codegen_test.cc revision a0bb2bd5b6a049ad806c223f00672d1f0210db67
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <functional>
18
19#include "arch/instruction_set.h"
20#include "arch/arm/instruction_set_features_arm.h"
21#include "base/macros.h"
22#include "builder.h"
23#include "code_generator_arm.h"
24#include "code_generator_arm64.h"
25#include "code_generator_x86.h"
26#include "code_generator_x86_64.h"
27#include "common_compiler_test.h"
28#include "dex_file.h"
29#include "dex_instruction.h"
30#include "driver/compiler_options.h"
31#include "nodes.h"
32#include "optimizing_unit_test.h"
33#include "prepare_for_register_allocation.h"
34#include "register_allocator.h"
35#include "ssa_liveness_analysis.h"
36#include "utils.h"
37
38#include "gtest/gtest.h"
39
40namespace art {
41
42// Provide our own codegen, that ensures the C calling conventions
43// are preserved. Currently, ART and C do not match as R4 is caller-save
44// in ART, and callee-save in C. Alternatively, we could use or write
45// the stub that saves and restores all registers, but it is easier
46// to just overwrite the code generator.
47class TestCodeGeneratorARM : public arm::CodeGeneratorARM {
48 public:
49  TestCodeGeneratorARM(HGraph* graph,
50                       const ArmInstructionSetFeatures& isa_features,
51                       const CompilerOptions& compiler_options)
52      : arm::CodeGeneratorARM(graph, isa_features, compiler_options) {
53    AddAllocatedRegister(Location::RegisterLocation(6));
54    AddAllocatedRegister(Location::RegisterLocation(7));
55  }
56
57  void SetupBlockedRegisters(bool is_baseline) const OVERRIDE {
58    arm::CodeGeneratorARM::SetupBlockedRegisters(is_baseline);
59    blocked_core_registers_[4] = true;
60    blocked_core_registers_[6] = false;
61    blocked_core_registers_[7] = false;
62    // Makes pari R6-R7 available.
63    blocked_register_pairs_[6 >> 1] = false;
64  }
65};
66
67class InternalCodeAllocator : public CodeAllocator {
68 public:
69  InternalCodeAllocator() : size_(0) { }
70
71  virtual uint8_t* Allocate(size_t size) {
72    size_ = size;
73    memory_.reset(new uint8_t[size]);
74    return memory_.get();
75  }
76
77  size_t GetSize() const { return size_; }
78  uint8_t* GetMemory() const { return memory_.get(); }
79
80 private:
81  size_t size_;
82  std::unique_ptr<uint8_t[]> memory_;
83
84  DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator);
85};
86
87template <typename Expected>
88static void Run(const InternalCodeAllocator& allocator,
89                const CodeGenerator& codegen,
90                bool has_result,
91                Expected expected) {
92  typedef Expected (*fptr)();
93  CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize());
94  fptr f = reinterpret_cast<fptr>(allocator.GetMemory());
95  if (codegen.GetInstructionSet() == kThumb2) {
96    // For thumb we need the bottom bit set.
97    f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(f) + 1);
98  }
99  Expected result = f();
100  if (has_result) {
101    ASSERT_EQ(result, expected);
102  }
103}
104
105template <typename Expected>
106static void RunCodeBaseline(HGraph* graph, bool has_result, Expected expected) {
107  InternalCodeAllocator allocator;
108
109  CompilerOptions compiler_options;
110  x86::CodeGeneratorX86 codegenX86(graph, compiler_options);
111  // We avoid doing a stack overflow check that requires the runtime being setup,
112  // by making sure the compiler knows the methods we are running are leaf methods.
