instruction_simplifier.cc revision 1193259cb37c9763a111825aa04718a409d07145
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "instruction_simplifier.h"
18
19#include "intrinsics.h"
20#include "mirror/class-inl.h"
21#include "scoped_thread_state_change.h"
22
23namespace art {
24
25class InstructionSimplifierVisitor : public HGraphDelegateVisitor {
26 public:
27  InstructionSimplifierVisitor(HGraph* graph, OptimizingCompilerStats* stats)
28      : HGraphDelegateVisitor(graph),
29        stats_(stats) {}
30
31  void Run();
32
33 private:
34  void RecordSimplification() {
35    simplification_occurred_ = true;
36    simplifications_at_current_position_++;
37    if (stats_) {
38      stats_->RecordStat(kInstructionSimplifications);
39    }
40  }
41
42  bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl);
43  bool TryReplaceWithRotate(HBinaryOperation* instruction);
44  bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
45  bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
46  bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
47
48  bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop);
49  // `op` should be either HOr or HAnd.
50  // De Morgan's laws:
51  // ~a & ~b = ~(a | b)  and  ~a | ~b = ~(a & b)
52  bool TryDeMorganNegationFactoring(HBinaryOperation* op);
53  void VisitShift(HBinaryOperation* shift);
54
55  void VisitSuspendCheck(HSuspendCheck* check) OVERRIDE;
56  void VisitEqual(HEqual* equal) OVERRIDE;
57  void VisitNotEqual(HNotEqual* equal) OVERRIDE;
58  void VisitBooleanNot(HBooleanNot* bool_not) OVERRIDE;
59  void VisitInstanceFieldSet(HInstanceFieldSet* equal) OVERRIDE;
60  void VisitStaticFieldSet(HStaticFieldSet* equal) OVERRIDE;
61  void VisitArraySet(HArraySet* equal) OVERRIDE;
62  void VisitTypeConversion(HTypeConversion* instruction) OVERRIDE;
63  void VisitNullCheck(HNullCheck* instruction) OVERRIDE;
64  void VisitArrayLength(HArrayLength* instruction) OVERRIDE;
65  void VisitCheckCast(HCheckCast* instruction) OVERRIDE;
66  void VisitAdd(HAdd* instruction) OVERRIDE;
67  void VisitAnd(HAnd* instruction) OVERRIDE;
68  void VisitCondition(HCondition* instruction) OVERRIDE;
69  void VisitGreaterThan(HGreaterThan* condition) OVERRIDE;
70  void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) OVERRIDE;
71  void VisitLessThan(HLessThan* condition) OVERRIDE;
72  void VisitLessThanOrEqual(HLessThanOrEqual* condition) OVERRIDE;
73  void VisitDiv(HDiv* instruction) OVERRIDE;
74  void VisitMul(HMul* instruction) OVERRIDE;
75  void VisitNeg(HNeg* instruction) OVERRIDE;
76  void VisitNot(HNot* instruction) OVERRIDE;
77  void VisitOr(HOr* instruction) OVERRIDE;
78  void VisitShl(HShl* instruction) OVERRIDE;
79  void VisitShr(HShr* instruction) OVERRIDE;
80  void VisitSub(HSub* instruction) OVERRIDE;
81  void VisitUShr(HUShr* instruction) OVERRIDE;
82  void VisitXor(HXor* instruction) OVERRIDE;
83  void VisitSelect(HSelect* select) OVERRIDE;
84  void VisitIf(HIf* instruction) OVERRIDE;
85  void VisitInstanceOf(HInstanceOf* instruction) OVERRIDE;
86  void VisitInvoke(HInvoke* invoke) OVERRIDE;
87  void VisitDeoptimize(HDeoptimize* deoptimize) OVERRIDE;
88
89  bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const;
90
91  void SimplifyRotate(HInvoke* invoke, bool is_left);
92  void SimplifySystemArrayCopy(HInvoke* invoke);
93  void SimplifyStringEquals(HInvoke* invoke);
94  void SimplifyCompare(HInvoke* invoke, bool has_zero_op);
95  void SimplifyIsNaN(HInvoke* invoke);
96  void SimplifyFP2Int(HInvoke* invoke);
97  void SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind);
98
99  OptimizingCompilerStats* stats_;
100  bool simplification_occurred_ = false;
101  int simplifications_at_current_position_ = 0;
102  // We ensure we do not loop infinitely. The value is a finger in the air guess
103  // that should allow enough simplification.
104  static constexpr int kMaxSamePositionSimplifications = 10;
105};
106
107void InstructionSimplifier::Run() {
108  InstructionSimplifierVisitor visitor(graph_, stats_);
109  visitor.Run();
110}
111
112void InstructionSimplifierVisitor::Run() {
113  // Iterate in reverse post order to open up more simplifications to users
114  // of instructions that got simplified.
115  for (HReversePostOrderIterator it(*GetGraph()); !it.Done();) {
116    // The simplification of an instruction to another instruction may yield
117    // possibilities for other simplifications. So although we perform a reverse
118    // post order visit, we sometimes need to revisit an instruction index.
119    simplification_occurred_ = false;
120    VisitBasicBlock(it.Current());
121    if (simplification_occurred_ &&
122        (simplifications_at_current_position_ < kMaxSamePositionSimplifications)) {
123      // New simplifications may be applicable to the instruction at the
124      // current index, so don't advance the iterator.
125      continue;
126    }
127    simplifications_at_current_position_ = 0;
128    it.Advance();
129  }
130}
131
132namespace {
133
134bool AreAllBitsSet(HConstant* constant) {
135  return Int64FromConstant(constant) == -1;
136}
137
138}  // namespace
139
140// Returns true if the code was simplified to use only one negation operation
141// after the binary operation instead of one on each of the inputs.
142bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) {
143  DCHECK(binop->IsAdd() || binop->IsSub());
144  DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg());
145  HNeg* left_neg = binop->GetLeft()->AsNeg();
146  HNeg* right_neg = binop->GetRight()->AsNeg();
147  if (!left_neg->HasOnlyOneNonEnvironmentUse() ||
148      !right_neg->HasOnlyOneNonEnvironmentUse()) {
149    return false;
150  }
151  // Replace code looking like
152  //    NEG tmp1, a
153  //    NEG tmp2, b
154  //    ADD dst, tmp1, tmp2
155  // with
156  //    ADD tmp, a, b
157  //    NEG dst, tmp
158  // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point.
159  // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`,
160  // while the later yields `-0.0`.
161  if (!Primitive::IsIntegralType(binop->GetType())) {
162    return false;
163  }
164  binop->ReplaceInput(left_neg->GetInput(), 0);
165  binop->ReplaceInput(right_neg->GetInput(), 1);
166  left_neg->GetBlock()->RemoveInstruction(left_neg);
167  right_neg->GetBlock()->RemoveInstruction(right_neg);
168  HNeg* neg = new (GetGraph()->GetArena()) HNeg(binop->GetType(), binop);
169  binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext());
170  binop->ReplaceWithExceptInReplacementAtIndex(neg, 0);
171  RecordSimplification();
172  return true;
173}
174
175bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) {
176  DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName();
177  Primitive::Type type = op->GetType();
178  HInstruction* left = op->GetLeft();
179  HInstruction* right = op->GetRight();
180
181  // We can apply De Morgan's laws if both inputs are Not's and are only used
182  // by `op`.
183  if (((left->IsNot() && right->IsNot()) ||
184       (left->IsBooleanNot() && right->IsBooleanNot())) &&
185      left->HasOnlyOneNonEnvironmentUse() &&
186      right->HasOnlyOneNonEnvironmentUse()) {
187    // Replace code looking like
188    //    NOT nota, a
189    //    NOT notb, b
190    //    AND dst, nota, notb (respectively OR)
191    // with
192    //    OR or, a, b         (respectively AND)
193    //    NOT dest, or
194    HInstruction* src_left = left->InputAt(0);
195    HInstruction* src_right = right->InputAt(0);
196    uint32_t dex_pc = op->GetDexPc();
197
198    // Remove the negations on the inputs.
