class_linker.cc revision c9dbb1df3b5c06ba122cacaf35b17cb53c6be3c6
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "class_linker.h"
18
19#include <algorithm>
20#include <deque>
21#include <iostream>
22#include <memory>
23#include <queue>
24#include <string>
25#include <tuple>
26#include <unistd.h>
27#include <unordered_map>
28#include <utility>
29#include <vector>
30
31#include "art_field-inl.h"
32#include "art_method-inl.h"
33#include "base/arena_allocator.h"
34#include "base/casts.h"
35#include "base/logging.h"
36#include "base/scoped_arena_containers.h"
37#include "base/scoped_flock.h"
38#include "base/stl_util.h"
39#include "base/systrace.h"
40#include "base/time_utils.h"
41#include "base/unix_file/fd_file.h"
42#include "base/value_object.h"
43#include "class_linker-inl.h"
44#include "class_table-inl.h"
45#include "compiler_callbacks.h"
46#include "debugger.h"
47#include "dex_file-inl.h"
48#include "entrypoints/entrypoint_utils.h"
49#include "entrypoints/runtime_asm_entrypoints.h"
50#include "experimental_flags.h"
51#include "gc_root-inl.h"
52#include "gc/accounting/card_table-inl.h"
53#include "gc/accounting/heap_bitmap-inl.h"
54#include "gc/heap.h"
55#include "gc/scoped_gc_critical_section.h"
56#include "gc/space/image_space.h"
57#include "handle_scope-inl.h"
58#include "image-inl.h"
59#include "intern_table.h"
60#include "interpreter/interpreter.h"
61#include "jit/jit.h"
62#include "jit/jit_code_cache.h"
63#include "jit/offline_profiling_info.h"
64#include "leb128.h"
65#include "linear_alloc.h"
66#include "mirror/class.h"
67#include "mirror/class-inl.h"
68#include "mirror/class_loader.h"
69#include "mirror/dex_cache-inl.h"
70#include "mirror/field.h"
71#include "mirror/iftable-inl.h"
72#include "mirror/method.h"
73#include "mirror/object-inl.h"
74#include "mirror/object_array-inl.h"
75#include "mirror/proxy.h"
76#include "mirror/reference-inl.h"
77#include "mirror/stack_trace_element.h"
78#include "mirror/string-inl.h"
79#include "native/dalvik_system_DexFile.h"
80#include "oat.h"
81#include "oat_file.h"
82#include "oat_file-inl.h"
83#include "oat_file_assistant.h"
84#include "oat_file_manager.h"
85#include "object_lock.h"
86#include "os.h"
87#include "runtime.h"
88#include "ScopedLocalRef.h"
89#include "scoped_thread_state_change.h"
90#include "thread-inl.h"
91#include "trace.h"
92#include "utils.h"
93#include "utils/dex_cache_arrays_layout-inl.h"
94#include "verifier/method_verifier.h"
95#include "well_known_classes.h"
96
97namespace art {
98
99static constexpr bool kSanityCheckObjects = kIsDebugBuild;
100static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild;
101
102static void ThrowNoClassDefFoundError(const char* fmt, ...)
103    __attribute__((__format__(__printf__, 1, 2)))
104    SHARED_REQUIRES(Locks::mutator_lock_);
105static void ThrowNoClassDefFoundError(const char* fmt, ...) {
106  va_list args;
107  va_start(args, fmt);
108  Thread* self = Thread::Current();
109  self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args);
110  va_end(args);
111}
112
113static bool HasInitWithString(Thread* self, ClassLinker* class_linker, const char* descriptor)
114    SHARED_REQUIRES(Locks::mutator_lock_) {
115  ArtMethod* method = self->GetCurrentMethod(nullptr);
116  StackHandleScope<1> hs(self);
117  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method != nullptr ?
118      method->GetDeclaringClass()->GetClassLoader() : nullptr));
119  mirror::Class* exception_class = class_linker->FindClass(self, descriptor, class_loader);
120
121  if (exception_class == nullptr) {
122    // No exc class ~ no <init>-with-string.
123    CHECK(self->IsExceptionPending());
124    self->ClearException();
125    return false;
126  }
127
128  ArtMethod* exception_init_method = exception_class->FindDeclaredDirectMethod(
129      "<init>", "(Ljava/lang/String;)V", class_linker->GetImagePointerSize());
130  return exception_init_method != nullptr;
131}
132
133// Helper for ThrowEarlierClassFailure. Throws the stored error.
134static void HandleEarlierVerifyError(Thread* self, ClassLinker* class_linker, mirror::Class* c)
135    SHARED_REQUIRES(Locks::mutator_lock_) {
136  mirror::Object* obj = c->GetVerifyError();
137  DCHECK(obj != nullptr);
138  self->AssertNoPendingException();
139  if (obj->IsClass()) {
140    // Previous error has been stored as class. Create a new exception of that type.
141
142    // It's possible the exception doesn't have a <init>(String).
143    std::string temp;
144    const char* descriptor = obj->AsClass()->GetDescriptor(&temp);
145
146    if (HasInitWithString(self, class_linker, descriptor)) {
147      self->ThrowNewException(descriptor, PrettyDescriptor(c).c_str());
148    } else {
149      self->ThrowNewException(descriptor, nullptr);
150    }
151  } else {
152    // Previous error has been stored as an instance. Just rethrow.
153    mirror::Class* throwable_class =
154        self->DecodeJObject(WellKnownClasses::java_lang_Throwable)->AsClass();
155    mirror::Class* error_class = obj->GetClass();
156    CHECK(throwable_class->IsAssignableFrom(error_class));
157    self->SetException(obj->AsThrowable());
158  }
159  self->AssertPendingException();
160}
161
162void ClassLinker::ThrowEarlierClassFailure(mirror::Class* c, bool wrap_in_no_class_def) {
163  // The class failed to initialize on a previous attempt, so we want to throw
164  // a NoClassDefFoundError (v2 2.17.5).  The exception to this rule is if we
165  // failed in verification, in which case v2 5.4.1 says we need to re-throw
166  // the previous error.
167  Runtime* const runtime = Runtime::Current();
168  if (!runtime->IsAotCompiler()) {  // Give info if this occurs at runtime.
169    std::string extra;
170    if (c->GetVerifyError() != nullptr) {
171      mirror::Object* verify_error = c->GetVerifyError();
172      if (verify_error->IsClass()) {
173        extra = PrettyDescriptor(verify_error->AsClass());
174      } else {
175        extra = verify_error->AsThrowable()->Dump();
176      }
177    }
178    LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c) << ": " << extra;
179  }
180
181  CHECK(c->IsErroneous()) << PrettyClass(c) << " " << c->GetStatus();
182  Thread* self = Thread::Current();
183  if (runtime->IsAotCompiler()) {
184    // At compile time, accurate errors and NCDFE are disabled to speed compilation.
185    mirror::Throwable* pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError();
186    self->SetException(pre_allocated);
187  } else {
188    if (c->GetVerifyError() != nullptr) {
189      // Rethrow stored error.
190      HandleEarlierVerifyError(self, this, c);
191    }
192    if (c->GetVerifyError() == nullptr || wrap_in_no_class_def) {
193      // If there isn't a recorded earlier error, or this is a repeat throw from initialization,
194      // the top-level exception must be a NoClassDefFoundError. The potentially already pending
195      // exception will be a cause.
196      self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;",
197                                     PrettyDescriptor(c).c_str());
198    }
199  }
200}
201
202static void VlogClassInitializationFailure(Handle<mirror::Class> klass)
203    SHARED_REQUIRES(Locks::mutator_lock_) {
204  if (VLOG_IS_ON(class_linker)) {
205    std::string temp;
206    LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from "
207              << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump();
208  }
209}
210
211static void WrapExceptionInInitializer(Handle<mirror::Class> klass)
212    SHARED_REQUIRES(Locks::mutator_lock_) {
213  Thread* self = Thread::Current();
214  JNIEnv* env = self->GetJniEnv();
215
216  ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred());
217  CHECK(cause.get() != nullptr);
218
219  env->ExceptionClear();
220  bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error);
221  env->Throw(cause.get());
222
223  // We only wrap non-Error exceptions; an Error can just be used as-is.
224  if (!is_error) {
225    self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr);
226  }
227  VlogClassInitializationFailure(klass);
228}
229
230// Gap between two fields in object layout.
231struct FieldGap {
232  uint32_t start_offset;  // The offset from the start of the object.
233  uint32_t size;  // The gap size of 1, 2, or 4 bytes.
234};
235struct FieldGapsComparator {
236  explicit FieldGapsComparator() {
237  }
238  bool operator() (const FieldGap& lhs, const FieldGap& rhs)
239      NO_THREAD_SAFETY_ANALYSIS {
240    // Sort by gap size, largest first. Secondary sort by starting offset.
241    // Note that the priority queue returns the largest element, so operator()
242    // should return true if lhs is less than rhs.
243    return lhs.size < rhs.size || (lhs.size == rhs.size && lhs.start_offset > rhs.start_offset);
244  }
245};
246typedef std::priority_queue<FieldGap, std::vector<FieldGap>, FieldGapsComparator> FieldGaps;
247
248// Adds largest aligned gaps to queue of gaps.
249static void AddFieldGap(uint32_t gap_start, uint32_t gap_end, FieldGaps* gaps) {
250  DCHECK(gaps != nullptr);
251
252  uint32_t current_offset = gap_start;
253  while (current_offset != gap_end) {
254    size_t remaining = gap_end - current_offset;
255    if (remaining >= sizeof(uint32_t) && IsAligned<4>(current_offset)) {
256      gaps->push(FieldGap {current_offset, sizeof(uint32_t)});
257      current_offset += sizeof(uint32_t);
258    } else if (remaining >= sizeof(uint16_t) && IsAligned<2>(current_offset)) {
259      gaps->push(FieldGap {current_offset, sizeof(uint16_t)});
260      current_offset += sizeof(uint16_t);
261    } else {
262      gaps->push(FieldGap {current_offset, sizeof(uint8_t)});
263      current_offset += sizeof(uint8_t);
264    }
265    DCHECK_LE(current_offset, gap_end) << "Overran gap";
266  }
267}
268// Shuffle fields forward, making use of gaps whenever possible.
269template<int n>
270static void ShuffleForward(size_t* current_field_idx,
271                           MemberOffset* field_offset,
272                           std::deque<ArtField*>* grouped_and_sorted_fields,
273                           FieldGaps* gaps)
274    SHARED_REQUIRES(Locks::mutator_lock_) {
275  DCHECK(current_field_idx != nullptr);
276  DCHECK(grouped_and_sorted_fields != nullptr);
277  DCHECK(gaps != nullptr);
278  DCHECK(field_offset != nullptr);
279
280  DCHECK(IsPowerOfTwo(n));
281  while (!grouped_and_sorted_fields->empty()) {
282    ArtField* field = grouped_and_sorted_fields->front();
283    Primitive::Type type = field->GetTypeAsPrimitiveType();
284    if (Primitive::ComponentSize(type) < n) {
285      break;
286    }
287    if (!IsAligned<n>(field_offset->Uint32Value())) {
288      MemberOffset old_offset = *field_offset;
289      *field_offset = MemberOffset(RoundUp(field_offset->Uint32Value(), n));
290      AddFieldGap(old_offset.Uint32Value(), field_offset->Uint32Value(), gaps);
291    }
292    CHECK(type != Primitive::kPrimNot) << PrettyField(field);  // should be primitive types
293    grouped_and_sorted_fields->pop_front();
294    if (!gaps->empty() && gaps->top().size >= n) {
295      FieldGap gap = gaps->top();
296      gaps->pop();
297      DCHECK_ALIGNED(gap.start_offset, n);
298      field->SetOffset(MemberOffset(gap.start_offset));
299      if (gap.size > n) {
300        AddFieldGap(gap.start_offset + n, gap.start_offset + gap.size, gaps);
301      }
302    } else {
303      DCHECK_ALIGNED(field_offset->Uint32Value(), n);
304      field->SetOffset(*field_offset);
305      *field_offset = MemberOffset(field_offset->Uint32Value() + n);
306    }
307    ++(*current_field_idx);
308  }
309}
310
311ClassLinker::ClassLinker(InternTable* intern_table)
312    // dex_lock_ is recursive as it may be used in stack dumping.
313    : dex_lock_("ClassLinker dex lock", kDefaultMutexLevel),
314      dex_cache_boot_image_class_lookup_required_(false),
315      failed_dex_cache_class_lookups_(0),
316      class_roots_(nullptr),
317      array_iftable_(nullptr),
318      find_array_class_cache_next_victim_(0),
319      init_done_(false),
320      log_new_class_table_roots_(false),
321      intern_table_(intern_table),
322      quick_resolution_trampoline_(nullptr),
323      quick_imt_conflict_trampoline_(nullptr),
324      quick_generic_jni_trampoline_(nullptr),
325      quick_to_interpreter_bridge_trampoline_(nullptr),
326      image_pointer_size_(sizeof(void*)) {
327  CHECK(intern_table_ != nullptr);
328  static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_),
329                "Array cache size wrong.");
330  std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
331}
332
333void ClassLinker::CheckSystemClass(Thread* self, Handle<mirror::Class> c1, const char* descriptor) {
334  mirror::Class* c2 = FindSystemClass(self, descriptor);
335  if (c2 == nullptr) {
336    LOG(FATAL) << "Could not find class " << descriptor;
337    UNREACHABLE();
338  }
339  if (c1.Get() != c2) {
340    std::ostringstream os1, os2;
341    c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail);
342    c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail);
343    LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor
344               << ". This is most likely the result of a broken build. Make sure that "
345               << "libcore and art projects match.\n\n"
346               << os1.str() << "\n\n" << os2.str();
347    UNREACHABLE();
348  }
349}
350
351bool ClassLinker::InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,
352                                   std::string* error_msg) {
353  VLOG(startup) << "ClassLinker::Init";
354
355  Thread* const self = Thread::Current();
356  Runtime* const runtime = Runtime::Current();
357  gc::Heap* const heap = runtime->GetHeap();
358
359  CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it.";
360  CHECK(!init_done_);
361
362  // Use the pointer size from the runtime since we are probably creating the image.
363  image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet());
364  if (!ValidPointerSize(image_pointer_size_)) {
365    *error_msg = StringPrintf("Invalid image pointer size: %zu", image_pointer_size_);
366    return false;
367  }
368
369  // java_lang_Class comes first, it's needed for AllocClass
370  // The GC can't handle an object with a null class since we can't get the size of this object.
371  heap->IncrementDisableMovingGC(self);
372  StackHandleScope<64> hs(self);  // 64 is picked arbitrarily.
373  auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_);
374  Handle<mirror::Class> java_lang_Class(hs.NewHandle(down_cast<mirror::Class*>(
375      heap->AllocNonMovableObject<true>(self, nullptr, class_class_size, VoidFunctor()))));
376  CHECK(java_lang_Class.Get() != nullptr);
377  mirror::Class::SetClassClass(java_lang_Class.Get());
378  java_lang_Class->SetClass(java_lang_Class.Get());
379  if (kUseBakerOrBrooksReadBarrier) {
380    java_lang_Class->AssertReadBarrierPointer();
381  }
382  java_lang_Class->SetClassSize(class_class_size);
383  java_lang_Class->SetPrimitiveType(Primitive::kPrimNot);
384  heap->DecrementDisableMovingGC(self);
385  // AllocClass(mirror::Class*) can now be used
386
387  // Class[] is used for reflection support.
388  auto class_array_class_size = mirror::ObjectArray<mirror::Class>::ClassSize(image_pointer_size_);
389  Handle<mirror::Class> class_array_class(hs.NewHandle(
390      AllocClass(self, java_lang_Class.Get(), class_array_class_size)));
391  class_array_class->SetComponentType(java_lang_Class.Get());
392
393  // java_lang_Object comes next so that object_array_class can be created.
394  Handle<mirror::Class> java_lang_Object(hs.NewHandle(
395      AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_))));
396  CHECK(java_lang_Object.Get() != nullptr);
397  // backfill Object as the super class of Class.
398  java_lang_Class->SetSuperClass(java_lang_Object.Get());
399  mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusLoaded, self);
400
401  java_lang_Object->SetObjectSize(sizeof(mirror::Object));
402  // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
403  // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
404  runtime->SetSentinel(heap->AllocNonMovableObject<true>(self,
405                                                         java_lang_Object.Get(),
406                                                         java_lang_Object->GetObjectSize(),
407                                                         VoidFunctor()));
408
409  // Object[] next to hold class roots.
410  Handle<mirror::Class> object_array_class(hs.NewHandle(
411      AllocClass(self, java_lang_Class.Get(),
412                 mirror::ObjectArray<mirror::Object>::ClassSize(image_pointer_size_))));
413  object_array_class->SetComponentType(java_lang_Object.Get());
414
415  // Setup the char (primitive) class to be used for char[].
416  Handle<mirror::Class> char_class(hs.NewHandle(
417      AllocClass(self, java_lang_Class.Get(),
418                 mirror::Class::PrimitiveClassSize(image_pointer_size_))));
419  // The primitive char class won't be initialized by
420  // InitializePrimitiveClass until line 459, but strings (and
421  // internal char arrays) will be allocated before that and the
422  // component size, which is computed from the primitive type, needs
423  // to be set here.
424  char_class->SetPrimitiveType(Primitive::kPrimChar);
425
426  // Setup the char[] class to be used for String.
427  Handle<mirror::Class> char_array_class(hs.NewHandle(
428      AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
429  char_array_class->SetComponentType(char_class.Get());
430  mirror::CharArray::SetArrayClass(char_array_class.Get());
431
432  // Setup String.
433  Handle<mirror::Class> java_lang_String(hs.NewHandle(
434      AllocClass(self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_))));
435  java_lang_String->SetStringClass();
436  mirror::String::SetClass(java_lang_String.Get());
437  mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusResolved, self);
438
439  // Setup java.lang.ref.Reference.
440  Handle<mirror::Class> java_lang_ref_Reference(hs.NewHandle(
441      AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_))));
442  mirror::Reference::SetClass(java_lang_ref_Reference.Get());
443  java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize());
444  mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusResolved, self);
445
446  // Create storage for root classes, save away our work so far (requires descriptors).
447  class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
448      mirror::ObjectArray<mirror::Class>::Alloc(self, object_array_class.Get(),
449                                                kClassRootsMax));
450  CHECK(!class_roots_.IsNull());
451  SetClassRoot(kJavaLangClass, java_lang_Class.Get());
452  SetClassRoot(kJavaLangObject, java_lang_Object.Get());
453  SetClassRoot(kClassArrayClass, class_array_class.Get());
454  SetClassRoot(kObjectArrayClass, object_array_class.Get());
455  SetClassRoot(kCharArrayClass, char_array_class.Get());
456  SetClassRoot(kJavaLangString, java_lang_String.Get());
457  SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference.Get());
458
459  // Setup the primitive type classes.
460  SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean));
461  SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte));
462  SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort));
463  SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt));
464  SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong));
465  SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat));
466  SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble));
467  SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid));
468
469  // Create array interface entries to populate once we can load system classes.
470  array_iftable_ = GcRoot<mirror::IfTable>(AllocIfTable(self, 2));
471
472  // Create int array type for AllocDexCache (done in AppendToBootClassPath).
473  Handle<mirror::Class> int_array_class(hs.NewHandle(
474      AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
475  int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt));
476  mirror::IntArray::SetArrayClass(int_array_class.Get());
477  SetClassRoot(kIntArrayClass, int_array_class.Get());
478
479  // Create long array type for AllocDexCache (done in AppendToBootClassPath).
480  Handle<mirror::Class> long_array_class(hs.NewHandle(
481      AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
482  long_array_class->SetComponentType(GetClassRoot(kPrimitiveLong));
483  mirror::LongArray::SetArrayClass(long_array_class.Get());
484  SetClassRoot(kLongArrayClass, long_array_class.Get());
485
486  // now that these are registered, we can use AllocClass() and AllocObjectArray
487
488  // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache.
489  Handle<mirror::Class> java_lang_DexCache(hs.NewHandle(
490      AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_))));
491  SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get());
492  java_lang_DexCache->SetDexCacheClass();
493  java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize());
494  mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusResolved, self);
495
496  // Set up array classes for string, field, method
497  Handle<mirror::Class> object_array_string(hs.NewHandle(
498      AllocClass(self, java_lang_Class.Get(),
499                 mirror::ObjectArray<mirror::String>::ClassSize(image_pointer_size_))));
500  object_array_string->SetComponentType(java_lang_String.Get());
501  SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get());
502
503  LinearAlloc* linear_alloc = runtime->GetLinearAlloc();
504  // Create runtime resolution and imt conflict methods.
505  runtime->SetResolutionMethod(runtime->CreateResolutionMethod());
506  runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc));
507  runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc));
508
509  // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create
510  // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses
511  // these roots.
512  if (boot_class_path.empty()) {
513    *error_msg = "Boot classpath is empty.";
514    return false;
515  }
516  for (auto& dex_file : boot_class_path) {
517    if (dex_file.get() == nullptr) {
518      *error_msg = "Null dex file.";
519      return false;
520    }
521    AppendToBootClassPath(self, *dex_file);
522    boot_dex_files_.push_back(std::move(dex_file));
523  }
524
525  // now we can use FindSystemClass
526
527  // run char class through InitializePrimitiveClass to finish init
528  InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar);
529  SetClassRoot(kPrimitiveChar, char_class.Get());  // needs descriptor
530
531  // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that
532  // we do not need friend classes or a publicly exposed setter.
533  quick_generic_jni_trampoline_ = GetQuickGenericJniStub();
534  if (!runtime->IsAotCompiler()) {
535    // We need to set up the generic trampolines since we don't have an image.