113  codegenX86.CompileBaseline(&allocator, true);
114  if (kRuntimeISA == kX86) {
115    Run(allocator, codegenX86, has_result, expected);
116  }
117
118  std::unique_ptr<const ArmInstructionSetFeatures> features(
119      ArmInstructionSetFeatures::FromCppDefines());
120  TestCodeGeneratorARM codegenARM(graph, *features.get(), compiler_options);
121  codegenARM.CompileBaseline(&allocator, true);
122  if (kRuntimeISA == kArm || kRuntimeISA == kThumb2) {
123    Run(allocator, codegenARM, has_result, expected);
124  }
125
126  x86_64::CodeGeneratorX86_64 codegenX86_64(graph, compiler_options);
127  codegenX86_64.CompileBaseline(&allocator, true);
128  if (kRuntimeISA == kX86_64) {
129    Run(allocator, codegenX86_64, has_result, expected);
130  }
131
132  arm64::CodeGeneratorARM64 codegenARM64(graph, compiler_options);
133  codegenARM64.CompileBaseline(&allocator, true);
134  if (kRuntimeISA == kArm64) {
135    Run(allocator, codegenARM64, has_result, expected);
136  }
137}
138
139template <typename Expected>
140static void RunCodeOptimized(CodeGenerator* codegen,
141                             HGraph* graph,
142                             std::function<void(HGraph*)> hook_before_codegen,
143                             bool has_result,
144                             Expected expected) {
145  SsaLivenessAnalysis liveness(*graph, codegen);
146  liveness.Analyze();
147
148  RegisterAllocator register_allocator(graph->GetArena(), codegen, liveness);
149  register_allocator.AllocateRegisters();
150  hook_before_codegen(graph);
151
152  InternalCodeAllocator allocator;
153  codegen->CompileOptimized(&allocator);
154  Run(allocator, *codegen, has_result, expected);
155}
156
157template <typename Expected>
158static void RunCodeOptimized(HGraph* graph,
159                             std::function<void(HGraph*)> hook_before_codegen,
160                             bool has_result,
161                             Expected expected) {
162  CompilerOptions compiler_options;
163  if (kRuntimeISA == kArm || kRuntimeISA == kThumb2) {
164    TestCodeGeneratorARM codegenARM(graph,
165                                    *ArmInstructionSetFeatures::FromCppDefines(),
166                                    compiler_options);
167    RunCodeOptimized(&codegenARM, graph, hook_before_codegen, has_result, expected);
168  } else if (kRuntimeISA == kArm64) {
169    arm64::CodeGeneratorARM64 codegenARM64(graph, compiler_options);
170    RunCodeOptimized(&codegenARM64, graph, hook_before_codegen, has_result, expected);
171  } else if (kRuntimeISA == kX86) {
172    x86::CodeGeneratorX86 codegenX86(graph, compiler_options);
173    RunCodeOptimized(&codegenX86, graph, hook_before_codegen, has_result, expected);
174  } else if (kRuntimeISA == kX86_64) {
175    x86_64::CodeGeneratorX86_64 codegenX86_64(graph, compiler_options);
176    RunCodeOptimized(&codegenX86_64, graph, hook_before_codegen, has_result, expected);
177  }
178}
179
180static void TestCode(const uint16_t* data, bool has_result = false, int32_t expected = 0) {
181  ArenaPool pool;
182  ArenaAllocator arena(&pool);
183  HGraphBuilder builder(&arena);
184  const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data);
185  HGraph* graph = builder.BuildGraph(*item);
186  ASSERT_NE(graph, nullptr);
187  // Remove suspend checks, they cannot be executed in this context.
188  RemoveSuspendChecks(graph);
189  RunCodeBaseline(graph, has_result, expected);
190}
191
192static void TestCodeLong(const uint16_t* data, bool has_result, int64_t expected) {
193  ArenaPool pool;
194  ArenaAllocator arena(&pool);
195  HGraphBuilder builder(&arena, Primitive::kPrimLong);
196  const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data);
197  HGraph* graph = builder.BuildGraph(*item);
198  ASSERT_NE(graph, nullptr);
199  // Remove suspend checks, they cannot be executed in this context.