199    left->ReplaceWith(src_left);
200    right->ReplaceWith(src_right);
201    left->GetBlock()->RemoveInstruction(left);
202    right->GetBlock()->RemoveInstruction(right);
203
204    // Replace the `HAnd` or `HOr`.
205    HBinaryOperation* hbin;
206    if (op->IsAnd()) {
207      hbin = new (GetGraph()->GetArena()) HOr(type, src_left, src_right, dex_pc);
208    } else {
209      hbin = new (GetGraph()->GetArena()) HAnd(type, src_left, src_right, dex_pc);
210    }
211    HInstruction* hnot;
212    if (left->IsBooleanNot()) {
213      hnot = new (GetGraph()->GetArena()) HBooleanNot(hbin, dex_pc);
214    } else {
215      hnot = new (GetGraph()->GetArena()) HNot(type, hbin, dex_pc);
216    }
217
218    op->GetBlock()->InsertInstructionBefore(hbin, op);
219    op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot);
220
221    RecordSimplification();
222    return true;
223  }
224
225  return false;
226}
227
228void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) {
229  DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
230  HConstant* input_cst = instruction->GetConstantRight();
231  HInstruction* input_other = instruction->GetLeastConstantLeft();
232
233  if (input_cst != nullptr) {
234    if (input_cst->IsZero()) {
235      // Replace code looking like
236      //    SHL dst, src, 0
237      // with
238      //    src
239      instruction->ReplaceWith(input_other);
240      instruction->GetBlock()->RemoveInstruction(instruction);
241    }
242  }
243}
244
245static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) {
246  return (sub->GetRight() == other &&
247          sub->GetLeft()->IsConstant() &&
248          (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0);
249}
250
251bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op,
252                                                        HUShr* ushr,
253                                                        HShl* shl) {
254  DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
255  HRor* ror = new (GetGraph()->GetArena()) HRor(ushr->GetType(),
256                                                ushr->GetLeft(),
257                                                ushr->GetRight());
258  op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror);
259  if (!ushr->HasUses()) {
260    ushr->GetBlock()->RemoveInstruction(ushr);
261  }
262  if (!ushr->GetRight()->HasUses()) {
263    ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight());
264  }
265  if (!shl->HasUses()) {
266    shl->GetBlock()->RemoveInstruction(shl);
267  }
268  if (!shl->GetRight()->HasUses()) {
269    shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight());
270  }
271  return true;
272}
273
274// Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation.
275bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) {
276  DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
277  HInstruction* left = op->GetLeft();
278  HInstruction* right = op->GetRight();
279  // If we have an UShr and a Shl (in either order).
280  if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) {
281    HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr();
282    HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl();
283    DCHECK(Primitive::IsIntOrLongType(ushr->GetType()));
284    if (ushr->GetType() == shl->GetType() &&
285        ushr->GetLeft() == shl->GetLeft()) {
286      if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) {
287        // Shift distances are both constant, try replacing with Ror if they
288        // add up to the register size.
289        return TryReplaceWithRotateConstantPattern(op, ushr, shl);
290      } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) {
291        // Shift distances are potentially of the form x and (reg_size - x).
292        return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl);
293      } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) {
294        // Shift distances are potentially of the form d and -d.
295        return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl);
296      }
297    }
298  }
299  return false;
300}
301
302// Try replacing code looking like (x >>> #rdist OP x << #ldist):
303//    UShr dst, x,   #rdist
304//    Shl  tmp, x,   #ldist
305//    OP   dst, dst, tmp
306// or like (x >>> #rdist OP x << #-ldist):
307//    UShr dst, x,   #rdist
308//    Shl  tmp, x,   #-ldist
309//    OP   dst, dst, tmp
310// with
311//    Ror  dst, x,   #rdist
312bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op,
313                                                                       HUShr* ushr,
314                                                                       HShl* shl) {
315  DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
316  size_t reg_bits = Primitive::ComponentSize(ushr->GetType()) * kBitsPerByte;
317  size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant());
318  size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant());
319  if (((ldist + rdist) & (reg_bits - 1)) == 0) {
320    ReplaceRotateWithRor(op, ushr, shl);
321    return true;
322  }
323  return false;
324}
325
326// Replace code looking like (x >>> -d OP x << d):
327//    Neg  neg, d
328//    UShr dst, x,   neg
329//    Shl  tmp, x,   d
330//    OP   dst, dst, tmp
331// with
332//    Neg  neg, d
333//    Ror  dst, x,   neg
334// *** OR ***
335// Replace code looking like (x >>> d OP x << -d):
336//    UShr dst, x,   d
337//    Neg  neg, d
338//    Shl  tmp, x,   neg
339//    OP   dst, dst, tmp
340// with
341//    Ror  dst, x,   d
342bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op,
343                                                                          HUShr* ushr,
344                                                                          HShl* shl) {
345  DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
346  DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg());
347  bool neg_is_left = shl->GetRight()->IsNeg();
348  HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg();
349  // And the shift distance being negated is the distance being shifted the other way.
350  if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) {
351    ReplaceRotateWithRor(op, ushr, shl);
352  }
353  return false;
354}
355
356// Try replacing code looking like (x >>> d OP x << (#bits - d)):
357//    UShr dst, x,     d
358//    Sub  ld,  #bits, d
359//    Shl  tmp, x,     ld
360//    OP   dst, dst,   tmp
361// with
362//    Ror  dst, x,     d
363// *** OR ***
364// Replace code looking like (x >>> (#bits - d) OP x << d):
365//    Sub  rd,  #bits, d
366//    UShr dst, x,     rd
367//    Shl  tmp, x,     d
368//    OP   dst, dst,   tmp
369// with
370//    Neg  neg, d
371//    Ror  dst, x,     neg
372bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op,
373                                                                          HUShr* ushr,
374                                                                          HShl* shl) {
375  DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
376  DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub());
377  size_t reg_bits = Primitive::ComponentSize(ushr->GetType()) * kBitsPerByte;
378  HInstruction* shl_shift = shl->GetRight();
379  HInstruction* ushr_shift = ushr->GetRight();
380  if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) ||
381      (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) {
382    return ReplaceRotateWithRor(op, ushr, shl);
383  }
384  return false;
385}
386
387void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) {
388  HInstruction* obj = null_check->InputAt(0);
389  if (!obj->CanBeNull()) {
390    null_check->ReplaceWith(obj);
391    null_check->GetBlock()->RemoveInstruction(null_check);
392    if (stats_ != nullptr) {
393      stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck);
394    }
395  }
396}
397
398bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const {
399  if (!input->CanBeNull()) {
400    return true;
401  }
402
403  for (HUseIterator<HInstruction*> it(input->GetUses()); !it.Done(); it.Advance()) {
404    HInstruction* use = it.Current()->GetUser();
405    if (use->IsNullCheck() && use->StrictlyDominates(at)) {
406      return true;
407    }
408  }
409
410  return false;
411}
412
413// Returns whether doing a type test between the class of `object` against `klass` has
414// a statically known outcome. The result of the test is stored in `outcome`.
415static bool TypeCheckHasKnownOutcome(HLoadClass* klass, HInstruction* object, bool* outcome) {
416  DCHECK(!object->IsNullConstant()) << "Null constants should be special cased";
417  ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo();
418  ScopedObjectAccess soa(Thread::Current());
419  if (!obj_rti.IsValid()) {
420    // We run the simplifier before the reference type propagation so type info might not be
421    // available.
422    return false;
423  }
424
425  ReferenceTypeInfo class_rti = klass->GetLoadedClassRTI();
426  if (!class_rti.IsValid()) {
427    // Happens when the loaded class is unresolved.
428    return false;
429  }
430  DCHECK(class_rti.IsExact());
431  if (class_rti.IsSupertypeOf(obj_rti)) {
432    *outcome = true;
433    return true;
434  } else if (obj_rti.IsExact()) {
435    // The test failed at compile time so will also fail at runtime.
