || kind == Location::kDoubleStackSlot);
972  kind = (kind == Location::kFpuRegister) ? Location::kFpuRegister : Location::kRegister;
973  Location scratch = GetScratchLocation(kind);
974  if (!scratch.Equals(Location::NoLocation())) {
975    return scratch;
976  }
977  // Allocate from VIXL temp registers.
978  if (kind == Location::kRegister) {
979    scratch = LocationFrom(vixl_temps_.AcquireX());
980  } else {
981    DCHECK(kind == Location::kFpuRegister);
982    scratch = LocationFrom(vixl_temps_.AcquireD());
983  }
984  AddScratchLocation(scratch);
985  return scratch;
986}
987
988void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
989  if (loc.IsRegister()) {
990    vixl_temps_.Release(XRegisterFrom(loc));
991  } else {
992    DCHECK(loc.IsFpuRegister());
993    vixl_temps_.Release(DRegisterFrom(loc));
994  }
995  RemoveScratchLocation(loc);
996}
997
998void ParallelMoveResolverARM64::EmitMove(size_t index) {
999  MoveOperands* move = moves_[index];
1000  codegen_->MoveLocation(move->GetDestination(), move->GetSource(), Primitive::kPrimVoid);
1001}
1002
1003void CodeGeneratorARM64::GenerateFrameEntry() {
1004  MacroAssembler* masm = GetVIXLAssembler();
1005  BlockPoolsScope block_pools(masm);
1006  __ Bind(&frame_entry_label_);
1007
1008  bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kArm64) || !IsLeafMethod();
1009  if (do_overflow_check) {
1010    UseScratchRegisterScope temps(masm);
1011    Register temp = temps.AcquireX();
1012    DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1013    __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(kArm64)));
1014    __ Ldr(wzr, MemOperand(temp, 0));
1015    RecordPcInfo(nullptr, 0);
1016  }
1017
1018  if (!HasEmptyFrame()) {
1019    int frame_size = GetFrameSize();
1020    // Stack layout:
1021    //      sp[frame_size - 8]        : lr.
1022    //      ...                       : other preserved core registers.
1023    //      ...                       : other preserved fp registers.
1024    //      ...                       : reserved frame space.
1025    //      sp[0]                     : current method.
1026    __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
1027    GetAssembler()->cfi().AdjustCFAOffset(frame_size);
1028    GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(),
1029        frame_size - GetCoreSpillSize());
1030    GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(),
1031        frame_size - FrameEntrySpillSize());
1032  }
1033}
1034
1035void CodeGeneratorARM64::GenerateFrameExit() {
1036  BlockPoolsScope block_pools(GetVIXLAssembler());
1037  GetAssembler()->cfi().RememberState();
1038  if (!HasEmptyFrame()) {
1039    int frame_size = GetFrameSize();
1040    GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(),
1041        frame_size - FrameEntrySpillSize());
1042    GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(),
1043        frame_size - GetCoreSpillSize());
1044    __ Drop(frame_size);
1045    GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
1046  }
1047  __ Ret();
1048  GetAssembler()->cfi().RestoreState();
1049  GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
1050}
1051
1052vixl::CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
1053  DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
1054  return vixl::CPURegList(vixl::CPURegister::kRegister, vixl::kXRegSize,
1055                          core_spill_mask_);
1056}
1057
1058vixl::CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
1059  DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
1060                                         GetNumberOfFloatingPointRegisters()));
1061  return vixl::CPURegList(vixl::CPURegister::kFPRegister, vixl::kDRegSize,
1062                          fpu_spill_mask_);
1063}
1064
1065void CodeGeneratorARM64::Bind(HBasicBlock* block) {
1066  __ Bind(GetLabelOf(block));
1067}
1068
1069void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
1070  DCHECK(location.IsRegister());
1071  __ Mov(RegisterFrom(location, Primitive::kPrimInt), value);
1072}
1073
1074void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
1075  if (location.IsRegister()) {
1076    locations->AddTemp(location);
1077  } else {
1078    UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1079  }
1080}
1081
1082Location CodeGeneratorARM64::GetStackLocation(HLoadLocal* load) const {
1083  Primitive::Type type = load->GetType();
1084
1085  switch (type) {
1086    case Primitive::kPrimNot:
1087    case Primitive::kPrimInt:
1088    case Primitive::kPrimFloat:
1089      return Location::StackSlot(GetStackSlot(load->GetLocal()));
1090
1091    case Primitive::kPrimLong:
1092    case Primitive::kPrimDouble:
1093      return Location::DoubleStackSlot(GetStackSlot(load->GetLocal()));
1094
1095    case Primitive::kPrimBoolean:
1096    case Primitive::kPrimByte:
1097    case Primitive::kPrimChar:
1098    case Primitive::kPrimShort:
1099    case Primitive::kPrimVoid:
1100      LOG(FATAL) << "Unexpected type " << type;
1101  }
1102
1103  LOG(FATAL) << "Unreachable";
1104  return Location::NoLocation();
1105}
1106
1107void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) {
1108  UseScratchRegisterScope temps(GetVIXLAssembler());
1109  Register card = temps.AcquireX();
1110  Register temp = temps.AcquireW();   // Index within the CardTable - 32bit.
1111  vixl::Label done;
1112  if (value_can_be_null) {
1113    __ Cbz(value, &done);
1114  }
1115  __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64WordSize>().Int32Value()));
1116  __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1117  __ Strb(card, MemOperand(card, temp.X()));
1118  if (value_can_be_null) {
1119    __ Bind(&done);
1120  }
1121}
1122
1123void CodeGeneratorARM64::SetupBlockedRegisters() const {
1124  // Blocked core registers:
1125  //      lr        : Runtime reserved.
1126  //      tr        : Runtime reserved.
1127  //      xSuspend  : Runtime reserved. TODO: Unblock this when the runtime stops using it.
1128  //      ip1       : VIXL core temp.
1129  //      ip0       : VIXL core temp.
1130  //
1131  // Blocked fp registers:
1132  //      d31       : VIXL fp temp.
1133  CPURegList reserved_core_registers = vixl_reserved_core_registers;
1134  reserved_core_registers.Combine(runtime_reserved_core_registers);
1135  while (!reserved_core_registers.IsEmpty()) {
1136    blocked_core_registers_[reserved_core_registers.PopLowestIndex().code()] = true;
1137  }
1138
1139  CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
1140  while (!reserved_fp_registers.IsEmpty()) {
1141    blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().code()] = true;
1142  }
1143
1144  if (GetGraph()->IsDebuggable()) {
1145    // Stubs do not save callee-save floating point registers. If the graph
1146    // is debuggable, we need to deal with these registers differently. For
1147    // now, just block them.
1148    CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
1149    while (!reserved_fp_registers_debuggable.IsEmpty()) {
1150      blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().code()] = true;
1151    }
1152  }
1153}
1154
1155size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1156  Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1157  __ Str(reg, MemOperand(sp, stack_index));
1158  return kArm64WordSize;
1159}
1160
1161size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1162  Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1163  __ Ldr(reg, MemOperand(sp, stack_index));
1164  return kArm64WordSize;
1165}
1166
1167size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1168  FPRegister reg = FPRegister(reg_id, kDRegSize);
1169  __ Str(reg, MemOperand(sp, stack_index));
1170  return kArm64WordSize;
1171}
1172
1173size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1174  FPRegister reg = FPRegister(reg_id, kDRegSize);
1175  __ Ldr(reg, MemOperand(sp, stack_index));
1176  return kArm64WordSize;
1177}
1178
1179void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
1180  stream << XRegister(reg);
1181}
1182
1183void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1184  stream << DRegister(reg);
1185}
1186
1187void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
1188  if (constant->IsIntConstant()) {
1189    __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
1190  } else if (constant->IsLongConstant()) {
1191    __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
1192  } else if (constant->IsNullConstant()) {
1193    __ Mov(Register(destination), 0);
1194  } else if (constant->IsFloatConstant()) {
1195    __ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue());
1196  } else {
1197    DCHECK(constant->IsDoubleConstant());
1198    __ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue());
1199  }
1200}
1201
1202
1203static bool CoherentConstantAndType(Location constant, Primitive::Type type) {
1204  DCHECK(constant.IsConstant());
1205  HConstant* cst = constant.GetConstant();
1206  return (cst->IsIntConstant() && type == Primitive::kPrimInt) ||
1207         // Null is mapped to a core W register, which we associate with kPrimInt.
1208         (cst->IsNullConstant() && type == Primitive::kPrimInt) ||
1209         (cst->IsLongConstant() && type == Primitive::kPrimLong) ||
1210         (cst->IsFloatConstant() && type == Primitive::kPrimFloat) ||
1211         (cst->IsDoubleConstant() && type == Primitive::kPrimDouble);
1212}
1213
1214void CodeGeneratorARM64::MoveLocation(Location destination,
1215                                      Location source,
1216                                      Primitive::Type dst_type) {
1217  if (source.Equals(destination)) {
1218    return;
1219  }
1220
1221  // A valid move can always be inferred from the destination and source
1222  // locations. When moving from and to a register, the argument type can be
1223  // used to generate 32bit instead of 64bit moves. In debug mode we also
1224  // checks the coherency of the locations and the type.
1225  bool unspecified_type = (dst_type == Primitive::kPrimVoid);
1226
1227  if (destination.IsRegister() || destination.IsFpuRegister()) {
1228    if (unspecified_type) {
1229      HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
1230      if (source.IsStackSlot() ||
1231          (src_cst != nullptr && (src_cst->IsIntConstant()
1232                                  || src_cst->IsFloatConstant()
1233                                  || src_cst->IsNullConstant()))) {
1234        // For stack slots and 32bit constants, a 64bit type is appropriate.
1235        dst_type = destination.IsRegister() ? Primitive::kPrimInt : Primitive::kPrimFloat;
1236      } else {
1237        // If the source is a double stack slot or a 64bit constant, a 64bit
1238        // type is appropriate. Else the source is a register, and since the
1239        // type has not been specified, we chose a 64bit type to force a 64bit
1240        // move.
1241        dst_type = destination.IsRegister() ? Primitive::kPrimLong : Primitive::kPrimDouble;
1242      }
1243    }
1244    DCHECK((destination.IsFpuRegister() && Primitive::IsFloatingPointType(dst_type)) ||
1245           (destination.IsRegister() && !Primitive::IsFloatingPointType(dst_type)));
1246    CPURegister dst = CPURegisterFrom(destination, dst_type);
1247    if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
1248      DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
1249      __ Ldr(dst, StackOperandFrom(source));
1250    } else if (source.IsConstant()) {
1251      DCHECK(CoherentConstantAndType(source, dst_type));
1252      MoveConstant(dst, source.GetConstant());
1253    } else if (source.IsRegister()) {
1254      if (destination.IsRegister()) {
1255        __ Mov(Register(dst), RegisterFrom(source, dst_type));
1256      } else {
1257        DCHECK(destination.IsFpuRegister());
1258        Primitive::Type source_type = Primitive::Is64BitType(dst_type)
1259            ? Primitive::kPrimLong
1260            : Primitive::kPrimInt;
1261        __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
1262      }
1263    } else {
1264      DCHECK(source.IsFpuRegister());
1265      if (destination.IsRegister()) {
1266        Primitive::Type source_type = Primitive::Is64BitType(dst_type)
1267            ? Primitive::kPrimDouble
1268            : Primitive::kPrimFloat;
1269        __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
1270      } else {
1271        DCHECK(destination.IsFpuRegister());
1272        __ Fmov(FPRegister(dst), FPRegisterFrom(source, dst_type));
1273      }
1274    }
1275  } else {  // The destination is not a register. It must be a stack slot.
1276    DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
1277    if (source.IsRegister() || source.IsFpuRegister()) {
1278      if (unspecified_type) {
1279        if (source.IsRegister()) {
1280          dst_type = destination.IsStackSlot() ? Primitive::kPrimInt : Primitive::kPrimLong;
1281        } else {
1282          dst_type = destination.IsStackSlot() ? Primitive::kPrimFloat : Primitive::kPrimDouble;
1283        }
1284      }
1285      DCHECK((destination.IsDoubleStackSlot() == Primitive::Is64BitType(dst_type)) &&
1286             (source.IsFpuRegister() == Primitive::IsFloatingPointType(dst_type)));
1287      __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
1288    } else if (source.IsConstant()) {
1289      DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
1290          << source << " " << dst_type;
1291      UseScratchRegisterScope temps(GetVIXLAssembler());
1292      HConstant* src_cst = source.GetConstant();
1293      CPURegister temp;
1294      if (src_cst->IsIntConstant() || src_cst->IsNullConstant()) {
1295        temp = temps.AcquireW();
1296      } else if (src_cst->IsLongConstant()) {
1297        temp = temps.AcquireX();
1298      } else if (src_cst->IsFloatConstant()) {
1299        temp = temps.AcquireS();
1300      } else {
1301        DCHECK(src_cst->IsDoubleConstant());
1302        temp = temps.AcquireD();
1303      }
1304      MoveConstant(temp, src_cst);
1305      __ Str(temp, StackOperandFrom(destination));
1306    } else {
1307      DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
1308      DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
1309      UseScratchRegisterScope temps(GetVIXLAssembler());
1310      // There is generally less pressure on FP registers.
1311      FPRegister temp = destination.IsDoubleStackSlot() ? temps.AcquireD() : temps.AcquireS();
1312      __ Ldr(temp, StackOperandFrom(source));
1313      __ Str(temp, StackOperandFrom(destination));
1314    }
1315  }
1316}
1317
1318void CodeGeneratorARM64::Load(Primitive::Type type,
1319                              CPURegister dst,
1320                              const MemOperand& src) {
1321  switch (type) {
1322    case Primitive::kPrimBoolean:
1323      __ Ldrb(Register(dst), src);
1324      break;
1325    case Primitive::kPrimByte:
1326      __ Ldrsb(Register(dst), src);
1327      break;
1328    case Primitive::kPrimShort:
1329      __ Ldrsh(Register(dst), src);
1330      break;
1331    case Primitive::kPrimChar:
1332      __ Ldrh(Register(dst), src);
1333      break;
1334    case Primitive::kPrimInt:
1335    case Primitive::kPrimNot:
1336    case Primitive::kPrimLong:
1337    case Primitive::kPrimFloat:
1338    case Primitive::kPrimDouble:
1339      DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
1340      __ Ldr(dst, src);
1341      break;
1342    case Primitive::kPrimVoid:
1343      LOG(FATAL) << "Unreachable type " << type;
1344  }
1345}
1346
1347void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
1348                                     CPURegister dst,
1349                                     const MemOperand& src,
1350                                     bool needs_null_check) {
1351  MacroAssembler* masm = GetVIXLAssembler();
1352  BlockPoolsScope block_pools(masm);
1353  UseScratchRegisterScope temps(masm);
1354  Register temp_base = temps.AcquireX();
1355  Primitive::Type type = instruction->GetType();
1356
1357  DCHECK(!src.IsPreIndex());
1358  DCHECK(!src.IsPostIndex());
1359
1360  // TODO(vixl): Let the MacroAssembler handle MemOperand.
1361  __ Add(temp_base, src.base(), OperandFromMemOperand(src));
1362  MemOperand base = MemOperand(temp_base);
1363  switch (type) {
1364    case Primitive::kPrimBoolean:
1365      __ Ldarb(Register(dst), base);
1366      if (needs_null_check) {
1367        MaybeRecordImplicitNullCheck(instruction);
1368      }
1369      break;
1370    case Primitive::kPrimByte:
1371      __ Ldarb(Register(dst), base);
1372      if (needs_null_check) {
1373        MaybeRecordImplicitNullCheck(instruction);
1374      }
1375      __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
1376      break;
1377    case Primitive::kPrimChar:
1378      __ Ldarh(Register(dst), base);
1379      if (needs_null_check) {
1380        MaybeRecordImplicitNullCheck(instruction);
1381      }
1382      break;
1383    case Primitive::kPrimShort:
1384      __ Ldarh(Register(dst), base);
1385      if (needs_null_check) {
1386        MaybeRecordImplicitNullCheck(instruction);
1387      }
1388      __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
1389      break;
1390    case Primitive::kPrimInt:
1391    case Primitive::kPrimNot:
1392    case Primitive::kPrimLong:
1393      DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
1394      __ Ldar(Register(dst), base);
1395      if (needs_null_check) {
1396        MaybeRecordImplicitNullCheck(instruction);
1397      }
1398      break;
1399    case Primitive::kPrimFloat:
1400    case Primitive::kPrimDouble: {
1401      DCHECK(dst.IsFPRegister());
1402      DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
1403
1404      Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1405      __ Ldar(temp, base);
1406      if (needs_null_check) {
1407        MaybeRecordImplicitNullCheck(instruction);
1408      }
1409      __ Fmov(FPRegister(dst), temp);
1410      break;
1411    }
1412    case Primitive::kPrimVoid:
1413      LOG(FATAL) << "Unreachable type " << type;
1414  }
1415}
1416
1417void CodeGeneratorARM64::Store(Primitive::Type type,
1418                               CPURegister src,
1419                               const MemOperand& dst) {
1420  switch (type) {
1421    case Primitive::kPrimBoolean:
1422    case Primitive::kPrimByte:
1423      __ Strb(Register(src), dst);
1424      break;
1425    case Primitive::kPrimChar:
1426    case Primitive::kPrimShort:
1427      __ Strh(Register(src), dst);
1428      break;
1429    case Primitive::kPrimInt:
1430    case Primitive::kPrimNot:
1431    case Primitive::kPrimLong:
1432    case Primitive::kPrimFloat:
1433    case Primitive::kPrimDouble:
1434      DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
1435      __ Str(src, dst);
1436      break;
1437    case Primitive::kPrimVoid:
1438      LOG(FATAL) << "Unreachable type " << type;
1439  }
1440}
1441
1442void CodeGeneratorARM64::StoreRelease(Primitive::Type type,
1443                                      CPURegister src,
1444                                      const MemOperand& dst) {
1445  UseScratchRegisterScope temps(GetVIXLAssembler());
1446  Register temp_base = temps.AcquireX();
1447
1448  DCHECK(!dst.IsPreIndex());
1449  DCHECK(!dst.IsPostIndex());
1450
1451  // TODO(vixl): Let the MacroAssembler handle this.