200  RemoveSuspendChecks(graph);
201  RunCodeBaseline(graph, has_result, expected);
202}
203
204TEST(CodegenTest, ReturnVoid) {
205  const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID);
206  TestCode(data);
207}
208
209TEST(CodegenTest, CFG1) {
210  const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
211    Instruction::GOTO | 0x100,
212    Instruction::RETURN_VOID);
213
214  TestCode(data);
215}
216
217TEST(CodegenTest, CFG2) {
218  const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
219    Instruction::GOTO | 0x100,
220    Instruction::GOTO | 0x100,
221    Instruction::RETURN_VOID);
222
223  TestCode(data);
224}
225
226TEST(CodegenTest, CFG3) {
227  const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM(
228    Instruction::GOTO | 0x200,
229    Instruction::RETURN_VOID,
230    Instruction::GOTO | 0xFF00);
231
232  TestCode(data1);
233
234  const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM(
235    Instruction::GOTO_16, 3,
236    Instruction::RETURN_VOID,
237    Instruction::GOTO_16, 0xFFFF);
238
239  TestCode(data2);
240
241  const uint16_t data3[] = ZERO_REGISTER_CODE_ITEM(
242    Instruction::GOTO_32, 4, 0,
243    Instruction::RETURN_VOID,
244    Instruction::GOTO_32, 0xFFFF, 0xFFFF);
245
246  TestCode(data3);
247}
248
249TEST(CodegenTest, CFG4) {
250  const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
251    Instruction::RETURN_VOID,
252    Instruction::GOTO | 0x100,
253    Instruction::GOTO | 0xFE00);
254
255  TestCode(data);
256}
257
258TEST(CodegenTest, CFG5) {
259  const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
260    Instruction::CONST_4 | 0 | 0,
261    Instruction::IF_EQ, 3,
262    Instruction::GOTO | 0x100,
263    Instruction::RETURN_VOID);
264
265  TestCode(data);
266}
267
268TEST(CodegenTest, IntConstant) {
269  const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
270    Instruction::CONST_4 | 0 | 0,
271    Instruction::RETURN_VOID);
272
273  TestCode(data);
274}
275
276TEST(CodegenTest, Return1) {
277  const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
278    Instruction::CONST_4 | 0 | 0,
279    Instruction::RETURN | 0);
280
281  TestCode(data, true, 0);
282}
283
284TEST(CodegenTest, Return2) {
285  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
286    Instruction::CONST_4 | 0 | 0,
287    Instruction::CONST_4 | 0 | 1 << 8,
288    Instruction::RETURN | 1 << 8);
289
290  TestCode(data, true, 0);
291}
292
293TEST(CodegenTest, Return3) {
294  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
295    Instruction::CONST_4 | 0 | 0,
296    Instruction::CONST_4 | 1 << 8 | 1 << 12,
297    Instruction::RETURN | 1 << 8);
298
299  TestCode(data, true, 1);
300}
301
302TEST(CodegenTest, ReturnIf1) {
303  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
304    Instruction::CONST_4 | 0 | 0,
305    Instruction::CONST_4 | 1 << 8 | 1 << 12,
306    Instruction::IF_EQ, 3,
307    Instruction::RETURN | 0 << 8,
308    Instruction::RETURN | 1 << 8);
309
310  TestCode(data, true, 1);
311}
312
313TEST(CodegenTest, ReturnIf2) {
314  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
315    Instruction::CONST_4 | 0 | 0,
316    Instruction::CONST_4 | 1 << 8 | 1 << 12,
317    Instruction::IF_EQ | 0 << 4 | 1 << 8, 3,
318    Instruction::RETURN | 0 << 8,
319    Instruction::RETURN | 1 << 8);
320
321  TestCode(data, true, 0);
322}
323
324// Exercise bit-wise (one's complement) not-int instruction.