536    quick_resolution_trampoline_ = GetQuickResolutionStub();
537    quick_imt_conflict_trampoline_ = GetQuickImtConflictStub();
538    quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge();
539  }
540
541  // Object, String and DexCache need to be rerun through FindSystemClass to finish init
542  mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusNotReady, self);
543  CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;");
544  CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize());
545  mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusNotReady, self);
546  CheckSystemClass(self, java_lang_String, "Ljava/lang/String;");
547  mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusNotReady, self);
548  CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;");
549  CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize());
550
551  // Setup the primitive array type classes - can't be done until Object has a vtable.
552  SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z"));
553  mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
554
555  SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B"));
556  mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
557
558  CheckSystemClass(self, char_array_class, "[C");
559
560  SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S"));
561  mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
562
563  CheckSystemClass(self, int_array_class, "[I");
564  CheckSystemClass(self, long_array_class, "[J");
565
566  SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F"));
567  mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
568
569  SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D"));
570  mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
571
572  // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it
573  // in class_table_.
574  CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;");
575
576  CheckSystemClass(self, class_array_class, "[Ljava/lang/Class;");
577  CheckSystemClass(self, object_array_class, "[Ljava/lang/Object;");
578
579  // Setup the single, global copy of "iftable".
580  auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;"));
581  CHECK(java_lang_Cloneable.Get() != nullptr);
582  auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;"));
583  CHECK(java_io_Serializable.Get() != nullptr);
584  // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to
585  // crawl up and explicitly list all of the supers as well.
586  array_iftable_.Read()->SetInterface(0, java_lang_Cloneable.Get());
587  array_iftable_.Read()->SetInterface(1, java_io_Serializable.Get());
588
589  // Sanity check Class[] and Object[]'s interfaces. GetDirectInterface may cause thread
590  // suspension.
591  CHECK_EQ(java_lang_Cloneable.Get(),
592           mirror::Class::GetDirectInterface(self, class_array_class, 0));
593  CHECK_EQ(java_io_Serializable.Get(),
594           mirror::Class::GetDirectInterface(self, class_array_class, 1));
595  CHECK_EQ(java_lang_Cloneable.Get(),
596           mirror::Class::GetDirectInterface(self, object_array_class, 0));
597  CHECK_EQ(java_io_Serializable.Get(),
598           mirror::Class::GetDirectInterface(self, object_array_class, 1));
599
600  CHECK_EQ(object_array_string.Get(),
601           FindSystemClass(self, GetClassRootDescriptor(kJavaLangStringArrayClass)));
602
603  // End of special init trickery, all subsequent classes may be loaded via FindSystemClass.
604
605  // Create java.lang.reflect.Proxy root.
606  SetClassRoot(kJavaLangReflectProxy, FindSystemClass(self, "Ljava/lang/reflect/Proxy;"));
607
608  // Create java.lang.reflect.Field.class root.
609  auto* class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;");
610  CHECK(class_root != nullptr);
611  SetClassRoot(kJavaLangReflectField, class_root);
612  mirror::Field::SetClass(class_root);
613
614  // Create java.lang.reflect.Field array root.
615  class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;");
616  CHECK(class_root != nullptr);
617  SetClassRoot(kJavaLangReflectFieldArrayClass, class_root);
618  mirror::Field::SetArrayClass(class_root);
619
620  // Create java.lang.reflect.Constructor.class root and array root.
621  class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;");
622  CHECK(class_root != nullptr);
623  SetClassRoot(kJavaLangReflectConstructor, class_root);
624  mirror::Constructor::SetClass(class_root);
625  class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;");
626  CHECK(class_root != nullptr);
627  SetClassRoot(kJavaLangReflectConstructorArrayClass, class_root);
628  mirror::Constructor::SetArrayClass(class_root);
629
630  // Create java.lang.reflect.Method.class root and array root.
631  class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;");
632  CHECK(class_root != nullptr);
633  SetClassRoot(kJavaLangReflectMethod, class_root);
634  mirror::Method::SetClass(class_root);
635  class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;");
636  CHECK(class_root != nullptr);
637  SetClassRoot(kJavaLangReflectMethodArrayClass, class_root);
638  mirror::Method::SetArrayClass(class_root);
639
640  // java.lang.ref classes need to be specially flagged, but otherwise are normal classes
641  // finish initializing Reference class
642  mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusNotReady, self);
643  CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;");
644  CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize());
645  CHECK_EQ(java_lang_ref_Reference->GetClassSize(),
646           mirror::Reference::ClassSize(image_pointer_size_));
647  class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
648  CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
649  class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference);
650  class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;");
651  CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
652  class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference);
653  class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;");
654  CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
655  class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference);
656  class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;");
657  CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
658  class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference);
659
660  // Setup the ClassLoader, verifying the object_size_.
661  class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;");
662  class_root->SetClassLoaderClass();
663  CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize());
664  SetClassRoot(kJavaLangClassLoader, class_root);
665
666  // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and
667  // java.lang.StackTraceElement as a convenience.
668  SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;"));
669  mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
670  SetClassRoot(kJavaLangClassNotFoundException,
671               FindSystemClass(self, "Ljava/lang/ClassNotFoundException;"));
672  SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;"));
673  SetClassRoot(kJavaLangStackTraceElementArrayClass,
674               FindSystemClass(self, "[Ljava/lang/StackTraceElement;"));
675  mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
676
677  // Ensure void type is resolved in the core's dex cache so java.lang.Void is correctly
678  // initialized.
679  {
680    const DexFile& dex_file = java_lang_Object->GetDexFile();
681    const DexFile::TypeId* void_type_id = dex_file.FindTypeId("V");
682    CHECK(void_type_id != nullptr);
683    uint16_t void_type_idx = dex_file.GetIndexForTypeId(*void_type_id);
684    // Now we resolve void type so the dex cache contains it. We use java.lang.Object class
685    // as referrer so the used dex cache is core's one.
686    mirror::Class* resolved_type = ResolveType(dex_file, void_type_idx, java_lang_Object.Get());
687    CHECK_EQ(resolved_type, GetClassRoot(kPrimitiveVoid));
688    self->AssertNoPendingException();
689  }
690
691  // Create conflict tables that depend on the class linker.
692  runtime->FixupConflictTables();
693
694  FinishInit(self);
695
696  VLOG(startup) << "ClassLinker::InitFromCompiler exiting";
697
698  return true;
699}
700
701void ClassLinker::FinishInit(Thread* self) {
702  VLOG(startup) << "ClassLinker::FinishInit entering";
703
704  // Let the heap know some key offsets into java.lang.ref instances
705  // Note: we hard code the field indexes here rather than using FindInstanceField
706  // as the types of the field can't be resolved prior to the runtime being
707  // fully initialized
708  mirror::Class* java_lang_ref_Reference = GetClassRoot(kJavaLangRefReference);
709  mirror::Class* java_lang_ref_FinalizerReference =
710      FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
711
712  ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
713  CHECK_STREQ(pendingNext->GetName(), "pendingNext");
714  CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
715
716  ArtField* queue = java_lang_ref_Reference->GetInstanceField(1);
717  CHECK_STREQ(queue->GetName(), "queue");
718  CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;");
719
720  ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2);
721  CHECK_STREQ(queueNext->GetName(), "queueNext");
722  CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
723
724  ArtField* referent = java_lang_ref_Reference->GetInstanceField(3);
725  CHECK_STREQ(referent->GetName(), "referent");
726  CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;");
727
728  ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
729  CHECK_STREQ(zombie->GetName(), "zombie");
730  CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;");
731
732  // ensure all class_roots_ are initialized
733  for (size_t i = 0; i < kClassRootsMax; i++) {
734    ClassRoot class_root = static_cast<ClassRoot>(i);
735    mirror::Class* klass = GetClassRoot(class_root);
736    CHECK(klass != nullptr);
737    DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr);
738    // note SetClassRoot does additional validation.
739    // if possible add new checks there to catch errors early
740  }
741
742  CHECK(!array_iftable_.IsNull());
743
744  // disable the slow paths in FindClass and CreatePrimitiveClass now
745  // that Object, Class, and Object[] are setup
746  init_done_ = true;
747
748  VLOG(startup) << "ClassLinker::FinishInit exiting";
749}
750
751void ClassLinker::RunRootClinits() {
752  Thread* self = Thread::Current();
753  for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) {
754    mirror::Class* c = GetClassRoot(ClassRoot(i));
755    if (!c->IsArrayClass() && !c->IsPrimitive()) {
756      StackHandleScope<1> hs(self);
757      Handle<mirror::Class> h_class(hs.NewHandle(GetClassRoot(ClassRoot(i))));
758      EnsureInitialized(self, h_class, true, true);
759      self->AssertNoPendingException();
760    }
761  }
762}
763
764static void SanityCheckArtMethod(ArtMethod* m,
765                                 mirror::Class* expected_class,
766                                 const std::vector<gc::space::ImageSpace*>& spaces)
767    SHARED_REQUIRES(Locks::mutator_lock_) {
768  if (m->IsRuntimeMethod()) {
769    mirror::Class* declaring_class = m->GetDeclaringClassUnchecked();
770    CHECK(declaring_class == nullptr) << declaring_class << " " << PrettyMethod(m);
771  } else if (m->IsCopied()) {
772    CHECK(m->GetDeclaringClass() != nullptr) << PrettyMethod(m);
773  } else if (expected_class != nullptr) {
774    CHECK_EQ(m->GetDeclaringClassUnchecked(), expected_class) << PrettyMethod(m);
775  }
776  if (!spaces.empty()) {
777    bool contains = false;
778    for (gc::space::ImageSpace* space : spaces) {
779      auto& header = space->GetImageHeader();
780      size_t offset = reinterpret_cast<uint8_t*>(m) - space->Begin();
781
782      const ImageSection& methods = header.GetMethodsSection();
783      contains = contains || methods.Contains(offset);
784
785      const ImageSection& runtime_methods = header.GetRuntimeMethodsSection();
786      contains = contains || runtime_methods.Contains(offset);
787    }
788    CHECK(contains) << m << " not found";
789  }
790}
791
792static void SanityCheckArtMethodPointerArray(mirror::PointerArray* arr,
793                                             mirror::Class* expected_class,
794                                             size_t pointer_size,
795                                             const std::vector<gc::space::ImageSpace*>& spaces)
796    SHARED_REQUIRES(Locks::mutator_lock_) {
797  CHECK(arr != nullptr);
798  for (int32_t j = 0; j < arr->GetLength(); ++j) {
799    auto* method = arr->GetElementPtrSize<ArtMethod*>(j, pointer_size);
800    // expected_class == null means we are a dex cache.
801    if (expected_class != nullptr) {
802      CHECK(method != nullptr);
803    }
804    if (method != nullptr) {
805      SanityCheckArtMethod(method, expected_class, spaces);
806    }
807  }
808}
809
810static void SanityCheckArtMethodPointerArray(ArtMethod** arr,
811                                             size_t size,
812                                             size_t pointer_size,
813                                             const std::vector<gc::space::ImageSpace*>& spaces)
814    SHARED_REQUIRES(Locks::mutator_lock_) {
815  CHECK_EQ(arr != nullptr, size != 0u);
816  if (arr != nullptr) {
817    bool contains = false;
818    for (auto space : spaces) {
819      auto offset = reinterpret_cast<uint8_t*>(arr) - space->Begin();
820      if (space->GetImageHeader().GetImageSection(
821          ImageHeader::kSectionDexCacheArrays).Contains(offset)) {
822        contains = true;
823        break;
824      }
825    }
826    CHECK(contains);
827  }
828  for (size_t j = 0; j < size; ++j) {
829    ArtMethod* method = mirror::DexCache::GetElementPtrSize(arr, j, pointer_size);
830    // expected_class == null means we are a dex cache.
831    if (method != nullptr) {
832      SanityCheckArtMethod(method, nullptr, spaces);
833    }
834  }
835}
836
837static void SanityCheckObjectsCallback(mirror::Object* obj, void* arg ATTRIBUTE_UNUSED)
838    SHARED_REQUIRES(Locks::mutator_lock_) {
839  DCHECK(obj != nullptr);
840  CHECK(obj->GetClass() != nullptr) << "Null class in object " << obj;
841  CHECK(obj->GetClass()->GetClass() != nullptr) << "Null class class " << obj;
842  if (obj->IsClass()) {
843    auto klass = obj->AsClass();
844    for (ArtField& field : klass->GetIFields()) {
845      CHECK_EQ(field.GetDeclaringClass(), klass);
846    }
847    for (ArtField& field : klass->GetSFields()) {
848      CHECK_EQ(field.GetDeclaringClass(), klass);
849    }
850    auto* runtime = Runtime::Current();
851    auto image_spaces = runtime->GetHeap()->GetBootImageSpaces();
852    auto pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
853    for (auto& m : klass->GetMethods(pointer_size)) {
854      SanityCheckArtMethod(&m, klass, image_spaces);
855    }
856    auto* vtable = klass->GetVTable();
857    if (vtable != nullptr) {
858      SanityCheckArtMethodPointerArray(vtable, nullptr, pointer_size, image_spaces);
859    }
860    if (klass->ShouldHaveEmbeddedImtAndVTable()) {
861      for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
862        SanityCheckArtMethod(
863            klass->GetEmbeddedImTableEntry(i, pointer_size), nullptr, image_spaces);
864      }
865      for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) {
866        SanityCheckArtMethod(klass->GetEmbeddedVTableEntry(i, pointer_size), nullptr, image_spaces);
867      }
868    }
869    auto* iftable = klass->GetIfTable();
870    if (iftable != nullptr) {
871      for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
872        if (iftable->GetMethodArrayCount(i) > 0) {
873          SanityCheckArtMethodPointerArray(
874              iftable->GetMethodArray(i), nullptr, pointer_size, image_spaces);
875        }
876      }
877    }
878  }
879}
880
881// Set image methods' entry point to interpreter.
882class SetInterpreterEntrypointArtMethodVisitor : public ArtMethodVisitor {
883 public:
884  explicit SetInterpreterEntrypointArtMethodVisitor(size_t image_pointer_size)
885    : image_pointer_size_(image_pointer_size) {}
886
887  void Visit(ArtMethod* method) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
888    if (kIsDebugBuild && !method->IsRuntimeMethod()) {
889      CHECK(method->GetDeclaringClass() != nullptr);
890    }
891    if (!method->IsNative() && !method->IsRuntimeMethod() && !method->IsResolutionMethod()) {
892      method->SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(),
893                                                        image_pointer_size_);
894    }
895  }
896
897 private:
898  const size_t image_pointer_size_;
899
900  DISALLOW_COPY_AND_ASSIGN(SetInterpreterEntrypointArtMethodVisitor);
901};
902
903struct TrampolineCheckData {
904  const void* quick_resolution_trampoline;
905  const void* quick_imt_conflict_trampoline;
906  const void* quick_generic_jni_trampoline;
907  const void* quick_to_interpreter_bridge_trampoline;
908  size_t pointer_size;
909  ArtMethod* m;
910  bool error;
911};
912
913static void CheckTrampolines(mirror::Object* obj, void* arg) NO_THREAD_SAFETY_ANALYSIS {
914  if (obj->IsClass()) {
915    mirror::Class* klass = obj->AsClass();
916    TrampolineCheckData* d = reinterpret_cast<TrampolineCheckData*>(arg);
917    for (ArtMethod& m : klass->GetMethods(d->pointer_size)) {
918      const void* entrypoint = m.GetEntryPointFromQuickCompiledCodePtrSize(d->pointer_size);
919      if (entrypoint == d->quick_resolution_trampoline ||
920          entrypoint == d->quick_imt_conflict_trampoline ||
921          entrypoint == d->quick_generic_jni_trampoline ||
922          entrypoint == d->quick_to_interpreter_bridge_trampoline) {
923        d->m = &m;
924        d->error = true;
925        return;
926      }
927    }
928  }
929}
930
931bool ClassLinker::InitFromBootImage(std::string* error_msg) {
932  VLOG(startup) << __FUNCTION__ << " entering";
933  CHECK(!init_done_);
934
935  Runtime* const runtime = Runtime::Current();
936  Thread* const self = Thread::Current();
937  gc::Heap* const heap = runtime->GetHeap();
938  std::vector<gc::space::ImageSpace*> spaces = heap->GetBootImageSpaces();
939  CHECK(!spaces.empty());
940  image_pointer_size_ = spaces[0]->GetImageHeader().GetPointerSize();
941  if (!ValidPointerSize(image_pointer_size_)) {
942    *error_msg = StringPrintf("Invalid image pointer size: %zu", image_pointer_size_);
943    return false;
944  }
945  if (!runtime->IsAotCompiler()) {
946    // Only the Aot compiler supports having an image with a different pointer size than the
947    // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart
948    // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps.
949    if (image_pointer_size_ != sizeof(void*)) {
950      *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu",
951                                image_pointer_size_,
952                                sizeof(void*));
953      return false;
954    }
955  }
956  dex_cache_boot_image_class_lookup_required_ = true;
957  std::vector<const OatFile*> oat_files =
958      runtime->GetOatFileManager().RegisterImageOatFiles(spaces);
959  DCHECK(!oat_files.empty());
960  const OatHeader& default_oat_header = oat_files[0]->GetOatHeader();
961  CHECK_EQ(default_oat_header.GetImageFileLocationOatChecksum(), 0U);
962  CHECK_EQ(default_oat_header.GetImageFileLocationOatDataBegin(), 0U);
963  const char* image_file_location = oat_files[0]->GetOatHeader().
964      GetStoreValueByKey(OatHeader::kImageLocationKey);
965  CHECK(image_file_location == nullptr || *image_file_location == 0);
966  quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline();
967  quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline();
968  quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline();
969  quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge();
970  if (kIsDebugBuild) {
971    // Check that the other images use the same trampoline.
972    for (size_t i = 1; i < oat_files.size(); ++i) {
973      const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader();
974      const void* ith_quick_resolution_trampoline =
975          ith_oat_header.GetQuickResolutionTrampoline();
976      const void* ith_quick_imt_conflict_trampoline =
977          ith_oat_header.GetQuickImtConflictTrampoline();
978      const void* ith_quick_generic_jni_trampoline =
979          ith_oat_header.GetQuickGenericJniTrampoline();
980      const void* ith_quick_to_interpreter_bridge_trampoline =
981          ith_oat_header.GetQuickToInterpreterBridge();
982      if (ith_quick_resolution_trampoline != quick_resolution_trampoline_ ||
983          ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ ||
984          ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ ||
985          ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_) {
986        // Make sure that all methods in this image do not contain those trampolines as
987        // entrypoints. Otherwise the class-linker won't be able to work with a single set.
988        TrampolineCheckData data;
989        data.error = false;
990        data.pointer_size = GetImagePointerSize();
991        data.quick_resolution_trampoline = ith_quick_resolution_trampoline;
992        data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline;
993        data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline;
994        data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline;
995        ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
996        spaces[i]->GetLiveBitmap()->Walk(CheckTrampolines, &data);
997        if (data.error) {
998          ArtMethod* m = data.m;
999          LOG(ERROR) << "Found a broken ArtMethod: " << PrettyMethod(m);
1000          *error_msg = "Found an ArtMethod with a bad entrypoint";
1001          return false;
1002        }
1003      }
1004    }
1005  }
1006
1007  class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
1008      down_cast<mirror::ObjectArray<mirror::Class>*>(
1009          spaces[0]->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots)));
1010  mirror::Class::SetClassClass(class_roots_.Read()->Get(kJavaLangClass));
1011
1012  // Special case of setting up the String class early so that we can test arbitrary objects
1013  // as being Strings or not
1014  mirror::String::SetClass(GetClassRoot(kJavaLangString));
1015
1016  mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject);
1017  java_lang_Object->SetObjectSize(sizeof(mirror::Object));
1018  // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
1019  // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
1020  runtime->SetSentinel(heap->AllocNonMovableObject<true>(
1021      self, java_lang_Object, java_lang_Object->GetObjectSize(), VoidFunctor()));
1022
1023  // reinit array_iftable_ from any array class instance, they should be ==
1024  array_iftable_ = GcRoot<mirror::IfTable>(GetClassRoot(kObjectArrayClass)->GetIfTable());
1025  DCHECK_EQ(array_iftable_.Read(), GetClassRoot(kBooleanArrayClass)->GetIfTable());
1026  // String class root was set above
1027  mirror::Field::SetClass(GetClassRoot(kJavaLangReflectField));
1028  mirror::Field::SetArrayClass(GetClassRoot(kJavaLangReflectFieldArrayClass));
1029  mirror::Constructor::SetClass(GetClassRoot(kJavaLangReflectConstructor));
1030  mirror::Constructor::SetArrayClass(GetClassRoot(kJavaLangReflectConstructorArrayClass));
1031  mirror::Method::SetClass(GetClassRoot(kJavaLangReflectMethod));
1032  mirror::Method::SetArrayClass(GetClassRoot(kJavaLangReflectMethodArrayClass));
1033  mirror::Reference::SetClass(GetClassRoot(kJavaLangRefReference));
1034  mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
1035  mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
1036  mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass));
1037  mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
1038  mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
1039  mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass));
1040  mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
1041  mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
1042  mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
1043  mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
1044
1045  for (gc::space::ImageSpace* image_space : spaces) {
1046    // Boot class loader, use a null handle.
1047    std::vector<std::unique_ptr<const DexFile>> dex_files;
1048    if (!AddImageSpace(image_space,
1049                       ScopedNullHandle<mirror::ClassLoader>(),
1050                       /*dex_elements*/nullptr,
1051                       /*dex_location*/nullptr,
1052                       /*out*/&dex_files,
1053                       error_msg)) {
1054      return false;
1055    }
1056    // Append opened dex files at the end.