436    *outcome = false;
437    return true;
438  } else if (!class_rti.IsInterface()
439             && !obj_rti.IsInterface()
440             && !obj_rti.IsSupertypeOf(class_rti)) {
441    // Different type hierarchy. The test will fail.
442    *outcome = false;
443    return true;
444  }
445  return false;
446}
447
448void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) {
449  HInstruction* object = check_cast->InputAt(0);
450  HLoadClass* load_class = check_cast->InputAt(1)->AsLoadClass();
451  if (load_class->NeedsAccessCheck()) {
452    // If we need to perform an access check we cannot remove the instruction.
453    return;
454  }
455
456  if (CanEnsureNotNullAt(object, check_cast)) {
457    check_cast->ClearMustDoNullCheck();
458  }
459
460  if (object->IsNullConstant()) {
461    check_cast->GetBlock()->RemoveInstruction(check_cast);
462    if (stats_ != nullptr) {
463      stats_->RecordStat(MethodCompilationStat::kRemovedCheckedCast);
464    }
465    return;
466  }
467
468  bool outcome;
469  if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
470    if (outcome) {
471      check_cast->GetBlock()->RemoveInstruction(check_cast);
472      if (stats_ != nullptr) {
473        stats_->RecordStat(MethodCompilationStat::kRemovedCheckedCast);
474      }
475      if (!load_class->HasUses()) {
476        // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
477        // However, here we know that it cannot because the checkcast was successfull, hence
478        // the class was already loaded.
479        load_class->GetBlock()->RemoveInstruction(load_class);
480      }
481    } else {
482      // Don't do anything for exceptional cases for now. Ideally we should remove
483      // all instructions and blocks this instruction dominates.
484    }
485  }
486}
487
488void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) {
489  HInstruction* object = instruction->InputAt(0);
490  HLoadClass* load_class = instruction->InputAt(1)->AsLoadClass();
491  if (load_class->NeedsAccessCheck()) {
492    // If we need to perform an access check we cannot remove the instruction.
493    return;
494  }
495
496  bool can_be_null = true;
497  if (CanEnsureNotNullAt(object, instruction)) {
498    can_be_null = false;
499    instruction->ClearMustDoNullCheck();
500  }
501
502  HGraph* graph = GetGraph();
503  if (object->IsNullConstant()) {
504    instruction->ReplaceWith(graph->GetIntConstant(0));
505    instruction->GetBlock()->RemoveInstruction(instruction);
506    RecordSimplification();
507    return;
508  }
509
510  bool outcome;
511  if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
512    if (outcome && can_be_null) {
513      // Type test will succeed, we just need a null test.
514      HNotEqual* test = new (graph->GetArena()) HNotEqual(graph->GetNullConstant(), object);
515      instruction->GetBlock()->InsertInstructionBefore(test, instruction);
516      instruction->ReplaceWith(test);
517    } else {
518      // We've statically determined the result of the instanceof.
519      instruction->ReplaceWith(graph->GetIntConstant(outcome));
520    }
521    RecordSimplification();
522    instruction->GetBlock()->RemoveInstruction(instruction);
523    if (outcome && !load_class->HasUses()) {
524      // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
525      // However, here we know that it cannot because the instanceof check was successfull, hence
526      // the class was already loaded.
527      load_class->GetBlock()->RemoveInstruction(load_class);
528    }
529  }
530}
531
532void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
533  if ((instruction->GetValue()->GetType() == Primitive::kPrimNot)
534      && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
535    instruction->ClearValueCanBeNull();
536  }
537}
538
539void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) {
540  if ((instruction->GetValue()->GetType() == Primitive::kPrimNot)
541      && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
542    instruction->ClearValueCanBeNull();
543  }
544}
545
546void InstructionSimplifierVisitor::VisitSuspendCheck(HSuspendCheck* check) {
547  HBasicBlock* block = check->GetBlock();
548  // Currently always keep the suspend check at entry.
549  if (block->IsEntryBlock()) return;
550
551  // Currently always keep suspend checks at loop entry.
552  if (block->IsLoopHeader() && block->GetFirstInstruction() == check) {
553    DCHECK(block->GetLoopInformation()->GetSuspendCheck() == check);
554    return;
555  }
556
557  // Remove the suspend check that was added at build time for the baseline
558  // compiler.
559  block->RemoveInstruction(check);
560}
561
562void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) {
563  HInstruction* input_const = equal->GetConstantRight();
564  if (input_const != nullptr) {
565    HInstruction* input_value = equal->GetLeastConstantLeft();
566    if (input_value->GetType() == Primitive::kPrimBoolean && input_const->IsIntConstant()) {
567      HBasicBlock* block = equal->GetBlock();
568      // We are comparing the boolean to a constant which is of type int and can
569      // be any constant.
570      if (input_const->AsIntConstant()->IsOne()) {
571        // Replace (bool_value == true) with bool_value
572        equal->ReplaceWith(input_value);
573        block->RemoveInstruction(equal);
574        RecordSimplification();
575      } else if (input_const->AsIntConstant()->IsZero()) {
576        equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal));
577        block->RemoveInstruction(equal);
578        RecordSimplification();
579      } else {
580        // Replace (bool_value == integer_not_zero_nor_one_constant) with false
581        equal->ReplaceWith(GetGraph()->GetIntConstant(0));
582        block->RemoveInstruction(equal);
583        RecordSimplification();
584      }
585    } else {
586      VisitCondition(equal);
587    }
588  } else {
589    VisitCondition(equal);
590  }
591}
592
593void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) {
594  HInstruction* input_const = not_equal->GetConstantRight();
595  if (input_const != nullptr) {
596    HInstruction* input_value = not_equal->GetLeastConstantLeft();
597    if (input_value->GetType() == Primitive::kPrimBoolean && input_const->IsIntConstant()) {
598      HBasicBlock* block = not_equal->GetBlock();
599      // We are comparing the boolean to a constant which is of type int and can
600      // be any constant.
601      if (input_const->AsIntConstant()->IsOne()) {
602        not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal));
603        block->RemoveInstruction(not_equal);
604        RecordSimplification();
605      } else if (input_const->AsIntConstant()->IsZero()) {
606        // Replace (bool_value != false) with bool_value
607        not_equal->ReplaceWith(input_value);
608        block->RemoveInstruction(not_equal);
609        RecordSimplification();
610      } else {
611        // Replace (bool_value != integer_not_zero_nor_one_constant) with true
612        not_equal->ReplaceWith(GetGraph()->GetIntConstant(1));
613        block->RemoveInstruction(not_equal);
614        RecordSimplification();
615      }
616    } else {
617      VisitCondition(not_equal);
618    }
619  } else {
620    VisitCondition(not_equal);
621  }
622}
623
624void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) {
625  HInstruction* input = bool_not->InputAt(0);
626  HInstruction* replace_with = nullptr;
627
628  if (input->IsIntConstant()) {
629    // Replace !(true/false) with false/true.
630    if (input->AsIntConstant()->IsOne()) {
631      replace_with = GetGraph()->GetIntConstant(0);
632    } else {
633      DCHECK(input->AsIntConstant()->IsZero());
634      replace_with = GetGraph()->GetIntConstant(1);
635    }
636  } else if (input->IsBooleanNot()) {
637    // Replace (!(!bool_value)) with bool_value.
638    replace_with = input->InputAt(0);
639  } else if (input->IsCondition() &&
640             // Don't change FP compares. The definition of compares involving
641             // NaNs forces the compares to be done as written by the user.
642             !Primitive::IsFloatingPointType(input->InputAt(0)->GetType())) {
643    // Replace condition with its opposite.