325#define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
326TEST(CodegenTest, TEST_NAME) {                          \
327  const int32_t input = INPUT;                          \
328  const uint16_t input_lo = Low16Bits(input);           \
329  const uint16_t input_hi = High16Bits(input);          \
330  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(      \
331      Instruction::CONST | 0 << 8, input_lo, input_hi,  \
332      Instruction::NOT_INT | 1 << 8 | 0 << 12 ,         \
333      Instruction::RETURN | 1 << 8);                    \
334                                                        \
335  TestCode(data, true, EXPECTED_OUTPUT);                \
336}
337
338NOT_INT_TEST(ReturnNotIntMinus2, -2, 1)
339NOT_INT_TEST(ReturnNotIntMinus1, -1, 0)
340NOT_INT_TEST(ReturnNotInt0, 0, -1)
341NOT_INT_TEST(ReturnNotInt1, 1, -2)
342NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647)  // (2^31) - 1
343NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646)  // (2^31) - 2
344NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647)  // -(2^31) - 1
345NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648)  // -(2^31)
346
347#undef NOT_INT_TEST
348
349// Exercise bit-wise (one's complement) not-long instruction.
350#define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT)                 \
351TEST(CodegenTest, TEST_NAME) {                                           \
352  const int64_t input = INPUT;                                           \
353  const uint16_t word0 = Low16Bits(Low32Bits(input));   /* LSW. */       \
354  const uint16_t word1 = High16Bits(Low32Bits(input));                   \
355  const uint16_t word2 = Low16Bits(High32Bits(input));                   \
356  const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */       \
357  const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM(                      \
358      Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3,      \
359      Instruction::NOT_LONG | 2 << 8 | 0 << 12,                          \
360      Instruction::RETURN_WIDE | 2 << 8);                                \
361                                                                         \
362  TestCodeLong(data, true, EXPECTED_OUTPUT);                             \
363}
364
365NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1))
366NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0))
367NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1))
368NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2))
369
370NOT_LONG_TEST(ReturnNotLongINT32_MIN,
371              INT64_C(-2147483648),
372              INT64_C(2147483647))  // (2^31) - 1
373NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1,
374              INT64_C(-2147483647),
375              INT64_C(2147483646))  // (2^31) - 2
376NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1,
377              INT64_C(2147483646),
378              INT64_C(-2147483647))  // -(2^31) - 1
379NOT_LONG_TEST(ReturnNotLongINT32_MAX,
380              INT64_C(2147483647),
381              INT64_C(-2147483648))  // -(2^31)
382
383// Note that the C++ compiler won't accept
384// INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid
385// int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead.
386NOT_LONG_TEST(ReturnNotINT64_MIN,
387              INT64_C(-9223372036854775807)-1,
388              INT64_C(9223372036854775807));  // (2^63) - 1
389NOT_LONG_TEST(ReturnNotINT64_MINPlus1,
390              INT64_C(-9223372036854775807),
391              INT64_C(9223372036854775806));  // (2^63) - 2
392NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1,
393              INT64_C(9223372036854775806),
394              INT64_C(-9223372036854775807));  // -(2^63) - 1
395NOT_LONG_TEST(ReturnNotLongINT64_MAX,
396              INT64_C(9223372036854775807),
397              INT64_C(-9223372036854775807)-1);  // -(2^63)
398
399#undef NOT_LONG_TEST
400
401TEST(CodegenTest, IntToLongOfLongToInt) {
402  const int64_t input = INT64_C(4294967296);             // 2^32
403  const uint16_t word0 = Low16Bits(Low32Bits(input));    // LSW.
404  const uint16_t word1 = High16Bits(Low32Bits(input));
405  const uint16_t word2 = Low16Bits(High32Bits(input));
406  const uint16_t word3 = High16Bits(High32Bits(input));  // MSW.