1057    boot_dex_files_.insert(boot_dex_files_.end(),
1058                           std::make_move_iterator(dex_files.begin()),
1059                           std::make_move_iterator(dex_files.end()));
1060  }
1061  FinishInit(self);
1062
1063  VLOG(startup) << __FUNCTION__ << " exiting";
1064  return true;
1065}
1066
1067bool ClassLinker::IsBootClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
1068                                    mirror::ClassLoader* class_loader) {
1069  return class_loader == nullptr ||
1070      class_loader->GetClass() ==
1071          soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_BootClassLoader);
1072}
1073
1074static mirror::String* GetDexPathListElementName(ScopedObjectAccessUnchecked& soa,
1075                                                 mirror::Object* element)
1076    SHARED_REQUIRES(Locks::mutator_lock_) {
1077  ArtField* const dex_file_field =
1078      soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
1079  ArtField* const dex_file_name_field =
1080      soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_fileName);
1081  DCHECK(dex_file_field != nullptr);
1082  DCHECK(dex_file_name_field != nullptr);
1083  DCHECK(element != nullptr);
1084  CHECK_EQ(dex_file_field->GetDeclaringClass(), element->GetClass()) << PrettyTypeOf(element);
1085  mirror::Object* dex_file = dex_file_field->GetObject(element);
1086  if (dex_file == nullptr) {
1087    return nullptr;
1088  }
1089  mirror::Object* const name_object = dex_file_name_field->GetObject(dex_file);
1090  if (name_object != nullptr) {
1091    return name_object->AsString();
1092  }
1093  return nullptr;
1094}
1095
1096static bool FlattenPathClassLoader(mirror::ClassLoader* class_loader,
1097                                   std::list<mirror::String*>* out_dex_file_names,
1098                                   std::string* error_msg)
1099    SHARED_REQUIRES(Locks::mutator_lock_) {
1100  DCHECK(out_dex_file_names != nullptr);
1101  DCHECK(error_msg != nullptr);
1102  ScopedObjectAccessUnchecked soa(Thread::Current());
1103  ArtField* const dex_path_list_field =
1104      soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList);
1105  ArtField* const dex_elements_field =
1106      soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
1107  CHECK(dex_path_list_field != nullptr);
1108  CHECK(dex_elements_field != nullptr);
1109  while (!ClassLinker::IsBootClassLoader(soa, class_loader)) {
1110    if (class_loader->GetClass() !=
1111        soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader)) {
1112      *error_msg = StringPrintf("Unknown class loader type %s", PrettyTypeOf(class_loader).c_str());
1113      // Unsupported class loader.
1114      return false;
1115    }
1116    mirror::Object* dex_path_list = dex_path_list_field->GetObject(class_loader);
1117    if (dex_path_list != nullptr) {
1118      // DexPathList has an array dexElements of Elements[] which each contain a dex file.
1119      mirror::Object* dex_elements_obj = dex_elements_field->GetObject(dex_path_list);
1120      // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
1121      // at the mCookie which is a DexFile vector.
1122      if (dex_elements_obj != nullptr) {
1123        mirror::ObjectArray<mirror::Object>* dex_elements =
1124            dex_elements_obj->AsObjectArray<mirror::Object>();
1125        // Reverse order since we insert the parent at the front.
1126        for (int32_t i = dex_elements->GetLength() - 1; i >= 0; --i) {
1127          mirror::Object* const element = dex_elements->GetWithoutChecks(i);
1128          if (element == nullptr) {
1129            *error_msg = StringPrintf("Null dex element at index %d", i);
1130            return false;
1131          }
1132          mirror::String* const name = GetDexPathListElementName(soa, element);
1133          if (name == nullptr) {
1134            *error_msg = StringPrintf("Null name for dex element at index %d", i);
1135            return false;
1136          }
1137          out_dex_file_names->push_front(name);
1138        }
1139      }
1140    }
1141    class_loader = class_loader->GetParent();
1142  }
1143  return true;
1144}
1145
1146class FixupArtMethodArrayVisitor : public ArtMethodVisitor {
1147 public:
1148  explicit FixupArtMethodArrayVisitor(const ImageHeader& header) : header_(header) {}
1149
1150  virtual void Visit(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) {
1151    GcRoot<mirror::Class>* resolved_types = method->GetDexCacheResolvedTypes(sizeof(void*));
1152    const bool is_copied = method->IsCopied();
1153    if (resolved_types != nullptr) {
1154      bool in_image_space = false;
1155      if (kIsDebugBuild || is_copied) {
1156        in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1157            reinterpret_cast<const uint8_t*>(resolved_types) - header_.GetImageBegin());
1158      }
1159      // Must be in image space for non-miranda method.
1160      DCHECK(is_copied || in_image_space)
1161          << resolved_types << " is not in image starting at "
1162          << reinterpret_cast<void*>(header_.GetImageBegin());
1163      if (!is_copied || in_image_space) {
1164        // Go through the array so that we don't need to do a slow map lookup.
1165        method->SetDexCacheResolvedTypes(*reinterpret_cast<GcRoot<mirror::Class>**>(resolved_types),
1166                                         sizeof(void*));
1167      }
1168    }
1169    ArtMethod** resolved_methods = method->GetDexCacheResolvedMethods(sizeof(void*));
1170    if (resolved_methods != nullptr) {
1171      bool in_image_space = false;
1172      if (kIsDebugBuild || is_copied) {
1173        in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1174              reinterpret_cast<const uint8_t*>(resolved_methods) - header_.GetImageBegin());
1175      }
1176      // Must be in image space for non-miranda method.
1177      DCHECK(is_copied || in_image_space)
1178          << resolved_methods << " is not in image starting at "
1179          << reinterpret_cast<void*>(header_.GetImageBegin());
1180      if (!is_copied || in_image_space) {
1181        // Go through the array so that we don't need to do a slow map lookup.
1182        method->SetDexCacheResolvedMethods(*reinterpret_cast<ArtMethod***>(resolved_methods),
1183                                           sizeof(void*));
1184      }
1185    }
1186  }
1187
1188 private:
1189  const ImageHeader& header_;
1190};
1191
1192class VerifyClassInTableArtMethodVisitor : public ArtMethodVisitor {
1193 public:
1194  explicit VerifyClassInTableArtMethodVisitor(ClassTable* table) : table_(table) {}
1195
1196  virtual void Visit(ArtMethod* method)
1197      SHARED_REQUIRES(Locks::mutator_lock_, Locks::classlinker_classes_lock_) {
1198    mirror::Class* klass = method->GetDeclaringClass();
1199    if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
1200      CHECK_EQ(table_->LookupByDescriptor(klass), klass) << PrettyClass(klass);
1201    }
1202  }
1203
1204 private:
1205  ClassTable* const table_;
1206};
1207
1208class VerifyDeclaringClassVisitor : public ArtMethodVisitor {
1209 public:
1210  VerifyDeclaringClassVisitor() SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1211      : live_bitmap_(Runtime::Current()->GetHeap()->GetLiveBitmap()) {}
1212
1213  virtual void Visit(ArtMethod* method)
1214      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1215    mirror::Class* klass = method->GetDeclaringClassUnchecked();
1216    if (klass != nullptr) {
1217      CHECK(live_bitmap_->Test(klass)) << "Image method has unmarked declaring class";
1218    }
1219  }
1220
1221 private:
1222  gc::accounting::HeapBitmap* const live_bitmap_;
1223};
1224
1225bool ClassLinker::UpdateAppImageClassLoadersAndDexCaches(
1226    gc::space::ImageSpace* space,
1227    Handle<mirror::ClassLoader> class_loader,
1228    Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches,
1229    ClassTable::ClassSet* new_class_set,
1230    bool* out_forward_dex_cache_array,
1231    std::string* out_error_msg) {
1232  DCHECK(out_forward_dex_cache_array != nullptr);
1233  DCHECK(out_error_msg != nullptr);
1234  Thread* const self = Thread::Current();
1235  gc::Heap* const heap = Runtime::Current()->GetHeap();
1236  const ImageHeader& header = space->GetImageHeader();
1237  {
1238    // Add image classes into the class table for the class loader, and fixup the dex caches and
1239    // class loader fields.
1240    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1241    ClassTable* table = InsertClassTableForClassLoader(class_loader.Get());
1242    // Dex cache array fixup is all or nothing, we must reject app images that have mixed since we
1243    // rely on clobering the dex cache arrays in the image to forward to bss.
1244    size_t num_dex_caches_with_bss_arrays = 0;
1245    const size_t num_dex_caches = dex_caches->GetLength();
1246    for (size_t i = 0; i < num_dex_caches; i++) {
1247      mirror::DexCache* const dex_cache = dex_caches->Get(i);
1248      const DexFile* const dex_file = dex_cache->GetDexFile();
1249      const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1250      if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1251        ++num_dex_caches_with_bss_arrays;
1252      }
1253    }
1254    *out_forward_dex_cache_array = num_dex_caches_with_bss_arrays != 0;
1255    if (*out_forward_dex_cache_array) {
1256      if (num_dex_caches_with_bss_arrays != num_dex_caches) {
1257        // Reject application image since we cannot forward only some of the dex cache arrays.
1258        // TODO: We could get around this by having a dedicated forwarding slot. It should be an
1259        // uncommon case.
1260        *out_error_msg = StringPrintf("Dex caches in bss does not match total: %zu vs %zu",
1261                                      num_dex_caches_with_bss_arrays,
1262                                      num_dex_caches);
1263        return false;
1264      }
1265    }
1266    // Only add the classes to the class loader after the points where we can return false.
1267    for (size_t i = 0; i < num_dex_caches; i++) {
1268      mirror::DexCache* const dex_cache = dex_caches->Get(i);
1269      const DexFile* const dex_file = dex_cache->GetDexFile();
1270      const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1271      if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1272      // If the oat file expects the dex cache arrays to be in the BSS, then allocate there and
1273        // copy over the arrays.
1274        DCHECK(dex_file != nullptr);
1275        const size_t num_strings = dex_file->NumStringIds();
1276        const size_t num_types = dex_file->NumTypeIds();
1277        const size_t num_methods = dex_file->NumMethodIds();
1278        const size_t num_fields = dex_file->NumFieldIds();
1279        CHECK_EQ(num_strings, dex_cache->NumStrings());
1280        CHECK_EQ(num_types, dex_cache->NumResolvedTypes());
1281        CHECK_EQ(num_methods, dex_cache->NumResolvedMethods());
1282        CHECK_EQ(num_fields, dex_cache->NumResolvedFields());
1283        DexCacheArraysLayout layout(image_pointer_size_, dex_file);
1284        uint8_t* const raw_arrays = oat_dex_file->GetDexCacheArrays();
1285        // The space is not yet visible to the GC, we can avoid the read barriers and use
1286        // std::copy_n.
1287        if (num_strings != 0u) {
1288          GcRoot<mirror::String>* const image_resolved_strings = dex_cache->GetStrings();
1289          GcRoot<mirror::String>* const strings =
1290              reinterpret_cast<GcRoot<mirror::String>*>(raw_arrays + layout.StringsOffset());
1291          for (size_t j = 0; kIsDebugBuild && j < num_strings; ++j) {
1292            DCHECK(strings[j].IsNull());
1293          }
1294          std::copy_n(image_resolved_strings, num_strings, strings);
1295          dex_cache->SetStrings(strings);
1296        }
1297        if (num_types != 0u) {
1298          GcRoot<mirror::Class>* const image_resolved_types = dex_cache->GetResolvedTypes();
1299          GcRoot<mirror::Class>* const types =
1300              reinterpret_cast<GcRoot<mirror::Class>*>(raw_arrays + layout.TypesOffset());
1301          for (size_t j = 0; kIsDebugBuild && j < num_types; ++j) {
1302            DCHECK(types[j].IsNull());
1303          }
1304          std::copy_n(image_resolved_types, num_types, types);
1305          // Store a pointer to the new location for fast ArtMethod patching without requiring map.
1306          // This leaves random garbage at the start of the dex cache array, but nobody should ever
1307          // read from it again.
1308          *reinterpret_cast<GcRoot<mirror::Class>**>(image_resolved_types) = types;
1309          dex_cache->SetResolvedTypes(types);
1310        }
1311        if (num_methods != 0u) {
1312          ArtMethod** const methods = reinterpret_cast<ArtMethod**>(
1313              raw_arrays + layout.MethodsOffset());
1314          ArtMethod** const image_resolved_methods = dex_cache->GetResolvedMethods();
1315          for (size_t j = 0; kIsDebugBuild && j < num_methods; ++j) {
1316            DCHECK(methods[j] == nullptr);
1317          }
1318          std::copy_n(image_resolved_methods, num_methods, methods);
1319          // Store a pointer to the new location for fast ArtMethod patching without requiring map.
1320          *reinterpret_cast<ArtMethod***>(image_resolved_methods) = methods;
1321          dex_cache->SetResolvedMethods(methods);
1322        }
1323        if (num_fields != 0u) {
1324          ArtField** const fields =
1325              reinterpret_cast<ArtField**>(raw_arrays + layout.FieldsOffset());
1326          for (size_t j = 0; kIsDebugBuild && j < num_fields; ++j) {
1327            DCHECK(fields[j] == nullptr);
1328          }
1329          std::copy_n(dex_cache->GetResolvedFields(), num_fields, fields);
1330          dex_cache->SetResolvedFields(fields);
1331        }
1332      }
1333      {
1334        WriterMutexLock mu2(self, dex_lock_);
1335        // Make sure to do this after we update the arrays since we store the resolved types array
1336        // in DexCacheData in RegisterDexFileLocked. We need the array pointer to be the one in the
1337        // BSS.
1338        mirror::DexCache* existing_dex_cache = FindDexCacheLocked(self,
1339                                                                  *dex_file,
1340                                                                  /*allow_failure*/true);
1341        CHECK(existing_dex_cache == nullptr);
1342        StackHandleScope<1> hs3(self);
1343        RegisterDexFileLocked(*dex_file, hs3.NewHandle(dex_cache));
1344      }
1345      GcRoot<mirror::Class>* const types = dex_cache->GetResolvedTypes();
1346      const size_t num_types = dex_cache->NumResolvedTypes();
1347      if (new_class_set == nullptr) {
1348        for (int32_t j = 0; j < static_cast<int32_t>(num_types); j++) {
1349          // The image space is not yet added to the heap, avoid read barriers.
1350          mirror::Class* klass = types[j].Read();
1351          // There may also be boot image classes,
1352          if (space->HasAddress(klass)) {
1353            DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1354            // Update the class loader from the one in the image class loader to the one that loaded
1355            // the app image.
1356            klass->SetClassLoader(class_loader.Get());
1357            // The resolved type could be from another dex cache, go through the dex cache just in
1358            // case. May be null for array classes.
1359            if (klass->GetDexCacheStrings() != nullptr) {
1360              DCHECK(!klass->IsArrayClass());
1361              klass->SetDexCacheStrings(klass->GetDexCache()->GetStrings());
1362            }
1363            // If there are multiple dex caches, there may be the same class multiple times
1364            // in different dex caches. Check for this since inserting will add duplicates
1365            // otherwise.
1366            if (num_dex_caches > 1) {
1367              mirror::Class* existing = table->LookupByDescriptor(klass);
1368              if (existing != nullptr) {
1369                DCHECK_EQ(existing, klass) << PrettyClass(klass);
1370              } else {
1371                table->Insert(klass);
1372              }
1373            } else {
1374              table->Insert(klass);
1375            }
1376            // Double checked VLOG to avoid overhead.
1377            if (VLOG_IS_ON(image)) {
1378              VLOG(image) << PrettyClass(klass) << " " << klass->GetStatus();
1379              if (!klass->IsArrayClass()) {
1380                VLOG(image) << "From " << klass->GetDexCache()->GetDexFile()->GetBaseLocation();
1381              }
1382              VLOG(image) << "Direct methods";
1383              for (ArtMethod& m : klass->GetDirectMethods(sizeof(void*))) {
1384                VLOG(image) << PrettyMethod(&m);
1385              }
1386              VLOG(image) << "Virtual methods";
1387              for (ArtMethod& m : klass->GetVirtualMethods(sizeof(void*))) {
1388                VLOG(image) << PrettyMethod(&m);
1389              }
1390            }
1391          } else {
1392            DCHECK(klass == nullptr || heap->ObjectIsInBootImageSpace(klass))
1393                << klass << " " << PrettyClass(klass);
1394          }
1395        }
1396      }
1397      if (kIsDebugBuild) {
1398        for (int32_t j = 0; j < static_cast<int32_t>(num_types); j++) {
1399          // The image space is not yet added to the heap, avoid read barriers.
1400          mirror::Class* klass = types[j].Read();
1401          if (space->HasAddress(klass)) {
1402            DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1403            if (kIsDebugBuild) {
1404              if (new_class_set != nullptr) {
1405                auto it = new_class_set->Find(GcRoot<mirror::Class>(klass));
1406                DCHECK(it != new_class_set->end());
1407                DCHECK_EQ(it->Read(), klass);
1408                mirror::Class* super_class = klass->GetSuperClass();
1409                if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) {
1410                  auto it2 = new_class_set->Find(GcRoot<mirror::Class>(super_class));
1411                  DCHECK(it2 != new_class_set->end());
1412                  DCHECK_EQ(it2->Read(), super_class);
1413                }
1414              } else {
1415                DCHECK_EQ(table->LookupByDescriptor(klass), klass);
1416                mirror::Class* super_class = klass->GetSuperClass();
1417                if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) {
1418                  CHECK_EQ(table->LookupByDescriptor(super_class), super_class);
1419                }
1420              }
1421            }
1422            if (kIsDebugBuild) {
1423              for (ArtMethod& m : klass->GetDirectMethods(sizeof(void*))) {
1424                const void* code = m.GetEntryPointFromQuickCompiledCode();
1425                const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1426                if (!IsQuickResolutionStub(code) &&
1427                    !IsQuickGenericJniStub(code) &&
1428                    !IsQuickToInterpreterBridge(code) &&
1429                    !m.IsNative()) {
1430                  DCHECK_EQ(code, oat_code) << PrettyMethod(&m);
1431                }
1432              }
1433              for (ArtMethod& m : klass->GetVirtualMethods(sizeof(void*))) {
1434                const void* code = m.GetEntryPointFromQuickCompiledCode();
1435                const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1436                if (!IsQuickResolutionStub(code) &&
1437                    !IsQuickGenericJniStub(code) &&
1438                    !IsQuickToInterpreterBridge(code) &&
1439                    !m.IsNative()) {
1440                  DCHECK_EQ(code, oat_code) << PrettyMethod(&m);
1441                }
1442              }
1443            }
1444          }
1445        }
1446      }
1447    }
1448  }
1449  if (*out_forward_dex_cache_array) {
1450    ScopedTrace timing("Fixup ArtMethod dex cache arrays");
1451    FixupArtMethodArrayVisitor visitor(header);
1452    header.VisitPackedArtMethods(&visitor, space->Begin(), sizeof(void*));
1453    Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get());
1454  }
1455  if (kVerifyArtMethodDeclaringClasses) {
1456    ScopedTrace timing("Verify declaring classes");
1457    ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_);
1458    VerifyDeclaringClassVisitor visitor;
1459    header.VisitPackedArtMethods(&visitor, space->Begin(), sizeof(void*));
1460  }
1461  return true;
1462}
1463
1464// Update the class loader and resolved string dex cache array of classes. Should only be used on
1465// classes in the image space.
1466class UpdateClassLoaderAndResolvedStringsVisitor {
1467 public:
1468  UpdateClassLoaderAndResolvedStringsVisitor(gc::space::ImageSpace* space,
1469                                             mirror::ClassLoader* class_loader,
1470                                             bool forward_strings)
1471      : space_(space),
1472        class_loader_(class_loader),
1473        forward_strings_(forward_strings) {}
1474
1475  bool operator()(mirror::Class* klass) const SHARED_REQUIRES(Locks::mutator_lock_) {
1476    if (forward_strings_) {
1477      GcRoot<mirror::String>* strings = klass->GetDexCacheStrings();
1478      if (strings != nullptr) {
1479        DCHECK(
1480            space_->GetImageHeader().GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1481                reinterpret_cast<uint8_t*>(strings) - space_->Begin()))
1482            << "String dex cache array for " << PrettyClass(klass) << " is not in app image";
1483        // Dex caches have already been updated, so take the strings pointer from there.
1484        GcRoot<mirror::String>* new_strings = klass->GetDexCache()->GetStrings();
1485        DCHECK_NE(strings, new_strings);
1486        klass->SetDexCacheStrings(new_strings);
1487      }
1488    }
1489    // Finally, update class loader.