644    replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not);
645  }
646
647  if (replace_with != nullptr) {
648    bool_not->ReplaceWith(replace_with);
649    bool_not->GetBlock()->RemoveInstruction(bool_not);
650    RecordSimplification();
651  }
652}
653
654void InstructionSimplifierVisitor::VisitSelect(HSelect* select) {
655  HInstruction* replace_with = nullptr;
656  HInstruction* condition = select->GetCondition();
657  HInstruction* true_value = select->GetTrueValue();
658  HInstruction* false_value = select->GetFalseValue();
659
660  if (condition->IsBooleanNot()) {
661    // Change ((!cond) ? x : y) to (cond ? y : x).
662    condition = condition->InputAt(0);
663    std::swap(true_value, false_value);
664    select->ReplaceInput(false_value, 0);
665    select->ReplaceInput(true_value, 1);
666    select->ReplaceInput(condition, 2);
667    RecordSimplification();
668  }
669
670  if (true_value == false_value) {
671    // Replace (cond ? x : x) with (x).
672    replace_with = true_value;
673  } else if (condition->IsIntConstant()) {
674    if (condition->AsIntConstant()->IsOne()) {
675      // Replace (true ? x : y) with (x).
676      replace_with = true_value;
677    } else {
678      // Replace (false ? x : y) with (y).
679      DCHECK(condition->AsIntConstant()->IsZero());
680      replace_with = false_value;
681    }
682  } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) {
683    if (true_value->AsIntConstant()->IsOne() && false_value->AsIntConstant()->IsZero()) {
684      // Replace (cond ? true : false) with (cond).
685      replace_with = condition;
686    } else if (true_value->AsIntConstant()->IsZero() && false_value->AsIntConstant()->IsOne()) {
687      // Replace (cond ? false : true) with (!cond).
688      replace_with = GetGraph()->InsertOppositeCondition(condition, select);
689    }
690  }
691
692  if (replace_with != nullptr) {
693    select->ReplaceWith(replace_with);
694    select->GetBlock()->RemoveInstruction(select);
695    RecordSimplification();
696  }
697}
698
699void InstructionSimplifierVisitor::VisitIf(HIf* instruction) {
700  HInstruction* condition = instruction->InputAt(0);
701  if (condition->IsBooleanNot()) {
702    // Swap successors if input is negated.
703    instruction->ReplaceInput(condition->InputAt(0), 0);
704    instruction->GetBlock()->SwapSuccessors();
705    RecordSimplification();
706  }
707}
708
709void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) {
710  HInstruction* input = instruction->InputAt(0);
711  // If the array is a NewArray with constant size, replace the array length
712  // with the constant instruction. This helps the bounds check elimination phase.
713  if (input->IsNewArray()) {
714    input = input->InputAt(0);
715    if (input->IsIntConstant()) {
716      instruction->ReplaceWith(input);
717    }
718  }
719}
720
721void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) {
722  HInstruction* value = instruction->GetValue();
723  if (value->GetType() != Primitive::kPrimNot) return;
724
725  if (CanEnsureNotNullAt(value, instruction)) {
726    instruction->ClearValueCanBeNull();
727  }
728
729  if (value->IsArrayGet()) {
730    if (value->AsArrayGet()->GetArray() == instruction->GetArray()) {
731      // If the code is just swapping elements in the array, no need for a type check.
732      instruction->ClearNeedsTypeCheck();
733      return;
734    }
735  }
736
737  if (value->IsNullConstant()) {
738    instruction->ClearNeedsTypeCheck();
739    return;
740  }
741
742  ScopedObjectAccess soa(Thread::Current());
743  ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo();
744  ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo();
745  if (!array_rti.IsValid()) {
746    return;
747  }
748
749  if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) {
750    instruction->ClearNeedsTypeCheck();
751    return;
752  }
753
754  if (array_rti.IsObjectArray()) {
755    if (array_rti.IsExact()) {
756      instruction->ClearNeedsTypeCheck();
757      return;
758    }
759    instruction->SetStaticTypeOfArrayIsObjectArray();
760  }
761}
762
763static bool IsTypeConversionImplicit(Primitive::Type input_type, Primitive::Type result_type) {
764  // Besides conversion to the same type, widening integral conversions are implicit,
765  // excluding conversions to long and the byte->char conversion where we need to
766  // clear the high 16 bits of the 32-bit sign-extended representation of byte.
767  return result_type == input_type ||
768      (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimByte) ||
769      (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimShort) ||
770      (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimChar) ||
771      (result_type == Primitive::kPrimShort && input_type == Primitive::kPrimByte);
772}
773
774static bool IsTypeConversionLossless(Primitive::Type input_type, Primitive::Type result_type) {
775  // The conversion to a larger type is loss-less with the exception of two cases,
776  //   - conversion to char, the only unsigned type, where we may lose some bits, and
777  //   - conversion from float to long, the only FP to integral conversion with smaller FP type.
778  // For integral to FP conversions this holds because the FP mantissa is large enough.
779  DCHECK_NE(input_type, result_type);
780  return Primitive::ComponentSize(result_type) > Primitive::ComponentSize(input_type) &&
781      result_type != Primitive::kPrimChar &&
782      !(result_type == Primitive::kPrimLong && input_type == Primitive::kPrimFloat);
783}
784
785void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) {
786  HInstruction* input = instruction->GetInput();
787  Primitive::Type input_type = input->GetType();
788  Primitive::Type result_type = instruction->GetResultType();
789  if (IsTypeConversionImplicit(input_type, result_type)) {
790    // Remove the implicit conversion; this includes conversion to the same type.
791    instruction->ReplaceWith(input);
792    instruction->GetBlock()->RemoveInstruction(instruction);
793    RecordSimplification();
794    return;
795  }
796
797  if (input->IsTypeConversion()) {
798    HTypeConversion* input_conversion = input->AsTypeConversion();
799    HInstruction* original_input = input_conversion->GetInput();
800    Primitive::Type original_type = original_input->GetType();
801
802    // When the first conversion is lossless, a direct conversion from the original type
803    // to the final type yields the same result, even for a lossy second conversion, for
804    // example float->double->int or int->double->float.
805    bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type);
806
807    // For integral conversions, see if the first conversion loses only bits that the second
808    // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct
809    // conversion yields the same result, for example long->int->short or int->char->short.
810    bool integral_conversions_with_non_widening_second =
811        Primitive::IsIntegralType(input_type) &&
812        Primitive::IsIntegralType(original_type) &&
813        Primitive::IsIntegralType(result_type) &&
814        Primitive::ComponentSize(result_type) <= Primitive::ComponentSize(input_type);
815
816    if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) {
817      // If the merged conversion is implicit, do the simplification unconditionally.
818      if (IsTypeConversionImplicit(original_type, result_type)) {
819        instruction->ReplaceWith(original_input);
820        instruction->GetBlock()->RemoveInstruction(instruction);
821        if (!input_conversion->HasUses()) {
822          // Don't wait for DCE.
823          input_conversion->GetBlock()->RemoveInstruction(input_conversion);
824        }
825        RecordSimplification();
826        return;
827      }
828      // Otherwise simplify only if the first conversion has no other use.
829      if (input_conversion->HasOnlyOneNonEnvironmentUse()) {
830        input_conversion->ReplaceWith(original_input);
831        input_conversion->GetBlock()->RemoveInstruction(input_conversion);
832        RecordSimplification();
833        return;
834      }
835    }
836  } else if (input->IsAnd() &&
837      Primitive::IsIntegralType(result_type) &&
838      input->HasOnlyOneNonEnvironmentUse()) {
839    DCHECK(Primitive::IsIntegralType(input_type));
840    HAnd* input_and = input->AsAnd();
841    HConstant* constant = input_and->GetConstantRight();
842    if (constant != nullptr) {
843      int64_t value = Int64FromConstant(constant);
844      DCHECK_NE(value, -1);  // "& -1" would have been optimized away in VisitAnd().
845      size_t trailing_ones = CTZ(~static_cast<uint64_t>(value));
846      if (trailing_ones >= kBitsPerByte * Primitive::ComponentSize(result_type)) {
847        // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it.