407  const uint16_t data[] = FIVE_REGISTERS_CODE_ITEM(
408      Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3,
409      Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0,
410      Instruction::ADD_LONG | 0, 0 << 8 | 2,             // v0 <- 2^32 + 1
411      Instruction::LONG_TO_INT | 4 << 8 | 0 << 12,
412      Instruction::INT_TO_LONG | 2 << 8 | 4 << 12,
413      Instruction::RETURN_WIDE | 2 << 8);
414
415  TestCodeLong(data, true, 1);
416}
417
418TEST(CodegenTest, ReturnAdd1) {
419  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
420    Instruction::CONST_4 | 3 << 12 | 0,
421    Instruction::CONST_4 | 4 << 12 | 1 << 8,
422    Instruction::ADD_INT, 1 << 8 | 0,
423    Instruction::RETURN);
424
425  TestCode(data, true, 7);
426}
427
428TEST(CodegenTest, ReturnAdd2) {
429  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
430    Instruction::CONST_4 | 3 << 12 | 0,
431    Instruction::CONST_4 | 4 << 12 | 1 << 8,
432    Instruction::ADD_INT_2ADDR | 1 << 12,
433    Instruction::RETURN);
434
435  TestCode(data, true, 7);
436}
437
438TEST(CodegenTest, ReturnAdd3) {
439  const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
440    Instruction::CONST_4 | 4 << 12 | 0 << 8,
441    Instruction::ADD_INT_LIT8, 3 << 8 | 0,
442    Instruction::RETURN);
443
444  TestCode(data, true, 7);
445}
446
447TEST(CodegenTest, ReturnAdd4) {
448  const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
449    Instruction::CONST_4 | 4 << 12 | 0 << 8,
450    Instruction::ADD_INT_LIT16, 3,
451    Instruction::RETURN);
452
453  TestCode(data, true, 7);
454}
455
456TEST(CodegenTest, NonMaterializedCondition) {
457  ArenaPool pool;
458  ArenaAllocator allocator(&pool);
459
460  HGraph* graph = new (&allocator) HGraph(&allocator);
461  HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
462  graph->AddBlock(entry);
463  graph->SetEntryBlock(entry);
464  entry->AddInstruction(new (&allocator) HGoto());
465
466  HBasicBlock* first_block = new (&allocator) HBasicBlock(graph);
467  graph->AddBlock(first_block);
468  entry->AddSuccessor(first_block);
469  HIntConstant* constant0 = new (&allocator) HIntConstant(0);
470  entry->AddInstruction(constant0);
471  HIntConstant* constant1 = new (&allocator) HIntConstant(1);
472  entry->AddInstruction(constant1);
473  HEqual* equal = new (&allocator) HEqual(constant0, constant0);
474  first_block->AddInstruction(equal);
475  first_block->AddInstruction(new (&allocator) HIf(equal));
476
477  HBasicBlock* then = new (&allocator) HBasicBlock(graph);
478  HBasicBlock* else_ = new (&allocator) HBasicBlock(graph);
479  HBasicBlock* exit = new (&allocator) HBasicBlock(graph);
480
481  graph->AddBlock(then);
482  graph->AddBlock(else_);
483  graph->AddBlock(exit);
484  first_block->AddSuccessor(then);
485  first_block->AddSuccessor(else_);
486  then->AddSuccessor(exit);
487  else_->AddSuccessor(exit);
488
489  exit->AddInstruction(new (&allocator) HExit());
490  then->AddInstruction(new (&allocator) HReturn(constant0));
491  else_->AddInstruction(new (&allocator) HReturn(constant1));
492
493  ASSERT_TRUE(equal->NeedsMaterialization());
494  graph->BuildDominatorTree();
495  PrepareForRegisterAllocation(graph).Run();
496  ASSERT_FALSE(equal->NeedsMaterialization());
497
498  auto hook_before_codegen = [](HGraph* graph_in) {
499    HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors().Get(0);
500    HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
501    block->InsertInstructionBefore(move, block->GetLastInstruction());
502  };
503
504  RunCodeOptimized(graph, hook_before_codegen, true, 0);
505}
506
507#define MUL_TEST(TYPE, TEST_NAME)                     \