1452  Operand op = OperandFromMemOperand(dst);
1453  __ Add(temp_base, dst.base(), op);
1454  MemOperand base = MemOperand(temp_base);
1455  switch (type) {
1456    case Primitive::kPrimBoolean:
1457    case Primitive::kPrimByte:
1458      __ Stlrb(Register(src), base);
1459      break;
1460    case Primitive::kPrimChar:
1461    case Primitive::kPrimShort:
1462      __ Stlrh(Register(src), base);
1463      break;
1464    case Primitive::kPrimInt:
1465    case Primitive::kPrimNot:
1466    case Primitive::kPrimLong:
1467      DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
1468      __ Stlr(Register(src), base);
1469      break;
1470    case Primitive::kPrimFloat:
1471    case Primitive::kPrimDouble: {
1472      DCHECK(src.IsFPRegister());
1473      DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
1474
1475      Register temp = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1476      __ Fmov(temp, FPRegister(src));
1477      __ Stlr(temp, base);
1478      break;
1479    }
1480    case Primitive::kPrimVoid:
1481      LOG(FATAL) << "Unreachable type " << type;
1482  }
1483}
1484
1485void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
1486                                       HInstruction* instruction,
1487                                       uint32_t dex_pc,
1488                                       SlowPathCode* slow_path) {
1489  InvokeRuntime(GetThreadOffset<kArm64WordSize>(entrypoint).Int32Value(),
1490                instruction,
1491                dex_pc,
1492                slow_path);
1493}
1494
1495void CodeGeneratorARM64::InvokeRuntime(int32_t entry_point_offset,
1496                                       HInstruction* instruction,
1497                                       uint32_t dex_pc,
1498                                       SlowPathCode* slow_path) {
1499  ValidateInvokeRuntime(instruction, slow_path);
1500  BlockPoolsScope block_pools(GetVIXLAssembler());
1501  __ Ldr(lr, MemOperand(tr, entry_point_offset));
1502  __ Blr(lr);
1503  RecordPcInfo(instruction, dex_pc, slow_path);
1504}
1505
1506void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
1507                                                                     vixl::Register class_reg) {
1508  UseScratchRegisterScope temps(GetVIXLAssembler());
1509  Register temp = temps.AcquireW();
1510  size_t status_offset = mirror::Class::StatusOffset().SizeValue();
1511
1512  // Even if the initialized flag is set, we need to ensure consistent memory ordering.
1513  // TODO(vixl): Let the MacroAssembler handle MemOperand.
1514  __ Add(temp, class_reg, status_offset);
1515  __ Ldar(temp, HeapOperand(temp));
1516  __ Cmp(temp, mirror::Class::kStatusInitialized);
1517  __ B(lt, slow_path->GetEntryLabel());
1518  __ Bind(slow_path->GetExitLabel());
1519}
1520
1521void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
1522  BarrierType type = BarrierAll;
1523
1524  switch (kind) {
1525    case MemBarrierKind::kAnyAny:
1526    case MemBarrierKind::kAnyStore: {
1527      type = BarrierAll;
1528      break;
1529    }
1530    case MemBarrierKind::kLoadAny: {
1531      type = BarrierReads;
1532      break;
1533    }
1534    case MemBarrierKind::kStoreStore: {
1535      type = BarrierWrites;
1536      break;
1537    }
1538    default:
1539      LOG(FATAL) << "Unexpected memory barrier " << kind;
1540  }
1541  __ Dmb(InnerShareable, type);
1542}
1543
1544void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
1545                                                         HBasicBlock* successor) {
1546  SuspendCheckSlowPathARM64* slow_path =
1547      down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
1548  if (slow_path == nullptr) {
1549    slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM64(instruction, successor);
1550    instruction->SetSlowPath(slow_path);
1551    codegen_->AddSlowPath(slow_path);
1552    if (successor != nullptr) {
1553      DCHECK(successor->IsLoopHeader());
1554      codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
1555    }
1556  } else {
1557    DCHECK_EQ(slow_path->GetSuccessor(), successor);
1558  }
1559
1560  UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
1561  Register temp = temps.AcquireW();
1562
1563  __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64WordSize>().SizeValue()));
1564  if (successor == nullptr) {
1565    __ Cbnz(temp, slow_path->GetEntryLabel());
1566    __ Bind(slow_path->GetReturnLabel());
1567  } else {
1568    __ Cbz(temp, codegen_->GetLabelOf(successor));
1569    __ B(slow_path->GetEntryLabel());
1570    // slow_path will return to GetLabelOf(successor).
1571  }
1572}
1573
1574InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
1575                                                             CodeGeneratorARM64* codegen)
1576      : InstructionCodeGenerator(graph, codegen),
1577        assembler_(codegen->GetAssembler()),
1578        codegen_(codegen) {}
1579
1580#define FOR_EACH_UNIMPLEMENTED_INSTRUCTION(M)              \
1581  /* No unimplemented IR. */
1582
1583#define UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name) name##UnimplementedInstructionBreakCode
1584
1585enum UnimplementedInstructionBreakCode {
1586  // Using a base helps identify when we hit such breakpoints.
1587  UnimplementedInstructionBreakCodeBaseCode = 0x900,
1588#define ENUM_UNIMPLEMENTED_INSTRUCTION(name) UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name),
1589  FOR_EACH_UNIMPLEMENTED_INSTRUCTION(ENUM_UNIMPLEMENTED_INSTRUCTION)
1590#undef ENUM_UNIMPLEMENTED_INSTRUCTION
1591};
1592
1593#define DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS(name)                               \
1594  void InstructionCodeGeneratorARM64::Visit##name(H##name* instr ATTRIBUTE_UNUSED) {  \
1595    __ Brk(UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name));                               \
1596  }                                                                                   \
1597  void LocationsBuilderARM64::Visit##name(H##name* instr) {                           \
1598    LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); \
1599    locations->SetOut(Location::Any());                                               \
1600  }
1601  FOR_EACH_UNIMPLEMENTED_INSTRUCTION(DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS)
1602#undef DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS
1603
1604#undef UNIMPLEMENTED_INSTRUCTION_BREAK_CODE
1605#undef FOR_EACH_UNIMPLEMENTED_INSTRUCTION
1606
1607void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
1608  DCHECK_EQ(instr->InputCount(), 2U);
1609  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
1610  Primitive::Type type = instr->GetResultType();
1611  switch (type) {
1612    case Primitive::kPrimInt:
1613    case Primitive::kPrimLong:
1614      locations->SetInAt(0, Location::RequiresRegister());
1615      locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
1616      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1617      break;
1618
1619    case Primitive::kPrimFloat:
1620    case Primitive::kPrimDouble:
1621      locations->SetInAt(0, Location::RequiresFpuRegister());
1622      locations->SetInAt(1, Location::RequiresFpuRegister());
1623      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
1624      break;
1625
1626    default:
1627      LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
1628  }
1629}
1630
1631void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction) {
1632  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
1633
1634  bool object_field_get_with_read_barrier =
1635      kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
1636  LocationSummary* locations =
1637      new (GetGraph()->GetArena()) LocationSummary(instruction,
1638                                                   object_field_get_with_read_barrier ?
1639                                                       LocationSummary::kCallOnSlowPath :
1640                                                       LocationSummary::kNoCall);
1641  locations->SetInAt(0, Location::RequiresRegister());
1642  if (Primitive::IsFloatingPointType(instruction->GetType())) {
1643    locations->SetOut(Location::RequiresFpuRegister());
1644  } else {
1645    // The output overlaps for an object field get when read barriers
1646    // are enabled: we do not want the load to overwrite the object's
1647    // location, as we need it to emit the read barrier.
1648    locations->SetOut(
1649        Location::RequiresRegister(),
1650        object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
1651  }
1652}
1653
1654void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
1655                                                   const FieldInfo& field_info) {
1656  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
1657  LocationSummary* locations = instruction->GetLocations();
1658  Location base_loc = locations->InAt(0);
1659  Location out = locations->Out();
1660  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
1661  Primitive::Type field_type = field_info.GetFieldType();
1662  BlockPoolsScope block_pools(GetVIXLAssembler());
1663  MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset());
1664
1665  if (field_type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1666    // Object FieldGet with Baker's read barrier case.
1667    MacroAssembler* masm = GetVIXLAssembler();
1668    UseScratchRegisterScope temps(masm);
1669    // /* HeapReference<Object> */ out = *(base + offset)
1670    Register base = RegisterFrom(base_loc, Primitive::kPrimNot);
1671    Register temp = temps.AcquireW();
1672    // Note that potential implicit null checks are handled in this
1673    // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
1674    codegen_->GenerateFieldLoadWithBakerReadBarrier(
1675        instruction,
1676        out,
1677        base,
1678        offset,
1679        temp,
1680        /* needs_null_check */ true,
1681        field_info.IsVolatile());
1682  } else {
1683    // General case.
1684    if (field_info.IsVolatile()) {
1685      // Note that a potential implicit null check is handled in this
1686      // CodeGeneratorARM64::LoadAcquire call.
1687      // NB: LoadAcquire will record the pc info if needed.
1688      codegen_->LoadAcquire(
1689          instruction, OutputCPURegister(instruction), field, /* needs_null_check */ true);
1690    } else {
1691      codegen_->Load(field_type, OutputCPURegister(instruction), field);
1692      codegen_->MaybeRecordImplicitNullCheck(instruction);
1693    }
1694    if (field_type == Primitive::kPrimNot) {
1695      // If read barriers are enabled, emit read barriers other than
1696      // Baker's using a slow path (and also unpoison the loaded
1697      // reference, if heap poisoning is enabled).
1698      codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
1699    }
1700  }
1701}
1702
1703void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
1704  LocationSummary* locations =
1705      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
1706  locations->SetInAt(0, Location::RequiresRegister());
1707  if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) {
1708    locations->SetInAt(1, Location::RequiresFpuRegister());
1709  } else {
1710    locations->SetInAt(1, Location::RequiresRegister());
1711  }
1712}
1713
1714void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
1715                                                   const FieldInfo& field_info,
1716                                                   bool value_can_be_null) {
1717  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
1718  BlockPoolsScope block_pools(GetVIXLAssembler());
1719
1720  Register obj = InputRegisterAt(instruction, 0);
1721  CPURegister value = InputCPURegisterAt(instruction, 1);
1722  CPURegister source = value;
1723  Offset offset = field_info.GetFieldOffset();
1724  Primitive::Type field_type = field_info.GetFieldType();
1725
1726  {
1727    // We use a block to end the scratch scope before the write barrier, thus
1728    // freeing the temporary registers so they can be used in `MarkGCCard`.
1729    UseScratchRegisterScope temps(GetVIXLAssembler());
1730
1731    if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) {
1732      DCHECK(value.IsW());
1733      Register temp = temps.AcquireW();
1734      __ Mov(temp, value.W());
1735      GetAssembler()->PoisonHeapReference(temp.W());
1736      source = temp;
1737    }
1738
1739    if (field_info.IsVolatile()) {
1740      codegen_->StoreRelease(field_type, source, HeapOperand(obj, offset));
1741      codegen_->MaybeRecordImplicitNullCheck(instruction);
1742    } else {
1743      codegen_->Store(field_type, source, HeapOperand(obj, offset));
1744      codegen_->MaybeRecordImplicitNullCheck(instruction);
1745    }
1746  }
1747
1748  if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
1749    codegen_->MarkGCCard(obj, Register(value), value_can_be_null);
1750  }
1751}
1752
1753void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
1754  Primitive::Type type = instr->GetType();
1755
1756  switch (type) {
1757    case Primitive::kPrimInt:
1758    case Primitive::kPrimLong: {
1759      Register dst = OutputRegister(instr);
1760      Register lhs = InputRegisterAt(instr, 0);
1761      Operand rhs = InputOperandAt(instr, 1);
1762      if (instr->IsAdd()) {
1763        __ Add(dst, lhs, rhs);
1764      } else if (instr->IsAnd()) {
1765        __ And(dst, lhs, rhs);
1766      } else if (instr->IsOr()) {
1767        __ Orr(dst, lhs, rhs);
1768      } else if (instr->IsSub()) {
1769        __ Sub(dst, lhs, rhs);
1770      } else if (instr->IsRor()) {
1771        if (rhs.IsImmediate()) {
1772          uint32_t shift = rhs.immediate() & (lhs.SizeInBits() - 1);
1773          __ Ror(dst, lhs, shift);
1774        } else {
1775          // Ensure shift distance is in the same size register as the result. If
1776          // we are rotating a long and the shift comes in a w register originally,
1777          // we don't need to sxtw for use as an x since the shift distances are
1778          // all & reg_bits - 1.
1779          __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
1780        }
1781      } else {
1782        DCHECK(instr->IsXor());
1783        __ Eor(dst, lhs, rhs);
1784      }
1785      break;
1786    }
1787    case Primitive::kPrimFloat:
1788    case Primitive::kPrimDouble: {
1789      FPRegister dst = OutputFPRegister(instr);
1790      FPRegister lhs = InputFPRegisterAt(instr, 0);
1791      FPRegister rhs = InputFPRegisterAt(instr, 1);
1792      if (instr->IsAdd()) {
1793        __ Fadd(dst, lhs, rhs);
1794      } else if (instr->IsSub()) {
1795        __ Fsub(dst, lhs, rhs);
1796      } else {
1797        LOG(FATAL) << "Unexpected floating-point binary operation";
1798      }
1799      break;
1800    }
1801    default:
1802      LOG(FATAL) << "Unexpected binary operation type " << type;
1803  }
1804}
1805
1806void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
1807  DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
1808
1809  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
1810  Primitive::Type type = instr->GetResultType();
1811  switch (type) {
1812    case Primitive::kPrimInt:
1813    case Primitive::kPrimLong: {
1814      locations->SetInAt(0, Location::RequiresRegister());
1815      locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
1816      locations->SetOut(Location::RequiresRegister());
1817      break;
1818    }
1819    default:
1820      LOG(FATAL) << "Unexpected shift type " << type;
1821  }
1822}
1823
1824void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
1825  DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
1826
1827  Primitive::Type type = instr->GetType();
1828  switch (type) {
1829    case Primitive::kPrimInt:
1830    case Primitive::kPrimLong: {
1831      Register dst = OutputRegister(instr);
1832      Register lhs = InputRegisterAt(instr, 0);
1833      Operand rhs = InputOperandAt(instr, 1);
1834      if (rhs.IsImmediate()) {
1835        uint32_t shift_value = (type == Primitive::kPrimInt)
1836          ? static_cast<uint32_t>(rhs.immediate() & kMaxIntShiftValue)
1837          : static_cast<uint32_t>(rhs.immediate() & kMaxLongShiftValue);
1838        if (instr->IsShl()) {
1839          __ Lsl(dst, lhs, shift_value);
1840        } else if (instr->IsShr()) {
1841          __ Asr(dst, lhs, shift_value);
1842        } else {
1843          __ Lsr(dst, lhs, shift_value);
1844        }
1845      } else {
1846        Register rhs_reg = dst.IsX() ? rhs.reg().X() : rhs.reg().W();
1847
1848        if (instr->IsShl()) {
1849          __ Lsl(dst, lhs, rhs_reg);
1850        } else if (instr->IsShr()) {
1851          __ Asr(dst, lhs, rhs_reg);
1852        } else {
1853          __ Lsr(dst, lhs, rhs_reg);
1854        }
1855      }
1856      break;
1857    }
1858    default:
1859      LOG(FATAL) << "Unexpected shift operation type " << type;
1860  }
1861}
1862
1863void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
1864  HandleBinaryOp(instruction);
1865}
1866
1867void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
1868  HandleBinaryOp(instruction);
1869}
1870
1871void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
1872  HandleBinaryOp(instruction);
1873}
1874
1875void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
1876  HandleBinaryOp(instruction);
1877}
1878
1879void LocationsBuilderARM64::VisitArm64DataProcWithShifterOp(
1880    HArm64DataProcWithShifterOp* instruction) {
1881  DCHECK(instruction->GetType() == Primitive::kPrimInt ||
1882         instruction->GetType() == Primitive::kPrimLong);
1883  LocationSummary* locations =
1884      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
1885  if (instruction->GetInstrKind() == HInstruction::kNeg) {
1886    locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant()));
1887  } else {
1888    locations->SetInAt(0, Location::RequiresRegister());
1889  }
1890  locations->SetInAt(1, Location::RequiresRegister());
1891  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1892}
1893
1894void InstructionCodeGeneratorARM64::VisitArm64DataProcWithShifterOp(
1895    HArm64DataProcWithShifterOp* instruction) {
1896  Primitive::Type type = instruction->GetType();
1897  HInstruction::InstructionKind kind = instruction->GetInstrKind();
1898  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
1899  Register out = OutputRegister(instruction);
1900  Register left;
1901  if (kind != HInstruction::kNeg) {
1902    left = InputRegisterAt(instruction, 0);
1903  }
1904  // If this `HArm64DataProcWithShifterOp` was created by merging a type conversion as the
1905  // shifter operand operation, the IR generating `right_reg` (input to the type
1906  // conversion) can have a different type from the current instruction's type,
1907  // so we manually indicate the type.
1908  Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
1909  int64_t shift_amount = (type == Primitive::kPrimInt)
1910    ? static_cast<uint32_t>(instruction->GetShiftAmount() & kMaxIntShiftValue)
1911    : static_cast<uint32_t>(instruction->GetShiftAmount() & kMaxLongShiftValue);
1912
1913  Operand right_operand(0);
1914
1915  HArm64DataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
1916  if (HArm64DataProcWithShifterOp::IsExtensionOp(op_kind)) {
1917    right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
1918  } else {
1919    right_operand = Operand(right_reg, helpers::ShiftFromOpKind(op_kind), shift_amount);
1920  }
1921
1922  // Logical binary operations do not support extension operations in the
1923  // operand. Note that VIXL would still manage if it was passed by generating
1924  // the extension as a separate instruction.