848        input_and->ReplaceWith(input_and->GetLeastConstantLeft());
849        input_and->GetBlock()->RemoveInstruction(input_and);
850        RecordSimplification();
851        return;
852      }
853    }
854  }
855}
856
857void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) {
858  HConstant* input_cst = instruction->GetConstantRight();
859  HInstruction* input_other = instruction->GetLeastConstantLeft();
860  if ((input_cst != nullptr) && input_cst->IsZero()) {
861    // Replace code looking like
862    //    ADD dst, src, 0
863    // with
864    //    src
865    // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When
866    // `x` is `-0.0`, the former expression yields `0.0`, while the later
867    // yields `-0.0`.
868    if (Primitive::IsIntegralType(instruction->GetType())) {
869      instruction->ReplaceWith(input_other);
870      instruction->GetBlock()->RemoveInstruction(instruction);
871      return;
872    }
873  }
874
875  HInstruction* left = instruction->GetLeft();
876  HInstruction* right = instruction->GetRight();
877  bool left_is_neg = left->IsNeg();
878  bool right_is_neg = right->IsNeg();
879
880  if (left_is_neg && right_is_neg) {
881    if (TryMoveNegOnInputsAfterBinop(instruction)) {
882      return;
883    }
884  }
885
886  HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg();
887  if ((left_is_neg ^ right_is_neg) && neg->HasOnlyOneNonEnvironmentUse()) {
888    // Replace code looking like
889    //    NEG tmp, b
890    //    ADD dst, a, tmp
891    // with
892    //    SUB dst, a, b
893    // We do not perform the optimization if the input negation has environment
894    // uses or multiple non-environment uses as it could lead to worse code. In
895    // particular, we do not want the live range of `b` to be extended if we are
896    // not sure the initial 'NEG' instruction can be removed.
897    HInstruction* other = left_is_neg ? right : left;
898    HSub* sub = new(GetGraph()->GetArena()) HSub(instruction->GetType(), other, neg->GetInput());
899    instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub);
900    RecordSimplification();
901    neg->GetBlock()->RemoveInstruction(neg);
902    return;
903  }
904
905  TryReplaceWithRotate(instruction);
906}
907
908void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) {
909  HConstant* input_cst = instruction->GetConstantRight();
910  HInstruction* input_other = instruction->GetLeastConstantLeft();
911
912  if (input_cst != nullptr) {
913    int64_t value = Int64FromConstant(input_cst);
914    if (value == -1) {
915      // Replace code looking like
916      //    AND dst, src, 0xFFF...FF
917      // with
918      //    src
919      instruction->ReplaceWith(input_other);
920      instruction->GetBlock()->RemoveInstruction(instruction);
921      RecordSimplification();
922      return;
923    }
924    // Eliminate And from UShr+And if the And-mask contains all the bits that
925    // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask
926    // precisely clears the shifted-in sign bits.
927    if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) {
928      size_t reg_bits = (instruction->GetResultType() == Primitive::kPrimLong) ? 64 : 32;
929      size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1);
930      size_t num_tail_bits_set = CTZ(value + 1);
931      if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) {
932        // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff".
933        instruction->ReplaceWith(input_other);
934        instruction->GetBlock()->RemoveInstruction(instruction);
935        RecordSimplification();
936        return;
937      }  else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) &&
938          input_other->HasOnlyOneNonEnvironmentUse()) {
939        DCHECK(input_other->IsShr());  // For UShr, we would have taken the branch above.
940        // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24".
941        HUShr* ushr = new (GetGraph()->GetArena()) HUShr(instruction->GetType(),
942                                                         input_other->InputAt(0),
943                                                         input_other->InputAt(1),
944                                                         input_other->GetDexPc());
945        instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr);
946        input_other->GetBlock()->RemoveInstruction(input_other);
947        RecordSimplification();
948        return;
949      }
950    }
951  }
952
953  // We assume that GVN has run before, so we only perform a pointer comparison.
954  // If for some reason the values are equal but the pointers are different, we
955  // are still correct and only miss an optimization opportunity.
956  if (instruction->GetLeft() == instruction->GetRight()) {
957    // Replace code looking like
958    //    AND dst, src, src
959    // with
960    //    src
961    instruction->ReplaceWith(instruction->GetLeft());
962    instruction->GetBlock()->RemoveInstruction(instruction);
963    return;
964  }
965
966  TryDeMorganNegationFactoring(instruction);
967}
968
969void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) {
970  VisitCondition(condition);
971}
972
973void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) {
974  VisitCondition(condition);
975}
976
977void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) {
978  VisitCondition(condition);
979}
980
981void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) {
982  VisitCondition(condition);
983}
984
985// TODO: unsigned comparisons too?
986
987void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) {
988  // Try to fold an HCompare into this HCondition.
989
990  HInstruction* left = condition->GetLeft();
991  HInstruction* right = condition->GetRight();
992  // We can only replace an HCondition which compares a Compare to 0.
993  // Both 'dx' and 'jack' generate a compare to 0 when compiling a
994  // condition with a long, float or double comparison as input.
995  if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) {
996    // Conversion is not possible.
997    return;
998  }
999
1000  // Is the Compare only used for this purpose?
1001  if (!left->GetUses().HasOnlyOneUse()) {
1002    // Someone else also wants the result of the compare.
1003    return;
1004  }
1005
1006  if (!left->GetEnvUses().IsEmpty()) {
1007    // There is a reference to the compare result in an environment. Do we really need it?
1008    if (GetGraph()->IsDebuggable()) {
1009      return;
1010    }
1011
1012    // We have to ensure that there are no deopt points in the sequence.
1013    if (left->HasAnyEnvironmentUseBefore(condition)) {
1014      return;
1015    }
1016  }
1017
1018  // Clean up any environment uses from the HCompare, if any.
1019  left->RemoveEnvironmentUsers();
1020
1021  // We have decided to fold the HCompare into the HCondition. Transfer the information.
1022  condition->SetBias(left->AsCompare()->GetBias());
1023
1024  // Replace the operands of the HCondition.
1025  condition->ReplaceInput(left->InputAt(0), 0);
1026  condition->ReplaceInput(left->InputAt(1), 1);
1027
1028  // Remove the HCompare.