508  TEST(CodegenTest, Return ## TEST_NAME) {            \
509    const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(  \
510      Instruction::CONST_4 | 3 << 12 | 0,             \
511      Instruction::CONST_4 | 4 << 12 | 1 << 8,        \
512      Instruction::MUL_ ## TYPE, 1 << 8 | 0,          \
513      Instruction::RETURN);                           \
514                                                      \
515    TestCode(data, true, 12);                         \
516  }                                                   \
517                                                      \
518  TEST(CodegenTest, Return ## TEST_NAME ## 2addr) {   \
519    const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(  \
520      Instruction::CONST_4 | 3 << 12 | 0,             \
521      Instruction::CONST_4 | 4 << 12 | 1 << 8,        \
522      Instruction::MUL_ ## TYPE ## _2ADDR | 1 << 12,  \
523      Instruction::RETURN);                           \
524                                                      \
525    TestCode(data, true, 12);                         \
526  }
527
528MUL_TEST(INT, MulInt);
529MUL_TEST(LONG, MulLong);
530
531TEST(CodegenTest, ReturnMulIntLit8) {
532  const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
533    Instruction::CONST_4 | 4 << 12 | 0 << 8,
534    Instruction::MUL_INT_LIT8, 3 << 8 | 0,
535    Instruction::RETURN);
536
537  TestCode(data, true, 12);
538}
539
540TEST(CodegenTest, ReturnMulIntLit16) {
541  const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
542    Instruction::CONST_4 | 4 << 12 | 0 << 8,
543    Instruction::MUL_INT_LIT16, 3,
544    Instruction::RETURN);
545
546  TestCode(data, true, 12);
547}
548
549TEST(CodegenTest, MaterializedCondition1) {
550  // Check that condition are materialized correctly. A materialized condition
551  // should yield `1` if it evaluated to true, and `0` otherwise.
552  // We force the materialization of comparisons for different combinations of
553  // inputs and check the results.
554
555  int lhs[] = {1, 2, -1, 2, 0xabc};
556  int rhs[] = {2, 1, 2, -1, 0xabc};
557
558  for (size_t i = 0; i < arraysize(lhs); i++) {
559    ArenaPool pool;
560    ArenaAllocator allocator(&pool);
561    HGraph* graph = new (&allocator) HGraph(&allocator);
562
563    HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
564    graph->AddBlock(entry_block);
565    graph->SetEntryBlock(entry_block);
566    entry_block->AddInstruction(new (&allocator) HGoto());
567    HBasicBlock* code_block = new (&allocator) HBasicBlock(graph);
568    graph->AddBlock(code_block);
569    HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
570    graph->AddBlock(exit_block);
571    exit_block->AddInstruction(new (&allocator) HExit());
572
573    entry_block->AddSuccessor(code_block);
574    code_block->AddSuccessor(exit_block);
575    graph->SetExitBlock(exit_block);
576
577    HIntConstant cst_lhs(lhs[i]);
578    code_block->AddInstruction(&cst_lhs);
579    HIntConstant cst_rhs(rhs[i]);
580    code_block->AddInstruction(&cst_rhs);
581    HLessThan cmp_lt(&cst_lhs, &cst_rhs);
582    code_block->AddInstruction(&cmp_lt);
583    HReturn ret(&cmp_lt);
584    code_block->AddInstruction(&ret);
585
586    auto hook_before_codegen = [](HGraph* graph_in) {
587      HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors().Get(0);
588      HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
589      block->InsertInstructionBefore(move, block->GetLastInstruction());
590    };
591
592    RunCodeOptimized(graph, hook_before_codegen, true, lhs[i] < rhs[i]);
593  }
594}
595
596TEST(CodegenTest, MaterializedCondition2) {
597  // Check that HIf correctly interprets a materialized condition.