1925  // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
1926  DCHECK(!right_operand.IsExtendedRegister() ||
1927         (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor &&
1928          kind != HInstruction::kNeg));
1929  switch (kind) {
1930    case HInstruction::kAdd:
1931      __ Add(out, left, right_operand);
1932      break;
1933    case HInstruction::kAnd:
1934      __ And(out, left, right_operand);
1935      break;
1936    case HInstruction::kNeg:
1937      DCHECK(instruction->InputAt(0)->AsConstant()->IsZero());
1938      __ Neg(out, right_operand);
1939      break;
1940    case HInstruction::kOr:
1941      __ Orr(out, left, right_operand);
1942      break;
1943    case HInstruction::kSub:
1944      __ Sub(out, left, right_operand);
1945      break;
1946    case HInstruction::kXor:
1947      __ Eor(out, left, right_operand);
1948      break;
1949    default:
1950      LOG(FATAL) << "Unexpected operation kind: " << kind;
1951      UNREACHABLE();
1952  }
1953}
1954
1955void LocationsBuilderARM64::VisitArm64IntermediateAddress(HArm64IntermediateAddress* instruction) {
1956  // The read barrier instrumentation does not support the
1957  // HArm64IntermediateAddress instruction yet.
1958  DCHECK(!kEmitCompilerReadBarrier);
1959  LocationSummary* locations =
1960      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
1961  locations->SetInAt(0, Location::RequiresRegister());
1962  locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
1963  locations->SetOut(Location::RequiresRegister());
1964}
1965
1966void InstructionCodeGeneratorARM64::VisitArm64IntermediateAddress(
1967    HArm64IntermediateAddress* instruction) {
1968  // The read barrier instrumentation does not support the
1969  // HArm64IntermediateAddress instruction yet.
1970  DCHECK(!kEmitCompilerReadBarrier);
1971  __ Add(OutputRegister(instruction),
1972         InputRegisterAt(instruction, 0),
1973         Operand(InputOperandAt(instruction, 1)));
1974}
1975
1976void LocationsBuilderARM64::VisitArm64MultiplyAccumulate(HArm64MultiplyAccumulate* instr) {
1977  LocationSummary* locations =
1978      new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
1979  locations->SetInAt(HArm64MultiplyAccumulate::kInputAccumulatorIndex,
1980                     Location::RequiresRegister());
1981  locations->SetInAt(HArm64MultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
1982  locations->SetInAt(HArm64MultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
1983  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1984}
1985
1986void InstructionCodeGeneratorARM64::VisitArm64MultiplyAccumulate(HArm64MultiplyAccumulate* instr) {
1987  Register res = OutputRegister(instr);
1988  Register accumulator = InputRegisterAt(instr, HArm64MultiplyAccumulate::kInputAccumulatorIndex);
1989  Register mul_left = InputRegisterAt(instr, HArm64MultiplyAccumulate::kInputMulLeftIndex);
1990  Register mul_right = InputRegisterAt(instr, HArm64MultiplyAccumulate::kInputMulRightIndex);
1991
1992  // Avoid emitting code that could trigger Cortex A53's erratum 835769.
1993  // This fixup should be carried out for all multiply-accumulate instructions:
1994  // madd, msub, smaddl, smsubl, umaddl and umsubl.
1995  if (instr->GetType() == Primitive::kPrimLong &&
1996      codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
1997    MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
1998    vixl::Instruction* prev = masm->GetCursorAddress<vixl::Instruction*>() - vixl::kInstructionSize;
1999    if (prev->IsLoadOrStore()) {
2000      // Make sure we emit only exactly one nop.
2001      vixl::CodeBufferCheckScope scope(masm,
2002                                       vixl::kInstructionSize,
2003                                       vixl::CodeBufferCheckScope::kCheck,
2004                                       vixl::CodeBufferCheckScope::kExactSize);
2005      __ nop();
2006    }
2007  }
2008
2009  if (instr->GetOpKind() == HInstruction::kAdd) {
2010    __ Madd(res, mul_left, mul_right, accumulator);
2011  } else {
2012    DCHECK(instr->GetOpKind() == HInstruction::kSub);
2013    __ Msub(res, mul_left, mul_right, accumulator);
2014  }
2015}
2016
2017void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
2018  bool object_array_get_with_read_barrier =
2019      kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
2020  LocationSummary* locations =
2021      new (GetGraph()->GetArena()) LocationSummary(instruction,
2022                                                   object_array_get_with_read_barrier ?
2023                                                       LocationSummary::kCallOnSlowPath :
2024                                                       LocationSummary::kNoCall);
2025  locations->SetInAt(0, Location::RequiresRegister());
2026  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2027  if (Primitive::IsFloatingPointType(instruction->GetType())) {
2028    locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2029  } else {
2030    // The output overlaps in the case of an object array get with
2031    // read barriers enabled: we do not want the move to overwrite the
2032    // array's location, as we need it to emit the read barrier.
2033    locations->SetOut(
2034        Location::RequiresRegister(),
2035        object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2036  }
2037}
2038
2039void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
2040  Primitive::Type type = instruction->GetType();
2041  Register obj = InputRegisterAt(instruction, 0);
2042  LocationSummary* locations = instruction->GetLocations();
2043  Location index = locations->InAt(1);
2044  uint32_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(type)).Uint32Value();
2045  Location out = locations->Out();
2046
2047  MacroAssembler* masm = GetVIXLAssembler();
2048  UseScratchRegisterScope temps(masm);
2049  // Block pools between `Load` and `MaybeRecordImplicitNullCheck`.
2050  BlockPoolsScope block_pools(masm);
2051
2052  if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2053    // Object ArrayGet with Baker's read barrier case.
2054    Register temp = temps.AcquireW();
2055    // The read barrier instrumentation does not support the
2056    // HArm64IntermediateAddress instruction yet.
2057    DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
2058    // Note that a potential implicit null check is handled in the
2059    // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
2060    codegen_->GenerateArrayLoadWithBakerReadBarrier(
2061        instruction, out, obj.W(), offset, index, temp, /* needs_null_check */ true);
2062  } else {
2063    // General case.
2064    MemOperand source = HeapOperand(obj);
2065    if (index.IsConstant()) {
2066      offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type);
2067      source = HeapOperand(obj, offset);
2068    } else {
2069      Register temp = temps.AcquireSameSizeAs(obj);
2070      if (instruction->GetArray()->IsArm64IntermediateAddress()) {
2071        // The read barrier instrumentation does not support the
2072        // HArm64IntermediateAddress instruction yet.
2073        DCHECK(!kEmitCompilerReadBarrier);
2074        // We do not need to compute the intermediate address from the array: the
2075        // input instruction has done it already. See the comment in
2076        // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
2077        if (kIsDebugBuild) {
2078          HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
2079          DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
2080        }
2081        temp = obj;
2082      } else {
2083        __ Add(temp, obj, offset);
2084      }
2085      source = HeapOperand(temp, XRegisterFrom(index), LSL, Primitive::ComponentSizeShift(type));
2086    }
2087
2088    codegen_->Load(type, OutputCPURegister(instruction), source);
2089    codegen_->MaybeRecordImplicitNullCheck(instruction);
2090
2091    if (type == Primitive::kPrimNot) {
2092      static_assert(
2093          sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2094          "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2095      Location obj_loc = locations->InAt(0);
2096      if (index.IsConstant()) {
2097        codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
2098      } else {
2099        codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
2100      }
2101    }
2102  }
2103}
2104
2105void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
2106  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
2107  locations->SetInAt(0, Location::RequiresRegister());
2108  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2109}
2110
2111void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
2112  BlockPoolsScope block_pools(GetVIXLAssembler());
2113  __ Ldr(OutputRegister(instruction),
2114         HeapOperand(InputRegisterAt(instruction, 0), mirror::Array::LengthOffset()));
2115  codegen_->MaybeRecordImplicitNullCheck(instruction);
2116}
2117
2118void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
2119  Primitive::Type value_type = instruction->GetComponentType();
2120
2121  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
2122  bool object_array_set_with_read_barrier =
2123      kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
2124  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
2125      instruction,
2126      (may_need_runtime_call_for_type_check  || object_array_set_with_read_barrier) ?
2127          LocationSummary::kCallOnSlowPath :
2128          LocationSummary::kNoCall);
2129  locations->SetInAt(0, Location::RequiresRegister());
2130  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2131  if (Primitive::IsFloatingPointType(value_type)) {
2132    locations->SetInAt(2, Location::RequiresFpuRegister());
2133  } else {
2134    locations->SetInAt(2, Location::RequiresRegister());
2135  }
2136}
2137
2138void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
2139  Primitive::Type value_type = instruction->GetComponentType();
2140  LocationSummary* locations = instruction->GetLocations();
2141  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
2142  bool needs_write_barrier =
2143      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
2144
2145  Register array = InputRegisterAt(instruction, 0);
2146  CPURegister value = InputCPURegisterAt(instruction, 2);
2147  CPURegister source = value;
2148  Location index = locations->InAt(1);
2149  size_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
2150  MemOperand destination = HeapOperand(array);
2151  MacroAssembler* masm = GetVIXLAssembler();
2152  BlockPoolsScope block_pools(masm);
2153
2154  if (!needs_write_barrier) {
2155    DCHECK(!may_need_runtime_call_for_type_check);
2156    if (index.IsConstant()) {
2157      offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
2158      destination = HeapOperand(array, offset);
2159    } else {
2160      UseScratchRegisterScope temps(masm);
2161      Register temp = temps.AcquireSameSizeAs(array);
2162      if (instruction->GetArray()->IsArm64IntermediateAddress()) {
2163        // The read barrier instrumentation does not support the
2164        // HArm64IntermediateAddress instruction yet.
2165        DCHECK(!kEmitCompilerReadBarrier);
2166        // We do not need to compute the intermediate address from the array: the
2167        // input instruction has done it already. See the comment in
2168        // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
2169        if (kIsDebugBuild) {
2170          HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
2171          DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
2172        }
2173        temp = array;
2174      } else {
2175        __ Add(temp, array, offset);
2176      }
2177      destination = HeapOperand(temp,
2178                                XRegisterFrom(index),
2179                                LSL,
2180                                Primitive::ComponentSizeShift(value_type));
2181    }
2182    codegen_->Store(value_type, value, destination);
2183    codegen_->MaybeRecordImplicitNullCheck(instruction);
2184  } else {
2185    DCHECK(needs_write_barrier);
2186    DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
2187    vixl::Label done;
2188    SlowPathCodeARM64* slow_path = nullptr;
2189    {
2190      // We use a block to end the scratch scope before the write barrier, thus
2191      // freeing the temporary registers so they can be used in `MarkGCCard`.
2192      UseScratchRegisterScope temps(masm);
2193      Register temp = temps.AcquireSameSizeAs(array);
2194      if (index.IsConstant()) {
2195        offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
2196        destination = HeapOperand(array, offset);
2197      } else {
2198        destination = HeapOperand(temp,
2199                                  XRegisterFrom(index),
2200                                  LSL,
2201                                  Primitive::ComponentSizeShift(value_type));
2202      }
2203
2204      uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2205      uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2206      uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2207
2208      if (may_need_runtime_call_for_type_check) {
2209        slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM64(instruction);
2210        codegen_->AddSlowPath(slow_path);
2211        if (instruction->GetValueCanBeNull()) {
2212          vixl::Label non_zero;
2213          __ Cbnz(Register(value), &non_zero);
2214          if (!index.IsConstant()) {
2215            __ Add(temp, array, offset);
2216          }
2217          __ Str(wzr, destination);
2218          codegen_->MaybeRecordImplicitNullCheck(instruction);
2219          __ B(&done);
2220          __ Bind(&non_zero);
2221        }
2222
2223        if (kEmitCompilerReadBarrier) {
2224          // When read barriers are enabled, the type checking
2225          // instrumentation requires two read barriers:
2226          //
2227          //   __ Mov(temp2, temp);
2228          //   // /* HeapReference<Class> */ temp = temp->component_type_
2229          //   __ Ldr(temp, HeapOperand(temp, component_offset));
2230          //   codegen_->GenerateReadBarrierSlow(
2231          //       instruction, temp_loc, temp_loc, temp2_loc, component_offset);
2232          //
2233          //   // /* HeapReference<Class> */ temp2 = value->klass_
2234          //   __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2235          //   codegen_->GenerateReadBarrierSlow(
2236          //       instruction, temp2_loc, temp2_loc, value_loc, class_offset, temp_loc);
2237          //
2238          //   __ Cmp(temp, temp2);
2239          //
2240          // However, the second read barrier may trash `temp`, as it
2241          // is a temporary register, and as such would not be saved
2242          // along with live registers before calling the runtime (nor
2243          // restored afterwards).  So in this case, we bail out and
2244          // delegate the work to the array set slow path.
2245          //
2246          // TODO: Extend the register allocator to support a new
2247          // "(locally) live temp" location so as to avoid always
2248          // going into the slow path when read barriers are enabled.
2249          __ B(slow_path->GetEntryLabel());
2250        } else {
2251          Register temp2 = temps.AcquireSameSizeAs(array);
2252          // /* HeapReference<Class> */ temp = array->klass_
2253          __ Ldr(temp, HeapOperand(array, class_offset));
2254          codegen_->MaybeRecordImplicitNullCheck(instruction);
2255          GetAssembler()->MaybeUnpoisonHeapReference(temp);
2256
2257          // /* HeapReference<Class> */ temp = temp->component_type_
2258          __ Ldr(temp, HeapOperand(temp, component_offset));
2259          // /* HeapReference<Class> */ temp2 = value->klass_
2260          __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2261          // If heap poisoning is enabled, no need to unpoison `temp`
2262          // nor `temp2`, as we are comparing two poisoned references.
2263          __ Cmp(temp, temp2);
2264
2265          if (instruction->StaticTypeOfArrayIsObjectArray()) {
2266            vixl::Label do_put;
2267            __ B(eq, &do_put);
2268            // If heap poisoning is enabled, the `temp` reference has
2269            // not been unpoisoned yet; unpoison it now.
2270            GetAssembler()->MaybeUnpoisonHeapReference(temp);
2271
2272            // /* HeapReference<Class> */ temp = temp->super_class_
2273            __ Ldr(temp, HeapOperand(temp, super_offset));
2274            // If heap poisoning is enabled, no need to unpoison
2275            // `temp`, as we are comparing against null below.
2276            __ Cbnz(temp, slow_path->GetEntryLabel());
2277            __ Bind(&do_put);
2278          } else {
2279            __ B(ne, slow_path->GetEntryLabel());
2280          }
2281          temps.Release(temp2);
2282        }
2283      }
2284
2285      if (kPoisonHeapReferences) {
2286        Register temp2 = temps.AcquireSameSizeAs(array);
2287          DCHECK(value.IsW());
2288        __ Mov(temp2, value.W());
2289        GetAssembler()->PoisonHeapReference(temp2);
2290        source = temp2;
2291      }
2292
2293      if (!index.IsConstant()) {
2294        __ Add(temp, array, offset);
2295      }
2296      __ Str(source, destination);
2297
2298      if (!may_need_runtime_call_for_type_check) {
2299        codegen_->MaybeRecordImplicitNullCheck(instruction);
2300      }
2301    }
2302
2303    codegen_->MarkGCCard(array, value.W(), instruction->GetValueCanBeNull());
2304
2305    if (done.IsLinked()) {
2306      __ Bind(&done);
2307    }
2308
2309    if (slow_path != nullptr) {
2310      __ Bind(slow_path->GetExitLabel());
2311    }
2312  }
2313}
2314
2315void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2316  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
2317      ? LocationSummary::kCallOnSlowPath
2318      : LocationSummary::kNoCall;
2319  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
2320  locations->SetInAt(0, Location::RequiresRegister());
2321  locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
2322  if (instruction->HasUses()) {
2323    locations->SetOut(Location::SameAsFirstInput());
2324  }
2325}
2326
2327void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2328  BoundsCheckSlowPathARM64* slow_path =
2329      new (GetGraph()->GetArena()) BoundsCheckSlowPathARM64(instruction);
2330  codegen_->AddSlowPath(slow_path);
2331
2332  __ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1));
2333  __ B(slow_path->GetEntryLabel(), hs);
2334}
2335
2336void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
2337  LocationSummary* locations =
2338      new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
2339  locations->SetInAt(0, Location::RequiresRegister());
2340  if (check->HasUses()) {
2341    locations->SetOut(Location::SameAsFirstInput());
2342  }
2343}
2344
2345void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
2346  // We assume the class is not null.
2347  SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
2348      check->GetLoadClass(), check, check->GetDexPc(), true);
2349  codegen_->AddSlowPath(slow_path);
2350  GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
2351}
2352
2353static bool IsFloatingPointZeroConstant(HInstruction* instruction) {
2354  return (instruction->IsFloatConstant() && (instruction->AsFloatConstant()->GetValue() == 0.0f))
2355      || (instruction->IsDoubleConstant() && (instruction->AsDoubleConstant()->GetValue() == 0.0));
2356}
2357
2358void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
2359  LocationSummary* locations =
2360      new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
2361  Primitive::Type in_type = compare->InputAt(0)->GetType();
2362  switch (in_type) {
2363    case Primitive::kPrimInt:
2364    case Primitive::kPrimLong: {
2365      locations->SetInAt(0, Location::RequiresRegister());
2366      locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
2367      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2368      break;
2369    }
2370    case Primitive::kPrimFloat:
2371    case Primitive::kPrimDouble: {
2372      locations->SetInAt(0, Location::RequiresFpuRegister());
2373      locations->SetInAt(1,
2374                         IsFloatingPointZeroConstant(compare->InputAt(1))
2375                             ? Location::ConstantLocation(compare->InputAt(1)->AsConstant())
2376                             : Location::RequiresFpuRegister());
2377      locations->SetOut(Location::RequiresRegister());
2378      break;
2379    }
2380    default:
2381      LOG(FATAL) << "Unexpected type for compare operation " << in_type;
2382  }
2383}
2384
2385void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
2386  Primitive::Type in_type = compare->InputAt(0)->GetType();
2387
2388  //  0 if: left == right
2389  //  1 if: left  > right
2390  // -1 if: left  < right
2391  switch (in_type) {
2392    case Primitive::kPrimInt:
2393    case Primitive::kPrimLong: {
2394      Register result = OutputRegister(compare);
2395      Register left = InputRegisterAt(compare, 0);
2396      Operand right = InputOperandAt(compare, 1);
2397      __ Cmp(left, right);
2398      __ Cset(result, ne);          // result == +1 if NE or 0 otherwise
2399      __ Cneg(result, result, lt);  // result == -1 if LT or unchanged otherwise
2400      break;
2401    }
2402    case Primitive::kPrimFloat:
2403    case Primitive::kPrimDouble: {
2404      Register result = OutputRegister(compare);
2405      FPRegister left = InputFPRegisterAt(compare, 0);
2406      if (compare->GetLocations()->InAt(1).IsConstant()) {
2407        DCHECK(IsFloatingPointZeroConstant(compare->GetLocations()->InAt(1).GetConstant()));
2408        // 0.0 is the only immediate that can be encoded directly in an FCMP instruction.