1029  left->GetBlock()->RemoveInstruction(left);
1030
1031  RecordSimplification();
1032}
1033
1034void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) {
1035  HConstant* input_cst = instruction->GetConstantRight();
1036  HInstruction* input_other = instruction->GetLeastConstantLeft();
1037  Primitive::Type type = instruction->GetType();
1038
1039  if ((input_cst != nullptr) && input_cst->IsOne()) {
1040    // Replace code looking like
1041    //    DIV dst, src, 1
1042    // with
1043    //    src
1044    instruction->ReplaceWith(input_other);
1045    instruction->GetBlock()->RemoveInstruction(instruction);
1046    return;
1047  }
1048
1049  if ((input_cst != nullptr) && input_cst->IsMinusOne()) {
1050    // Replace code looking like
1051    //    DIV dst, src, -1
1052    // with
1053    //    NEG dst, src
1054    instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1055        instruction, new (GetGraph()->GetArena()) HNeg(type, input_other));
1056    RecordSimplification();
1057    return;
1058  }
1059
1060  if ((input_cst != nullptr) && Primitive::IsFloatingPointType(type)) {
1061    // Try replacing code looking like
1062    //    DIV dst, src, constant
1063    // with
1064    //    MUL dst, src, 1 / constant
1065    HConstant* reciprocal = nullptr;
1066    if (type == Primitive::Primitive::kPrimDouble) {
1067      double value = input_cst->AsDoubleConstant()->GetValue();
1068      if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) {
1069        reciprocal = GetGraph()->GetDoubleConstant(1.0 / value);
1070      }
1071    } else {
1072      DCHECK_EQ(type, Primitive::kPrimFloat);
1073      float value = input_cst->AsFloatConstant()->GetValue();
1074      if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) {
1075        reciprocal = GetGraph()->GetFloatConstant(1.0f / value);
1076      }
1077    }
1078
1079    if (reciprocal != nullptr) {
1080      instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1081          instruction, new (GetGraph()->GetArena()) HMul(type, input_other, reciprocal));
1082      RecordSimplification();
1083      return;
1084    }
1085  }
1086}
1087
1088void InstructionSimplifierVisitor::VisitMul(HMul* instruction) {
1089  HConstant* input_cst = instruction->GetConstantRight();
1090  HInstruction* input_other = instruction->GetLeastConstantLeft();
1091  Primitive::Type type = instruction->GetType();
1092  HBasicBlock* block = instruction->GetBlock();
1093  ArenaAllocator* allocator = GetGraph()->GetArena();
1094
1095  if (input_cst == nullptr) {
1096    return;
1097  }
1098
1099  if (input_cst->IsOne()) {
1100    // Replace code looking like
1101    //    MUL dst, src, 1
1102    // with
1103    //    src
1104    instruction->ReplaceWith(input_other);
1105    instruction->GetBlock()->RemoveInstruction(instruction);
1106    return;
1107  }
1108
1109  if (input_cst->IsMinusOne() &&
1110      (Primitive::IsFloatingPointType(type) || Primitive::IsIntOrLongType(type))) {
1111    // Replace code looking like
1112    //    MUL dst, src, -1
1113    // with
1114    //    NEG dst, src
1115    HNeg* neg = new (allocator) HNeg(type, input_other);
1116    block->ReplaceAndRemoveInstructionWith(instruction, neg);
1117    RecordSimplification();
1118    return;
1119  }
1120
1121  if (Primitive::IsFloatingPointType(type) &&
1122      ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) ||
1123       (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) {
1124    // Replace code looking like
1125    //    FP_MUL dst, src, 2.0
1126    // with
1127    //    FP_ADD dst, src, src
1128    // The 'int' and 'long' cases are handled below.
1129    block->ReplaceAndRemoveInstructionWith(instruction,
1130                                           new (allocator) HAdd(type, input_other, input_other));
1131    RecordSimplification();
1132    return;
1133  }
1134
1135  if (Primitive::IsIntOrLongType(type)) {
1136    int64_t factor = Int64FromConstant(input_cst);
1137    // Even though constant propagation also takes care of the zero case, other
1138    // optimizations can lead to having a zero multiplication.
1139    if (factor == 0) {
1140      // Replace code looking like
1141      //    MUL dst, src, 0
1142      // with
1143      //    0
1144      instruction->ReplaceWith(input_cst);
1145      instruction->GetBlock()->RemoveInstruction(instruction);
1146    } else if (IsPowerOfTwo(factor)) {
1147      // Replace code looking like
1148      //    MUL dst, src, pow_of_2
1149      // with
1150      //    SHL dst, src, log2(pow_of_2)
1151      HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor));
1152      HShl* shl = new(allocator) HShl(type, input_other, shift);
1153      block->ReplaceAndRemoveInstructionWith(instruction, shl);
1154      RecordSimplification();
1155    } else if (IsPowerOfTwo(factor - 1)) {
1156      // Transform code looking like
1157      //    MUL dst, src, (2^n + 1)
1158      // into
1159      //    SHL tmp, src, n
1160      //    ADD dst, src, tmp
1161      HShl* shl = new (allocator) HShl(type,
1162                                       input_other,
1163                                       GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1)));
1164      HAdd* add = new (allocator) HAdd(type, input_other, shl);
1165
1166      block->InsertInstructionBefore(shl, instruction);
1167      block->ReplaceAndRemoveInstructionWith(instruction, add);
1168      RecordSimplification();
1169    } else if (IsPowerOfTwo(factor + 1)) {
1170      // Transform code looking like
1171      //    MUL dst, src, (2^n - 1)
1172      // into
1173      //    SHL tmp, src, n
1174      //    SUB dst, tmp, src
1175      HShl* shl = new (allocator) HShl(type,
1176                                       input_other,
1177                                       GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1)));
1178      HSub* sub = new (allocator) HSub(type, shl, input_other);
1179
1180      block->InsertInstructionBefore(shl, instruction);
1181      block->ReplaceAndRemoveInstructionWith(instruction, sub);
1182      RecordSimplification();
1183    }
1184  }
1185}
1186
1187void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) {
1188  HInstruction* input = instruction->GetInput();
1189  if (input->IsNeg()) {
1190    // Replace code looking like
1191    //    NEG tmp, src
1192    //    NEG dst, tmp
1193    // with
1194    //    src
1195    HNeg* previous_neg = input->AsNeg();
1196    instruction->ReplaceWith(previous_neg->GetInput());
1197    instruction->GetBlock()->RemoveInstruction(instruction);
1198    // We perform the optimization even if the input negation has environment
1199    // uses since it allows removing the current instruction. But we only delete
1200    // the input negation only if it is does not have any uses left.
1201    if (!previous_neg->HasUses()) {
1202      previous_neg->GetBlock()->RemoveInstruction(previous_neg);
1203    }
1204    RecordSimplification();
1205    return;
1206  }
1207
1208  if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() &&
1209      !Primitive::IsFloatingPointType(input->GetType())) {
1210    // Replace code looking like
1211    //    SUB tmp, a, b
1212    //    NEG dst, tmp
1213    // with
1214    //    SUB dst, b, a
1215    // We do not perform the optimization if the input subtraction has
1216    // environment uses or multiple non-environment uses as it could lead to
1217    // worse code. In particular, we do not want the live ranges of `a` and `b`
1218    // to be extended if we are not sure the initial 'SUB' instruction can be
1219    // removed.
1220    // We do not perform optimization for fp because we could lose the sign of zero.
1221    HSub* sub = input->AsSub();
1222    HSub* new_sub =
1223        new (GetGraph()->GetArena()) HSub(instruction->GetType(), sub->GetRight(), sub->GetLeft());
1224    instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub);
1225    if (!sub->HasUses()) {
1226      sub->GetBlock()->RemoveInstruction(sub);
1227    }
1228    RecordSimplification();
1229  }
1230}
1231
1232void InstructionSimplifierVisitor::VisitNot(HNot* instruction) {
1233  HInstruction* input = instruction->GetInput();
1234  if (input->IsNot()) {
1235    // Replace code looking like
1236    //    NOT tmp, src
1237    //    NOT dst, tmp
1238    // with
1239    //    src
1240    // We perform the optimization even if the input negation has environment
1241    // uses since it allows removing the current instruction. But we only delete
1242    // the input negation only if it is does not have any uses left.
1243    HNot* previous_not = input->AsNot();
1244    instruction->ReplaceWith(previous_not->GetInput());
1245    instruction->GetBlock()->RemoveInstruction(instruction);
1246    if (!previous_not->HasUses()) {
1247      previous_not->GetBlock()->RemoveInstruction(previous_not);
1248    }
1249    RecordSimplification();
1250  }
1251}
1252
1253void InstructionSimplifierVisitor::VisitOr(HOr* instruction) {
1254  HConstant* input_cst = instruction->GetConstantRight();
1255  HInstruction* input_other = instruction->GetLeastConstantLeft();
1256
1257  if ((input_cst != nullptr) && input_cst->IsZero()) {
1258    // Replace code looking like
1259    //    OR dst, src, 0
1260    // with
1261    //    src
1262    instruction->ReplaceWith(input_other);
1263    instruction->GetBlock()->RemoveInstruction(instruction);
1264    return;
1265  }
1266
1267  // We assume that GVN has run before, so we only perform a pointer comparison.
1268  // If for some reason the values are equal but the pointers are different, we
1269  // are still correct and only miss an optimization opportunity.