1490    klass->SetClassLoader(class_loader_);
1491    return true;
1492  }
1493
1494  gc::space::ImageSpace* const space_;
1495  mirror::ClassLoader* const class_loader_;
1496  const bool forward_strings_;
1497};
1498
1499static std::unique_ptr<const DexFile> OpenOatDexFile(const OatFile* oat_file,
1500                                                     const char* location,
1501                                                     std::string* error_msg)
1502    SHARED_REQUIRES(Locks::mutator_lock_) {
1503  DCHECK(error_msg != nullptr);
1504  std::unique_ptr<const DexFile> dex_file;
1505  const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr);
1506  if (oat_dex_file == nullptr) {
1507    *error_msg = StringPrintf("Failed finding oat dex file for %s %s",
1508                              oat_file->GetLocation().c_str(),
1509                              location);
1510    return std::unique_ptr<const DexFile>();
1511  }
1512  std::string inner_error_msg;
1513  dex_file = oat_dex_file->OpenDexFile(&inner_error_msg);
1514  if (dex_file == nullptr) {
1515    *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'",
1516                              location,
1517                              oat_file->GetLocation().c_str(),
1518                              inner_error_msg.c_str());
1519    return std::unique_ptr<const DexFile>();
1520  }
1521
1522  if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) {
1523    *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x",
1524                              location,
1525                              dex_file->GetLocationChecksum(),
1526                              oat_dex_file->GetDexFileLocationChecksum());
1527    return std::unique_ptr<const DexFile>();
1528  }
1529  return dex_file;
1530}
1531
1532bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space,
1533                                    std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1534                                    std::string* error_msg) {
1535  ScopedAssertNoThreadSuspension nts(Thread::Current(), __FUNCTION__);
1536  const ImageHeader& header = space->GetImageHeader();
1537  mirror::Object* dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1538  DCHECK(dex_caches_object != nullptr);
1539  mirror::ObjectArray<mirror::DexCache>* dex_caches =
1540      dex_caches_object->AsObjectArray<mirror::DexCache>();
1541  const OatFile* oat_file = space->GetOatFile();
1542  for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1543    mirror::DexCache* dex_cache = dex_caches->Get(i);
1544    std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
1545    std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1546                                                             dex_file_location.c_str(),
1547                                                             error_msg);
1548    if (dex_file == nullptr) {
1549      return false;
1550    }
1551    dex_cache->SetDexFile(dex_file.get());
1552    out_dex_files->push_back(std::move(dex_file));
1553  }
1554  return true;
1555}
1556
1557bool ClassLinker::AddImageSpace(
1558    gc::space::ImageSpace* space,
1559    Handle<mirror::ClassLoader> class_loader,
1560    jobjectArray dex_elements,
1561    const char* dex_location,
1562    std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1563    std::string* error_msg) {
1564  DCHECK(out_dex_files != nullptr);
1565  DCHECK(error_msg != nullptr);
1566  const uint64_t start_time = NanoTime();
1567  const bool app_image = class_loader.Get() != nullptr;
1568  const ImageHeader& header = space->GetImageHeader();
1569  mirror::Object* dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1570  DCHECK(dex_caches_object != nullptr);
1571  Runtime* const runtime = Runtime::Current();
1572  gc::Heap* const heap = runtime->GetHeap();
1573  Thread* const self = Thread::Current();
1574  StackHandleScope<2> hs(self);
1575  Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches(
1576      hs.NewHandle(dex_caches_object->AsObjectArray<mirror::DexCache>()));
1577  Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle(
1578      header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray<mirror::Class>()));
1579  const OatFile* oat_file = space->GetOatFile();
1580  std::unordered_set<mirror::ClassLoader*> image_class_loaders;
1581  // Check that the image is what we are expecting.
1582  if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) {
1583    *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu",
1584                              static_cast<size_t>(space->GetImageHeader().GetPointerSize()),
1585                              image_pointer_size_);
1586    return false;
1587  }
1588  DCHECK(class_roots.Get() != nullptr);
1589  if (class_roots->GetLength() != static_cast<int32_t>(kClassRootsMax)) {
1590    *error_msg = StringPrintf("Expected %d class roots but got %d",
1591                              class_roots->GetLength(),
1592                              static_cast<int32_t>(kClassRootsMax));
1593    return false;
1594  }
1595  // Check against existing class roots to make sure they match the ones in the boot image.
1596  for (size_t i = 0; i < kClassRootsMax; i++) {
1597    if (class_roots->Get(i) != GetClassRoot(static_cast<ClassRoot>(i))) {
1598      *error_msg = "App image class roots must have pointer equality with runtime ones.";
1599      return false;
1600    }
1601  }
1602  if (oat_file->GetOatHeader().GetDexFileCount() !=
1603      static_cast<uint32_t>(dex_caches->GetLength())) {
1604    *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from "
1605                 "image";
1606    return false;
1607  }
1608
1609  StackHandleScope<1> hs2(self);
1610  MutableHandle<mirror::DexCache> h_dex_cache(hs2.NewHandle<mirror::DexCache>(nullptr));
1611  for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1612    h_dex_cache.Assign(dex_caches->Get(i));
1613    std::string dex_file_location(h_dex_cache->GetLocation()->ToModifiedUtf8());
1614    // TODO: Only store qualified paths.
1615    // If non qualified, qualify it.
1616    if (dex_file_location.find('/') == std::string::npos) {
1617      std::string dex_location_path = dex_location;
1618      const size_t pos = dex_location_path.find_last_of('/');
1619      CHECK_NE(pos, std::string::npos);
1620      dex_location_path = dex_location_path.substr(0, pos + 1);  // Keep trailing '/'
1621      dex_file_location = dex_location_path + dex_file_location;
1622    }
1623    std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1624                                                             dex_file_location.c_str(),
1625                                                             error_msg);
1626    if (dex_file == nullptr) {
1627      return false;
1628    }
1629
1630    if (app_image) {
1631      // The current dex file field is bogus, overwrite it so that we can get the dex file in the
1632      // loop below.
1633      h_dex_cache->SetDexFile(dex_file.get());
1634      // Check that each class loader resolved the same way.
1635      // TODO: Store image class loaders as image roots.
1636      GcRoot<mirror::Class>* const types = h_dex_cache->GetResolvedTypes();
1637      for (int32_t j = 0, num_types = h_dex_cache->NumResolvedTypes(); j < num_types; j++) {
1638        mirror::Class* klass = types[j].Read();
1639        if (klass != nullptr) {
1640          DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1641          mirror::ClassLoader* image_class_loader = klass->GetClassLoader();
1642          image_class_loaders.insert(image_class_loader);
1643        }
1644      }
1645    } else {
1646      if (kSanityCheckObjects) {
1647        SanityCheckArtMethodPointerArray(h_dex_cache->GetResolvedMethods(),
1648                                         h_dex_cache->NumResolvedMethods(),
1649                                         image_pointer_size_,
1650                                         heap->GetBootImageSpaces());
1651      }
1652      // Register dex files, keep track of existing ones that are conflicts.
1653      AppendToBootClassPath(*dex_file.get(), h_dex_cache);
1654    }
1655    out_dex_files->push_back(std::move(dex_file));
1656  }
1657
1658  if (app_image) {
1659    ScopedObjectAccessUnchecked soa(Thread::Current());
1660    // Check that the class loader resolves the same way as the ones in the image.
1661    // Image class loader [A][B][C][image dex files]
1662    // Class loader = [???][dex_elements][image dex files]
1663    // Need to ensure that [???][dex_elements] == [A][B][C].
1664    // For each class loader, PathClassLoader, the laoder checks the parent first. Also the logic
1665    // for PathClassLoader does this by looping through the array of dex files. To ensure they
1666    // resolve the same way, simply flatten the hierarchy in the way the resolution order would be,
1667    // and check that the dex file names are the same.
1668    for (mirror::ClassLoader* image_class_loader : image_class_loaders) {
1669      if (IsBootClassLoader(soa, image_class_loader)) {
1670        // The dex cache can reference types from the boot class loader.
1671        continue;
1672      }
1673      std::list<mirror::String*> image_dex_file_names;
1674      std::string temp_error_msg;
1675      if (!FlattenPathClassLoader(image_class_loader, &image_dex_file_names, &temp_error_msg)) {
1676        *error_msg = StringPrintf("Failed to flatten image class loader hierarchy '%s'",
1677                                  temp_error_msg.c_str());
1678        return false;
1679      }
1680      std::list<mirror::String*> loader_dex_file_names;
1681      if (!FlattenPathClassLoader(class_loader.Get(), &loader_dex_file_names, &temp_error_msg)) {
1682        *error_msg = StringPrintf("Failed to flatten class loader hierarchy '%s'",
1683                                  temp_error_msg.c_str());
1684        return false;
1685      }
1686      // Add the temporary dex path list elements at the end.
1687      auto* elements = soa.Decode<mirror::ObjectArray<mirror::Object>*>(dex_elements);
1688      for (size_t i = 0, num_elems = elements->GetLength(); i < num_elems; ++i) {
1689        mirror::Object* element = elements->GetWithoutChecks(i);
1690        if (element != nullptr) {
1691          // If we are somewhere in the middle of the array, there may be nulls at the end.
1692          loader_dex_file_names.push_back(GetDexPathListElementName(soa, element));
1693        }
1694      }
1695      // Ignore the number of image dex files since we are adding those to the class loader anyways.
1696      CHECK_GE(static_cast<size_t>(image_dex_file_names.size()),
1697               static_cast<size_t>(dex_caches->GetLength()));
1698      size_t image_count = image_dex_file_names.size() - dex_caches->GetLength();
1699      // Check that the dex file names match.
1700      bool equal = image_count == loader_dex_file_names.size();
1701      if (equal) {
1702        auto it1 = image_dex_file_names.begin();
1703        auto it2 = loader_dex_file_names.begin();
1704        for (size_t i = 0; equal && i < image_count; ++i, ++it1, ++it2) {
1705          equal = equal && (*it1)->Equals(*it2);
1706        }
1707      }
1708      if (!equal) {
1709        VLOG(image) << "Image dex files " << image_dex_file_names.size();
1710        for (mirror::String* name : image_dex_file_names) {
1711          VLOG(image) << name->ToModifiedUtf8();
1712        }
1713        VLOG(image) << "Loader dex files " << loader_dex_file_names.size();
1714        for (mirror::String* name : loader_dex_file_names) {
1715          VLOG(image) << name->ToModifiedUtf8();
1716        }
1717        *error_msg = "Rejecting application image due to class loader mismatch";
1718        // Ignore class loader mismatch for now since these would just use possibly incorrect
1719        // oat code anyways. The structural class check should be done in the parent.
1720      }
1721    }
1722  }
1723
1724  if (kSanityCheckObjects) {
1725    for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1726      auto* dex_cache = dex_caches->Get(i);
1727      for (size_t j = 0; j < dex_cache->NumResolvedFields(); ++j) {
1728        auto* field = dex_cache->GetResolvedField(j, image_pointer_size_);
1729        if (field != nullptr) {
1730          CHECK(field->GetDeclaringClass()->GetClass() != nullptr);
1731        }
1732      }
1733    }
1734    if (!app_image) {
1735      heap->VisitObjects(SanityCheckObjectsCallback, nullptr);
1736    }
1737  }
1738
1739  // Set entry point to interpreter if in InterpretOnly mode.
1740  if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) {
1741    SetInterpreterEntrypointArtMethodVisitor visitor(image_pointer_size_);
1742    header.VisitPackedArtMethods(&visitor, space->Begin(), image_pointer_size_);
1743  }
1744
1745  ClassTable* class_table = nullptr;
1746  {
1747    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1748    class_table = InsertClassTableForClassLoader(class_loader.Get());
1749  }
1750  // If we have a class table section, read it and use it for verification in
1751  // UpdateAppImageClassLoadersAndDexCaches.
1752  ClassTable::ClassSet temp_set;
1753  const ImageSection& class_table_section = header.GetImageSection(ImageHeader::kSectionClassTable);
1754  const bool added_class_table = class_table_section.Size() > 0u;
1755  if (added_class_table) {
1756    const uint64_t start_time2 = NanoTime();
1757    size_t read_count = 0;
1758    temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(),
1759                                    /*make copy*/false,
1760                                    &read_count);
1761    if (!app_image) {
1762      dex_cache_boot_image_class_lookup_required_ = false;
1763    }
1764    VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2);
1765  }
1766  if (app_image) {
1767    bool forward_dex_cache_arrays = false;
1768    if (!UpdateAppImageClassLoadersAndDexCaches(space,
1769                                                class_loader,
1770                                                dex_caches,
1771                                                added_class_table ? &temp_set : nullptr,
1772                                                /*out*/&forward_dex_cache_arrays,
1773                                                /*out*/error_msg)) {
1774      return false;
1775    }
1776    // Update class loader and resolved strings. If added_class_table is false, the resolved
1777    // strings were forwarded UpdateAppImageClassLoadersAndDexCaches.
1778    UpdateClassLoaderAndResolvedStringsVisitor visitor(space,
1779                                                       class_loader.Get(),
1780                                                       forward_dex_cache_arrays);
1781    if (added_class_table) {
1782      for (GcRoot<mirror::Class>& root : temp_set) {
1783        visitor(root.Read());
1784      }
1785    }
1786    // forward_dex_cache_arrays is true iff we copied all of the dex cache arrays into the .bss.
1787    // In this case, madvise away the dex cache arrays section of the image to reduce RAM usage and
1788    // mark as PROT_NONE to catch any invalid accesses.
1789    if (forward_dex_cache_arrays) {
1790      const ImageSection& dex_cache_section = header.GetImageSection(
1791          ImageHeader::kSectionDexCacheArrays);
1792      uint8_t* section_begin = AlignUp(space->Begin() + dex_cache_section.Offset(), kPageSize);
1793      uint8_t* section_end = AlignDown(space->Begin() + dex_cache_section.End(), kPageSize);
1794      if (section_begin < section_end) {
1795        madvise(section_begin, section_end - section_begin, MADV_DONTNEED);
1796        mprotect(section_begin, section_end - section_begin, PROT_NONE);
1797        VLOG(image) << "Released and protected dex cache array image section from "
1798                    << reinterpret_cast<const void*>(section_begin) << "-"
1799                    << reinterpret_cast<const void*>(section_end);
1800      }
1801    }
1802  }
1803  if (added_class_table) {
1804    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1805    class_table->AddClassSet(std::move(temp_set));
1806  }
1807  if (kIsDebugBuild && app_image) {
1808    // This verification needs to happen after the classes have been added to the class loader.
1809    // Since it ensures classes are in the class table.
1810    VerifyClassInTableArtMethodVisitor visitor2(class_table);
1811    header.VisitPackedArtMethods(&visitor2, space->Begin(), sizeof(void*));
1812  }
1813  VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time);
1814  return true;
1815}
1816
1817bool ClassLinker::ClassInClassTable(mirror::Class* klass) {
1818  ClassTable* const class_table = ClassTableForClassLoader(klass->GetClassLoader());
1819  return class_table != nullptr && class_table->Contains(klass);
1820}
1821
1822void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) {
1823  // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since
1824  // enabling tracing requires the mutator lock, there are no race conditions here.
1825  const bool tracing_enabled = Trace::IsTracingEnabled();
1826  Thread* const self = Thread::Current();
1827  WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1828  BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
1829      visitor, RootInfo(kRootStickyClass));
1830  if ((flags & kVisitRootFlagAllRoots) != 0) {
1831    // Argument for how root visiting deals with ArtField and ArtMethod roots.
1832    // There is 3 GC cases to handle:
1833    // Non moving concurrent:
1834    // This case is easy to handle since the reference members of ArtMethod and ArtFields are held
1835    // live by the class and class roots.
1836    //
1837    // Moving non-concurrent:
1838    // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move.
1839    // To prevent missing roots, this case needs to ensure that there is no
1840    // suspend points between the point which we allocate ArtMethod arrays and place them in a
1841    // class which is in the class table.
1842    //
1843    // Moving concurrent:
1844    // Need to make sure to not copy ArtMethods without doing read barriers since the roots are
1845    // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy.
1846    boot_class_table_.VisitRoots(buffered_visitor);
1847
1848    // If tracing is enabled, then mark all the class loaders to prevent unloading.
1849    if (tracing_enabled) {
1850      for (const ClassLoaderData& data : class_loaders_) {
1851        GcRoot<mirror::Object> root(GcRoot<mirror::Object>(self->DecodeJObject(data.weak_root)));
1852        root.VisitRoot(visitor, RootInfo(kRootVMInternal));
1853      }
1854    }
1855  } else if ((flags & kVisitRootFlagNewRoots) != 0) {
1856    for (auto& root : new_class_roots_) {
1857      mirror::Class* old_ref = root.Read<kWithoutReadBarrier>();
1858      root.VisitRoot(visitor, RootInfo(kRootStickyClass));
1859      mirror::Class* new_ref = root.Read<kWithoutReadBarrier>();
1860      // Concurrent moving GC marked new roots through the to-space invariant.
1861      CHECK_EQ(new_ref, old_ref);
1862    }
1863  }
1864  buffered_visitor.Flush();  // Flush before clearing new_class_roots_.
1865  if ((flags & kVisitRootFlagClearRootLog) != 0) {
1866    new_class_roots_.clear();
1867  }
1868  if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
1869    log_new_class_table_roots_ = true;
1870  } else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
1871    log_new_class_table_roots_ = false;
1872  }
1873  // We deliberately ignore the class roots in the image since we
1874  // handle image roots by using the MS/CMS rescanning of dirty cards.
1875}
1876
1877// Keep in sync with InitCallback. Anything we visit, we need to
1878// reinit references to when reinitializing a ClassLinker from a
1879// mapped image.
1880void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
1881  class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1882  VisitClassRoots(visitor, flags);
1883  array_iftable_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1884  // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class
1885  // unloading if we are marking roots.
1886  DropFindArrayClassCache();
1887}
1888
1889class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor {
1890 public:
1891  explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor)
1892      : visitor_(visitor),
1893        done_(false) {}
1894
1895  void Visit(mirror::ClassLoader* class_loader)
1896      SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
1897    ClassTable* const class_table = class_loader->GetClassTable();
1898    if (!done_ && class_table != nullptr && !class_table->Visit(*visitor_)) {
1899      // If the visitor ClassTable returns false it means that we don't need to continue.
1900      done_ = true;
1901    }
1902  }
1903
1904 private:
1905  ClassVisitor* const visitor_;
1906  // If done is true then we don't need to do any more visiting.
1907  bool done_;
1908};
1909
1910void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) {
1911  if (boot_class_table_.Visit(*visitor)) {
1912    VisitClassLoaderClassesVisitor loader_visitor(visitor);
1913    VisitClassLoaders(&loader_visitor);
1914  }
1915}
1916
1917void ClassLinker::VisitClasses(ClassVisitor* visitor) {
1918  if (dex_cache_boot_image_class_lookup_required_) {
1919    AddBootImageClassesToClassTable();
1920  }
1921  Thread* const self = Thread::Current();
1922  ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1923  // Not safe to have thread suspension when we are holding a lock.
1924  if (self != nullptr) {
1925    ScopedAssertNoThreadSuspension nts(self, __FUNCTION__);
1926    VisitClassesInternal(visitor);
1927  } else {
1928    VisitClassesInternal(visitor);
1929  }
1930}
1931
1932class GetClassesInToVector : public ClassVisitor {
1933 public:
1934  bool operator()(mirror::Class* klass) OVERRIDE {
1935    classes_.push_back(klass);
1936    return true;
1937  }
1938  std::vector<mirror::Class*> classes_;
1939};
1940
1941class GetClassInToObjectArray : public ClassVisitor {
1942 public:
1943  explicit GetClassInToObjectArray(mirror::ObjectArray<mirror::Class>* arr)
1944      : arr_(arr), index_(0) {}
1945
1946  bool operator()(mirror::Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1947    ++index_;
1948    if (index_ <= arr_->GetLength()) {
1949      arr_->Set(index_ - 1, klass);
1950      return true;
1951    }
1952    return false;
1953  }
1954
1955  bool Succeeded() const SHARED_REQUIRES(Locks::mutator_lock_) {
1956    return index_ <= arr_->GetLength();
1957  }
1958
1959 private:
1960  mirror::ObjectArray<mirror::Class>* const arr_;
1961  int32_t index_;
1962};
1963
1964void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) {
1965  // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem
1966  // is avoiding duplicates.
1967  Thread* const self = Thread::Current();
1968  if (!kMovingClasses) {
1969    ScopedAssertNoThreadSuspension nts(self, __FUNCTION__);
1970    GetClassesInToVector accumulator;
1971    VisitClasses(&accumulator);
1972    for (mirror::Class* klass : accumulator.classes_) {
1973      if (!visitor->operator()(klass)) {
1974        return;
1975      }
1976    }
1977  } else {
1978    StackHandleScope<1> hs(self);
1979    auto classes = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
1980    // We size the array assuming classes won't be added to the class table during the visit.
1981    // If this assumption fails we iterate again.
1982    while (true) {
1983      size_t class_table_size;
1984      {
1985        ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1986        // Add 100 in case new classes get loaded when we are filling in the object array.
1987        class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100;
1988      }
1989      mirror::Class* class_type = mirror::Class::GetJavaLangClass();
1990      mirror::Class* array_of_class = FindArrayClass(self, &class_type);
1991      classes.Assign(
1992          mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, class_table_size));
1993      CHECK(classes.Get() != nullptr);  // OOME.
1994      GetClassInToObjectArray accumulator(classes.Get());
1995      VisitClasses(&accumulator);
1996      if (accumulator.Succeeded()) {
1997        break;
1998      }
1999    }
2000    for (int32_t i = 0; i < classes->GetLength(); ++i) {
2001      // If the class table shrank during creation of the clases array we expect null elements. If
2002      // the class table grew then the loop repeats. If classes are created after the loop has
2003      // finished then we don't visit.
2004      mirror::Class* klass = classes->Get(i);
2005      if (klass != nullptr && !visitor->operator()(klass)) {
2006        return;
2007      }
2008    }
2009  }
2010}
2011
2012ClassLinker::~ClassLinker() {
2013  mirror::Class::ResetClass();
2014  mirror::Constructor::ResetClass();
2015  mirror::Field::ResetClass();
2016  mirror::Method::ResetClass();
2017  mirror::Reference::ResetClass();
2018  mirror::StackTraceElement::ResetClass();
2019  mirror::String::ResetClass();
2020  mirror::Throwable::ResetClass();
2021  mirror::BooleanArray::ResetArrayClass();
2022  mirror::ByteArray::ResetArrayClass();
2023  mirror::CharArray::ResetArrayClass();
2024  mirror::Constructor::ResetArrayClass();
2025  mirror::DoubleArray::ResetArrayClass();
2026  mirror::Field::ResetArrayClass();
2027  mirror::FloatArray::ResetArrayClass();
2028  mirror::Method::ResetArrayClass();
2029  mirror::IntArray::ResetArrayClass();
2030  mirror::LongArray::ResetArrayClass();
2031  mirror::ShortArray::ResetArrayClass();
2032  Thread* const self = Thread::Current();
2033  for (const ClassLoaderData& data : class_loaders_) {
2034    DeleteClassLoader(self, data);
2035  }
2036  class_loaders_.clear();
2037}
2038
2039void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data) {
2040  Runtime* const runtime = Runtime::Current();
2041  JavaVMExt* const vm = runtime->GetJavaVM();
2042  vm->DeleteWeakGlobalRef(self, data.weak_root);
2043  // Notify the JIT that we need to remove the methods and/or profiling info.