598  // We force the materialization of comparisons for different combinations of
599  // inputs. An HIf takes the materialized combination as input and returns a
600  // value that we verify.
601
602  int lhs[] = {1, 2, -1, 2, 0xabc};
603  int rhs[] = {2, 1, 2, -1, 0xabc};
604
605
606  for (size_t i = 0; i < arraysize(lhs); i++) {
607    ArenaPool pool;
608    ArenaAllocator allocator(&pool);
609    HGraph* graph = new (&allocator) HGraph(&allocator);
610
611    HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
612    graph->AddBlock(entry_block);
613    graph->SetEntryBlock(entry_block);
614    entry_block->AddInstruction(new (&allocator) HGoto());
615
616    HBasicBlock* if_block = new (&allocator) HBasicBlock(graph);
617    graph->AddBlock(if_block);
618    HBasicBlock* if_true_block = new (&allocator) HBasicBlock(graph);
619    graph->AddBlock(if_true_block);
620    HBasicBlock* if_false_block = new (&allocator) HBasicBlock(graph);
621    graph->AddBlock(if_false_block);
622    HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
623    graph->AddBlock(exit_block);
624    exit_block->AddInstruction(new (&allocator) HExit());
625
626    graph->SetEntryBlock(entry_block);
627    entry_block->AddSuccessor(if_block);
628    if_block->AddSuccessor(if_true_block);
629    if_block->AddSuccessor(if_false_block);
630    if_true_block->AddSuccessor(exit_block);
631    if_false_block->AddSuccessor(exit_block);
632    graph->SetExitBlock(exit_block);
633
634    HIntConstant cst_lhs(lhs[i]);
635    if_block->AddInstruction(&cst_lhs);
636    HIntConstant cst_rhs(rhs[i]);
637    if_block->AddInstruction(&cst_rhs);
638    HLessThan cmp_lt(&cst_lhs, &cst_rhs);
639    if_block->AddInstruction(&cmp_lt);
640    // We insert a temporary to separate the HIf from the HLessThan and force
641    // the materialization of the condition.
642    HTemporary force_materialization(0);
643    if_block->AddInstruction(&force_materialization);
644    HIf if_lt(&cmp_lt);
645    if_block->AddInstruction(&if_lt);
646
647    HIntConstant cst_lt(1);
648    if_true_block->AddInstruction(&cst_lt);
649    HReturn ret_lt(&cst_lt);
650    if_true_block->AddInstruction(&ret_lt);
651    HIntConstant cst_ge(0);
652    if_false_block->AddInstruction(&cst_ge);
653    HReturn ret_ge(&cst_ge);
654    if_false_block->AddInstruction(&ret_ge);
655
656    auto hook_before_codegen = [](HGraph* graph_in) {
657      HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors().Get(0);
658      HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
659      block->InsertInstructionBefore(move, block->GetLastInstruction());
660    };
661
662    RunCodeOptimized(graph, hook_before_codegen, true, lhs[i] < rhs[i]);
663  }
664}
665
666TEST(CodegenTest, ReturnDivIntLit8) {
667  const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
668    Instruction::CONST_4 | 4 << 12 | 0 << 8,
669    Instruction::DIV_INT_LIT8, 3 << 8 | 0,
670    Instruction::RETURN);
671
672  TestCode(data, true, 1);
673}
674
675TEST(CodegenTest, ReturnDivInt2Addr) {
676  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
677    Instruction::CONST_4 | 4 << 12 | 0,
678    Instruction::CONST_4 | 2 << 12 | 1 << 8,
679    Instruction::DIV_INT_2ADDR | 1 << 12,
680    Instruction::RETURN);
681
682  TestCode(data, true, 2);
683}
684
685}  // namespace art
686