1270  if (instruction->GetLeft() == instruction->GetRight()) {
1271    // Replace code looking like
1272    //    OR dst, src, src
1273    // with
1274    //    src
1275    instruction->ReplaceWith(instruction->GetLeft());
1276    instruction->GetBlock()->RemoveInstruction(instruction);
1277    return;
1278  }
1279
1280  if (TryDeMorganNegationFactoring(instruction)) return;
1281
1282  TryReplaceWithRotate(instruction);
1283}
1284
1285void InstructionSimplifierVisitor::VisitShl(HShl* instruction) {
1286  VisitShift(instruction);
1287}
1288
1289void InstructionSimplifierVisitor::VisitShr(HShr* instruction) {
1290  VisitShift(instruction);
1291}
1292
1293void InstructionSimplifierVisitor::VisitSub(HSub* instruction) {
1294  HConstant* input_cst = instruction->GetConstantRight();
1295  HInstruction* input_other = instruction->GetLeastConstantLeft();
1296
1297  Primitive::Type type = instruction->GetType();
1298  if (Primitive::IsFloatingPointType(type)) {
1299    return;
1300  }
1301
1302  if ((input_cst != nullptr) && input_cst->IsZero()) {
1303    // Replace code looking like
1304    //    SUB dst, src, 0
1305    // with
1306    //    src
1307    // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When
1308    // `x` is `-0.0`, the former expression yields `0.0`, while the later
1309    // yields `-0.0`.
1310    instruction->ReplaceWith(input_other);
1311    instruction->GetBlock()->RemoveInstruction(instruction);
1312    return;
1313  }
1314
1315  HBasicBlock* block = instruction->GetBlock();
1316  ArenaAllocator* allocator = GetGraph()->GetArena();
1317
1318  HInstruction* left = instruction->GetLeft();
1319  HInstruction* right = instruction->GetRight();
1320  if (left->IsConstant()) {
1321    if (Int64FromConstant(left->AsConstant()) == 0) {
1322      // Replace code looking like
1323      //    SUB dst, 0, src
1324      // with
1325      //    NEG dst, src
1326      // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When
1327      // `x` is `0.0`, the former expression yields `0.0`, while the later
1328      // yields `-0.0`.
1329      HNeg* neg = new (allocator) HNeg(type, right);
1330      block->ReplaceAndRemoveInstructionWith(instruction, neg);
1331      RecordSimplification();
1332      return;
1333    }
1334  }
1335
1336  if (left->IsNeg() && right->IsNeg()) {
1337    if (TryMoveNegOnInputsAfterBinop(instruction)) {
1338      return;
1339    }
1340  }
1341
1342  if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) {
1343    // Replace code looking like
1344    //    NEG tmp, b
1345    //    SUB dst, a, tmp
1346    // with
1347    //    ADD dst, a, b
1348    HAdd* add = new(GetGraph()->GetArena()) HAdd(type, left, right->AsNeg()->GetInput());
1349    instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add);
1350    RecordSimplification();
1351    right->GetBlock()->RemoveInstruction(right);
1352    return;
1353  }
1354
1355  if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) {
1356    // Replace code looking like
1357    //    NEG tmp, a
1358    //    SUB dst, tmp, b
1359    // with
1360    //    ADD tmp, a, b
1361    //    NEG dst, tmp
1362    // The second version is not intrinsically better, but enables more
1363    // transformations.
1364    HAdd* add = new(GetGraph()->GetArena()) HAdd(type, left->AsNeg()->GetInput(), right);
1365    instruction->GetBlock()->InsertInstructionBefore(add, instruction);
1366    HNeg* neg = new (GetGraph()->GetArena()) HNeg(instruction->GetType(), add);
1367    instruction->GetBlock()->InsertInstructionBefore(neg, instruction);
1368    instruction->ReplaceWith(neg);
1369    instruction->GetBlock()->RemoveInstruction(instruction);
1370    RecordSimplification();
1371    left->GetBlock()->RemoveInstruction(left);
1372  }
1373}
1374
1375void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) {
1376  VisitShift(instruction);
1377}
1378
1379void InstructionSimplifierVisitor::VisitXor(HXor* instruction) {
1380  HConstant* input_cst = instruction->GetConstantRight();
1381  HInstruction* input_other = instruction->GetLeastConstantLeft();
1382
1383  if ((input_cst != nullptr) && input_cst->IsZero()) {
1384    // Replace code looking like
1385    //    XOR dst, src, 0
1386    // with
1387    //    src
1388    instruction->ReplaceWith(input_other);
1389    instruction->GetBlock()->RemoveInstruction(instruction);
1390    return;
1391  }
1392
1393  if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) {
1394    // Replace code looking like
1395    //    XOR dst, src, 0xFFF...FF
1396    // with
1397    //    NOT dst, src
1398    HNot* bitwise_not = new (GetGraph()->GetArena()) HNot(instruction->GetType(), input_other);
1399    instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not);
1400    RecordSimplification();
1401    return;
1402  }
1403
1404  HInstruction* left = instruction->GetLeft();
1405  HInstruction* right = instruction->GetRight();
1406  if (((left->IsNot() && right->IsNot()) ||
1407       (left->IsBooleanNot() && right->IsBooleanNot())) &&
1408      left->HasOnlyOneNonEnvironmentUse() &&
1409      right->HasOnlyOneNonEnvironmentUse()) {
1410    // Replace code looking like
1411    //    NOT nota, a
1412    //    NOT notb, b
1413    //    XOR dst, nota, notb
1414    // with
1415    //    XOR dst, a, b
1416    instruction->ReplaceInput(left->InputAt(0), 0);
1417    instruction->ReplaceInput(right->InputAt(0), 1);
1418    left->GetBlock()->RemoveInstruction(left);
1419    right->GetBlock()->RemoveInstruction(right);
1420    RecordSimplification();
1421    return;
1422  }
1423
1424  TryReplaceWithRotate(instruction);
1425}
1426
1427void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) {
1428  HInstruction* argument = instruction->InputAt(1);
1429  HInstruction* receiver = instruction->InputAt(0);
1430  if (receiver == argument) {
1431    // Because String.equals is an instance call, the receiver is
1432    // a null check if we don't know it's null. The argument however, will
1433    // be the actual object. So we cannot end up in a situation where both
1434    // are equal but could be null.
1435    DCHECK(CanEnsureNotNullAt(argument, instruction));
1436    instruction->ReplaceWith(GetGraph()->GetIntConstant(1));
1437    instruction->GetBlock()->RemoveInstruction(instruction);
1438  } else {
1439    StringEqualsOptimizations optimizations(instruction);
1440    if (CanEnsureNotNullAt(argument, instruction)) {
1441      optimizations.SetArgumentNotNull();
1442    }
1443    ScopedObjectAccess soa(Thread::Current());
1444    ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo();
1445    if (argument_rti.IsValid() && argument_rti.IsStringClass()) {
1446      optimizations.SetArgumentIsString();
1447    }
1448  }
1449}
1450
1451void InstructionSimplifierVisitor::SimplifyRotate(HInvoke* invoke, bool is_left) {
1452  DCHECK(invoke->IsInvokeStaticOrDirect());
1453  DCHECK_EQ(invoke->GetOriginalInvokeType(), InvokeType::kStatic);
1454  HInstruction* value = invoke->InputAt(0);
1455  HInstruction* distance = invoke->InputAt(1);
1456  // Replace the invoke with an HRor.
1457  if (is_left) {
1458    distance = new (GetGraph()->GetArena()) HNeg(distance->GetType(), distance);
1459    invoke->GetBlock()->InsertInstructionBefore(distance, invoke);
1460  }
1461  HRor* ror = new (GetGraph()->GetArena()) HRor(value->GetType(), value, distance);
1462  invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, ror);
1463  // Remove ClinitCheck and LoadClass, if possible.