2044  if (runtime->GetJit() != nullptr) {
2045    jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache();
2046    if (code_cache != nullptr) {
2047      code_cache->RemoveMethodsIn(self, *data.allocator);
2048    }
2049  }
2050  delete data.allocator;
2051  delete data.class_table;
2052}
2053
2054mirror::PointerArray* ClassLinker::AllocPointerArray(Thread* self, size_t length) {
2055  return down_cast<mirror::PointerArray*>(image_pointer_size_ == 8u ?
2056      static_cast<mirror::Array*>(mirror::LongArray::Alloc(self, length)) :
2057      static_cast<mirror::Array*>(mirror::IntArray::Alloc(self, length)));
2058}
2059
2060mirror::DexCache* ClassLinker::AllocDexCache(Thread* self,
2061                                             const DexFile& dex_file,
2062                                             LinearAlloc* linear_alloc) {
2063  StackHandleScope<6> hs(self);
2064  auto dex_cache(hs.NewHandle(down_cast<mirror::DexCache*>(
2065      GetClassRoot(kJavaLangDexCache)->AllocObject(self))));
2066  if (dex_cache.Get() == nullptr) {
2067    self->AssertPendingOOMException();
2068    return nullptr;
2069  }
2070  auto location(hs.NewHandle(intern_table_->InternStrong(dex_file.GetLocation().c_str())));
2071  if (location.Get() == nullptr) {
2072    self->AssertPendingOOMException();
2073    return nullptr;
2074  }
2075  DexCacheArraysLayout layout(image_pointer_size_, &dex_file);
2076  uint8_t* raw_arrays = nullptr;
2077  if (dex_file.GetOatDexFile() != nullptr &&
2078      dex_file.GetOatDexFile()->GetDexCacheArrays() != nullptr) {
2079    raw_arrays = dex_file.GetOatDexFile()->GetDexCacheArrays();
2080  } else if (dex_file.NumStringIds() != 0u || dex_file.NumTypeIds() != 0u ||
2081      dex_file.NumMethodIds() != 0u || dex_file.NumFieldIds() != 0u) {
2082    // NOTE: We "leak" the raw_arrays because we never destroy the dex cache.
2083    DCHECK(image_pointer_size_ == 4u || image_pointer_size_ == 8u);
2084    // Zero-initialized.
2085    raw_arrays = reinterpret_cast<uint8_t*>(linear_alloc->Alloc(self, layout.Size()));
2086  }
2087  GcRoot<mirror::String>* strings = (dex_file.NumStringIds() == 0u) ? nullptr :
2088      reinterpret_cast<GcRoot<mirror::String>*>(raw_arrays + layout.StringsOffset());
2089  GcRoot<mirror::Class>* types = (dex_file.NumTypeIds() == 0u) ? nullptr :
2090      reinterpret_cast<GcRoot<mirror::Class>*>(raw_arrays + layout.TypesOffset());
2091  ArtMethod** methods = (dex_file.NumMethodIds() == 0u) ? nullptr :
2092      reinterpret_cast<ArtMethod**>(raw_arrays + layout.MethodsOffset());
2093  ArtField** fields = (dex_file.NumFieldIds() == 0u) ? nullptr :
2094      reinterpret_cast<ArtField**>(raw_arrays + layout.FieldsOffset());
2095  if (kIsDebugBuild) {
2096    // Sanity check to make sure all the dex cache arrays are empty. b/28992179
2097    for (size_t i = 0; i < dex_file.NumStringIds(); ++i) {
2098      CHECK(strings[i].Read<kWithoutReadBarrier>() == nullptr);
2099    }
2100    for (size_t i = 0; i < dex_file.NumTypeIds(); ++i) {
2101      CHECK(types[i].Read<kWithoutReadBarrier>() == nullptr);
2102    }
2103    for (size_t i = 0; i < dex_file.NumMethodIds(); ++i) {
2104      CHECK(mirror::DexCache::GetElementPtrSize(methods, i, image_pointer_size_) == nullptr);
2105    }
2106    for (size_t i = 0; i < dex_file.NumFieldIds(); ++i) {
2107      CHECK(mirror::DexCache::GetElementPtrSize(fields, i, image_pointer_size_) == nullptr);
2108    }
2109  }
2110  dex_cache->Init(&dex_file,
2111                  location.Get(),
2112                  strings,
2113                  dex_file.NumStringIds(),
2114                  types,
2115                  dex_file.NumTypeIds(),
2116                  methods,
2117                  dex_file.NumMethodIds(),
2118                  fields,
2119                  dex_file.NumFieldIds(),
2120                  image_pointer_size_);
2121  return dex_cache.Get();
2122}
2123
2124mirror::Class* ClassLinker::AllocClass(Thread* self, mirror::Class* java_lang_Class,
2125                                       uint32_t class_size) {
2126  DCHECK_GE(class_size, sizeof(mirror::Class));
2127  gc::Heap* heap = Runtime::Current()->GetHeap();
2128  mirror::Class::InitializeClassVisitor visitor(class_size);
2129  mirror::Object* k = kMovingClasses ?
2130      heap->AllocObject<true>(self, java_lang_Class, class_size, visitor) :
2131      heap->AllocNonMovableObject<true>(self, java_lang_Class, class_size, visitor);
2132  if (UNLIKELY(k == nullptr)) {
2133    self->AssertPendingOOMException();
2134    return nullptr;
2135  }
2136  return k->AsClass();
2137}
2138
2139mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) {
2140  return AllocClass(self, GetClassRoot(kJavaLangClass), class_size);
2141}
2142
2143mirror::ObjectArray<mirror::StackTraceElement>* ClassLinker::AllocStackTraceElementArray(
2144    Thread* self,
2145    size_t length) {
2146  return mirror::ObjectArray<mirror::StackTraceElement>::Alloc(
2147      self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length);
2148}
2149
2150mirror::Class* ClassLinker::EnsureResolved(Thread* self,
2151                                           const char* descriptor,
2152                                           mirror::Class* klass) {
2153  DCHECK(klass != nullptr);
2154
2155  // For temporary classes we must wait for them to be retired.
2156  if (init_done_ && klass->IsTemp()) {
2157    CHECK(!klass->IsResolved());
2158    if (klass->IsErroneous()) {
2159      ThrowEarlierClassFailure(klass);
2160      return nullptr;
2161    }
2162    StackHandleScope<1> hs(self);
2163    Handle<mirror::Class> h_class(hs.NewHandle(klass));
2164    ObjectLock<mirror::Class> lock(self, h_class);
2165    // Loop and wait for the resolving thread to retire this class.
2166    while (!h_class->IsRetired() && !h_class->IsErroneous()) {
2167      lock.WaitIgnoringInterrupts();
2168    }
2169    if (h_class->IsErroneous()) {
2170      ThrowEarlierClassFailure(h_class.Get());
2171      return nullptr;
2172    }
2173    CHECK(h_class->IsRetired());
2174    // Get the updated class from class table.
2175    klass = LookupClass(self, descriptor, ComputeModifiedUtf8Hash(descriptor),
2176                        h_class.Get()->GetClassLoader());
2177  }
2178
2179  // Wait for the class if it has not already been linked.
2180  if (!klass->IsResolved() && !klass->IsErroneous()) {
2181    StackHandleScope<1> hs(self);
2182    HandleWrapper<mirror::Class> h_class(hs.NewHandleWrapper(&klass));
2183    ObjectLock<mirror::Class> lock(self, h_class);
2184    // Check for circular dependencies between classes.
2185    if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) {
2186      ThrowClassCircularityError(h_class.Get());
2187      mirror::Class::SetStatus(h_class, mirror::Class::kStatusError, self);
2188      return nullptr;
2189    }
2190    // Wait for the pending initialization to complete.
2191    while (!h_class->IsResolved() && !h_class->IsErroneous()) {
2192      lock.WaitIgnoringInterrupts();
2193    }
2194  }
2195
2196  if (klass->IsErroneous()) {
2197    ThrowEarlierClassFailure(klass);
2198    return nullptr;
2199  }
2200  // Return the loaded class.  No exceptions should be pending.
2201  CHECK(klass->IsResolved()) << PrettyClass(klass);
2202  self->AssertNoPendingException();
2203  return klass;
2204}
2205
2206typedef std::pair<const DexFile*, const DexFile::ClassDef*> ClassPathEntry;
2207
2208// Search a collection of DexFiles for a descriptor
2209ClassPathEntry FindInClassPath(const char* descriptor,
2210                               size_t hash, const std::vector<const DexFile*>& class_path) {
2211  for (const DexFile* dex_file : class_path) {
2212    const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor, hash);
2213    if (dex_class_def != nullptr) {
2214      return ClassPathEntry(dex_file, dex_class_def);
2215    }
2216  }
2217  return ClassPathEntry(nullptr, nullptr);
2218}
2219
2220bool ClassLinker::FindClassInPathClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
2221                                             Thread* self,
2222                                             const char* descriptor,
2223                                             size_t hash,
2224                                             Handle<mirror::ClassLoader> class_loader,
2225                                             mirror::Class** result) {
2226  // Termination case: boot class-loader.
2227  if (IsBootClassLoader(soa, class_loader.Get())) {
2228    // The boot class loader, search the boot class path.
2229    ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2230    if (pair.second != nullptr) {
2231      mirror::Class* klass = LookupClass(self, descriptor, hash, nullptr);
2232      if (klass != nullptr) {
2233        *result = EnsureResolved(self, descriptor, klass);
2234      } else {
2235        *result = DefineClass(self,
2236                              descriptor,
2237                              hash,
2238                              ScopedNullHandle<mirror::ClassLoader>(),
2239                              *pair.first,
2240                              *pair.second);
2241      }
2242      if (*result == nullptr) {
2243        CHECK(self->IsExceptionPending()) << descriptor;
2244        self->ClearException();
2245      }
2246    } else {
2247      *result = nullptr;
2248    }
2249    return true;
2250  }
2251
2252  // Unsupported class-loader?
2253  if (class_loader->GetClass() !=
2254      soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader)) {
2255    *result = nullptr;
2256    return false;
2257  }
2258
2259  // Handles as RegisterDexFile may allocate dex caches (and cause thread suspension).
2260  StackHandleScope<4> hs(self);
2261  Handle<mirror::ClassLoader> h_parent(hs.NewHandle(class_loader->GetParent()));
2262  bool recursive_result = FindClassInPathClassLoader(soa, self, descriptor, hash, h_parent, result);
2263
2264  if (!recursive_result) {
2265    // Something wrong up the chain.
2266    return false;
2267  }
2268
2269  if (*result != nullptr) {
2270    // Found the class up the chain.
2271    return true;
2272  }
2273
2274  // Handle this step.
2275  // Handle as if this is the child PathClassLoader.
2276  // The class loader is a PathClassLoader which inherits from BaseDexClassLoader.
2277  // We need to get the DexPathList and loop through it.
2278  ArtField* const cookie_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie);
2279  ArtField* const dex_file_field =
2280      soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
2281  mirror::Object* dex_path_list =
2282      soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList)->
2283      GetObject(class_loader.Get());
2284  if (dex_path_list != nullptr && dex_file_field != nullptr && cookie_field != nullptr) {
2285    // DexPathList has an array dexElements of Elements[] which each contain a dex file.
2286    mirror::Object* dex_elements_obj =
2287        soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements)->
2288        GetObject(dex_path_list);
2289    // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
2290    // at the mCookie which is a DexFile vector.
2291    if (dex_elements_obj != nullptr) {
2292      Handle<mirror::ObjectArray<mirror::Object>> dex_elements =
2293          hs.NewHandle(dex_elements_obj->AsObjectArray<mirror::Object>());
2294      for (int32_t i = 0; i < dex_elements->GetLength(); ++i) {
2295        mirror::Object* element = dex_elements->GetWithoutChecks(i);
2296        if (element == nullptr) {
2297          // Should never happen, fall back to java code to throw a NPE.
2298          break;
2299        }
2300        mirror::Object* dex_file = dex_file_field->GetObject(element);
2301        if (dex_file != nullptr) {
2302          mirror::LongArray* long_array = cookie_field->GetObject(dex_file)->AsLongArray();
2303          if (long_array == nullptr) {
2304            // This should never happen so log a warning.
2305            LOG(WARNING) << "Null DexFile::mCookie for " << descriptor;
2306            break;
2307          }
2308          int32_t long_array_size = long_array->GetLength();
2309          // First element is the oat file.
2310          for (int32_t j = kDexFileIndexStart; j < long_array_size; ++j) {
2311            const DexFile* cp_dex_file = reinterpret_cast<const DexFile*>(static_cast<uintptr_t>(
2312                long_array->GetWithoutChecks(j)));
2313            const DexFile::ClassDef* dex_class_def = cp_dex_file->FindClassDef(descriptor, hash);
2314            if (dex_class_def != nullptr) {
2315              mirror::Class* klass = DefineClass(self,
2316                                                 descriptor,
2317                                                 hash,
2318                                                 class_loader,
2319                                                 *cp_dex_file,
2320                                                 *dex_class_def);
2321              if (klass == nullptr) {
2322                CHECK(self->IsExceptionPending()) << descriptor;
2323                self->ClearException();
2324                // TODO: Is it really right to break here, and not check the other dex files?
2325                return true;
2326              }
2327              *result = klass;
2328              return true;
2329            }
2330          }
2331        }
2332      }
2333    }
2334    self->AssertNoPendingException();
2335  }
2336
2337  // Result is still null from the parent call, no need to set it again...
2338  return true;
2339}
2340
2341mirror::Class* ClassLinker::FindClass(Thread* self,
2342                                      const char* descriptor,
2343                                      Handle<mirror::ClassLoader> class_loader) {
2344  DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
2345  DCHECK(self != nullptr);
2346  self->AssertNoPendingException();
2347  if (descriptor[1] == '\0') {
2348    // only the descriptors of primitive types should be 1 character long, also avoid class lookup
2349    // for primitive classes that aren't backed by dex files.
2350    return FindPrimitiveClass(descriptor[0]);
2351  }
2352  const size_t hash = ComputeModifiedUtf8Hash(descriptor);
2353  // Find the class in the loaded classes table.
2354  mirror::Class* klass = LookupClass(self, descriptor, hash, class_loader.Get());
2355  if (klass != nullptr) {
2356    return EnsureResolved(self, descriptor, klass);
2357  }
2358  // Class is not yet loaded.
2359  if (descriptor[0] == '[') {
2360    return CreateArrayClass(self, descriptor, hash, class_loader);
2361  } else if (class_loader.Get() == nullptr) {
2362    // The boot class loader, search the boot class path.
2363    ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2364    if (pair.second != nullptr) {
2365      return DefineClass(self,
2366                         descriptor,
2367                         hash,
2368                         ScopedNullHandle<mirror::ClassLoader>(),
2369                         *pair.first,
2370                         *pair.second);
2371    } else {
2372      // The boot class loader is searched ahead of the application class loader, failures are
2373      // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to
2374      // trigger the chaining with a proper stack trace.
2375      mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2376      self->SetException(pre_allocated);
2377      return nullptr;
2378    }
2379  } else {
2380    ScopedObjectAccessUnchecked soa(self);
2381    mirror::Class* cp_klass;
2382    if (FindClassInPathClassLoader(soa, self, descriptor, hash, class_loader, &cp_klass)) {
2383      // The chain was understood. So the value in cp_klass is either the class we were looking
2384      // for, or not found.
2385      if (cp_klass != nullptr) {
2386        return cp_klass;
2387      }
2388      // TODO: We handle the boot classpath loader in FindClassInPathClassLoader. Try to unify this
2389      //       and the branch above. TODO: throw the right exception here.
2390
2391      // We'll let the Java-side rediscover all this and throw the exception with the right stack
2392      // trace.
2393    }
2394
2395    if (Runtime::Current()->IsAotCompiler()) {
2396      // Oops, compile-time, can't run actual class-loader code.
2397      mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2398      self->SetException(pre_allocated);
2399      return nullptr;
2400    }
2401
2402    ScopedLocalRef<jobject> class_loader_object(soa.Env(),
2403                                                soa.AddLocalReference<jobject>(class_loader.Get()));
2404    std::string class_name_string(DescriptorToDot(descriptor));
2405    ScopedLocalRef<jobject> result(soa.Env(), nullptr);
2406    {
2407      ScopedThreadStateChange tsc(self, kNative);
2408      ScopedLocalRef<jobject> class_name_object(soa.Env(),
2409                                                soa.Env()->NewStringUTF(class_name_string.c_str()));
2410      if (class_name_object.get() == nullptr) {
2411        DCHECK(self->IsExceptionPending());  // OOME.
2412        return nullptr;
2413      }
2414      CHECK(class_loader_object.get() != nullptr);
2415      result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(),
2416                                               WellKnownClasses::java_lang_ClassLoader_loadClass,
2417                                               class_name_object.get()));
2418    }
2419    if (self->IsExceptionPending()) {
2420      // If the ClassLoader threw, pass that exception up.
2421      return nullptr;
2422    } else if (result.get() == nullptr) {
2423      // broken loader - throw NPE to be compatible with Dalvik
2424      ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s",
2425                                             class_name_string.c_str()).c_str());
2426      return nullptr;
2427    } else {
2428      // success, return mirror::Class*
2429      return soa.Decode<mirror::Class*>(result.get());
2430    }
2431  }
2432  UNREACHABLE();
2433}
2434
2435mirror::Class* ClassLinker::DefineClass(Thread* self,
2436                                        const char* descriptor,
2437                                        size_t hash,
2438                                        Handle<mirror::ClassLoader> class_loader,
2439                                        const DexFile& dex_file,
2440                                        const DexFile::ClassDef& dex_class_def) {
2441  StackHandleScope<3> hs(self);
2442  auto klass = hs.NewHandle<mirror::Class>(nullptr);
2443
2444  // Load the class from the dex file.
2445  if (UNLIKELY(!init_done_)) {
2446    // finish up init of hand crafted class_roots_
2447    if (strcmp(descriptor, "Ljava/lang/Object;") == 0) {
2448      klass.Assign(GetClassRoot(kJavaLangObject));
2449    } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
2450      klass.Assign(GetClassRoot(kJavaLangClass));
2451    } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2452      klass.Assign(GetClassRoot(kJavaLangString));
2453    } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) {
2454      klass.Assign(GetClassRoot(kJavaLangRefReference));
2455    } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) {
2456      klass.Assign(GetClassRoot(kJavaLangDexCache));
2457    }
2458  }
2459
2460  if (klass.Get() == nullptr) {
2461    // Allocate a class with the status of not ready.
2462    // Interface object should get the right size here. Regular class will
2463    // figure out the right size later and be replaced with one of the right
2464    // size when the class becomes resolved.
2465    klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def)));
2466  }
2467  if (UNLIKELY(klass.Get() == nullptr)) {
2468    self->AssertPendingOOMException();
2469    return nullptr;
2470  }
2471  mirror::DexCache* dex_cache = RegisterDexFile(dex_file, class_loader.Get());
2472  if (dex_cache == nullptr) {
2473    self->AssertPendingOOMException();
2474    return nullptr;
2475  }
2476  klass->SetDexCache(dex_cache);
2477  SetupClass(dex_file, dex_class_def, klass, class_loader.Get());
2478
2479  // Mark the string class by setting its access flag.
2480  if (UNLIKELY(!init_done_)) {
2481    if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2482      klass->SetStringClass();
2483    }
2484  }
2485
2486  ObjectLock<mirror::Class> lock(self, klass);
2487  klass->SetClinitThreadId(self->GetTid());
2488
2489  // Add the newly loaded class to the loaded classes table.
2490  mirror::Class* existing = InsertClass(descriptor, klass.Get(), hash);
2491  if (existing != nullptr) {
2492    // We failed to insert because we raced with another thread. Calling EnsureResolved may cause
2493    // this thread to block.
2494    return EnsureResolved(self, descriptor, existing);
2495  }
2496
2497  // Load the fields and other things after we are inserted in the table. This is so that we don't
2498  // end up allocating unfree-able linear alloc resources and then lose the race condition. The
2499  // other reason is that the field roots are only visited from the class table. So we need to be
2500  // inserted before we allocate / fill in these fields.
2501  LoadClass(self, dex_file, dex_class_def, klass);
2502  if (self->IsExceptionPending()) {
2503    VLOG(class_linker) << self->GetException()->Dump();
2504    // An exception occured during load, set status to erroneous while holding klass' lock in case
2505    // notification is necessary.
2506    if (!klass->IsErroneous()) {
2507      mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
2508    }
2509    return nullptr;
2510  }
2511
2512  // Finish loading (if necessary) by finding parents
2513  CHECK(!klass->IsLoaded());
2514  if (!LoadSuperAndInterfaces(klass, dex_file)) {
2515    // Loading failed.
2516    if (!klass->IsErroneous()) {
2517      mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
2518    }
2519    return nullptr;
2520  }
2521  CHECK(klass->IsLoaded());
2522  // Link the class (if necessary)
2523  CHECK(!klass->IsResolved());
2524  // TODO: Use fast jobjects?
2525  auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
2526
2527  MutableHandle<mirror::Class> h_new_class = hs.NewHandle<mirror::Class>(nullptr);
2528  if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) {
2529    // Linking failed.
2530    if (!klass->IsErroneous()) {
2531      mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
2532    }
2533    return nullptr;
2534  }
2535  self->AssertNoPendingException();
2536  CHECK(h_new_class.Get() != nullptr) << descriptor;
2537  CHECK(h_new_class->IsResolved()) << descriptor;
2538
2539  // Instrumentation may have updated entrypoints for all methods of all
2540  // classes. However it could not update methods of this class while we
2541  // were loading it. Now the class is resolved, we can update entrypoints
2542  // as required by instrumentation.
2543  if (Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()) {
2544    // We must be in the kRunnable state to prevent instrumentation from
2545    // suspending all threads to update entrypoints while we are doing it
2546    // for this class.