2409        __ Fcmp(left, 0.0);
2410      } else {
2411        __ Fcmp(left, InputFPRegisterAt(compare, 1));
2412      }
2413      __ Cset(result, ne);
2414      __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
2415      break;
2416    }
2417    default:
2418      LOG(FATAL) << "Unimplemented compare type " << in_type;
2419  }
2420}
2421
2422void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
2423  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
2424
2425  if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
2426    locations->SetInAt(0, Location::RequiresFpuRegister());
2427    locations->SetInAt(1,
2428                       IsFloatingPointZeroConstant(instruction->InputAt(1))
2429                           ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant())
2430                           : Location::RequiresFpuRegister());
2431  } else {
2432    // Integer cases.
2433    locations->SetInAt(0, Location::RequiresRegister());
2434    locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
2435  }
2436
2437  if (!instruction->IsEmittedAtUseSite()) {
2438    locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2439  }
2440}
2441
2442void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
2443  if (instruction->IsEmittedAtUseSite()) {
2444    return;
2445  }
2446
2447  LocationSummary* locations = instruction->GetLocations();
2448  Register res = RegisterFrom(locations->Out(), instruction->GetType());
2449  IfCondition if_cond = instruction->GetCondition();
2450
2451  if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
2452    FPRegister lhs = InputFPRegisterAt(instruction, 0);
2453    if (locations->InAt(1).IsConstant()) {
2454      DCHECK(IsFloatingPointZeroConstant(locations->InAt(1).GetConstant()));
2455      // 0.0 is the only immediate that can be encoded directly in an FCMP instruction.
2456      __ Fcmp(lhs, 0.0);
2457    } else {
2458      __ Fcmp(lhs, InputFPRegisterAt(instruction, 1));
2459    }
2460    __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
2461  } else {
2462    // Integer cases.
2463    Register lhs = InputRegisterAt(instruction, 0);
2464    Operand rhs = InputOperandAt(instruction, 1);
2465    __ Cmp(lhs, rhs);
2466    __ Cset(res, ARM64Condition(if_cond));
2467  }
2468}
2469
2470#define FOR_EACH_CONDITION_INSTRUCTION(M)                                                \
2471  M(Equal)                                                                               \
2472  M(NotEqual)                                                                            \
2473  M(LessThan)                                                                            \
2474  M(LessThanOrEqual)                                                                     \
2475  M(GreaterThan)                                                                         \
2476  M(GreaterThanOrEqual)                                                                  \
2477  M(Below)                                                                               \
2478  M(BelowOrEqual)                                                                        \
2479  M(Above)                                                                               \
2480  M(AboveOrEqual)
2481#define DEFINE_CONDITION_VISITORS(Name)                                                  \
2482void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }         \
2483void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
2484FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
2485#undef DEFINE_CONDITION_VISITORS
2486#undef FOR_EACH_CONDITION_INSTRUCTION
2487
2488void InstructionCodeGeneratorARM64::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
2489  DCHECK(instruction->IsDiv() || instruction->IsRem());
2490
2491  LocationSummary* locations = instruction->GetLocations();
2492  Location second = locations->InAt(1);
2493  DCHECK(second.IsConstant());
2494
2495  Register out = OutputRegister(instruction);
2496  Register dividend = InputRegisterAt(instruction, 0);
2497  int64_t imm = Int64FromConstant(second.GetConstant());
2498  DCHECK(imm == 1 || imm == -1);
2499
2500  if (instruction->IsRem()) {
2501    __ Mov(out, 0);
2502  } else {
2503    if (imm == 1) {
2504      __ Mov(out, dividend);
2505    } else {
2506      __ Neg(out, dividend);
2507    }
2508  }
2509}
2510
2511void InstructionCodeGeneratorARM64::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
2512  DCHECK(instruction->IsDiv() || instruction->IsRem());
2513
2514  LocationSummary* locations = instruction->GetLocations();
2515  Location second = locations->InAt(1);
2516  DCHECK(second.IsConstant());
2517
2518  Register out = OutputRegister(instruction);
2519  Register dividend = InputRegisterAt(instruction, 0);
2520  int64_t imm = Int64FromConstant(second.GetConstant());
2521  uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
2522  int ctz_imm = CTZ(abs_imm);
2523
2524  UseScratchRegisterScope temps(GetVIXLAssembler());
2525  Register temp = temps.AcquireSameSizeAs(out);
2526
2527  if (instruction->IsDiv()) {
2528    __ Add(temp, dividend, abs_imm - 1);
2529    __ Cmp(dividend, 0);
2530    __ Csel(out, temp, dividend, lt);
2531    if (imm > 0) {
2532      __ Asr(out, out, ctz_imm);
2533    } else {
2534      __ Neg(out, Operand(out, ASR, ctz_imm));
2535    }
2536  } else {
2537    int bits = instruction->GetResultType() == Primitive::kPrimInt ? 32 : 64;
2538    __ Asr(temp, dividend, bits - 1);
2539    __ Lsr(temp, temp, bits - ctz_imm);
2540    __ Add(out, dividend, temp);
2541    __ And(out, out, abs_imm - 1);
2542    __ Sub(out, out, temp);
2543  }
2544}
2545
2546void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
2547  DCHECK(instruction->IsDiv() || instruction->IsRem());
2548
2549  LocationSummary* locations = instruction->GetLocations();
2550  Location second = locations->InAt(1);
2551  DCHECK(second.IsConstant());
2552
2553  Register out = OutputRegister(instruction);
2554  Register dividend = InputRegisterAt(instruction, 0);
2555  int64_t imm = Int64FromConstant(second.GetConstant());
2556
2557  Primitive::Type type = instruction->GetResultType();
2558  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
2559
2560  int64_t magic;
2561  int shift;
2562  CalculateMagicAndShiftForDivRem(imm, type == Primitive::kPrimLong /* is_long */, &magic, &shift);
2563
2564  UseScratchRegisterScope temps(GetVIXLAssembler());
2565  Register temp = temps.AcquireSameSizeAs(out);
2566
2567  // temp = get_high(dividend * magic)
2568  __ Mov(temp, magic);
2569  if (type == Primitive::kPrimLong) {
2570    __ Smulh(temp, dividend, temp);
2571  } else {
2572    __ Smull(temp.X(), dividend, temp);
2573    __ Lsr(temp.X(), temp.X(), 32);
2574  }
2575
2576  if (imm > 0 && magic < 0) {
2577    __ Add(temp, temp, dividend);
2578  } else if (imm < 0 && magic > 0) {
2579    __ Sub(temp, temp, dividend);
2580  }
2581
2582  if (shift != 0) {
2583    __ Asr(temp, temp, shift);
2584  }
2585
2586  if (instruction->IsDiv()) {
2587    __ Sub(out, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
2588  } else {
2589    __ Sub(temp, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
2590    // TODO: Strength reduction for msub.
2591    Register temp_imm = temps.AcquireSameSizeAs(out);
2592    __ Mov(temp_imm, imm);
2593    __ Msub(out, temp, temp_imm, dividend);
2594  }
2595}
2596
2597void InstructionCodeGeneratorARM64::GenerateDivRemIntegral(HBinaryOperation* instruction) {
2598  DCHECK(instruction->IsDiv() || instruction->IsRem());
2599  Primitive::Type type = instruction->GetResultType();
2600  DCHECK(type == Primitive::kPrimInt || Primitive::kPrimLong);
2601
2602  LocationSummary* locations = instruction->GetLocations();
2603  Register out = OutputRegister(instruction);
2604  Location second = locations->InAt(1);
2605
2606  if (second.IsConstant()) {
2607    int64_t imm = Int64FromConstant(second.GetConstant());
2608
2609    if (imm == 0) {
2610      // Do not generate anything. DivZeroCheck would prevent any code to be executed.
2611    } else if (imm == 1 || imm == -1) {
2612      DivRemOneOrMinusOne(instruction);
2613    } else if (IsPowerOfTwo(AbsOrMin(imm))) {
2614      DivRemByPowerOfTwo(instruction);
2615    } else {
2616      DCHECK(imm <= -2 || imm >= 2);
2617      GenerateDivRemWithAnyConstant(instruction);
2618    }
2619  } else {
2620    Register dividend = InputRegisterAt(instruction, 0);
2621    Register divisor = InputRegisterAt(instruction, 1);
2622    if (instruction->IsDiv()) {
2623      __ Sdiv(out, dividend, divisor);
2624    } else {
2625      UseScratchRegisterScope temps(GetVIXLAssembler());
2626      Register temp = temps.AcquireSameSizeAs(out);
2627      __ Sdiv(temp, dividend, divisor);
2628      __ Msub(out, temp, divisor, dividend);
2629    }
2630  }
2631}
2632
2633void LocationsBuilderARM64::VisitDiv(HDiv* div) {
2634  LocationSummary* locations =
2635      new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall);
2636  switch (div->GetResultType()) {
2637    case Primitive::kPrimInt:
2638    case Primitive::kPrimLong:
2639      locations->SetInAt(0, Location::RequiresRegister());
2640      locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
2641      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2642      break;
2643
2644    case Primitive::kPrimFloat:
2645    case Primitive::kPrimDouble:
2646      locations->SetInAt(0, Location::RequiresFpuRegister());
2647      locations->SetInAt(1, Location::RequiresFpuRegister());
2648      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2649      break;
2650
2651    default:
2652      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
2653  }
2654}
2655
2656void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
2657  Primitive::Type type = div->GetResultType();
2658  switch (type) {
2659    case Primitive::kPrimInt:
2660    case Primitive::kPrimLong:
2661      GenerateDivRemIntegral(div);
2662      break;
2663
2664    case Primitive::kPrimFloat:
2665    case Primitive::kPrimDouble:
2666      __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
2667      break;
2668
2669    default:
2670      LOG(FATAL) << "Unexpected div type " << type;
2671  }
2672}
2673
2674void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
2675  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
2676      ? LocationSummary::kCallOnSlowPath
2677      : LocationSummary::kNoCall;
2678  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
2679  locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
2680  if (instruction->HasUses()) {
2681    locations->SetOut(Location::SameAsFirstInput());
2682  }
2683}
2684
2685void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
2686  SlowPathCodeARM64* slow_path =
2687      new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM64(instruction);
2688  codegen_->AddSlowPath(slow_path);
2689  Location value = instruction->GetLocations()->InAt(0);
2690
2691  Primitive::Type type = instruction->GetType();
2692
2693  if ((type == Primitive::kPrimBoolean) || !Primitive::IsIntegralType(type)) {
2694      LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
2695    return;
2696  }
2697
2698  if (value.IsConstant()) {
2699    int64_t divisor = Int64ConstantFrom(value);
2700    if (divisor == 0) {
2701      __ B(slow_path->GetEntryLabel());
2702    } else {
2703      // A division by a non-null constant is valid. We don't need to perform
2704      // any check, so simply fall through.
2705    }
2706  } else {
2707    __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
2708  }
2709}
2710
2711void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
2712  LocationSummary* locations =
2713      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2714  locations->SetOut(Location::ConstantLocation(constant));
2715}
2716
2717void InstructionCodeGeneratorARM64::VisitDoubleConstant(
2718    HDoubleConstant* constant ATTRIBUTE_UNUSED) {
2719  // Will be generated at use site.
2720}
2721
2722void LocationsBuilderARM64::VisitExit(HExit* exit) {
2723  exit->SetLocations(nullptr);
2724}
2725
2726void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
2727}
2728
2729void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
2730  LocationSummary* locations =
2731      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2732  locations->SetOut(Location::ConstantLocation(constant));
2733}
2734
2735void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
2736  // Will be generated at use site.
2737}
2738
2739void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
2740  DCHECK(!successor->IsExitBlock());
2741  HBasicBlock* block = got->GetBlock();
2742  HInstruction* previous = got->GetPrevious();
2743  HLoopInformation* info = block->GetLoopInformation();
2744
2745  if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
2746    codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
2747    GenerateSuspendCheck(info->GetSuspendCheck(), successor);
2748    return;
2749  }
2750  if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
2751    GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
2752  }
2753  if (!codegen_->GoesToNextBlock(block, successor)) {
2754    __ B(codegen_->GetLabelOf(successor));
2755  }
2756}
2757
2758void LocationsBuilderARM64::VisitGoto(HGoto* got) {
2759  got->SetLocations(nullptr);
2760}
2761
2762void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
2763  HandleGoto(got, got->GetSuccessor());
2764}
2765
2766void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
2767  try_boundary->SetLocations(nullptr);
2768}
2769
2770void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
2771  HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
2772  if (!successor->IsExitBlock()) {
2773    HandleGoto(try_boundary, successor);
2774  }
2775}
2776
2777void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
2778                                                          size_t condition_input_index,
2779                                                          vixl::Label* true_target,
2780                                                          vixl::Label* false_target) {
2781  // FP branching requires both targets to be explicit. If either of the targets
2782  // is nullptr (fallthrough) use and bind `fallthrough_target` instead.
2783  vixl::Label fallthrough_target;
2784  HInstruction* cond = instruction->InputAt(condition_input_index);
2785
2786  if (true_target == nullptr && false_target == nullptr) {
2787    // Nothing to do. The code always falls through.
2788    return;
2789  } else if (cond->IsIntConstant()) {
2790    // Constant condition, statically compared against 1.
2791    if (cond->AsIntConstant()->IsOne()) {
2792      if (true_target != nullptr) {
2793        __ B(true_target);
2794      }
2795    } else {
2796      DCHECK(cond->AsIntConstant()->IsZero());
2797      if (false_target != nullptr) {
2798        __ B(false_target);
2799      }
2800    }
2801    return;
2802  }
2803
2804  // The following code generates these patterns:
2805  //  (1) true_target == nullptr && false_target != nullptr
2806  //        - opposite condition true => branch to false_target
2807  //  (2) true_target != nullptr && false_target == nullptr
2808  //        - condition true => branch to true_target
2809  //  (3) true_target != nullptr && false_target != nullptr
2810  //        - condition true => branch to true_target
2811  //        - branch to false_target
2812  if (IsBooleanValueOrMaterializedCondition(cond)) {
2813    // The condition instruction has been materialized, compare the output to 0.
2814    Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
2815    DCHECK(cond_val.IsRegister());
2816      if (true_target == nullptr) {
2817      __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
2818    } else {
2819      __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
2820    }
2821  } else {
2822    // The condition instruction has not been materialized, use its inputs as
2823    // the comparison and its condition as the branch condition.
2824    HCondition* condition = cond->AsCondition();
2825
2826    Primitive::Type type = condition->InputAt(0)->GetType();
2827    if (Primitive::IsFloatingPointType(type)) {
2828      FPRegister lhs = InputFPRegisterAt(condition, 0);
2829      if (condition->GetLocations()->InAt(1).IsConstant()) {
2830        DCHECK(IsFloatingPointZeroConstant(condition->GetLocations()->InAt(1).GetConstant()));
2831        // 0.0 is the only immediate that can be encoded directly in an FCMP instruction.
2832        __ Fcmp(lhs, 0.0);
2833      } else {
2834        __ Fcmp(lhs, InputFPRegisterAt(condition, 1));
2835      }
2836      if (true_target == nullptr) {
2837        IfCondition opposite_condition = condition->GetOppositeCondition();
2838        __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
2839      } else {
2840        __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
2841      }
2842    } else {
2843      // Integer cases.
2844      Register lhs = InputRegisterAt(condition, 0);
2845      Operand rhs = InputOperandAt(condition, 1);
2846
2847      Condition arm64_cond;
2848      vixl::Label* non_fallthrough_target;
2849      if (true_target == nullptr) {
2850        arm64_cond = ARM64Condition(condition->GetOppositeCondition());
2851        non_fallthrough_target = false_target;
2852      } else {
2853        arm64_cond = ARM64Condition(condition->GetCondition());
2854        non_fallthrough_target = true_target;
2855      }
2856
2857      if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
2858          rhs.IsImmediate() && (rhs.immediate() == 0)) {
2859        switch (arm64_cond) {
2860          case eq:
2861            __ Cbz(lhs, non_fallthrough_target);
2862            break;
2863          case ne:
2864            __ Cbnz(lhs, non_fallthrough_target);
2865            break;
2866          case lt:
2867            // Test the sign bit and branch accordingly.
2868            __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
2869            break;
2870          case ge:
2871            // Test the sign bit and branch accordingly.
2872            __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
2873            break;
2874          default:
2875            // Without the `static_cast` the compiler throws an error for
2876            // `-Werror=sign-promo`.
2877            LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
2878        }
2879      } else {
2880        __ Cmp(lhs, rhs);
2881        __ B(arm64_cond, non_fallthrough_target);
2882      }
2883    }
2884  }
2885
2886  // If neither branch falls through (case 3), the conditional branch to `true_target`
2887  // was already emitted (case 2) and we need to emit a jump to `false_target`.