1464  HInstruction* clinit = invoke->InputAt(invoke->InputCount() - 1);
1465  if (clinit->IsClinitCheck() && !clinit->HasUses()) {
1466    clinit->GetBlock()->RemoveInstruction(clinit);
1467    HInstruction* ldclass = clinit->InputAt(0);
1468    if (ldclass->IsLoadClass() && !ldclass->HasUses()) {
1469      ldclass->GetBlock()->RemoveInstruction(ldclass);
1470    }
1471  }
1472}
1473
1474static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) {
1475  if (potential_length->IsArrayLength()) {
1476    return potential_length->InputAt(0) == potential_array;
1477  }
1478
1479  if (potential_array->IsNewArray()) {
1480    return potential_array->InputAt(0) == potential_length;
1481  }
1482
1483  return false;
1484}
1485
1486void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) {
1487  HInstruction* source = instruction->InputAt(0);
1488  HInstruction* destination = instruction->InputAt(2);
1489  HInstruction* count = instruction->InputAt(4);
1490  SystemArrayCopyOptimizations optimizations(instruction);
1491  if (CanEnsureNotNullAt(source, instruction)) {
1492    optimizations.SetSourceIsNotNull();
1493  }
1494  if (CanEnsureNotNullAt(destination, instruction)) {
1495    optimizations.SetDestinationIsNotNull();
1496  }
1497  if (destination == source) {
1498    optimizations.SetDestinationIsSource();
1499  }
1500
1501  if (IsArrayLengthOf(count, source)) {
1502    optimizations.SetCountIsSourceLength();
1503  }
1504
1505  if (IsArrayLengthOf(count, destination)) {
1506    optimizations.SetCountIsDestinationLength();
1507  }
1508
1509  {
1510    ScopedObjectAccess soa(Thread::Current());
1511    ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo();
1512    if (destination_rti.IsValid()) {
1513      if (destination_rti.IsObjectArray()) {
1514        if (destination_rti.IsExact()) {
1515          optimizations.SetDoesNotNeedTypeCheck();
1516        }
1517        optimizations.SetDestinationIsTypedObjectArray();
1518      }
1519      if (destination_rti.IsPrimitiveArrayClass()) {
1520        optimizations.SetDestinationIsPrimitiveArray();
1521      } else if (destination_rti.IsNonPrimitiveArrayClass()) {
1522        optimizations.SetDestinationIsNonPrimitiveArray();
1523      }
1524    }
1525    ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo();
1526    if (source_rti.IsValid()) {
1527      if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) {
1528        optimizations.SetDoesNotNeedTypeCheck();
1529      }
1530      if (source_rti.IsPrimitiveArrayClass()) {
1531        optimizations.SetSourceIsPrimitiveArray();
1532      } else if (source_rti.IsNonPrimitiveArrayClass()) {
1533        optimizations.SetSourceIsNonPrimitiveArray();
1534      }
1535    }
1536  }
1537}
1538
1539void InstructionSimplifierVisitor::SimplifyCompare(HInvoke* invoke, bool is_signum) {
1540  DCHECK(invoke->IsInvokeStaticOrDirect());
1541  uint32_t dex_pc = invoke->GetDexPc();
1542  HInstruction* left = invoke->InputAt(0);
1543  HInstruction* right;
1544  Primitive::Type type = left->GetType();
1545  if (!is_signum) {
1546    right = invoke->InputAt(1);
1547  } else if (type == Primitive::kPrimLong) {
1548    right = GetGraph()->GetLongConstant(0);
1549  } else {
1550    right = GetGraph()->GetIntConstant(0);
1551  }
1552  HCompare* compare = new (GetGraph()->GetArena())
1553      HCompare(type, left, right, ComparisonBias::kNoBias, dex_pc);
1554  invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, compare);
1555}
1556
1557void InstructionSimplifierVisitor::SimplifyIsNaN(HInvoke* invoke) {
1558  DCHECK(invoke->IsInvokeStaticOrDirect());
1559  uint32_t dex_pc = invoke->GetDexPc();
1560  // IsNaN(x) is the same as x != x.
1561  HInstruction* x = invoke->InputAt(0);
1562  HCondition* condition = new (GetGraph()->GetArena()) HNotEqual(x, x, dex_pc);
1563  condition->SetBias(ComparisonBias::kLtBias);
1564  invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, condition);
1565}
1566
1567void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) {
1568  DCHECK(invoke->IsInvokeStaticOrDirect());
1569  uint32_t dex_pc = invoke->GetDexPc();
1570  HInstruction* x = invoke->InputAt(0);
1571  Primitive::Type type = x->GetType();
1572  // Set proper bit pattern for NaN and replace intrinsic with raw version.
1573  HInstruction* nan;
1574  if (type == Primitive::kPrimDouble) {
1575    nan = GetGraph()->GetLongConstant(0x7ff8000000000000L);
1576    invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits,
1577                         kNeedsEnvironmentOrCache,
1578                         kNoSideEffects,
1579                         kNoThrow);
1580  } else {
1581    DCHECK_EQ(type, Primitive::kPrimFloat);
1582    nan = GetGraph()->GetIntConstant(0x7fc00000);
1583    invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits,
1584                         kNeedsEnvironmentOrCache,
1585                         kNoSideEffects,
1586                         kNoThrow);
1587  }
1588  // Test IsNaN(x), which is the same as x != x.
1589  HCondition* condition = new (GetGraph()->GetArena()) HNotEqual(x, x, dex_pc);
1590  condition->SetBias(ComparisonBias::kLtBias);
1591  invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext());
1592  // Select between the two.
1593  HInstruction* select = new (GetGraph()->GetArena()) HSelect(condition, nan, invoke, dex_pc);
1594  invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext());
1595  invoke->ReplaceWithExceptInReplacementAtIndex(select, 0);  // false at index 0
1596}
1597
1598void InstructionSimplifierVisitor::SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind) {
1599  uint32_t dex_pc = invoke->GetDexPc();
1600  HMemoryBarrier* mem_barrier = new (GetGraph()->GetArena()) HMemoryBarrier(barrier_kind, dex_pc);
1601  invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, mem_barrier);
1602}
1603
1604void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) {
1605  switch (instruction->GetIntrinsic()) {
1606    case Intrinsics::kStringEquals:
1607      SimplifyStringEquals(instruction);
1608      break;
1609    case Intrinsics::kSystemArrayCopy:
1610      SimplifySystemArrayCopy(instruction);
1611      break;
1612    case Intrinsics::kIntegerRotateRight:
1613    case Intrinsics::kLongRotateRight:
1614      SimplifyRotate(instruction, false);
1615      break;
1616    case Intrinsics::kIntegerRotateLeft:
1617    case Intrinsics::kLongRotateLeft:
1618      SimplifyRotate(instruction, true);
1619      break;
1620    case Intrinsics::kIntegerCompare:
1621    case Intrinsics::kLongCompare:
1622      SimplifyCompare(instruction, /* is_signum */ false);
1623      break;
1624    case Intrinsics::kIntegerSignum:
1625    case Intrinsics::kLongSignum:
1626      SimplifyCompare(instruction, /* is_signum */ true);
1627      break;
1628    case Intrinsics::kFloatIsNaN:
1629    case Intrinsics::kDoubleIsNaN:
1630      SimplifyIsNaN(instruction);
1631      break;
1632    case Intrinsics::kFloatFloatToIntBits:
1633    case Intrinsics::kDoubleDoubleToLongBits:
1634      SimplifyFP2Int(instruction);
1635      break;
1636    case Intrinsics::kUnsafeLoadFence:
1637      SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
1638      break;
1639    case Intrinsics::kUnsafeStoreFence:
1640      SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
1641      break;
1642    case Intrinsics::kUnsafeFullFence:
1643      SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
1644      break;
1645    default:
1646      break;
1647  }
1648}
1649
1650void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) {
1651  HInstruction* cond = deoptimize->InputAt(0);
1652  if (cond->IsConstant()) {
1653    if (cond->AsIntConstant()->IsZero()) {
1654      // Never deopt: instruction can be removed.
1655      deoptimize->GetBlock()->RemoveInstruction(deoptimize);
1656    } else {
1657      // Always deopt.
1658    }
1659  }
1660}
1661
1662}  // namespace art
1663