2547    DCHECK_EQ(self->GetState(), kRunnable);
2548    Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get());
2549  }
2550
2551  /*
2552   * We send CLASS_PREPARE events to the debugger from here.  The
2553   * definition of "preparation" is creating the static fields for a
2554   * class and initializing them to the standard default values, but not
2555   * executing any code (that comes later, during "initialization").
2556   *
2557   * We did the static preparation in LinkClass.
2558   *
2559   * The class has been prepared and resolved but possibly not yet verified
2560   * at this point.
2561   */
2562  Dbg::PostClassPrepare(h_new_class.Get());
2563
2564  // Notify native debugger of the new class and its layout.
2565  jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get());
2566
2567  return h_new_class.Get();
2568}
2569
2570uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file,
2571                                                       const DexFile::ClassDef& dex_class_def) {
2572  const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
2573  size_t num_ref = 0;
2574  size_t num_8 = 0;
2575  size_t num_16 = 0;
2576  size_t num_32 = 0;
2577  size_t num_64 = 0;
2578  if (class_data != nullptr) {
2579    // We allow duplicate definitions of the same field in a class_data_item
2580    // but ignore the repeated indexes here, b/21868015.
2581    uint32_t last_field_idx = DexFile::kDexNoIndex;
2582    for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) {
2583      uint32_t field_idx = it.GetMemberIndex();
2584      // Ordering enforced by DexFileVerifier.
2585      DCHECK(last_field_idx == DexFile::kDexNoIndex || last_field_idx <= field_idx);
2586      if (UNLIKELY(field_idx == last_field_idx)) {
2587        continue;
2588      }
2589      last_field_idx = field_idx;
2590      const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
2591      const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id);
2592      char c = descriptor[0];
2593      switch (c) {
2594        case 'L':
2595        case '[':
2596          num_ref++;
2597          break;
2598        case 'J':
2599        case 'D':
2600          num_64++;
2601          break;
2602        case 'I':
2603        case 'F':
2604          num_32++;
2605          break;
2606        case 'S':
2607        case 'C':
2608          num_16++;
2609          break;
2610        case 'B':
2611        case 'Z':
2612          num_8++;
2613          break;
2614        default:
2615          LOG(FATAL) << "Unknown descriptor: " << c;
2616          UNREACHABLE();
2617      }
2618    }
2619  }
2620  return mirror::Class::ComputeClassSize(false,
2621                                         0,
2622                                         num_8,
2623                                         num_16,
2624                                         num_32,
2625                                         num_64,
2626                                         num_ref,
2627                                         image_pointer_size_);
2628}
2629
2630OatFile::OatClass ClassLinker::FindOatClass(const DexFile& dex_file,
2631                                            uint16_t class_def_idx,
2632                                            bool* found) {
2633  DCHECK_NE(class_def_idx, DexFile::kDexNoIndex16);
2634  const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
2635  if (oat_dex_file == nullptr) {
2636    *found = false;
2637    return OatFile::OatClass::Invalid();
2638  }
2639  *found = true;
2640  return oat_dex_file->GetOatClass(class_def_idx);
2641}
2642
2643static uint32_t GetOatMethodIndexFromMethodIndex(const DexFile& dex_file,
2644                                                 uint16_t class_def_idx,
2645                                                 uint32_t method_idx) {
2646  const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_idx);
2647  const uint8_t* class_data = dex_file.GetClassData(class_def);
2648  CHECK(class_data != nullptr);
2649  ClassDataItemIterator it(dex_file, class_data);
2650  // Skip fields
2651  while (it.HasNextStaticField()) {
2652    it.Next();
2653  }
2654  while (it.HasNextInstanceField()) {
2655    it.Next();
2656  }
2657  // Process methods
2658  size_t class_def_method_index = 0;
2659  while (it.HasNextDirectMethod()) {
2660    if (it.GetMemberIndex() == method_idx) {
2661      return class_def_method_index;
2662    }
2663    class_def_method_index++;
2664    it.Next();
2665  }
2666  while (it.HasNextVirtualMethod()) {
2667    if (it.GetMemberIndex() == method_idx) {
2668      return class_def_method_index;
2669    }
2670    class_def_method_index++;
2671    it.Next();
2672  }
2673  DCHECK(!it.HasNext());
2674  LOG(FATAL) << "Failed to find method index " << method_idx << " in " << dex_file.GetLocation();
2675  UNREACHABLE();
2676}
2677
2678const OatFile::OatMethod ClassLinker::FindOatMethodFor(ArtMethod* method, bool* found) {
2679  // Although we overwrite the trampoline of non-static methods, we may get here via the resolution
2680  // method for direct methods (or virtual methods made direct).
2681  mirror::Class* declaring_class = method->GetDeclaringClass();
2682  size_t oat_method_index;
2683  if (method->IsStatic() || method->IsDirect()) {
2684    // Simple case where the oat method index was stashed at load time.
2685    oat_method_index = method->GetMethodIndex();
2686  } else {
2687    // We're invoking a virtual method directly (thanks to sharpening), compute the oat_method_index
2688    // by search for its position in the declared virtual methods.
2689    oat_method_index = declaring_class->NumDirectMethods();
2690    bool found_virtual = false;
2691    for (ArtMethod& art_method : declaring_class->GetVirtualMethods(image_pointer_size_)) {
2692      // Check method index instead of identity in case of duplicate method definitions.
2693      if (method->GetDexMethodIndex() == art_method.GetDexMethodIndex()) {
2694        found_virtual = true;
2695        break;
2696      }
2697      oat_method_index++;
2698    }
2699    CHECK(found_virtual) << "Didn't find oat method index for virtual method: "
2700                         << PrettyMethod(method);
2701  }
2702  DCHECK_EQ(oat_method_index,
2703            GetOatMethodIndexFromMethodIndex(*declaring_class->GetDexCache()->GetDexFile(),
2704                                             method->GetDeclaringClass()->GetDexClassDefIndex(),
2705                                             method->GetDexMethodIndex()));
2706  OatFile::OatClass oat_class = FindOatClass(*declaring_class->GetDexCache()->GetDexFile(),
2707                                             declaring_class->GetDexClassDefIndex(),
2708                                             found);
2709  if (!(*found)) {
2710    return OatFile::OatMethod::Invalid();
2711  }
2712  return oat_class.GetOatMethod(oat_method_index);
2713}
2714
2715// Special case to get oat code without overwriting a trampoline.
2716const void* ClassLinker::GetQuickOatCodeFor(ArtMethod* method) {
2717  CHECK(method->IsInvokable()) << PrettyMethod(method);
2718  if (method->IsProxyMethod()) {
2719    return GetQuickProxyInvokeHandler();
2720  }
2721  bool found;
2722  OatFile::OatMethod oat_method = FindOatMethodFor(method, &found);
2723  if (found) {
2724    auto* code = oat_method.GetQuickCode();
2725    if (code != nullptr) {
2726      return code;
2727    }
2728  }
2729  if (method->IsNative()) {
2730    // No code and native? Use generic trampoline.
2731    return GetQuickGenericJniStub();
2732  }
2733  return GetQuickToInterpreterBridge();
2734}
2735
2736const void* ClassLinker::GetOatMethodQuickCodeFor(ArtMethod* method) {
2737  if (method->IsNative() || !method->IsInvokable() || method->IsProxyMethod()) {
2738    return nullptr;
2739  }
2740  bool found;
2741  OatFile::OatMethod oat_method = FindOatMethodFor(method, &found);
2742  if (found) {
2743    return oat_method.GetQuickCode();
2744  }
2745  return nullptr;
2746}
2747
2748bool ClassLinker::ShouldUseInterpreterEntrypoint(ArtMethod* method, const void* quick_code) {
2749  if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) {
2750    return false;
2751  }
2752
2753  if (quick_code == nullptr) {
2754    return true;
2755  }
2756
2757  Runtime* runtime = Runtime::Current();
2758  instrumentation::Instrumentation* instr = runtime->GetInstrumentation();
2759  if (instr->InterpretOnly()) {
2760    return true;
2761  }
2762
2763  if (runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) {
2764    // Doing this check avoids doing compiled/interpreter transitions.
2765    return true;
2766  }
2767
2768  if (Dbg::IsForcedInterpreterNeededForCalling(Thread::Current(), method)) {
2769    // Force the use of interpreter when it is required by the debugger.
2770    return true;
2771  }
2772
2773  if (runtime->IsNativeDebuggable()) {
2774    DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse());
2775    // If we are doing native debugging, ignore application's AOT code,
2776    // since we want to JIT it with extra stackmaps for native debugging.
2777    // On the other hand, keep all AOT code from the boot image, since the
2778    // blocking JIT would results in non-negligible performance impact.
2779    return !runtime->GetHeap()->IsInBootImageOatFile(quick_code);
2780  }
2781
2782  if (Dbg::IsDebuggerActive()) {
2783    // Boot image classes may be AOT-compiled as non-debuggable.
2784    // This is not suitable for the Java debugger, so ignore the AOT code.
2785    return runtime->GetHeap()->IsInBootImageOatFile(quick_code);
2786  }
2787
2788  return false;
2789}
2790
2791void ClassLinker::FixupStaticTrampolines(mirror::Class* klass) {
2792  DCHECK(klass->IsInitialized()) << PrettyDescriptor(klass);
2793  if (klass->NumDirectMethods() == 0) {
2794    return;  // No direct methods => no static methods.
2795  }
2796  Runtime* runtime = Runtime::Current();
2797  if (!runtime->IsStarted()) {
2798    if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) {
2799      return;  // OAT file unavailable.
2800    }
2801  }
2802
2803  const DexFile& dex_file = klass->GetDexFile();
2804  const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
2805  CHECK(dex_class_def != nullptr);
2806  const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
2807  // There should always be class data if there were direct methods.
2808  CHECK(class_data != nullptr) << PrettyDescriptor(klass);
2809  ClassDataItemIterator it(dex_file, class_data);
2810  // Skip fields
2811  while (it.HasNextStaticField()) {
2812    it.Next();
2813  }
2814  while (it.HasNextInstanceField()) {
2815    it.Next();
2816  }
2817  bool has_oat_class;
2818  OatFile::OatClass oat_class = FindOatClass(dex_file,
2819                                             klass->GetDexClassDefIndex(),
2820                                             &has_oat_class);
2821  // Link the code of methods skipped by LinkCode.
2822  for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) {
2823    ArtMethod* method = klass->GetDirectMethod(method_index, image_pointer_size_);
2824    if (!method->IsStatic()) {
2825      // Only update static methods.
2826      continue;
2827    }
2828    const void* quick_code = nullptr;
2829    if (has_oat_class) {
2830      OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index);
2831      quick_code = oat_method.GetQuickCode();
2832    }
2833    // Check whether the method is native, in which case it's generic JNI.
2834    if (quick_code == nullptr && method->IsNative()) {
2835      quick_code = GetQuickGenericJniStub();
2836    } else if (ShouldUseInterpreterEntrypoint(method, quick_code)) {
2837      // Use interpreter entry point.
2838      quick_code = GetQuickToInterpreterBridge();
2839    }
2840    runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code);
2841  }
2842  // Ignore virtual methods on the iterator.
2843}
2844
2845void ClassLinker::EnsureThrowsInvocationError(ArtMethod* method) {
2846  DCHECK(method != nullptr);
2847  DCHECK(!method->IsInvokable());
2848  method->SetEntryPointFromQuickCompiledCodePtrSize(quick_to_interpreter_bridge_trampoline_,
2849                                                    image_pointer_size_);
2850}
2851
2852void ClassLinker::LinkCode(ArtMethod* method, const OatFile::OatClass* oat_class,
2853                           uint32_t class_def_method_index) {
2854  Runtime* const runtime = Runtime::Current();
2855  if (runtime->IsAotCompiler()) {
2856    // The following code only applies to a non-compiler runtime.
2857    return;
2858  }
2859  // Method shouldn't have already been linked.
2860  DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
2861  if (oat_class != nullptr) {
2862    // Every kind of method should at least get an invoke stub from the oat_method.
2863    // non-abstract methods also get their code pointers.
2864    const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index);
2865    oat_method.LinkMethod(method);
2866  }
2867
2868  // Install entry point from interpreter.
2869  const void* quick_code = method->GetEntryPointFromQuickCompiledCode();
2870  bool enter_interpreter = ShouldUseInterpreterEntrypoint(method, quick_code);
2871
2872  if (!method->IsInvokable()) {
2873    EnsureThrowsInvocationError(method);
2874    return;
2875  }
2876
2877  if (method->IsStatic() && !method->IsConstructor()) {
2878    // For static methods excluding the class initializer, install the trampoline.
2879    // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines
2880    // after initializing class (see ClassLinker::InitializeClass method).
2881    method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2882  } else if (quick_code == nullptr && method->IsNative()) {
2883    method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub());
2884  } else if (enter_interpreter) {
2885    // Set entry point from compiled code if there's no code or in interpreter only mode.
2886    method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
2887  }
2888
2889  if (method->IsNative()) {
2890    // Unregistering restores the dlsym lookup stub.
2891    method->UnregisterNative();
2892
2893    if (enter_interpreter || quick_code == nullptr) {
2894      // We have a native method here without code. Then it should have either the generic JNI
2895      // trampoline as entrypoint (non-static), or the resolution trampoline (static).
2896      // TODO: this doesn't handle all the cases where trampolines may be installed.
2897      const void* entry_point = method->GetEntryPointFromQuickCompiledCode();
2898      DCHECK(IsQuickGenericJniStub(entry_point) || IsQuickResolutionStub(entry_point));
2899    }
2900  }
2901}
2902
2903void ClassLinker::SetupClass(const DexFile& dex_file,
2904                             const DexFile::ClassDef& dex_class_def,
2905                             Handle<mirror::Class> klass,
2906                             mirror::ClassLoader* class_loader) {
2907  CHECK(klass.Get() != nullptr);
2908  CHECK(klass->GetDexCache() != nullptr);
2909  CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus());
2910  const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
2911  CHECK(descriptor != nullptr);
2912
2913  klass->SetClass(GetClassRoot(kJavaLangClass));
2914  uint32_t access_flags = dex_class_def.GetJavaAccessFlags();
2915  CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U);
2916  klass->SetAccessFlags(access_flags);
2917  klass->SetClassLoader(class_loader);
2918  DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
2919  mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, nullptr);
2920
2921  klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def));
2922  klass->SetDexTypeIndex(dex_class_def.class_idx_);
2923  CHECK(klass->GetDexCacheStrings() != nullptr);
2924}
2925
2926void ClassLinker::LoadClass(Thread* self,
2927                            const DexFile& dex_file,
2928                            const DexFile::ClassDef& dex_class_def,
2929                            Handle<mirror::Class> klass) {
2930  const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
2931  if (class_data == nullptr) {
2932    return;  // no fields or methods - for example a marker interface
2933  }
2934  bool has_oat_class = false;
2935  if (Runtime::Current()->IsStarted() && !Runtime::Current()->IsAotCompiler()) {
2936    OatFile::OatClass oat_class = FindOatClass(dex_file, klass->GetDexClassDefIndex(),
2937                                               &has_oat_class);
2938    if (has_oat_class) {
2939      LoadClassMembers(self, dex_file, class_data, klass, &oat_class);
2940    }
2941  }
2942  if (!has_oat_class) {
2943    LoadClassMembers(self, dex_file, class_data, klass, nullptr);
2944  }
2945}
2946
2947LengthPrefixedArray<ArtField>* ClassLinker::AllocArtFieldArray(Thread* self,
2948                                                               LinearAlloc* allocator,
2949                                                               size_t length) {
2950  if (length == 0) {
2951    return nullptr;
2952  }
2953  // If the ArtField alignment changes, review all uses of LengthPrefixedArray<ArtField>.
2954  static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4.");
2955  size_t storage_size = LengthPrefixedArray<ArtField>::ComputeSize(length);
2956  void* array_storage = allocator->Alloc(self, storage_size);
2957  auto* ret = new(array_storage) LengthPrefixedArray<ArtField>(length);
2958  CHECK(ret != nullptr);
2959  std::uninitialized_fill_n(&ret->At(0), length, ArtField());
2960  return ret;
2961}
2962
2963LengthPrefixedArray<ArtMethod>* ClassLinker::AllocArtMethodArray(Thread* self,
2964                                                                 LinearAlloc* allocator,
2965                                                                 size_t length) {
2966  if (length == 0) {
2967    return nullptr;
2968  }
2969  const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
2970  const size_t method_size = ArtMethod::Size(image_pointer_size_);
2971  const size_t storage_size =
2972      LengthPrefixedArray<ArtMethod>::ComputeSize(length, method_size, method_alignment);
2973  void* array_storage = allocator->Alloc(self, storage_size);
2974  auto* ret = new (array_storage) LengthPrefixedArray<ArtMethod>(length);
2975  CHECK(ret != nullptr);
2976  for (size_t i = 0; i < length; ++i) {
2977    new(reinterpret_cast<void*>(&ret->At(i, method_size, method_alignment))) ArtMethod;
2978  }
2979  return ret;
2980}
2981
2982LinearAlloc* ClassLinker::GetAllocatorForClassLoader(mirror::ClassLoader* class_loader) {
2983  if (class_loader == nullptr) {
2984    return Runtime::Current()->GetLinearAlloc();
2985  }
2986  LinearAlloc* allocator = class_loader->GetAllocator();
2987  DCHECK(allocator != nullptr);
2988  return allocator;
2989}
2990
2991LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(mirror::ClassLoader* class_loader) {
2992  if (class_loader == nullptr) {
2993    return Runtime::Current()->GetLinearAlloc();
2994  }
2995  WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
2996  LinearAlloc* allocator = class_loader->GetAllocator();
2997  if (allocator == nullptr) {
2998    RegisterClassLoader(class_loader);
2999    allocator = class_loader->GetAllocator();
3000    CHECK(allocator != nullptr);
3001  }
3002  return allocator;
3003}
3004
3005void ClassLinker::LoadClassMembers(Thread* self,
3006                                   const DexFile& dex_file,
3007                                   const uint8_t* class_data,
3008                                   Handle<mirror::Class> klass,
3009                                   const OatFile::OatClass* oat_class) {
3010  {
3011    // Note: We cannot have thread suspension until the field and method arrays are setup or else
3012    // Class::VisitFieldRoots may miss some fields or methods.
3013    ScopedAssertNoThreadSuspension nts(self, __FUNCTION__);
3014    // Load static fields.
3015    // We allow duplicate definitions of the same field in a class_data_item
3016    // but ignore the repeated indexes here, b/21868015.
3017    LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
3018    ClassDataItemIterator it(dex_file, class_data);
3019    LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self,
3020                                                                allocator,
3021                                                                it.NumStaticFields());
3022    size_t num_sfields = 0;
3023    uint32_t last_field_idx = 0u;
3024    for (; it.HasNextStaticField(); it.Next()) {
3025      uint32_t field_idx = it.GetMemberIndex();
3026      DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
3027      if (num_sfields == 0 || LIKELY(field_idx > last_field_idx)) {
3028        DCHECK_LT(num_sfields, it.NumStaticFields());
3029        LoadField(it, klass, &sfields->At(num_sfields));
3030        ++num_sfields;
3031        last_field_idx = field_idx;
3032      }
3033    }
3034    // Load instance fields.
3035    LengthPrefixedArray<ArtField>* ifields = AllocArtFieldArray(self,
3036                                                                allocator,
3037                                                                it.NumInstanceFields());
3038    size_t num_ifields = 0u;
3039    last_field_idx = 0u;
3040    for (; it.HasNextInstanceField(); it.Next()) {
3041      uint32_t field_idx = it.GetMemberIndex();
3042      DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
3043      if (num_ifields == 0 || LIKELY(field_idx > last_field_idx)) {
3044        DCHECK_LT(num_ifields, it.NumInstanceFields());
3045        LoadField(it, klass, &ifields->At(num_ifields));
3046        ++num_ifields;
3047        last_field_idx = field_idx;
3048      }
3049    }
3050    if (UNLIKELY(num_sfields != it.NumStaticFields()) ||
3051        UNLIKELY(num_ifields != it.NumInstanceFields())) {
3052      LOG(WARNING) << "Duplicate fields in class " << PrettyDescriptor(klass.Get())
3053          << " (unique static fields: " << num_sfields << "/" << it.NumStaticFields()
3054          << ", unique instance fields: " << num_ifields << "/" << it.NumInstanceFields() << ")";
3055      // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size.
3056      if (sfields != nullptr) {
3057        sfields->SetSize(num_sfields);
3058      }
3059      if (ifields != nullptr) {
3060        ifields->SetSize(num_ifields);
3061      }
3062    }
3063    // Set the field arrays.
3064    klass->SetSFieldsPtr(sfields);
3065    DCHECK_EQ(klass->NumStaticFields(), num_sfields);
3066    klass->SetIFieldsPtr(ifields);
3067    DCHECK_EQ(klass->NumInstanceFields(), num_ifields);
3068    // Load methods.
3069    klass->SetMethodsPtr(
3070        AllocArtMethodArray(self, allocator, it.NumDirectMethods() + it.NumVirtualMethods()),
3071        it.NumDirectMethods(),
3072        it.NumVirtualMethods());
3073    size_t class_def_method_index = 0;
3074    uint32_t last_dex_method_index = DexFile::kDexNoIndex;
3075    size_t last_class_def_method_index = 0;
3076    // TODO These should really use the iterators.
3077    for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) {
3078      ArtMethod* method = klass->GetDirectMethodUnchecked(i, image_pointer_size_);
3079      LoadMethod(self, dex_file, it, klass, method);
3080      LinkCode(method, oat_class, class_def_method_index);
3081      uint32_t it_method_index = it.GetMemberIndex();
3082      if (last_dex_method_index == it_method_index) {
3083        // duplicate case
3084        method->SetMethodIndex(last_class_def_method_index);
3085      } else {
3086        method->SetMethodIndex(class_def_method_index);
3087        last_dex_method_index = it_method_index;
3088        last_class_def_method_index = class_def_method_index;
3089      }
3090      class_def_method_index++;
3091    }
3092    for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) {
3093      ArtMethod* method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
3094      LoadMethod(self, dex_file, it, klass, method);
3095      DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i);
3096      LinkCode(method, oat_class, class_def_method_index);
3097      class_def_method_index++;
3098    }
3099    DCHECK(!it.HasNext());
3100  }
3101  // Ensure that the card is marked so that remembered sets pick up native roots.