2888  if (true_target != nullptr && false_target != nullptr) {
2889    __ B(false_target);
2890  }
2891
2892  if (fallthrough_target.IsLinked()) {
2893    __ Bind(&fallthrough_target);
2894  }
2895}
2896
2897void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
2898  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
2899  if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
2900    locations->SetInAt(0, Location::RequiresRegister());
2901  }
2902}
2903
2904void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
2905  HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
2906  HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
2907  vixl::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
2908      nullptr : codegen_->GetLabelOf(true_successor);
2909  vixl::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
2910      nullptr : codegen_->GetLabelOf(false_successor);
2911  GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
2912}
2913
2914void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
2915  LocationSummary* locations = new (GetGraph()->GetArena())
2916      LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
2917  if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
2918    locations->SetInAt(0, Location::RequiresRegister());
2919  }
2920}
2921
2922void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
2923  SlowPathCodeARM64* slow_path =
2924      deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
2925  GenerateTestAndBranch(deoptimize,
2926                        /* condition_input_index */ 0,
2927                        slow_path->GetEntryLabel(),
2928                        /* false_target */ nullptr);
2929}
2930
2931enum SelectVariant {
2932  kCsel,
2933  kCselFalseConst,
2934  kCselTrueConst,
2935  kFcsel,
2936};
2937
2938static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
2939  return condition->IsCondition() &&
2940         Primitive::IsFloatingPointType(condition->InputAt(0)->GetType());
2941}
2942
2943static inline bool IsRecognizedCselConstant(HInstruction* constant) {
2944  if (constant->IsConstant()) {
2945    int64_t value = Int64FromConstant(constant->AsConstant());
2946    if ((value == -1) || (value == 0) || (value == 1)) {
2947      return true;
2948    }
2949  }
2950  return false;
2951}
2952
2953static inline SelectVariant GetSelectVariant(HSelect* select) {
2954  if (Primitive::IsFloatingPointType(select->GetType())) {
2955    return kFcsel;
2956  } else if (IsRecognizedCselConstant(select->GetFalseValue())) {
2957    return kCselFalseConst;
2958  } else if (IsRecognizedCselConstant(select->GetTrueValue())) {
2959    return kCselTrueConst;
2960  } else {
2961    return kCsel;
2962  }
2963}
2964
2965static inline bool HasSwappedInputs(SelectVariant variant) {
2966  return variant == kCselTrueConst;
2967}
2968
2969static inline Condition GetConditionForSelect(HCondition* condition, SelectVariant variant) {
2970  IfCondition cond = HasSwappedInputs(variant) ? condition->GetOppositeCondition()
2971                                               : condition->GetCondition();
2972  return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
2973                                                     : ARM64Condition(cond);
2974}
2975
2976void LocationsBuilderARM64::VisitSelect(HSelect* select) {
2977  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
2978  switch (GetSelectVariant(select)) {
2979    case kCsel:
2980      locations->SetInAt(0, Location::RequiresRegister());
2981      locations->SetInAt(1, Location::RequiresRegister());
2982      locations->SetOut(Location::RequiresRegister());
2983      break;
2984    case kCselFalseConst:
2985      locations->SetInAt(0, Location::ConstantLocation(select->InputAt(0)->AsConstant()));
2986      locations->SetInAt(1, Location::RequiresRegister());
2987      locations->SetOut(Location::RequiresRegister());
2988      break;
2989    case kCselTrueConst:
2990      locations->SetInAt(0, Location::RequiresRegister());
2991      locations->SetInAt(1, Location::ConstantLocation(select->InputAt(1)->AsConstant()));
2992      locations->SetOut(Location::RequiresRegister());
2993      break;
2994    case kFcsel:
2995      locations->SetInAt(0, Location::RequiresFpuRegister());
2996      locations->SetInAt(1, Location::RequiresFpuRegister());
2997      locations->SetOut(Location::RequiresFpuRegister());
2998      break;
2999  }
3000  if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
3001    locations->SetInAt(2, Location::RequiresRegister());
3002  }
3003}
3004
3005void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
3006  HInstruction* cond = select->GetCondition();
3007  SelectVariant variant = GetSelectVariant(select);
3008  Condition csel_cond;
3009
3010  if (IsBooleanValueOrMaterializedCondition(cond)) {
3011    if (cond->IsCondition() && cond->GetNext() == select) {
3012      // Condition codes set from previous instruction.
3013      csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
3014    } else {
3015      __ Cmp(InputRegisterAt(select, 2), 0);
3016      csel_cond = HasSwappedInputs(variant) ? eq : ne;
3017    }
3018  } else if (IsConditionOnFloatingPointValues(cond)) {
3019    Location rhs = cond->GetLocations()->InAt(1);
3020    if (rhs.IsConstant()) {
3021      DCHECK(IsFloatingPointZeroConstant(rhs.GetConstant()));
3022      __ Fcmp(InputFPRegisterAt(cond, 0), 0.0);
3023    } else {
3024      __ Fcmp(InputFPRegisterAt(cond, 0), InputFPRegisterAt(cond, 1));
3025    }
3026    csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
3027  } else {
3028    __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
3029    csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
3030  }
3031
3032  switch (variant) {
3033    case kCsel:
3034    case kCselFalseConst:
3035      __ Csel(OutputRegister(select),
3036              InputRegisterAt(select, 1),
3037              InputOperandAt(select, 0),
3038              csel_cond);
3039      break;
3040    case kCselTrueConst:
3041      __ Csel(OutputRegister(select),
3042              InputRegisterAt(select, 0),
3043              InputOperandAt(select, 1),
3044              csel_cond);
3045      break;
3046    case kFcsel:
3047      __ Fcsel(OutputFPRegister(select),
3048               InputFPRegisterAt(select, 1),
3049               InputFPRegisterAt(select, 0),
3050               csel_cond);
3051      break;
3052  }
3053}
3054
3055void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3056  new (GetGraph()->GetArena()) LocationSummary(info);
3057}
3058
3059void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3060  if (codegen_->HasStackMapAtCurrentPc()) {
3061    // Ensure that we do not collide with the stack map of the previous instruction.
3062    __ Nop();
3063  }
3064  codegen_->RecordPcInfo(info, info->GetDexPc());
3065}
3066
3067void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3068  HandleFieldGet(instruction);
3069}
3070
3071void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3072  HandleFieldGet(instruction, instruction->GetFieldInfo());
3073}
3074
3075void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3076  HandleFieldSet(instruction);
3077}
3078
3079void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3080  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
3081}
3082
3083static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
3084  return kEmitCompilerReadBarrier &&
3085      (kUseBakerReadBarrier ||
3086       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3087       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3088       type_check_kind == TypeCheckKind::kArrayObjectCheck);
3089}
3090
3091void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
3092  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3093  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3094  switch (type_check_kind) {
3095    case TypeCheckKind::kExactCheck:
3096    case TypeCheckKind::kAbstractClassCheck:
3097    case TypeCheckKind::kClassHierarchyCheck:
3098    case TypeCheckKind::kArrayObjectCheck:
3099      call_kind =
3100          kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
3101      break;
3102    case TypeCheckKind::kArrayCheck:
3103    case TypeCheckKind::kUnresolvedCheck:
3104    case TypeCheckKind::kInterfaceCheck:
3105      call_kind = LocationSummary::kCallOnSlowPath;
3106      break;
3107  }
3108
3109  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3110  locations->SetInAt(0, Location::RequiresRegister());
3111  locations->SetInAt(1, Location::RequiresRegister());
3112  // The "out" register is used as a temporary, so it overlaps with the inputs.
3113  // Note that TypeCheckSlowPathARM64 uses this register too.
3114  locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3115  // When read barriers are enabled, we need a temporary register for
3116  // some cases.
3117  if (TypeCheckNeedsATemporary(type_check_kind)) {
3118    locations->AddTemp(Location::RequiresRegister());
3119  }
3120}
3121
3122void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
3123  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3124  LocationSummary* locations = instruction->GetLocations();
3125  Location obj_loc = locations->InAt(0);
3126  Register obj = InputRegisterAt(instruction, 0);
3127  Register cls = InputRegisterAt(instruction, 1);
3128  Location out_loc = locations->Out();
3129  Register out = OutputRegister(instruction);
3130  Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
3131      locations->GetTemp(0) :
3132      Location::NoLocation();
3133  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3134  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3135  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3136  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3137
3138  vixl::Label done, zero;
3139  SlowPathCodeARM64* slow_path = nullptr;
3140
3141  // Return 0 if `obj` is null.
3142  // Avoid null check if we know `obj` is not null.
3143  if (instruction->MustDoNullCheck()) {
3144    __ Cbz(obj, &zero);
3145  }
3146
3147  // /* HeapReference<Class> */ out = obj->klass_
3148  GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
3149
3150  switch (type_check_kind) {
3151    case TypeCheckKind::kExactCheck: {
3152      __ Cmp(out, cls);
3153      __ Cset(out, eq);
3154      if (zero.IsLinked()) {
3155        __ B(&done);
3156      }
3157      break;
3158    }
3159
3160    case TypeCheckKind::kAbstractClassCheck: {
3161      // If the class is abstract, we eagerly fetch the super class of the
3162      // object to avoid doing a comparison we know will fail.
3163      vixl::Label loop, success;
3164      __ Bind(&loop);
3165      // /* HeapReference<Class> */ out = out->super_class_
3166      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
3167      // If `out` is null, we use it for the result, and jump to `done`.
3168      __ Cbz(out, &done);
3169      __ Cmp(out, cls);
3170      __ B(ne, &loop);
3171      __ Mov(out, 1);
3172      if (zero.IsLinked()) {
3173        __ B(&done);
3174      }
3175      break;
3176    }
3177
3178    case TypeCheckKind::kClassHierarchyCheck: {
3179      // Walk over the class hierarchy to find a match.
3180      vixl::Label loop, success;
3181      __ Bind(&loop);
3182      __ Cmp(out, cls);
3183      __ B(eq, &success);
3184      // /* HeapReference<Class> */ out = out->super_class_
3185      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
3186      __ Cbnz(out, &loop);
3187      // If `out` is null, we use it for the result, and jump to `done`.
3188      __ B(&done);
3189      __ Bind(&success);
3190      __ Mov(out, 1);
3191      if (zero.IsLinked()) {
3192        __ B(&done);
3193      }
3194      break;
3195    }
3196
3197    case TypeCheckKind::kArrayObjectCheck: {
3198      // Do an exact check.
3199      vixl::Label exact_check;
3200      __ Cmp(out, cls);
3201      __ B(eq, &exact_check);
3202      // Otherwise, we need to check that the object's class is a non-primitive array.
3203      // /* HeapReference<Class> */ out = out->component_type_
3204      GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
3205      // If `out` is null, we use it for the result, and jump to `done`.
3206      __ Cbz(out, &done);
3207      __ Ldrh(out, HeapOperand(out, primitive_offset));
3208      static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3209      __ Cbnz(out, &zero);
3210      __ Bind(&exact_check);
3211      __ Mov(out, 1);
3212      __ B(&done);
3213      break;
3214    }
3215
3216    case TypeCheckKind::kArrayCheck: {
3217      __ Cmp(out, cls);
3218      DCHECK(locations->OnlyCallsOnSlowPath());
3219      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
3220                                                                      /* is_fatal */ false);
3221      codegen_->AddSlowPath(slow_path);
3222      __ B(ne, slow_path->GetEntryLabel());
3223      __ Mov(out, 1);
3224      if (zero.IsLinked()) {
3225        __ B(&done);
3226      }
3227      break;
3228    }
3229
3230    case TypeCheckKind::kUnresolvedCheck:
3231    case TypeCheckKind::kInterfaceCheck: {
3232      // Note that we indeed only call on slow path, but we always go
3233      // into the slow path for the unresolved and interface check
3234      // cases.
3235      //
3236      // We cannot directly call the InstanceofNonTrivial runtime
3237      // entry point without resorting to a type checking slow path
3238      // here (i.e. by calling InvokeRuntime directly), as it would
3239      // require to assign fixed registers for the inputs of this
3240      // HInstanceOf instruction (following the runtime calling
3241      // convention), which might be cluttered by the potential first
3242      // read barrier emission at the beginning of this method.
3243      //
3244      // TODO: Introduce a new runtime entry point taking the object
3245      // to test (instead of its class) as argument, and let it deal
3246      // with the read barrier issues. This will let us refactor this
3247      // case of the `switch` code as it was previously (with a direct
3248      // call to the runtime not using a type checking slow path).
3249      // This should also be beneficial for the other cases above.
3250      DCHECK(locations->OnlyCallsOnSlowPath());
3251      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
3252                                                                      /* is_fatal */ false);
3253      codegen_->AddSlowPath(slow_path);
3254      __ B(slow_path->GetEntryLabel());
3255      if (zero.IsLinked()) {
3256        __ B(&done);
3257      }
3258      break;
3259    }
3260  }
3261
3262  if (zero.IsLinked()) {
3263    __ Bind(&zero);
3264    __ Mov(out, 0);
3265  }
3266
3267  if (done.IsLinked()) {
3268    __ Bind(&done);
3269  }
3270
3271  if (slow_path != nullptr) {
3272    __ Bind(slow_path->GetExitLabel());
3273  }
3274}
3275
3276void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
3277  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3278  bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
3279
3280  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3281  switch (type_check_kind) {
3282    case TypeCheckKind::kExactCheck:
3283    case TypeCheckKind::kAbstractClassCheck:
3284    case TypeCheckKind::kClassHierarchyCheck:
3285    case TypeCheckKind::kArrayObjectCheck:
3286      call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
3287          LocationSummary::kCallOnSlowPath :
3288          LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
3289      break;
3290    case TypeCheckKind::kArrayCheck:
3291    case TypeCheckKind::kUnresolvedCheck:
3292    case TypeCheckKind::kInterfaceCheck:
3293      call_kind = LocationSummary::kCallOnSlowPath;
3294      break;
3295  }
3296
3297  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3298  locations->SetInAt(0, Location::RequiresRegister());
3299  locations->SetInAt(1, Location::RequiresRegister());
3300  // Note that TypeCheckSlowPathARM64 uses this "temp" register too.
3301  locations->AddTemp(Location::RequiresRegister());
3302  // When read barriers are enabled, we need an additional temporary
3303  // register for some cases.
3304  if (TypeCheckNeedsATemporary(type_check_kind)) {
3305    locations->AddTemp(Location::RequiresRegister());
3306  }
3307}
3308
3309void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
3310  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3311  LocationSummary* locations = instruction->GetLocations();
3312  Location obj_loc = locations->InAt(0);
3313  Register obj = InputRegisterAt(instruction, 0);
3314  Register cls = InputRegisterAt(instruction, 1);
3315  Location temp_loc = locations->GetTemp(0);
3316  Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
3317      locations->GetTemp(1) :
3318      Location::NoLocation();
3319  Register temp = WRegisterFrom(temp_loc);
3320  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3321  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3322  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3323  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3324
3325  bool is_type_check_slow_path_fatal =
3326      (type_check_kind == TypeCheckKind::kExactCheck ||
3327       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3328       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3329       type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
3330      !instruction->CanThrowIntoCatchBlock();
3331  SlowPathCodeARM64* type_check_slow_path =
3332      new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
3333                                                          is_type_check_slow_path_fatal);
3334  codegen_->AddSlowPath(type_check_slow_path);
3335
3336  vixl::Label done;
3337  // Avoid null check if we know obj is not null.
3338  if (instruction->MustDoNullCheck()) {
3339    __ Cbz(obj, &done);
3340  }
3341
3342  // /* HeapReference<Class> */ temp = obj->klass_
3343  GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3344
3345  switch (type_check_kind) {
3346    case TypeCheckKind::kExactCheck:
3347    case TypeCheckKind::kArrayCheck: {
3348      __ Cmp(temp, cls);
3349      // Jump to slow path for throwing the exception or doing a
3350      // more involved array check.
3351      __ B(ne, type_check_slow_path->GetEntryLabel());
3352      break;
3353    }
3354
3355    case TypeCheckKind::kAbstractClassCheck: {
3356      // If the class is abstract, we eagerly fetch the super class of the
3357      // object to avoid doing a comparison we know will fail.
3358      vixl::Label loop, compare_classes;
3359      __ Bind(&loop);
3360      // /* HeapReference<Class> */ temp = temp->super_class_
3361      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
3362
3363      // If the class reference currently in `temp` is not null, jump
3364      // to the `compare_classes` label to compare it with the checked
3365      // class.
3366      __ Cbnz(temp, &compare_classes);
3367      // Otherwise, jump to the slow path to throw the exception.
3368      //
3369      // But before, move back the object's class into `temp` before
3370      // going into the slow path, as it has been overwritten in the
3371      // meantime.
3372      // /* HeapReference<Class> */ temp = obj->klass_
3373      GenerateReferenceLoadTwoRegisters(
3374          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3375      __ B(type_check_slow_path->GetEntryLabel());
3376
3377      __ Bind(&compare_classes);
3378      __ Cmp(temp, cls);
3379      __ B(ne, &loop);
3380      break;
3381    }
3382
3383    case TypeCheckKind::kClassHierarchyCheck: {
3384      // Walk over the class hierarchy to find a match.
3385      vixl::Label loop;
3386      __ Bind(&loop);
3387      __ Cmp(temp, cls);
3388      __ B(eq, &done);
3389
3390      // /* HeapReference<Class> */ temp = temp->super_class_
3391      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
3392
3393      // If the class reference currently in `temp` is not null, jump
3394      // back at the beginning of the loop.
3395      __ Cbnz(temp, &loop);
3396      // Otherwise, jump to the slow path to throw the exception.
3397      //
3398      // But before, move back the object's class into `temp` before
3399      // going into the slow path, as it has been overwritten in the
3400      // meantime.
3401      // /* HeapReference<Class> */ temp = obj->klass_
3402      GenerateReferenceLoadTwoRegisters(
3403          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3404      __ B(type_check_slow_path->GetEntryLabel());
3405      break;
3406    }
3407
3408    case TypeCheckKind::kArrayObjectCheck: {
3409      // Do an exact check.
3410      vixl::Label check_non_primitive_component_type;
3411      __ Cmp(temp, cls);
3412      __ B(eq, &done);
3413
3414      // Otherwise, we need to check that the object's class is a non-primitive array.
3415      // /* HeapReference<Class> */ temp = temp->component_type_
3416      GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
3417
3418      // If the component type is not null (i.e. the object is indeed
3419      // an array), jump to label `check_non_primitive_component_type`
3420      // to further check that this component type is not a primitive
3421      // type.
3422      __ Cbnz(temp, &check_non_primitive_component_type);
3423      // Otherwise, jump to the slow path to throw the exception.
3424      //
3425      // But before, move back the object's class into `temp` before
3426      // going into the slow path, as it has been overwritten in the
3427      // meantime.
3428      // /* HeapReference<Class> */ temp = obj->klass_
3429      GenerateReferenceLoadTwoRegisters(
3430          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3431      __ B(type_check_slow_path->GetEntryLabel());
3432
3433      __ Bind(&check_non_primitive_component_type);
3434      __ Ldrh(temp, HeapOperand(temp, primitive_offset));
3435      static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3436      __ Cbz(temp, &done);
3437      // Same comment as above regarding `temp` and the slow path.