3102  Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass.Get());
3103  self->AllowThreadSuspension();
3104}
3105
3106void ClassLinker::LoadField(const ClassDataItemIterator& it,
3107                            Handle<mirror::Class> klass,
3108                            ArtField* dst) {
3109  const uint32_t field_idx = it.GetMemberIndex();
3110  dst->SetDexFieldIndex(field_idx);
3111  dst->SetDeclaringClass(klass.Get());
3112  dst->SetAccessFlags(it.GetFieldAccessFlags());
3113}
3114
3115void ClassLinker::LoadMethod(Thread* self,
3116                             const DexFile& dex_file,
3117                             const ClassDataItemIterator& it,
3118                             Handle<mirror::Class> klass,
3119                             ArtMethod* dst) {
3120  uint32_t dex_method_idx = it.GetMemberIndex();
3121  const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
3122  const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_);
3123
3124  ScopedAssertNoThreadSuspension ants(self, "LoadMethod");
3125  dst->SetDexMethodIndex(dex_method_idx);
3126  dst->SetDeclaringClass(klass.Get());
3127  dst->SetCodeItemOffset(it.GetMethodCodeItemOffset());
3128
3129  dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods(), image_pointer_size_);
3130  dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes(), image_pointer_size_);
3131
3132  uint32_t access_flags = it.GetMethodAccessFlags();
3133
3134  if (UNLIKELY(strcmp("finalize", method_name) == 0)) {
3135    // Set finalizable flag on declaring class.
3136    if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) {
3137      // Void return type.
3138      if (klass->GetClassLoader() != nullptr) {  // All non-boot finalizer methods are flagged.
3139        klass->SetFinalizable();
3140      } else {
3141        std::string temp;
3142        const char* klass_descriptor = klass->GetDescriptor(&temp);
3143        // The Enum class declares a "final" finalize() method to prevent subclasses from
3144        // introducing a finalizer. We don't want to set the finalizable flag for Enum or its
3145        // subclasses, so we exclude it here.
3146        // We also want to avoid setting the flag on Object, where we know that finalize() is
3147        // empty.
3148        if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 &&
3149            strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) {
3150          klass->SetFinalizable();
3151        }
3152      }
3153    }
3154  } else if (method_name[0] == '<') {
3155    // Fix broken access flags for initializers. Bug 11157540.
3156    bool is_init = (strcmp("<init>", method_name) == 0);
3157    bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0);
3158    if (UNLIKELY(!is_init && !is_clinit)) {
3159      LOG(WARNING) << "Unexpected '<' at start of method name " << method_name;
3160    } else {
3161      if (UNLIKELY((access_flags & kAccConstructor) == 0)) {
3162        LOG(WARNING) << method_name << " didn't have expected constructor access flag in class "
3163            << PrettyDescriptor(klass.Get()) << " in dex file " << dex_file.GetLocation();
3164        access_flags |= kAccConstructor;
3165      }
3166    }
3167  }
3168  dst->SetAccessFlags(access_flags);
3169}
3170
3171void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile& dex_file) {
3172  StackHandleScope<1> hs(self);
3173  Handle<mirror::DexCache> dex_cache(hs.NewHandle(AllocDexCache(
3174      self,
3175      dex_file,
3176      Runtime::Current()->GetLinearAlloc())));
3177  CHECK(dex_cache.Get() != nullptr) << "Failed to allocate dex cache for "
3178                                    << dex_file.GetLocation();
3179  AppendToBootClassPath(dex_file, dex_cache);
3180}
3181
3182void ClassLinker::AppendToBootClassPath(const DexFile& dex_file,
3183                                        Handle<mirror::DexCache> dex_cache) {
3184  CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation();
3185  boot_class_path_.push_back(&dex_file);
3186  RegisterDexFile(dex_file, dex_cache);
3187}
3188
3189void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file,
3190                                        Handle<mirror::DexCache> dex_cache) {
3191  Thread* const self = Thread::Current();
3192  dex_lock_.AssertExclusiveHeld(self);
3193  CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation();
3194  // For app images, the dex cache location may be a suffix of the dex file location since the
3195  // dex file location is an absolute path.
3196  const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8();
3197  const size_t dex_cache_length = dex_cache_location.length();
3198  CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation();
3199  std::string dex_file_location = dex_file.GetLocation();
3200  CHECK_GE(dex_file_location.length(), dex_cache_length)
3201      << dex_cache_location << " " << dex_file.GetLocation();
3202  // Take suffix.
3203  const std::string dex_file_suffix = dex_file_location.substr(
3204      dex_file_location.length() - dex_cache_length,
3205      dex_cache_length);
3206  // Example dex_cache location is SettingsProvider.apk and
3207  // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk
3208  CHECK_EQ(dex_cache_location, dex_file_suffix);
3209  // Clean up pass to remove null dex caches.
3210  // Null dex caches can occur due to class unloading and we are lazily removing null entries.
3211  JavaVMExt* const vm = self->GetJniEnv()->vm;
3212  for (auto it = dex_caches_.begin(); it != dex_caches_.end(); ) {
3213    DexCacheData data = *it;
3214    if (self->IsJWeakCleared(data.weak_root)) {
3215      vm->DeleteWeakGlobalRef(self, data.weak_root);
3216      it = dex_caches_.erase(it);
3217    } else {
3218      ++it;
3219    }
3220  }
3221  jweak dex_cache_jweak = vm->AddWeakGlobalRef(self, dex_cache.Get());
3222  dex_cache->SetDexFile(&dex_file);
3223  DexCacheData data;
3224  data.weak_root = dex_cache_jweak;
3225  data.dex_file = dex_cache->GetDexFile();
3226  data.resolved_types = dex_cache->GetResolvedTypes();
3227  dex_caches_.push_back(data);
3228}
3229
3230mirror::DexCache* ClassLinker::RegisterDexFile(const DexFile& dex_file,
3231                                               mirror::ClassLoader* class_loader) {
3232  Thread* self = Thread::Current();
3233  {
3234    ReaderMutexLock mu(self, dex_lock_);
3235    mirror::DexCache* dex_cache = FindDexCacheLocked(self, dex_file, true);
3236    if (dex_cache != nullptr) {
3237      return dex_cache;
3238    }
3239  }
3240  LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader);
3241  DCHECK(linear_alloc != nullptr);
3242  ClassTable* table;
3243  {
3244    WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
3245    table = InsertClassTableForClassLoader(class_loader);
3246  }
3247  // Don't alloc while holding the lock, since allocation may need to
3248  // suspend all threads and another thread may need the dex_lock_ to
3249  // get to a suspend point.
3250  StackHandleScope<1> hs(self);
3251  Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(AllocDexCache(self, dex_file, linear_alloc)));
3252  {
3253    WriterMutexLock mu(self, dex_lock_);
3254    mirror::DexCache* dex_cache = FindDexCacheLocked(self, dex_file, true);
3255    if (dex_cache != nullptr) {
3256      return dex_cache;
3257    }
3258    if (h_dex_cache.Get() == nullptr) {
3259      self->AssertPendingOOMException();
3260      return nullptr;
3261    }
3262    RegisterDexFileLocked(dex_file, h_dex_cache);
3263  }
3264  table->InsertStrongRoot(h_dex_cache.Get());
3265  return h_dex_cache.Get();
3266}
3267
3268void ClassLinker::RegisterDexFile(const DexFile& dex_file,
3269                                  Handle<mirror::DexCache> dex_cache) {
3270  WriterMutexLock mu(Thread::Current(), dex_lock_);
3271  RegisterDexFileLocked(dex_file, dex_cache);
3272}
3273
3274mirror::DexCache* ClassLinker::FindDexCache(Thread* self,
3275                                            const DexFile& dex_file,
3276                                            bool allow_failure) {
3277  ReaderMutexLock mu(self, dex_lock_);
3278  return FindDexCacheLocked(self, dex_file, allow_failure);
3279}
3280
3281mirror::DexCache* ClassLinker::FindDexCacheLocked(Thread* self,
3282                                                  const DexFile& dex_file,
3283                                                  bool allow_failure) {
3284  // Search assuming unique-ness of dex file.
3285  for (const DexCacheData& data : dex_caches_) {
3286    // Avoid decoding (and read barriers) other unrelated dex caches.
3287    if (data.dex_file == &dex_file) {
3288      mirror::DexCache* dex_cache =
3289          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
3290      if (dex_cache != nullptr) {
3291        return dex_cache;
3292      } else {
3293        break;
3294      }
3295    }
3296  }
3297  if (allow_failure) {
3298    return nullptr;
3299  }
3300  std::string location(dex_file.GetLocation());
3301  // Failure, dump diagnostic and abort.
3302  for (const DexCacheData& data : dex_caches_) {
3303    mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
3304    if (dex_cache != nullptr) {
3305      LOG(ERROR) << "Registered dex file " << dex_cache->GetDexFile()->GetLocation();
3306    }
3307  }
3308  LOG(FATAL) << "Failed to find DexCache for DexFile " << location;
3309  UNREACHABLE();
3310}
3311
3312void ClassLinker::FixupDexCaches(ArtMethod* resolution_method) {
3313  Thread* const self = Thread::Current();
3314  ReaderMutexLock mu(self, dex_lock_);
3315  for (const DexCacheData& data : dex_caches_) {
3316    if (!self->IsJWeakCleared(data.weak_root)) {
3317      mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(
3318          self->DecodeJObject(data.weak_root));
3319      if (dex_cache != nullptr) {
3320        dex_cache->Fixup(resolution_method, image_pointer_size_);
3321      }
3322    }
3323  }
3324}
3325
3326mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) {
3327  mirror::Class* klass = AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_));
3328  if (UNLIKELY(klass == nullptr)) {
3329    self->AssertPendingOOMException();
3330    return nullptr;
3331  }
3332  return InitializePrimitiveClass(klass, type);
3333}
3334
3335mirror::Class* ClassLinker::InitializePrimitiveClass(mirror::Class* primitive_class,
3336                                                     Primitive::Type type) {
3337  CHECK(primitive_class != nullptr);
3338  // Must hold lock on object when initializing.
3339  Thread* self = Thread::Current();
3340  StackHandleScope<1> hs(self);
3341  Handle<mirror::Class> h_class(hs.NewHandle(primitive_class));
3342  ObjectLock<mirror::Class> lock(self, h_class);
3343  h_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract);
3344  h_class->SetPrimitiveType(type);
3345  mirror::Class::SetStatus(h_class, mirror::Class::kStatusInitialized, self);
3346  const char* descriptor = Primitive::Descriptor(type);
3347  mirror::Class* existing = InsertClass(descriptor, h_class.Get(),
3348                                        ComputeModifiedUtf8Hash(descriptor));
3349  CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed";
3350  return h_class.Get();
3351}
3352
3353// Create an array class (i.e. the class object for the array, not the
3354// array itself).  "descriptor" looks like "[C" or "[[[[B" or
3355// "[Ljava/lang/String;".
3356//
3357// If "descriptor" refers to an array of primitives, look up the
3358// primitive type's internally-generated class object.
3359//
3360// "class_loader" is the class loader of the class that's referring to
3361// us.  It's used to ensure that we're looking for the element type in
3362// the right context.  It does NOT become the class loader for the
3363// array class; that always comes from the base element class.
3364//
3365// Returns null with an exception raised on failure.
3366mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash,
3367                                             Handle<mirror::ClassLoader> class_loader) {
3368  // Identify the underlying component type
3369  CHECK_EQ('[', descriptor[0]);
3370  StackHandleScope<2> hs(self);
3371  MutableHandle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1,
3372                                                                     class_loader)));
3373  if (component_type.Get() == nullptr) {
3374    DCHECK(self->IsExceptionPending());
3375    // We need to accept erroneous classes as component types.
3376    const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1);
3377    component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get()));
3378    if (component_type.Get() == nullptr) {
3379      DCHECK(self->IsExceptionPending());
3380      return nullptr;
3381    } else {
3382      self->ClearException();
3383    }
3384  }
3385  if (UNLIKELY(component_type->IsPrimitiveVoid())) {
3386    ThrowNoClassDefFoundError("Attempt to create array of void primitive type");
3387    return nullptr;
3388  }
3389  // See if the component type is already loaded.  Array classes are
3390  // always associated with the class loader of their underlying
3391  // element type -- an array of Strings goes with the loader for
3392  // java/lang/String -- so we need to look for it there.  (The
3393  // caller should have checked for the existence of the class
3394  // before calling here, but they did so with *their* class loader,
3395  // not the component type's loader.)
3396  //
3397  // If we find it, the caller adds "loader" to the class' initiating
3398  // loader list, which should prevent us from going through this again.
3399  //
3400  // This call is unnecessary if "loader" and "component_type->GetClassLoader()"
3401  // are the same, because our caller (FindClass) just did the
3402  // lookup.  (Even if we get this wrong we still have correct behavior,
3403  // because we effectively do this lookup again when we add the new
3404  // class to the hash table --- necessary because of possible races with
3405  // other threads.)
3406  if (class_loader.Get() != component_type->GetClassLoader()) {
3407    mirror::Class* new_class = LookupClass(self, descriptor, hash, component_type->GetClassLoader());
3408    if (new_class != nullptr) {
3409      return new_class;
3410    }
3411  }
3412
3413  // Fill out the fields in the Class.
3414  //
3415  // It is possible to execute some methods against arrays, because
3416  // all arrays are subclasses of java_lang_Object_, so we need to set
3417  // up a vtable.  We can just point at the one in java_lang_Object_.
3418  //
3419  // Array classes are simple enough that we don't need to do a full
3420  // link step.
3421  auto new_class = hs.NewHandle<mirror::Class>(nullptr);
3422  if (UNLIKELY(!init_done_)) {
3423    // Classes that were hand created, ie not by FindSystemClass
3424    if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) {
3425      new_class.Assign(GetClassRoot(kClassArrayClass));
3426    } else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) {
3427      new_class.Assign(GetClassRoot(kObjectArrayClass));
3428    } else if (strcmp(descriptor, GetClassRootDescriptor(kJavaLangStringArrayClass)) == 0) {
3429      new_class.Assign(GetClassRoot(kJavaLangStringArrayClass));
3430    } else if (strcmp(descriptor, "[C") == 0) {
3431      new_class.Assign(GetClassRoot(kCharArrayClass));
3432    } else if (strcmp(descriptor, "[I") == 0) {
3433      new_class.Assign(GetClassRoot(kIntArrayClass));
3434    } else if (strcmp(descriptor, "[J") == 0) {
3435      new_class.Assign(GetClassRoot(kLongArrayClass));
3436    }
3437  }
3438  if (new_class.Get() == nullptr) {
3439    new_class.Assign(AllocClass(self, mirror::Array::ClassSize(image_pointer_size_)));
3440    if (new_class.Get() == nullptr) {
3441      self->AssertPendingOOMException();
3442      return nullptr;
3443    }
3444    new_class->SetComponentType(component_type.Get());
3445  }
3446  ObjectLock<mirror::Class> lock(self, new_class);  // Must hold lock on object when initializing.
3447  DCHECK(new_class->GetComponentType() != nullptr);
3448  mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject);
3449  new_class->SetSuperClass(java_lang_Object);
3450  new_class->SetVTable(java_lang_Object->GetVTable());
3451  new_class->SetPrimitiveType(Primitive::kPrimNot);
3452  new_class->SetClassLoader(component_type->GetClassLoader());
3453  if (component_type->IsPrimitive()) {
3454    new_class->SetClassFlags(mirror::kClassFlagNoReferenceFields);
3455  } else {
3456    new_class->SetClassFlags(mirror::kClassFlagObjectArray);
3457  }
3458  mirror::Class::SetStatus(new_class, mirror::Class::kStatusLoaded, self);
3459  {
3460    ArtMethod* imt[mirror::Class::kImtSize];
3461    std::fill_n(imt, arraysize(imt), Runtime::Current()->GetImtUnimplementedMethod());
3462    new_class->PopulateEmbeddedImtAndVTable(imt, image_pointer_size_);
3463  }
3464  mirror::Class::SetStatus(new_class, mirror::Class::kStatusInitialized, self);
3465  // don't need to set new_class->SetObjectSize(..)
3466  // because Object::SizeOf delegates to Array::SizeOf
3467
3468
3469  // All arrays have java/lang/Cloneable and java/io/Serializable as
3470  // interfaces.  We need to set that up here, so that stuff like
3471  // "instanceof" works right.
3472  //
3473  // Note: The GC could run during the call to FindSystemClass,
3474  // so we need to make sure the class object is GC-valid while we're in
3475  // there.  Do this by clearing the interface list so the GC will just
3476  // think that the entries are null.
3477
3478
3479  // Use the single, global copies of "interfaces" and "iftable"
3480  // (remember not to free them for arrays).
3481  {
3482    mirror::IfTable* array_iftable = array_iftable_.Read();
3483    CHECK(array_iftable != nullptr);
3484    new_class->SetIfTable(array_iftable);
3485  }
3486
3487  // Inherit access flags from the component type.
3488  int access_flags = new_class->GetComponentType()->GetAccessFlags();
3489  // Lose any implementation detail flags; in particular, arrays aren't finalizable.
3490  access_flags &= kAccJavaFlagsMask;
3491  // Arrays can't be used as a superclass or interface, so we want to add "abstract final"
3492  // and remove "interface".
3493  access_flags |= kAccAbstract | kAccFinal;
3494  access_flags &= ~kAccInterface;
3495
3496  new_class->SetAccessFlags(access_flags);
3497
3498  mirror::Class* existing = InsertClass(descriptor, new_class.Get(), hash);
3499  if (existing == nullptr) {
3500    jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get());
3501    return new_class.Get();
3502  }
3503  // Another thread must have loaded the class after we
3504  // started but before we finished.  Abandon what we've
3505  // done.
3506  //
3507  // (Yes, this happens.)
3508
3509  return existing;
3510}
3511
3512mirror::Class* ClassLinker::FindPrimitiveClass(char type) {
3513  switch (type) {
3514    case 'B':
3515      return GetClassRoot(kPrimitiveByte);
3516    case 'C':
3517      return GetClassRoot(kPrimitiveChar);
3518    case 'D':
3519      return GetClassRoot(kPrimitiveDouble);
3520    case 'F':
3521      return GetClassRoot(kPrimitiveFloat);
3522    case 'I':
3523      return GetClassRoot(kPrimitiveInt);
3524    case 'J':
3525      return GetClassRoot(kPrimitiveLong);
3526    case 'S':
3527      return GetClassRoot(kPrimitiveShort);
3528    case 'Z':
3529      return GetClassRoot(kPrimitiveBoolean);
3530    case 'V':
3531      return GetClassRoot(kPrimitiveVoid);
3532    default:
3533      break;
3534  }
3535  std::string printable_type(PrintableChar(type));
3536  ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str());
3537  return nullptr;
3538}
3539
3540mirror::Class* ClassLinker::InsertClass(const char* descriptor, mirror::Class* klass, size_t hash) {
3541  if (VLOG_IS_ON(class_linker)) {
3542    mirror::DexCache* dex_cache = klass->GetDexCache();
3543    std::string source;
3544    if (dex_cache != nullptr) {
3545      source += " from ";
3546      source += dex_cache->GetLocation()->ToModifiedUtf8();
3547    }
3548    LOG(INFO) << "Loaded class " << descriptor << source;
3549  }
3550  WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3551  mirror::ClassLoader* const class_loader = klass->GetClassLoader();
3552  ClassTable* const class_table = InsertClassTableForClassLoader(class_loader);
3553  mirror::Class* existing = class_table->Lookup(descriptor, hash);
3554  if (existing != nullptr) {
3555    return existing;
3556  }
3557  if (kIsDebugBuild &&
3558      !klass->IsTemp() &&
3559      class_loader == nullptr &&
3560      dex_cache_boot_image_class_lookup_required_) {
3561    // Check a class loaded with the system class loader matches one in the image if the class
3562    // is in the image.
3563    existing = LookupClassFromBootImage(descriptor);
3564    if (existing != nullptr) {
3565      CHECK_EQ(klass, existing);
3566    }
3567  }
3568  VerifyObject(klass);
3569  class_table->InsertWithHash(klass, hash);
3570  if (class_loader != nullptr) {
3571    // This is necessary because we need to have the card dirtied for remembered sets.
3572    Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
3573  }
3574  if (log_new_class_table_roots_) {
3575    new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
3576  }
3577  return nullptr;
3578}
3579
3580// TODO This should really be in mirror::Class.
3581void ClassLinker::UpdateClassMethods(mirror::Class* klass,
3582                                     LengthPrefixedArray<ArtMethod>* new_methods) {
3583  klass->SetMethodsPtrUnchecked(new_methods,
3584                                klass->NumDirectMethods(),
3585                                klass->NumDeclaredVirtualMethods());
3586  // Need to mark the card so that the remembered sets and mod union tables get updated.
3587  Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass);
3588}
3589
3590bool ClassLinker::RemoveClass(const char* descriptor, mirror::ClassLoader* class_loader) {
3591  WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3592  ClassTable* const class_table = ClassTableForClassLoader(class_loader);
3593  return class_table != nullptr && class_table->Remove(descriptor);
3594}
3595
3596mirror::Class* ClassLinker::LookupClass(Thread* self,
3597                                        const char* descriptor,
3598                                        size_t hash,
3599                                        mirror::ClassLoader* class_loader) {
3600  {
3601    ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3602    ClassTable* const class_table = ClassTableForClassLoader(class_loader);
3603    if (class_table != nullptr) {
3604      mirror::Class* result = class_table->Lookup(descriptor, hash);
3605      if (result != nullptr) {
3606        return result;
3607      }
3608    }
3609  }
3610  if (class_loader != nullptr || !dex_cache_boot_image_class_lookup_required_) {
3611    return nullptr;
3612  }
3613  // Lookup failed but need to search dex_caches_.