3438      // /* HeapReference<Class> */ temp = obj->klass_
3439      GenerateReferenceLoadTwoRegisters(
3440          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3441      __ B(type_check_slow_path->GetEntryLabel());
3442      break;
3443    }
3444
3445    case TypeCheckKind::kUnresolvedCheck:
3446    case TypeCheckKind::kInterfaceCheck:
3447      // We always go into the type check slow path for the unresolved
3448      // and interface check cases.
3449      //
3450      // We cannot directly call the CheckCast runtime entry point
3451      // without resorting to a type checking slow path here (i.e. by
3452      // calling InvokeRuntime directly), as it would require to
3453      // assign fixed registers for the inputs of this HInstanceOf
3454      // instruction (following the runtime calling convention), which
3455      // might be cluttered by the potential first read barrier
3456      // emission at the beginning of this method.
3457      //
3458      // TODO: Introduce a new runtime entry point taking the object
3459      // to test (instead of its class) as argument, and let it deal
3460      // with the read barrier issues. This will let us refactor this
3461      // case of the `switch` code as it was previously (with a direct
3462      // call to the runtime not using a type checking slow path).
3463      // This should also be beneficial for the other cases above.
3464      __ B(type_check_slow_path->GetEntryLabel());
3465      break;
3466  }
3467  __ Bind(&done);
3468
3469  __ Bind(type_check_slow_path->GetExitLabel());
3470}
3471
3472void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
3473  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
3474  locations->SetOut(Location::ConstantLocation(constant));
3475}
3476
3477void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
3478  // Will be generated at use site.
3479}
3480
3481void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
3482  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
3483  locations->SetOut(Location::ConstantLocation(constant));
3484}
3485
3486void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
3487  // Will be generated at use site.
3488}
3489
3490void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3491  // The trampoline uses the same calling convention as dex calling conventions,
3492  // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
3493  // the method_idx.
3494  HandleInvoke(invoke);
3495}
3496
3497void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3498  codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
3499}
3500
3501void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
3502  InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
3503  CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3504}
3505
3506void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
3507  HandleInvoke(invoke);
3508}
3509
3510void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
3511  // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
3512  LocationSummary* locations = invoke->GetLocations();
3513  Register temp = XRegisterFrom(locations->GetTemp(0));
3514  uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset(
3515      invoke->GetImtIndex() % mirror::Class::kImtSize, kArm64PointerSize).Uint32Value();
3516  Location receiver = locations->InAt(0);
3517  Offset class_offset = mirror::Object::ClassOffset();
3518  Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
3519
3520  // The register ip1 is required to be used for the hidden argument in
3521  // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
3522  MacroAssembler* masm = GetVIXLAssembler();
3523  UseScratchRegisterScope scratch_scope(masm);
3524  BlockPoolsScope block_pools(masm);
3525  scratch_scope.Exclude(ip1);
3526  __ Mov(ip1, invoke->GetDexMethodIndex());
3527
3528  if (receiver.IsStackSlot()) {
3529    __ Ldr(temp.W(), StackOperandFrom(receiver));
3530    // /* HeapReference<Class> */ temp = temp->klass_
3531    __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
3532  } else {
3533    // /* HeapReference<Class> */ temp = receiver->klass_
3534    __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
3535  }
3536  codegen_->MaybeRecordImplicitNullCheck(invoke);
3537  // Instead of simply (possibly) unpoisoning `temp` here, we should
3538  // emit a read barrier for the previous class reference load.
3539  // However this is not required in practice, as this is an
3540  // intermediate/temporary reference and because the current
3541  // concurrent copying collector keeps the from-space memory
3542  // intact/accessible until the end of the marking phase (the
3543  // concurrent copying collector may not in the future).
3544  GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
3545  // temp = temp->GetImtEntryAt(method_offset);
3546  __ Ldr(temp, MemOperand(temp, method_offset));
3547  // lr = temp->GetEntryPoint();
3548  __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
3549  // lr();
3550  __ Blr(lr);
3551  DCHECK(!codegen_->IsLeafMethod());
3552  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3553}
3554
3555void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3556  IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
3557  if (intrinsic.TryDispatch(invoke)) {
3558    return;
3559  }
3560
3561  HandleInvoke(invoke);
3562}
3563
3564void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3565  // Explicit clinit checks triggered by static invokes must have been pruned by
3566  // art::PrepareForRegisterAllocation.
3567  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3568
3569  IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
3570  if (intrinsic.TryDispatch(invoke)) {
3571    return;
3572  }
3573
3574  HandleInvoke(invoke);
3575}
3576
3577static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
3578  if (invoke->GetLocations()->Intrinsified()) {
3579    IntrinsicCodeGeneratorARM64 intrinsic(codegen);
3580    intrinsic.Dispatch(invoke);
3581    return true;
3582  }
3583  return false;
3584}
3585
3586HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
3587      const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
3588      MethodReference target_method ATTRIBUTE_UNUSED) {
3589  // On ARM64 we support all dispatch types.
3590  return desired_dispatch_info;
3591}
3592
3593void CodeGeneratorARM64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
3594  // For better instruction scheduling we load the direct code pointer before the method pointer.
3595  bool direct_code_loaded = false;
3596  switch (invoke->GetCodePtrLocation()) {
3597    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
3598      // LR = code address from literal pool with link-time patch.
3599      __ Ldr(lr, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
3600      direct_code_loaded = true;
3601      break;
3602    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
3603      // LR = invoke->GetDirectCodePtr();
3604      __ Ldr(lr, DeduplicateUint64Literal(invoke->GetDirectCodePtr()));
3605      direct_code_loaded = true;
3606      break;
3607    default:
3608      break;
3609  }
3610
3611  // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
3612  Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
3613  switch (invoke->GetMethodLoadKind()) {
3614    case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
3615      // temp = thread->string_init_entrypoint
3616      __ Ldr(XRegisterFrom(temp), MemOperand(tr, invoke->GetStringInitOffset()));
3617      break;
3618    case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
3619      callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
3620      break;
3621    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
3622      // Load method address from literal pool.
3623      __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress()));
3624      break;
3625    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
3626      // Load method address from literal pool with a link-time patch.
3627      __ Ldr(XRegisterFrom(temp),
3628             DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
3629      break;
3630    case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
3631      // Add ADRP with its PC-relative DexCache access patch.
3632      pc_relative_dex_cache_patches_.emplace_back(*invoke->GetTargetMethod().dex_file,
3633                                                  invoke->GetDexCacheArrayOffset());
3634      vixl::Label* pc_insn_label = &pc_relative_dex_cache_patches_.back().label;
3635      {
3636        vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
3637        __ Bind(pc_insn_label);
3638        __ adrp(XRegisterFrom(temp), 0);
3639      }
3640      pc_relative_dex_cache_patches_.back().pc_insn_label = pc_insn_label;
3641      // Add LDR with its PC-relative DexCache access patch.
3642      pc_relative_dex_cache_patches_.emplace_back(*invoke->GetTargetMethod().dex_file,
3643                                                  invoke->GetDexCacheArrayOffset());
3644      {
3645        vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
3646        __ Bind(&pc_relative_dex_cache_patches_.back().label);
3647        __ ldr(XRegisterFrom(temp), MemOperand(XRegisterFrom(temp), 0));
3648        pc_relative_dex_cache_patches_.back().pc_insn_label = pc_insn_label;
3649      }
3650      break;
3651    }
3652    case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
3653      Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
3654      Register reg = XRegisterFrom(temp);
3655      Register method_reg;
3656      if (current_method.IsRegister()) {
3657        method_reg = XRegisterFrom(current_method);
3658      } else {
3659        DCHECK(invoke->GetLocations()->Intrinsified());
3660        DCHECK(!current_method.IsValid());
3661        method_reg = reg;
3662        __ Ldr(reg.X(), MemOperand(sp, kCurrentMethodStackOffset));
3663      }
3664
3665      // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
3666      __ Ldr(reg.X(),
3667             MemOperand(method_reg.X(),
3668                        ArtMethod::DexCacheResolvedMethodsOffset(kArm64WordSize).Int32Value()));
3669      // temp = temp[index_in_cache];
3670      uint32_t index_in_cache = invoke->GetTargetMethod().dex_method_index;
3671    __ Ldr(reg.X(), MemOperand(reg.X(), GetCachePointerOffset(index_in_cache)));
3672      break;
3673    }
3674  }
3675
3676  switch (invoke->GetCodePtrLocation()) {
3677    case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
3678      __ Bl(&frame_entry_label_);
3679      break;
3680    case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
3681      relative_call_patches_.emplace_back(invoke->GetTargetMethod());
3682      vixl::Label* label = &relative_call_patches_.back().label;
3683      vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
3684      __ Bind(label);
3685      __ bl(0);  // Branch and link to itself. This will be overriden at link time.
3686      break;
3687    }
3688    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
3689    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
3690      // LR prepared above for better instruction scheduling.
3691      DCHECK(direct_code_loaded);
3692      // lr()
3693      __ Blr(lr);
3694      break;
3695    case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
3696      // LR = callee_method->entry_point_from_quick_compiled_code_;
3697      __ Ldr(lr, MemOperand(
3698          XRegisterFrom(callee_method),
3699          ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize).Int32Value()));
3700      // lr()
3701      __ Blr(lr);
3702      break;
3703  }
3704
3705  DCHECK(!IsLeafMethod());
3706}
3707
3708void CodeGeneratorARM64::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
3709  // Use the calling convention instead of the location of the receiver, as
3710  // intrinsics may have put the receiver in a different register. In the intrinsics
3711  // slow path, the arguments have been moved to the right place, so here we are
3712  // guaranteed that the receiver is the first register of the calling convention.
3713  InvokeDexCallingConvention calling_convention;
3714  Register receiver = calling_convention.GetRegisterAt(0);
3715  Register temp = XRegisterFrom(temp_in);
3716  size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
3717      invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
3718  Offset class_offset = mirror::Object::ClassOffset();
3719  Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
3720
3721  BlockPoolsScope block_pools(GetVIXLAssembler());
3722
3723  DCHECK(receiver.IsRegister());
3724  // /* HeapReference<Class> */ temp = receiver->klass_
3725  __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
3726  MaybeRecordImplicitNullCheck(invoke);
3727  // Instead of simply (possibly) unpoisoning `temp` here, we should
3728  // emit a read barrier for the previous class reference load.
3729  // intermediate/temporary reference and because the current
3730  // concurrent copying collector keeps the from-space memory
3731  // intact/accessible until the end of the marking phase (the
3732  // concurrent copying collector may not in the future).
3733  GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
3734  // temp = temp->GetMethodAt(method_offset);
3735  __ Ldr(temp, MemOperand(temp, method_offset));
3736  // lr = temp->GetEntryPoint();
3737  __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
3738  // lr();
3739  __ Blr(lr);
3740}
3741
3742void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
3743  DCHECK(linker_patches->empty());
3744  size_t size =
3745      method_patches_.size() +
3746      call_patches_.size() +
3747      relative_call_patches_.size() +
3748      pc_relative_dex_cache_patches_.size();
3749  linker_patches->reserve(size);
3750  for (const auto& entry : method_patches_) {
3751    const MethodReference& target_method = entry.first;
3752    vixl::Literal<uint64_t>* literal = entry.second;
3753    linker_patches->push_back(LinkerPatch::MethodPatch(literal->offset(),
3754                                                       target_method.dex_file,
3755                                                       target_method.dex_method_index));
3756  }
3757  for (const auto& entry : call_patches_) {
3758    const MethodReference& target_method = entry.first;
3759    vixl::Literal<uint64_t>* literal = entry.second;
3760    linker_patches->push_back(LinkerPatch::CodePatch(literal->offset(),
3761                                                     target_method.dex_file,
3762                                                     target_method.dex_method_index));
3763  }
3764  for (const MethodPatchInfo<vixl::Label>& info : relative_call_patches_) {
3765    linker_patches->push_back(LinkerPatch::RelativeCodePatch(info.label.location(),
3766                                                             info.target_method.dex_file,
3767                                                             info.target_method.dex_method_index));
3768  }
3769  for (const PcRelativeDexCacheAccessInfo& info : pc_relative_dex_cache_patches_) {
3770    linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(info.label.location(),
3771                                                              &info.target_dex_file,
3772                                                              info.pc_insn_label->location(),
3773                                                              info.element_offset));
3774  }
3775}
3776
3777vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
3778  // Look up the literal for value.
3779  auto lb = uint64_literals_.lower_bound(value);
3780  if (lb != uint64_literals_.end() && !uint64_literals_.key_comp()(value, lb->first)) {
3781    return lb->second;
3782  }
3783  // We don't have a literal for this value, insert a new one.
3784  vixl::Literal<uint64_t>* literal = __ CreateLiteralDestroyedWithPool<uint64_t>(value);
3785  uint64_literals_.PutBefore(lb, value, literal);
3786  return literal;
3787}
3788
3789vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodLiteral(
3790    MethodReference target_method,
3791    MethodToLiteralMap* map) {
3792  // Look up the literal for target_method.
3793  auto lb = map->lower_bound(target_method);
3794  if (lb != map->end() && !map->key_comp()(target_method, lb->first)) {
3795    return lb->second;
3796  }
3797  // We don't have a literal for this method yet, insert a new one.
3798  vixl::Literal<uint64_t>* literal = __ CreateLiteralDestroyedWithPool<uint64_t>(0u);
3799  map->PutBefore(lb, target_method, literal);
3800  return literal;
3801}
3802
3803vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodAddressLiteral(
3804    MethodReference target_method) {
3805  return DeduplicateMethodLiteral(target_method, &method_patches_);
3806}
3807
3808vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodCodeLiteral(
3809    MethodReference target_method) {
3810  return DeduplicateMethodLiteral(target_method, &call_patches_);
3811}
3812
3813
3814void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3815  // Explicit clinit checks triggered by static invokes must have been pruned by
3816  // art::PrepareForRegisterAllocation.
3817  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3818
3819  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3820    return;
3821  }
3822
3823  BlockPoolsScope block_pools(GetVIXLAssembler());
3824  LocationSummary* locations = invoke->GetLocations();
3825  codegen_->GenerateStaticOrDirectCall(
3826      invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
3827  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3828}
3829
3830void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3831  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3832    return;
3833  }
3834
3835  codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
3836  DCHECK(!codegen_->IsLeafMethod());
3837  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3838}
3839
3840void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
3841  InvokeRuntimeCallingConvention calling_convention;
3842  CodeGenerator::CreateLoadClassLocationSummary(
3843      cls,
3844      LocationFrom(calling_convention.GetRegisterAt(0)),
3845      LocationFrom(vixl::x0),
3846      /* code_generator_supports_read_barrier */ true);
3847}
3848
3849void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) {
3850  if (cls->NeedsAccessCheck()) {
3851    codegen_->MoveConstant(cls->GetLocations()->GetTemp(0), cls->GetTypeIndex());
3852    codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
3853                            cls,
3854                            cls->GetDexPc(),
3855                            nullptr);
3856    CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
3857    return;
3858  }
3859
3860  Location out_loc = cls->GetLocations()->Out();
3861  Register out = OutputRegister(cls);
3862  Register current_method = InputRegisterAt(cls, 0);
3863  if (cls->IsReferrersClass()) {
3864    DCHECK(!cls->CanCallRuntime());
3865    DCHECK(!cls->MustGenerateClinitCheck());
3866    // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
3867    GenerateGcRootFieldLoad(
3868        cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
3869  } else {
3870    MemberOffset resolved_types_offset = ArtMethod::DexCacheResolvedTypesOffset(kArm64PointerSize);
3871    // /* GcRoot<mirror::Class>[] */ out =
3872    //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
3873    __ Ldr(out.X(), MemOperand(current_method, resolved_types_offset.Int32Value()));
3874    // /* GcRoot<mirror::Class> */ out = out[type_index]
3875    GenerateGcRootFieldLoad(
3876        cls, out_loc, out.X(), CodeGenerator::GetCacheOffset(cls->GetTypeIndex()));
3877
3878    if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
3879      DCHECK(cls->CanCallRuntime());
3880      SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
3881          cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
3882      codegen_->AddSlowPath(slow_path);
3883      if (!cls->IsInDexCache()) {
3884        __ Cbz(out, slow_path->GetEntryLabel());
3885      }
3886      if (cls->MustGenerateClinitCheck()) {
3887        GenerateClassInitializationCheck(slow_path, out);
3888      } else {
3889        __ Bind(slow_path->GetExitLabel());
3890      }
3891    }
3892  }
3893}
3894
3895static MemOperand GetExceptionTlsAddress() {
3896  return MemOperand(tr, Thread::ExceptionOffset<kArm64WordSize>().Int32Value());
3897}
3898
3899void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
3900  LocationSummary* locations =
3901      new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
3902  locations->SetOut(Location::RequiresRegister());
3903}
3904
3905void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
3906  __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
3907}
3908
3909void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
3910  new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
3911}
3912
3913void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
3914  __ Str(wzr, GetExceptionTlsAddress());
3915}
3916
3917void LocationsBuilderARM64::VisitLoadLocal(HLoadLocal* load) {
3918  load->SetLocations(nullptr);
3919}
3920
3921void InstructionCodeGeneratorARM64::VisitLoadLocal(HLoadLocal* load ATTRIBUTE_UNUSED) {
3922  // Nothing to do, this is driven by the code generator.
3923}
3924
3925void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
3926  LocationSummary::CallKind call_kind = (!load->IsInDexCache() || kEmitCompilerReadBarrier)
3927      ? LocationSummary::kCallOnSlowPath
3928      : LocationSummary::kNoCall;
3929  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
3930  locations->SetInAt(0, Location::RequiresRegister());
3931  locations->SetOut(Location::RequiresRegister());
3932}
3933
3934void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) {
3935  Location out_loc = load->GetLocations()->Out();
3936  Register out = OutputRegister(load);
3937  Register current_method = InputRegisterAt(load, 0);
3938
3939  // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
3940  GenerateGcRootFieldLoad(
3941      load, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
3942  // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
3943  __ Ldr(out.X(), HeapOperand(out, mirror::Class::DexCacheStringsOffset().Uint32Value()));
3944  // /* GcRoot<mirror::String> */ out = out[string_index]
3945  GenerateGcRootFieldLoad(
3946      load, out_loc, out.X(), CodeGenerator::GetCacheOffset(load->GetStringIndex()));
3947
3948  if (!load->IsInDexCache()) {
3949    SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM64(load);
3950    codegen_->AddSlowPath(slow_path);
3951    __ Cbz(out, slow_path->GetEntryLabel());
3952    __ Bind(slow_path->GetExitLabel());
3953  }
3954}
3955
3956void LocationsBuilderARM64::VisitLocal(HLocal* local) {
3957  local->SetLocations(nullptr);
3958}
3959
3960void InstructionCodeGeneratorARM64::VisitLocal(HLocal* local) {
3961  DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock());
3962}
3963
3964void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
3965  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
3966  locations->SetOut(Location::ConstantLocation(constant));
3967}
3968
3969void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
3970  // Will be generated at use site.
3971}
3972
3973void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
3974  LocationSummary* locations =
3975      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
3976  InvokeRuntimeCallingConvention calling_convention;
3977  locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
3978}
3979
3980void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
3981  codegen_->InvokeRuntime(instruction->IsEnter()
3982        ? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject),
3983      instruction,
3984      instruction->GetDexPc(),
3985      nullptr);
3986  if (instruction->IsEnter()) {
3987    CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
3988  } else {
3989    CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
3990  }
3991}
3992
3993void LocationsBuilderARM64::VisitMul(HMul* mul) {
3994  LocationSummary* locations =
3995      new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
3996  switch (mul->GetResultType()) {
3997    case Primitive::kPrimInt:
3998    case Primitive::kPrimLong:
3999      locations->SetInAt(0, Location::RequiresRegister());
4000      locations->SetInAt(1, Location::RequiresRegister());
4001      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4002      break;
4003
4004    case Primitive::kPrimFloat:
4005    case Primitive::kPrimDouble:
4006      locations->SetInAt(0, Location::RequiresFpuRegister());
4007      locations->SetInAt(1, Location::RequiresFpuRegister());
4008      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4009      break;
4010
4011    default:
4012      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4013  }
4014}
4015
4016void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
4017  switch (mul->GetResultType()) {
4018    case Primitive::kPrimInt:
4019    case Primitive::kPrimLong:
4020      __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
4021      break;
4022
4023    case Primitive::kPrimFloat:
4024    case Primitive::kPrimDouble:
4025      __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
4026      break;
4027
4028    default:
4029      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4030  }
4031}
4032
4033void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
4034  LocationSummary* locations =
4035      new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
4036  switch (neg->GetResultType()) {
4037    case Primitive::kPrimInt:
4038    case Primitive::kPrimLong:
4039      locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
4040      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4041      break;
4042
4043    case Primitive::kPrimFloat:
4044    case Primitive::kPrimDouble:
4045      locations->SetInAt(0, Location::RequiresFpuRegister());
4046      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4047      break;
4048
4049    default:
4050      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
4051  }
4052}
4053
4054void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
4055  switch (neg->GetResultType()) {
4056    case Primitive::kPrimInt:
4057    case Primitive::kPrimLong:
4058      __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
4059      break;
4060
4061    case Primitive::kPrimFloat:
4062    case Primitive::kPrimDouble:
4063      __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
4064      break;
4065
4066    default:
4067      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
4068  }
4069}
4070
4071void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
4072  LocationSummary* locations =
4073      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4074  InvokeRuntimeCallingConvention calling_convention;
4075  locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
4076  locations->SetOut(LocationFrom(x0));
4077  locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(1)));
4078  locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(2)));
4079}
4080
4081void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
4082  LocationSummary* locations = instruction->GetLocations();
4083  InvokeRuntimeCallingConvention calling_convention;
4084  Register type_index = RegisterFrom(locations->GetTemp(0), Primitive::kPrimInt);
4085  DCHECK(type_index.Is(w0));
4086  __ Mov(type_index, instruction->GetTypeIndex());
4087  // Note: if heap poisoning is enabled, the entry point takes cares
4088  // of poisoning the reference.
4089  codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4090                          instruction,
4091                          instruction->GetDexPc(),
4092                          nullptr);
4093  CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
4094}
4095
4096void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
4097  LocationSummary* locations =
4098      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4099  InvokeRuntimeCallingConvention calling_convention;
4100  if (instruction->IsStringAlloc()) {
4101    locations->AddTemp(LocationFrom(kArtMethodRegister));
4102  } else {
4103    locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4104    locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4105  }
4106  locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
4107}
4108
4109void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
4110  // Note: if heap poisoning is enabled, the entry point takes cares
4111  // of poisoning the reference.
4112  if (instruction->IsStringAlloc()) {
4113    // String is allocated through StringFactory. Call NewEmptyString entry point.
4114    Location temp = instruction->GetLocations()->GetTemp(0);
4115    MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
4116    __ Ldr(XRegisterFrom(temp), MemOperand(tr, QUICK_ENTRY_POINT(pNewEmptyString)));
4117    __ Ldr(lr, MemOperand(XRegisterFrom(temp), code_offset.Int32Value()));
4118    __ Blr(lr);
4119    codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4120  } else {
4121    codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4122                            instruction,
4123                            instruction->GetDexPc(),
4124                            nullptr);
4125    CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
4126  }
4127}
4128
4129void LocationsBuilderARM64::VisitNot(HNot* instruction) {
4130  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4131  locations->SetInAt(0, Location::RequiresRegister());
4132  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4133}
4134
4135void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
4136  switch (instruction->GetResultType()) {
4137    case Primitive::kPrimInt:
4138    case Primitive::kPrimLong:
4139      __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
4140      break;
4141
4142    default:
4143      LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
4144  }
4145}
4146
4147void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
4148  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4149  locations->SetInAt(0, Location::RequiresRegister());
4150  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4151}
4152
4153void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
4154  __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::Operand(1));
4155}
4156
4157void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
4158  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
4159      ? LocationSummary::kCallOnSlowPath
4160      : LocationSummary::kNoCall;
4161  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
4162  locations->SetInAt(0, Location::RequiresRegister());
4163  if (instruction->HasUses()) {
4164    locations->SetOut(Location::SameAsFirstInput());
4165  }
4166}
4167
4168void InstructionCodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
4169  if (codegen_->CanMoveNullCheckToUser(instruction)) {
4170    return;
4171  }
4172
4173  BlockPoolsScope block_pools(GetVIXLAssembler());
4174  Location obj = instruction->GetLocations()->InAt(0);
4175  __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
4176  codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4177}
4178
4179void InstructionCodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
4180  SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM64(instruction);
4181  codegen_->AddSlowPath(slow_path);
4182
4183  LocationSummary* locations = instruction->GetLocations();
4184  Location obj = locations->InAt(0);
4185
4186  __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
4187}
4188
4189void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
4190  if (codegen_->IsImplicitNullCheckAllowed(instruction)) {
4191    GenerateImplicitNullCheck(instruction);
4192  } else {
4193    GenerateExplicitNullCheck(instruction);
4194  }
4195}
4196
4197void LocationsBuilderARM64::VisitOr(HOr* instruction) {
4198  HandleBinaryOp(instruction);
4199}
4200
4201void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
4202  HandleBinaryOp(instruction);
4203}
4204
4205void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
4206  LOG(FATAL) << "Unreachable";
4207}
4208
4209void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
4210  codegen_->GetMoveResolver()->EmitNativeCode(instruction);
4211}
4212
4213void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
4214  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4215  Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4216  if (location.IsStackSlot()) {
4217    location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4218  } else if (location.IsDoubleStackSlot()) {
4219    location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4220  }
4221  locations->SetOut(location);
4222}
4223
4224void InstructionCodeGeneratorARM64::VisitParameterValue(
4225    HParameterValue* instruction ATTRIBUTE_UNUSED) {
4226  // Nothing to do, the parameter is already at its location.
4227}
4228
4229void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
4230  LocationSummary* locations =
4231      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4232  locations->SetOut(LocationFrom(kArtMethodRegister));
4233}
4234
4235void InstructionCodeGeneratorARM64::VisitCurrentMethod(
4236    HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
4237  // Nothing to do, the method is already at its location.
4238}
4239
4240void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
4241  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4242  for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
4243    locations->SetInAt(i, Location::Any());
4244  }
4245  locations->SetOut(Location::Any());
4246}
4247
4248void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
4249  LOG(FATAL) << "Unreachable";
4250}
4251
4252void LocationsBuilderARM64::VisitRem(HRem* rem) {
4253  Primitive::Type type = rem->GetResultType();
4254  LocationSummary::CallKind call_kind =
4255      Primitive::IsFloatingPointType(type) ? LocationSummary::kCall : LocationSummary::kNoCall;
4256  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
4257
4258  switch (type) {
4259    case Primitive::kPrimInt:
4260    case Primitive::kPrimLong:
4261      locations->SetInAt(0, Location::RequiresRegister());
4262      locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
4263      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4264      break;
4265
4266    case Primitive::kPrimFloat:
4267    case Primitive::kPrimDouble: {
4268      InvokeRuntimeCallingConvention calling_convention;
4269      locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
4270      locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
4271      locations->SetOut(calling_convention.GetReturnLocation(type));
4272
4273      break;
4274    }
4275
4276    default:
4277      LOG(FATAL) << "Unexpected rem type " << type;
4278  }
4279}
4280
4281void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
4282  Primitive::Type type = rem->GetResultType();
4283
4284  switch (type) {
4285    case Primitive::kPrimInt:
4286    case Primitive::kPrimLong: {
4287      GenerateDivRemIntegral(rem);
4288      break;
4289    }
4290
4291    case Primitive::kPrimFloat:
4292    case Primitive::kPrimDouble: {
4293      int32_t entry_offset = (type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pFmodf)
4294                                                             : QUICK_ENTRY_POINT(pFmod);
4295      codegen_->InvokeRuntime(entry_offset, rem, rem->GetDexPc(), nullptr);
4296      if (type == Primitive::kPrimFloat) {
4297        CheckEntrypointTypes<kQuickFmodf, float, float, float>();
4298      } else {
4299        CheckEntrypointTypes<kQuickFmod, double, double, double>();
4300      }
4301      break;
4302    }
4303
4304    default:
4305      LOG(FATAL) << "Unexpected rem type " << type;
4306      UNREACHABLE();
4307  }
4308}
4309
4310void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
4311  memory_barrier->SetLocations(nullptr);
4312}
4313
4314void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
4315  codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
4316}
4317
4318void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
4319  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4320  Primitive::Type return_type = instruction->InputAt(0)->GetType();
4321  locations->SetInAt(0, ARM64ReturnLocation(return_type));
4322}
4323
4324void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction ATTRIBUTE_UNUSED) {
4325  codegen_->GenerateFrameExit();
4326}
4327
4328void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
4329  instruction->SetLocations(nullptr);
4330}
4331
4332void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
4333  codegen_->GenerateFrameExit();
4334}
4335
4336void LocationsBuilderARM64::VisitRor(HRor* ror) {
4337  HandleBinaryOp(ror);
4338}
4339
4340void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
4341  HandleBinaryOp(ror);
4342}
4343
4344void LocationsBuilderARM64::VisitShl(HShl* shl) {
4345  HandleShift(shl);
4346}
4347
4348void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
4349  HandleShift(shl);
4350}
4351
4352void LocationsBuilderARM64::VisitShr(HShr* shr) {
4353  HandleShift(shr);
4354}
4355
4356void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
4357  HandleShift(shr);
4358}
4359
4360void LocationsBuilderARM64::VisitStoreLocal(HStoreLocal* store) {
4361  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(store);
4362  Primitive::Type field_type = store->InputAt(1)->GetType();
4363  switch (field_type) {
4364    case Primitive::kPrimNot:
4365    case Primitive::kPrimBoolean:
4366    case Primitive::kPrimByte:
4367    case Primitive::kPrimChar:
4368    case Primitive::kPrimShort:
4369    case Primitive::kPrimInt:
4370    case Primitive::kPrimFloat:
4371      locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal())));
4372      break;
4373
4374    case Primitive::kPrimLong:
4375    case Primitive::kPrimDouble:
4376      locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal())));
4377      break;
4378
4379    default:
4380      LOG(FATAL) << "Unimplemented local type " << field_type;
4381      UNREACHABLE();
4382  }
4383}
4384
4385void InstructionCodeGeneratorARM64::VisitStoreLocal(HStoreLocal* store ATTRIBUTE_UNUSED) {
4386}
4387
4388void LocationsBuilderARM64::VisitSub(HSub* instruction) {
4389  HandleBinaryOp(instruction);
4390}
4391
4392void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
4393  HandleBinaryOp(instruction);
4394}
4395
4396void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4397  HandleFieldGet(instruction);
4398}
4399
4400void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4401  HandleFieldGet(instruction, instruction->GetFieldInfo());
4402}
4403
4404void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4405  HandleFieldSet(instruction);
4406}
4407
4408void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4409  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4410}
4411
4412void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
4413    HUnresolvedInstanceFieldGet* instruction) {
4414  FieldAccessCallingConventionARM64 calling_convention;
4415  codegen_->CreateUnresolvedFieldLocationSummary(
4416      instruction, instruction->GetFieldType(), calling_convention);
4417}
4418
4419void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
4420    HUnresolvedInstanceFieldGet* instruction) {
4421  FieldAccessCallingConventionARM64 calling_convention;
4422  codegen_->GenerateUnresolvedFieldAccess(instruction,
4423                                          instruction->GetFieldType(),
4424                                          instruction->GetFieldIndex(),
4425                                          instruction->GetDexPc(),
4426                                          calling_convention);
4427}
4428
4429void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
4430    HUnresolvedInstanceFieldSet* instruction) {
4431  FieldAccessCallingConventionARM64 calling_convention;
4432  codegen_->CreateUnresolvedFieldLocationSummary(
4433      instruction, instruction->GetFieldType(), calling_convention);
4434}
4435
4436void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
4437    HUnresolvedInstanceFieldSet* instruction) {
4438  FieldAccessCallingConventionARM64 calling_convention;
4439  codegen_->GenerateUnresolvedFieldAccess(instruction,
4440                                          instruction->GetFieldType(),
4441                                          instruction->GetFieldIndex(),
4442                                          instruction->GetDexPc(),
4443                                          calling_convention);
4444}
4445
4446void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
4447    HUnresolvedStaticFieldGet* instruction) {
4448  FieldAccessCallingConventionARM64 calling_convention;
4449  codegen_->CreateUnresolvedFieldLocationSummary(
4450      instruction, instruction->GetFieldType(), calling_convention);
4451}
4452
4453void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
4454    HUnresolvedStaticFieldGet* instruction) {
4455  FieldAccessCallingConventionARM64 calling_convention;
4456  codegen_->GenerateUnresolvedFieldAccess(instruction,
4457                                          instruction->GetFieldType(),
4458                                          instruction->GetFieldIndex(),
4459                                          instruction->GetDexPc(),
4460                                          calling_convention);
4461}
4462
4463void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
4464    HUnresolvedStaticFieldSet* instruction) {
4465  FieldAccessCallingConventionARM64 calling_convention;
4466  codegen_->CreateUnresolvedFieldLocationSummary(
4467      instruction, instruction->GetFieldType(), calling_convention);
4468}
4469
4470void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
4471    HUnresolvedStaticFieldSet* instruction) {
4472  FieldAccessCallingConventionARM64 calling_convention;
4473  codegen_->GenerateUnresolvedFieldAccess(instruction,
4474                                          instruction->GetFieldType(),
4475                                          instruction->GetFieldIndex(),
4476                                          instruction->GetDexPc(),
4477                                          calling_convention);
4478}
4479
4480void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
4481  new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
4482}
4483
4484void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
4485  HBasicBlock* block = instruction->GetBlock();
4486  if (block->GetLoopInformation() != nullptr) {
4487    DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
4488    // The back edge will generate the suspend check.
4489    return;
4490  }
4491  if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
4492    // The goto will generate the suspend check.
4493    return;
4494  }
4495  GenerateSuspendCheck(instruction, nullptr);
4496}
4497
4498void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
4499  LocationSummary* locations =
4500      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4501  InvokeRuntimeCallingConvention calling_convention;
4502  locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4503}
4504
4505void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
4506  codegen_->InvokeRuntime(
4507      QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr);
4508  CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
4509}
4510
4511void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
4512  LocationSummary* locations =
4513      new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall);
4514  Primitive::Type input_type = conversion->GetInputType();
4515  Primitive::Type result_type = conversion->GetResultType();
4516  DCHECK_NE(input_type, result_type);
4517  if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
4518      (result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
4519    LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
4520  }
4521
4522  if (Primitive::IsFloatingPointType(input_type)) {
4523    locations->SetInAt(0, Location::RequiresFpuRegister());
4524  } else {
4525    locations->SetInAt(0, Location::RequiresRegister());
4526  }
4527
4528  if (Primitive::IsFloatingPointType(result_type)) {
4529    locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4530  } else {
4531    locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4532  }
4533}
4534
4535void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
4536  Primitive::Type result_type = conversion->GetResultType();
4537  Primitive::Type input_type = conversion->GetInputType();
4538
4539  DCHECK_NE(input_type, result_type);
4540
4541  if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
4542    int result_size = Primitive::ComponentSize(result_type);
4543    int input_size = Primitive::ComponentSize(input_type);
4544    int min_size = std::min(result_size, input_size);
4545    Register output = OutputRegister(conversion);
4546    Register source = InputRegisterAt(conversion, 0);
4547    if (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimLong) {
4548      // 'int' values are used directly as W registers, discarding the top
4549      // bits, so we don't need to sign-extend and can just perform a move.
4550      // We do not pass the `kDiscardForSameWReg` argument to force clearing the
4551      // top 32 bits of the target register. We theoretically could leave those
4552      // bits unchanged, but we would have to make sure that no code uses a
4553      // 32bit input value as a 64bit value assuming that the top 32 bits are
4554      // zero.
4555      __ Mov(output.W(), source.W());
4556    } else if (result_type == Primitive::kPrimChar ||
4557               (input_type == Primitive::kPrimChar && input_size < result_size)) {
4558      __ Ubfx(output,
4559              output.IsX() ? source.X() : source.W(),
4560              0, Primitive::ComponentSize(Primitive::kPrimChar) * kBitsPerByte);
4561    } else {
4562      __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
4563    }
4564  } else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
4565    __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
4566  } else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
4567    CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
4568    __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
4569  } else if (Primitive::IsFloatingPointType(result_type) &&
4570             Primitive::IsFloatingPointType(input_type)) {
4571    __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
4572  } else {
4573    LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
4574                << " to " << result_type;
4575  }
4576}
4577
4578void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
4579  HandleShift(ushr);
4580}
4581
4582void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
4583  HandleShift(ushr);
4584}
4585
4586void LocationsBuilderARM64::VisitXor(HXor* instruction) {
4587  HandleBinaryOp(instruction);
4588}
4589
4590void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
4591  HandleBinaryOp(instruction);
4592}
4593
4594void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
4595  // Nothing to do, this should be removed during prepare for register allocator.
4596  LOG(FATAL) << "Unreachable";
4597}
4598
4599void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
4600  // Nothing to do, this should be removed during prepare for register allocator.
4601  LOG(FATAL) << "Unreachable";
4602}
4603
4604// Simple implementation of packed switch - generate cascaded compare/jumps.
4605void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
4606  LocationSummary* locations =
4607      new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
4608  locations->SetInAt(0, Location::RequiresRegister());
4609}
4610
4611void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
4612  int32_t lower_bound = switch_instr->GetStartValue();
4613  uint32_t num_entries = switch_instr->GetNumEntries();
4614  Register value_reg = InputRegisterAt(switch_instr, 0);
4615  HBasicBlock* default_block = switch_instr->GetDefaultBlock();
4616
4617  // Roughly set 16 as max average assemblies generated per HIR in a graph.
4618  static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * vixl::kInstructionSize;
4619  // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
4620  // make sure we don't emit it if the target may run out of range.
4621  // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
4622  // ranges and emit the tables only as required.
4623  static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
4624
4625  if (num_entries <= kPackedSwitchCompareJumpThreshold ||
4626      // Current instruction id is an upper bound of the number of HIRs in the graph.
4627      GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
4628    // Create a series of compare/jumps.
4629    UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
4630    Register temp = temps.AcquireW();
4631    __ Subs(temp, value_reg, Operand(lower_bound));
4632
4633    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
4634    // Jump to successors[0] if value == lower_bound.
4635    __ B(eq, codegen_->GetLabelOf(successors[0]));
4636    int32_t last_index = 0;
4637    for (; num_entries - last_index > 2; last_index += 2) {
4638      __ Subs(temp, temp, Operand(2));
4639      // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
4640      __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
4641      // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
4642      __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
4643    }
4644    if (num_entries - last_index == 2) {
4645      // The last missing case_value.
4646      __ Cmp(temp, Operand(1));
4647      __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
4648    }
4649
4650    // And the default for any other value.
4651    if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
4652      __ B(codegen_->GetLabelOf(default_block));
4653    }
4654  } else {
4655    JumpTableARM64* jump_table = new (GetGraph()->GetArena()) JumpTableARM64(switch_instr);
4656    codegen_->AddJumpTable(jump_table);
4657
4658    UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
4659
4660    // Below instructions should use at most one blocked register. Since there are two blocked
4661    // registers, we are free to block one.
4662    Register temp_w = temps.AcquireW();
4663    Register index;
4664    // Remove the bias.
4665    if (lower_bound != 0) {
4666      index = temp_w;
4667      __ Sub(index, value_reg, Operand(lower_bound));
4668    } else {
4669      index = value_reg;
4670    }
4671
4672    // Jump to default block if index is out of the range.
4673    __ Cmp(index, Operand(num_entries));
4674    __ B(hs, codegen_->GetLabelOf(default_block));
4675
4676    // In current VIXL implementation, it won't require any blocked registers to encode the
4677    // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
4678    // register pressure.
4679    Register table_base = temps.AcquireX();
4680    // Load jump offset from the table.
4681    __ Adr(table_base, jump_table->GetTableStartLabel());
4682    Register jump_offset = temp_w;
4683    __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
4684
4685    // Jump to target block by branching to table_base(pc related) + offset.
4686    Register target_address = table_base;
4687    __ Add(target_address, table_base, Operand(jump_offset, SXTW));
4688    __ Br(target_address);
4689  }
4690}
4691
4692void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(HInstruction* instruction,
4693                                                                     Location out,
4694                                                                     uint32_t offset,
4695                                                                     Location maybe_temp) {
4696  Primitive::Type type = Primitive::kPrimNot;
4697  Register out_reg = RegisterFrom(out, type);
4698  if (kEmitCompilerReadBarrier) {
4699    Register temp_reg = RegisterFrom(maybe_temp, type);
4700    if (kUseBakerReadBarrier) {
4701      // Load with fast path based Baker's read barrier.
4702      // /* HeapReference<Object> */ out = *(out + offset)
4703      codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
4704                                                      out,
4705                                                      out_reg,
4706                                                      offset,
4707                                                      temp_reg,
4708                                                      /* needs_null_check */ false,
4709                                                      /* use_load_acquire */ false);
4710    } else {
4711      // Load with slow path based read barrier.
4712      // Save the value of `out` into `maybe_temp` before overwriting it
4713      // in the following move operation, as we will need it for the
4714      // read barrier below.
4715      __ Mov(temp_reg, out_reg);
4716      // /* HeapReference<Object> */ out = *(out + offset)
4717      __ Ldr(out_reg, HeapOperand(out_reg, offset));
4718      codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
4719    }
4720  } else {
4721    // Plain load with no read barrier.
4722    // /* HeapReference<Object> */ out = *(out + offset)
4723    __ Ldr(out_reg, HeapOperand(out_reg, offset));
4724    GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
4725  }
4726}
4727
4728void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
4729                                                                      Location out,
4730                                                                      Location obj,
4731                                                                      uint32_t offset,
4732                                                                      Location maybe_temp) {
4733  Primitive::Type type = Primitive::kPrimNot;
4734  Register out_reg = RegisterFrom(out, type);
4735  Register obj_reg = RegisterFrom(obj, type);
4736  if (kEmitCompilerReadBarrier) {
4737    if (kUseBakerReadBarrier) {
4738      // Load with fast path based Baker's read barrier.
4739      Register temp_reg = RegisterFrom(maybe_temp, type);
4740      // /* HeapReference<Object> */ out = *(obj + offset)
4741      codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
4742                                                      out,
4743                                                      obj_reg,
4744                                                      offset,
4745                                                      temp_reg,
4746                                                      /* needs_null_check */ false,
4747                                                      /* use_load_acquire */ false);
4748    } else {
4749      // Load with slow path based read barrier.
4750      // /* HeapReference<Object> */ out = *(obj + offset)
4751      __ Ldr(out_reg, HeapOperand(obj_reg, offset));
4752      codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
4753    }
4754  } else {
4755    // Plain load with no read barrier.
4756    // /* HeapReference<Object> */ out = *(obj + offset)
4757    __ Ldr(out_reg, HeapOperand(obj_reg, offset));
4758    GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
4759  }
4760}
4761
4762void InstructionCodeGeneratorARM64::GenerateGcRootFieldLoad(HInstruction* instruction,
4763                                                            Location root,
4764                                                            vixl::Register obj,
4765                                                            uint32_t offset) {
4766  Register root_reg = RegisterFrom(root, Primitive::kPrimNot);
4767  if (kEmitCompilerReadBarrier) {
4768    if (kUseBakerReadBarrier) {
4769      // Fast path implementation of art::ReadBarrier::BarrierForRoot when
4770      // Baker's read barrier are used:
4771      //
4772      //   root = obj.field;
4773      //   if (Thread::Current()->GetIsGcMarking()) {
4774      //     root = ReadBarrier::Mark(root)
4775      //   }
4776
4777      // /* GcRoot<mirror::Object> */ root = *(obj + offset)
4778      __ Ldr(root_reg, MemOperand(obj, offset));
4779      static_assert(
4780          sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
4781          "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
4782          "have different sizes.");
4783      static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
4784                    "art::mirror::CompressedReference<mirror::Object> and int32_t "
4785                    "have different sizes.");
4786
4787      // Slow path used to mark the GC root `root`.
4788      SlowPathCodeARM64* slow_path =
4789          new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, root, root);
4790      codegen_->AddSlowPath(slow_path);
4791
4792      MacroAssembler* masm = GetVIXLAssembler();
4793      UseScratchRegisterScope temps(masm);
4794      Register temp = temps.AcquireW();
4795      // temp = Thread::Current()->GetIsGcMarking()
4796      __ Ldr(temp, MemOperand(tr, Thread::IsGcMarkingOffset<kArm64WordSize>().Int32Value()));
4797      __ Cbnz(temp, slow_path->GetEntryLabel());
4798      __ Bind(slow_path->GetExitLabel());
4799    } else {
4800      // GC root loaded through a slow path for read barriers other
4801      // than Baker's.
4802      // /* GcRoot<mirror::Object>* */ root = obj + offset
4803      __ Add(root_reg.X(), obj.X(), offset);
4804      // /* mirror::Object* */ root = root->Read()
4805      codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
4806    }
4807  } else {
4808    // Plain GC root load with no read barrier.
4809    // /* GcRoot<mirror::Object> */ root = *(obj + offset)
4810    __ Ldr(root_reg, MemOperand(obj, offset));
4811    // Note that GC roots are not affected by heap poisoning, thus we
4812    // do not have to unpoison `root_reg` here.
4813  }
4814}
4815
4816void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
4817                                                               Location ref,
4818                                                               vixl::Register obj,
4819                                                               uint32_t offset,
4820                                                               Register temp,
4821                                                               bool needs_null_check,
4822                                                               bool use_load_acquire) {
4823  DCHECK(kEmitCompilerReadBarrier);
4824  DCHECK(kUseBakerReadBarrier);
4825
4826  // /* HeapReference<Object> */ ref = *(obj + offset)
4827  Location no_index = Location::NoLocation();
4828  GenerateReferenceLoadWithBakerReadBarrier(
4829      instruction, ref, obj, offset, no_index, temp, needs_null_check, use_load_acquire);
4830}
4831
4832void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
4833                                                               Location ref,
4834                                                               vixl::Register obj,
4835                                                               uint32_t data_offset,
4836                                                               Location index,
4837                                                               Register temp,
4838                                                               bool needs_null_check) {
4839  DCHECK(kEmitCompilerReadBarrier);
4840  DCHECK(kUseBakerReadBarrier);
4841
4842  // Array cells are never volatile variables, therefore array loads
4843  // never use Load-Acquire instructions on ARM64.
4844  const bool use_load_acquire = false;
4845
4846  // /* HeapReference<Object> */ ref =
4847  //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
4848  GenerateReferenceLoadWithBakerReadBarrier(
4849      instruction, ref, obj, data_offset, index, temp, needs_null_check, use_load_acquire);
4850}
4851
4852void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
4853                                                                   Location ref,
4854                                                                   vixl::Register obj,
4855                                                                   uint32_t offset,
4856                                                                   Location index,
4857                                                                   Register temp,
4858                                                                   bool needs_null_check,
4859                                                                   bool use_load_acquire) {
4860  DCHECK(kEmitCompilerReadBarrier);
4861  DCHECK(kUseBakerReadBarrier);
4862  // If `index` is a valid location, then we are emitting an array
4863  // load, so we shouldn't be using a Load Acquire instruction.
4864  // In other words: `index.IsValid()` => `!use_load_acquire`.
4865  DCHECK(!index.IsValid() || !use_load_acquire);
4866
4867  MacroAssembler* masm = GetVIXLAssembler();
4868  UseScratchRegisterScope temps(masm);
4869
4870  // In slow path based read barriers, the read barrier call is
4871  // inserted after the original load. However, in fast path based
4872  // Baker's read barriers, we need to perform the load of
4873  // mirror::Object::monitor_ *before* the original reference load.
4874  // This load-load ordering is required by the read barrier.
4875  // The fast path/slow path (for Baker's algorithm) should look like:
4876  //
4877  //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
4878  //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
4879  //   HeapReference<Object> ref = *src;  // Original reference load.
4880  //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
4881  //   if (is_gray) {
4882  //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
4883  //   }
4884  //
4885  // Note: the original implementation in ReadBarrier::Barrier is
4886  // slightly more complex as it performs additional checks that we do
4887  // not do here for performance reasons.
4888
4889  Primitive::Type type = Primitive::kPrimNot;
4890  Register ref_reg = RegisterFrom(ref, type);
4891  DCHECK(obj.IsW());
4892  uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
4893
4894  // /* int32_t */ monitor = obj->monitor_
4895  __ Ldr(temp, HeapOperand(obj, monitor_offset));
4896  if (needs_null_check) {
4897    MaybeRecordImplicitNullCheck(instruction);
4898  }
4899  // /* LockWord */ lock_word = LockWord(monitor)
4900  static_assert(sizeof(LockWord) == sizeof(int32_t),
4901                "art::LockWord and int32_t have different sizes.");
4902  // /* uint32_t */ rb_state = lock_word.ReadBarrierState()
4903  __ Lsr(temp, temp, LockWord::kReadBarrierStateShift);
4904  __ And(temp, temp, Operand(LockWord::kReadBarrierStateMask));
4905  static_assert(
4906      LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
4907      "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
4908
4909  // Introduce a dependency on the high bits of rb_state, which shall
4910  // be all zeroes, to prevent load-load reordering, and without using
4911  // a memory barrier (which would be more expensive).
4912  // temp2 = rb_state & ~LockWord::kReadBarrierStateMask = 0
4913  Register temp2 = temps.AcquireW();
4914  __ Bic(temp2, temp, Operand(LockWord::kReadBarrierStateMask));
4915  // obj is unchanged by this operation, but its value now depends on
4916  // temp2, which depends on temp.
4917  __ Add(obj, obj, Operand(temp2));
4918  temps.Release(temp2);
4919
4920  // The actual reference load.
4921  if (index.IsValid()) {
4922    static_assert(
4923        sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
4924        "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
4925    // /* HeapReference<Object> */ ref =
4926    //     *(obj + offset + index * sizeof(HeapReference<Object>))
4927    const size_t shift_amount = Primitive::ComponentSizeShift(type);
4928    if (index.IsConstant()) {
4929      uint32_t computed_offset = offset + (Int64ConstantFrom(index) << shift_amount);
4930      Load(type, ref_reg, HeapOperand(obj, computed_offset));
4931    } else {
4932      temp2 = temps.AcquireW();
4933      __ Add(temp2, obj, offset);
4934      Load(type, ref_reg, HeapOperand(temp2, XRegisterFrom(index), LSL, shift_amount));
4935      temps.Release(temp2);
4936    }
4937  } else {
4938    // /* HeapReference<Object> */ ref = *(obj + offset)
4939    MemOperand field = HeapOperand(obj, offset);
4940    if (use_load_acquire) {
4941      LoadAcquire(instruction, ref_reg, field, /* needs_null_check */ false);
4942    } else {
4943      Load(type, ref_reg, field);
4944    }
4945  }
4946
4947  // Object* ref = ref_addr->AsMirrorPtr()
4948  GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
4949
4950  // Slow path used to mark the object `ref` when it is gray.
4951  SlowPathCodeARM64* slow_path =
4952      new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, ref, ref);
4953  AddSlowPath(slow_path);
4954
4955  // if (rb_state == ReadBarrier::gray_ptr_)
4956  //   ref = ReadBarrier::Mark(ref);
4957  __ Cmp(temp, ReadBarrier::gray_ptr_);
4958  __ B(eq, slow_path->GetEntryLabel());
4959  __ Bind(slow_path->GetExitLabel());
4960}
4961
4962void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
4963                                                 Location out,
4964                                                 Location ref,
4965                                                 Location obj,
4966                                                 uint32_t offset,
4967                                                 Location index) {
4968  DCHECK(kEmitCompilerReadBarrier);
4969
4970  // Insert a slow path based read barrier *after* the reference load.
4971  //
4972  // If heap poisoning is enabled, the unpoisoning of the loaded
4973  // reference will be carried out by the runtime within the slow
4974  // path.
4975  //
4976  // Note that `ref` currently does not get unpoisoned (when heap
4977  // poisoning is enabled), which is alright as the `ref` argument is
4978  // not used by the artReadBarrierSlow entry point.
4979  //
4980  // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
4981  SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena())
4982      ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
4983  AddSlowPath(slow_path);
4984
4985  __ B(slow_path->GetEntryLabel());
4986  __ Bind(slow_path->GetExitLabel());
4987}
4988
4989void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
4990                                                      Location out,
4991                                                      Location ref,
4992                                                      Location obj,
4993                                                      uint32_t offset,
4994                                                      Location index) {
4995  if (kEmitCompilerReadBarrier) {
4996    // Baker's read barriers shall be handled by the fast path
4997    // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
4998    DCHECK(!kUseBakerReadBarrier);
4999    // If heap poisoning is enabled, unpoisoning will be taken care of
5000    // by the runtime within the slow path.
5001    GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
5002  } else if (kPoisonHeapReferences) {
5003    GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
5004  }
5005}
5006
5007void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
5008                                                        Location out,
5009                                                        Location root) {
5010  DCHECK(kEmitCompilerReadBarrier);
5011
5012  // Insert a slow path based read barrier *after* the GC root load.
5013  //
5014  // Note that GC roots are not affected by heap poisoning, so we do
5015  // not need to do anything special for this here.
5016  SlowPathCodeARM64* slow_path =
5017      new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
5018  AddSlowPath(slow_path);
5019
5020  __ B(slow_path->GetEntryLabel());
5021  __ Bind(slow_path->GetExitLabel());
5022}
5023
5024void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
5025  LocationSummary* locations =
5026      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5027  locations->SetInAt(0, Location::RequiresRegister());
5028  locations->SetOut(Location::RequiresRegister());
5029}
5030
5031void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
5032  LocationSummary* locations = instruction->GetLocations();
5033  uint32_t method_offset = 0;
5034  if (instruction->GetTableKind() == HClassTableGet::kVTable) {
5035    method_offset = mirror::Class::EmbeddedVTableEntryOffset(
5036        instruction->GetIndex(), kArm64PointerSize).SizeValue();
5037  } else {
5038    method_offset = mirror::Class::EmbeddedImTableEntryOffset(
5039        instruction->GetIndex() % mirror::Class::kImtSize, kArm64PointerSize).Uint32Value();
5040  }
5041  __ Ldr(XRegisterFrom(locations->Out()),
5042         MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
5043}
5044
5045
5046
5047#undef __
5048#undef QUICK_ENTRY_POINT
5049
5050}  // namespace arm64
5051}  // namespace art
5052