3614  mirror::Class* result = LookupClassFromBootImage(descriptor);
3615  if (result != nullptr) {
3616    result = InsertClass(descriptor, result, hash);
3617  } else {
3618    // Searching the image dex files/caches failed, we don't want to get into this situation
3619    // often as map searches are faster, so after kMaxFailedDexCacheLookups move all image
3620    // classes into the class table.
3621    constexpr uint32_t kMaxFailedDexCacheLookups = 1000;
3622    if (++failed_dex_cache_class_lookups_ > kMaxFailedDexCacheLookups) {
3623      AddBootImageClassesToClassTable();
3624    }
3625  }
3626  return result;
3627}
3628
3629static std::vector<mirror::ObjectArray<mirror::DexCache>*> GetImageDexCaches(
3630    std::vector<gc::space::ImageSpace*> image_spaces) SHARED_REQUIRES(Locks::mutator_lock_) {
3631  CHECK(!image_spaces.empty());
3632  std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector;
3633  for (gc::space::ImageSpace* image_space : image_spaces) {
3634    mirror::Object* root = image_space->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches);
3635    DCHECK(root != nullptr);
3636    dex_caches_vector.push_back(root->AsObjectArray<mirror::DexCache>());
3637  }
3638  return dex_caches_vector;
3639}
3640
3641void ClassLinker::AddBootImageClassesToClassTable() {
3642  if (dex_cache_boot_image_class_lookup_required_) {
3643    AddImageClassesToClassTable(Runtime::Current()->GetHeap()->GetBootImageSpaces(),
3644                                /*class_loader*/nullptr);
3645    dex_cache_boot_image_class_lookup_required_ = false;
3646  }
3647}
3648
3649void ClassLinker::AddImageClassesToClassTable(std::vector<gc::space::ImageSpace*> image_spaces,
3650                                              mirror::ClassLoader* class_loader) {
3651  Thread* self = Thread::Current();
3652  WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
3653  ScopedAssertNoThreadSuspension ants(self, "Moving image classes to class table");
3654
3655  ClassTable* const class_table = InsertClassTableForClassLoader(class_loader);
3656
3657  std::string temp;
3658  std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector =
3659      GetImageDexCaches(image_spaces);
3660  for (mirror::ObjectArray<mirror::DexCache>* dex_caches : dex_caches_vector) {
3661    for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
3662      mirror::DexCache* dex_cache = dex_caches->Get(i);
3663      GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes();
3664      for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) {
3665        mirror::Class* klass = types[j].Read();
3666        if (klass != nullptr) {
3667          DCHECK_EQ(klass->GetClassLoader(), class_loader);
3668          const char* descriptor = klass->GetDescriptor(&temp);
3669          size_t hash = ComputeModifiedUtf8Hash(descriptor);
3670          mirror::Class* existing = class_table->Lookup(descriptor, hash);
3671          if (existing != nullptr) {
3672            CHECK_EQ(existing, klass) << PrettyClassAndClassLoader(existing) << " != "
3673                << PrettyClassAndClassLoader(klass);
3674          } else {
3675            class_table->Insert(klass);
3676            if (log_new_class_table_roots_) {
3677              new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
3678            }
3679          }
3680        }
3681      }
3682    }
3683  }
3684}
3685
3686class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor {
3687 public:
3688  explicit MoveClassTableToPreZygoteVisitor() {}
3689
3690  void Visit(mirror::ClassLoader* class_loader)
3691      REQUIRES(Locks::classlinker_classes_lock_)
3692      SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE {
3693    ClassTable* const class_table = class_loader->GetClassTable();
3694    if (class_table != nullptr) {
3695      class_table->FreezeSnapshot();
3696    }
3697  }
3698};
3699
3700void ClassLinker::MoveClassTableToPreZygote() {
3701  WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3702  boot_class_table_.FreezeSnapshot();
3703  MoveClassTableToPreZygoteVisitor visitor;
3704  VisitClassLoaders(&visitor);
3705}
3706
3707mirror::Class* ClassLinker::LookupClassFromBootImage(const char* descriptor) {
3708  ScopedAssertNoThreadSuspension ants(Thread::Current(), "Image class lookup");
3709  std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector =
3710      GetImageDexCaches(Runtime::Current()->GetHeap()->GetBootImageSpaces());
3711  for (mirror::ObjectArray<mirror::DexCache>* dex_caches : dex_caches_vector) {
3712    for (int32_t i = 0; i < dex_caches->GetLength(); ++i) {
3713      mirror::DexCache* dex_cache = dex_caches->Get(i);
3714      const DexFile* dex_file = dex_cache->GetDexFile();
3715      // Try binary searching the type index by descriptor.
3716      const DexFile::TypeId* type_id = dex_file->FindTypeId(descriptor);
3717      if (type_id != nullptr) {
3718        uint16_t type_idx = dex_file->GetIndexForTypeId(*type_id);
3719        mirror::Class* klass = dex_cache->GetResolvedType(type_idx);
3720        if (klass != nullptr) {
3721          return klass;
3722        }
3723      }
3724    }
3725  }
3726  return nullptr;
3727}
3728
3729// Look up classes by hash and descriptor and put all matching ones in the result array.
3730class LookupClassesVisitor : public ClassLoaderVisitor {
3731 public:
3732  LookupClassesVisitor(const char* descriptor, size_t hash, std::vector<mirror::Class*>* result)
3733     : descriptor_(descriptor),
3734       hash_(hash),
3735       result_(result) {}
3736
3737  void Visit(mirror::ClassLoader* class_loader)
3738      SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
3739    ClassTable* const class_table = class_loader->GetClassTable();
3740    mirror::Class* klass = class_table->Lookup(descriptor_, hash_);
3741    if (klass != nullptr) {
3742      result_->push_back(klass);
3743    }
3744  }
3745
3746 private:
3747  const char* const descriptor_;
3748  const size_t hash_;
3749  std::vector<mirror::Class*>* const result_;
3750};
3751
3752void ClassLinker::LookupClasses(const char* descriptor, std::vector<mirror::Class*>& result) {
3753  result.clear();
3754  if (dex_cache_boot_image_class_lookup_required_) {
3755    AddBootImageClassesToClassTable();
3756  }
3757  Thread* const self = Thread::Current();
3758  ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3759  const size_t hash = ComputeModifiedUtf8Hash(descriptor);
3760  mirror::Class* klass = boot_class_table_.Lookup(descriptor, hash);
3761  if (klass != nullptr) {
3762    result.push_back(klass);
3763  }
3764  LookupClassesVisitor visitor(descriptor, hash, &result);
3765  VisitClassLoaders(&visitor);
3766}
3767
3768bool ClassLinker::AttemptSupertypeVerification(Thread* self,
3769                                               Handle<mirror::Class> klass,
3770                                               Handle<mirror::Class> supertype) {
3771  DCHECK(self != nullptr);
3772  DCHECK(klass.Get() != nullptr);
3773  DCHECK(supertype.Get() != nullptr);
3774
3775  if (!supertype->IsVerified() && !supertype->IsErroneous()) {
3776    VerifyClass(self, supertype);
3777  }
3778  if (supertype->IsCompileTimeVerified()) {
3779    // Either we are verified or we soft failed and need to retry at runtime.
3780    return true;
3781  }
3782  // If we got this far then we have a hard failure.
3783  std::string error_msg =
3784      StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s",
3785                   PrettyDescriptor(klass.Get()).c_str(),
3786                   PrettyDescriptor(supertype.Get()).c_str());
3787  LOG(WARNING) << error_msg  << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
3788  StackHandleScope<1> hs(self);
3789  Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
3790  if (cause.Get() != nullptr) {
3791    // Set during VerifyClass call (if at all).
3792    self->ClearException();
3793  }
3794  // Change into a verify error.
3795  ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
3796  if (cause.Get() != nullptr) {
3797    self->GetException()->SetCause(cause.Get());
3798  }
3799  ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex());
3800  if (Runtime::Current()->IsAotCompiler()) {
3801    Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
3802  }
3803  // Need to grab the lock to change status.
3804  ObjectLock<mirror::Class> super_lock(self, klass);
3805  mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
3806  return false;
3807}
3808
3809void ClassLinker::VerifyClass(Thread* self, Handle<mirror::Class> klass, LogSeverity log_level) {
3810  {
3811    // TODO: assert that the monitor on the Class is held
3812    ObjectLock<mirror::Class> lock(self, klass);
3813
3814    // Is somebody verifying this now?
3815    mirror::Class::Status old_status = klass->GetStatus();
3816    while (old_status == mirror::Class::kStatusVerifying ||
3817        old_status == mirror::Class::kStatusVerifyingAtRuntime) {
3818      lock.WaitIgnoringInterrupts();
3819      CHECK(klass->IsErroneous() || (klass->GetStatus() > old_status))
3820          << "Class '" << PrettyClass(klass.Get()) << "' performed an illegal verification state "
3821          << "transition from " << old_status << " to " << klass->GetStatus();
3822      old_status = klass->GetStatus();
3823    }
3824
3825    // The class might already be erroneous, for example at compile time if we attempted to verify
3826    // this class as a parent to another.
3827    if (klass->IsErroneous()) {
3828      ThrowEarlierClassFailure(klass.Get());
3829      return;
3830    }
3831
3832    // Don't attempt to re-verify if already sufficiently verified.
3833    if (klass->IsVerified()) {
3834      EnsureSkipAccessChecksMethods(klass);
3835      return;
3836    }
3837    if (klass->IsCompileTimeVerified() && Runtime::Current()->IsAotCompiler()) {
3838      return;
3839    }
3840
3841    if (klass->GetStatus() == mirror::Class::kStatusResolved) {
3842      mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifying, self);
3843    } else {
3844      CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime)
3845            << PrettyClass(klass.Get());
3846      CHECK(!Runtime::Current()->IsAotCompiler());
3847      mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifyingAtRuntime, self);
3848    }
3849
3850    // Skip verification if disabled.
3851    if (!Runtime::Current()->IsVerificationEnabled()) {
3852      mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
3853      EnsureSkipAccessChecksMethods(klass);
3854      return;
3855    }
3856  }
3857
3858  // Verify super class.
3859  StackHandleScope<2> hs(self);
3860  MutableHandle<mirror::Class> supertype(hs.NewHandle(klass->GetSuperClass()));
3861  // If we have a superclass and we get a hard verification failure we can return immediately.
3862  if (supertype.Get() != nullptr && !AttemptSupertypeVerification(self, klass, supertype)) {
3863    CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
3864    return;
3865  }
3866
3867  // Verify all default super-interfaces.
3868  //
3869  // (1) Don't bother if the superclass has already had a soft verification failure.
3870  //
3871  // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause
3872  //     recursive initialization by themselves. This is because when an interface is initialized
3873  //     directly it must not initialize its superinterfaces. We are allowed to verify regardless
3874  //     but choose not to for an optimization. If the interfaces is being verified due to a class
3875  //     initialization (which would need all the default interfaces to be verified) the class code
3876  //     will trigger the recursive verification anyway.
3877  if ((supertype.Get() == nullptr || supertype->IsVerified())  // See (1)
3878      && !klass->IsInterface()) {                              // See (2)
3879    int32_t iftable_count = klass->GetIfTableCount();
3880    MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
3881    // Loop through all interfaces this class has defined. It doesn't matter the order.
3882    for (int32_t i = 0; i < iftable_count; i++) {
3883      iface.Assign(klass->GetIfTable()->GetInterface(i));
3884      DCHECK(iface.Get() != nullptr);
3885      // We only care if we have default interfaces and can skip if we are already verified...
3886      if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) {
3887        continue;
3888      } else if (UNLIKELY(!AttemptSupertypeVerification(self, klass, iface))) {
3889        // We had a hard failure while verifying this interface. Just return immediately.
3890        CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
3891        return;
3892      } else if (UNLIKELY(!iface->IsVerified())) {
3893        // We softly failed to verify the iface. Stop checking and clean up.
3894        // Put the iface into the supertype handle so we know what caused us to fail.
3895        supertype.Assign(iface.Get());
3896        break;
3897      }
3898    }
3899  }
3900
3901  // At this point if verification failed, then supertype is the "first" supertype that failed
3902  // verification (without a specific order). If verification succeeded, then supertype is either
3903  // null or the original superclass of klass and is verified.
3904  DCHECK(supertype.Get() == nullptr ||
3905         supertype.Get() == klass->GetSuperClass() ||
3906         !supertype->IsVerified());
3907
3908  // Try to use verification information from the oat file, otherwise do runtime verification.
3909  const DexFile& dex_file = *klass->GetDexCache()->GetDexFile();
3910  mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady);
3911  bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status);
3912  // If the oat file says the class had an error, re-run the verifier. That way we will get a
3913  // precise error message. To ensure a rerun, test:
3914  //     oat_file_class_status == mirror::Class::kStatusError => !preverified
3915  DCHECK(!(oat_file_class_status == mirror::Class::kStatusError) || !preverified);
3916
3917  verifier::MethodVerifier::FailureKind verifier_failure = verifier::MethodVerifier::kNoFailure;
3918  std::string error_msg;
3919  if (!preverified) {
3920    Runtime* runtime = Runtime::Current();
3921    verifier_failure = verifier::MethodVerifier::VerifyClass(self,
3922                                                             klass.Get(),
3923                                                             runtime->GetCompilerCallbacks(),
3924                                                             runtime->IsAotCompiler(),
3925                                                             log_level,
3926                                                             &error_msg);
3927  }
3928
3929  // Verification is done, grab the lock again.
3930  ObjectLock<mirror::Class> lock(self, klass);
3931
3932  if (preverified || verifier_failure != verifier::MethodVerifier::kHardFailure) {
3933    if (!preverified && verifier_failure != verifier::MethodVerifier::kNoFailure) {
3934      VLOG(class_linker) << "Soft verification failure in class " << PrettyDescriptor(klass.Get())
3935          << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
3936          << " because: " << error_msg;
3937    }
3938    self->AssertNoPendingException();
3939    // Make sure all classes referenced by catch blocks are resolved.
3940    ResolveClassExceptionHandlerTypes(klass);
3941    if (verifier_failure == verifier::MethodVerifier::kNoFailure) {
3942      // Even though there were no verifier failures we need to respect whether the super-class and
3943      // super-default-interfaces were verified or requiring runtime reverification.
3944      if (supertype.Get() == nullptr || supertype->IsVerified()) {
3945        mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
3946      } else {
3947        CHECK_EQ(supertype->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
3948        mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
3949        // Pretend a soft failure occurred so that we don't consider the class verified below.
3950        verifier_failure = verifier::MethodVerifier::kSoftFailure;
3951      }
3952    } else {
3953      CHECK_EQ(verifier_failure, verifier::MethodVerifier::kSoftFailure);
3954      // Soft failures at compile time should be retried at runtime. Soft
3955      // failures at runtime will be handled by slow paths in the generated
3956      // code. Set status accordingly.
3957      if (Runtime::Current()->IsAotCompiler()) {
3958        mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
3959      } else {
3960        mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
3961        // As this is a fake verified status, make sure the methods are _not_ marked
3962        // kAccSkipAccessChecks later.
3963        klass->SetVerificationAttempted();
3964      }
3965    }
3966  } else {
3967    VLOG(verifier) << "Verification failed on class " << PrettyDescriptor(klass.Get())
3968                  << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
3969                  << " because: " << error_msg;
3970    self->AssertNoPendingException();
3971    ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
3972    mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
3973  }
3974  if (preverified || verifier_failure == verifier::MethodVerifier::kNoFailure) {
3975    // Class is verified so we don't need to do any access check on its methods.
3976    // Let the interpreter know it by setting the kAccSkipAccessChecks flag onto each
3977    // method.
3978    // Note: we're going here during compilation and at runtime. When we set the
3979    // kAccSkipAccessChecks flag when compiling image classes, the flag is recorded
3980    // in the image and is set when loading the image.
3981
3982    if (UNLIKELY(Runtime::Current()->IsVerificationSoftFail())) {
3983      // Never skip access checks if the verification soft fail is forced.
3984      // Mark the class as having a verification attempt to avoid re-running the verifier.
3985      klass->SetVerificationAttempted();
3986    } else {
3987      EnsureSkipAccessChecksMethods(klass);
3988    }
3989  }
3990}
3991
3992void ClassLinker::EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass) {
3993  if (!klass->WasVerificationAttempted()) {
3994    klass->SetSkipAccessChecksFlagOnAllMethods(image_pointer_size_);
3995    klass->SetVerificationAttempted();
3996  }
3997}
3998
3999bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file,
4000                                          mirror::Class* klass,
4001                                          mirror::Class::Status& oat_file_class_status) {
4002  // If we're compiling, we can only verify the class using the oat file if
4003  // we are not compiling the image or if the class we're verifying is not part of
4004  // the app.  In other words, we will only check for preverification of bootclasspath
4005  // classes.
4006  if (Runtime::Current()->IsAotCompiler()) {
4007    // Are we compiling the bootclasspath?
4008    if (Runtime::Current()->GetCompilerCallbacks()->IsBootImage()) {
4009      return false;
4010    }
4011    // We are compiling an app (not the image).
4012
4013    // Is this an app class? (I.e. not a bootclasspath class)
4014    if (klass->GetClassLoader() != nullptr) {
4015      return false;
4016    }
4017  }
4018
4019  const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
4020  // In case we run without an image there won't be a backing oat file.
4021  if (oat_dex_file == nullptr) {
4022    return false;
4023  }
4024
4025  // We may be running with a preopted oat file but without image. In this case,
4026  // we don't skip verification of skip_access_checks classes to ensure we initialize
4027  // dex caches with all types resolved during verification.
4028  // We need to trust image classes, as these might be coming out of a pre-opted, quickened boot
4029  // image (that we just failed loading), and the verifier can't be run on quickened opcodes when
4030  // the runtime isn't started. On the other hand, app classes can be re-verified even if they are
4031  // already pre-opted, as then the runtime is started.
4032  if (!Runtime::Current()->IsAotCompiler() &&
4033      !Runtime::Current()->GetHeap()->HasBootImageSpace() &&
4034      klass->GetClassLoader() != nullptr) {
4035    return false;
4036  }
4037
4038  uint16_t class_def_index = klass->GetDexClassDefIndex();
4039  oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
4040  if (oat_file_class_status == mirror::Class::kStatusVerified ||
4041      oat_file_class_status == mirror::Class::kStatusInitialized) {
4042    return true;
4043  }
4044  // If we only verified a subset of the classes at compile time, we can end up with classes that
4045  // were resolved by the verifier.
4046  if (oat_file_class_status == mirror::Class::kStatusResolved) {
4047    return false;
4048  }
4049  if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) {
4050    // Compile time verification failed with a soft error. Compile time verification can fail
4051    // because we have incomplete type information. Consider the following:
4052    // class ... {
4053    //   Foo x;
4054    //   .... () {
4055    //     if (...) {
4056    //       v1 gets assigned a type of resolved class Foo
4057    //     } else {
4058    //       v1 gets assigned a type of unresolved class Bar
4059    //     }
4060    //     iput x = v1
4061    // } }
4062    // when we merge v1 following the if-the-else it results in Conflict
4063    // (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be
4064    // allowing an unsafe assignment to the field x in the iput (javac may have compiled this as
4065    // it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk
4066    // at compile time).
4067    return false;
4068  }
4069  if (oat_file_class_status == mirror::Class::kStatusError) {
4070    // Compile time verification failed with a hard error. This is caused by invalid instructions
4071    // in the class. These errors are unrecoverable.
4072    return false;
4073  }
4074  if (oat_file_class_status == mirror::Class::kStatusNotReady) {
4075    // Status is uninitialized if we couldn't determine the status at compile time, for example,
4076    // not loading the class.
4077    // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy
4078    // isn't a problem and this case shouldn't occur
4079    return false;
4080  }
4081  std::string temp;
4082  LOG(FATAL) << "Unexpected class status: " << oat_file_class_status
4083             << " " << dex_file.GetLocation() << " " << PrettyClass(klass) << " "
4084             << klass->GetDescriptor(&temp);
4085  UNREACHABLE();
4086}
4087
4088void ClassLinker::ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass) {
4089  for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) {
4090    ResolveMethodExceptionHandlerTypes(&method);
4091  }
4092}
4093
4094void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) {
4095  // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod.
4096  const DexFile::CodeItem* code_item =
4097      method->GetDexFile()->GetCodeItem(method->GetCodeItemOffset());
4098  if (code_item == nullptr) {
4099    return;  // native or abstract method
4100  }
4101  if (code_item->tries_size_ == 0) {
4102    return;  // nothing to process
4103  }
4104  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0);
4105  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
4106  for (uint32_t idx = 0; idx < handlers_size; idx++) {
4107    CatchHandlerIterator iterator(handlers_ptr);
4108    for (; iterator.HasNext(); iterator.Next()) {
4109      // Ensure exception types are resolved so that they don't need resolution to be delivered,
4110      // unresolved exception types will be ignored by exception delivery
4111      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
4112        mirror::Class* exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method);
4113        if (exception_type == nullptr) {
4114          DCHECK(Thread::Current()->IsExceptionPending());
4115          Thread::Current()->ClearException();
4116        }
4117      }
4118    }
4119    handlers_ptr = iterator.EndDataPointer();
4120  }
4121}
4122
4123mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa,
4124                                             jstring name,
4125                                             jobjectArray interfaces,
4126                                             jobject loader,
4127                                             jobjectArray methods,
4128                                             jobjectArray throws) {
4129  Thread* self = soa.Self();
4130  StackHandleScope<10> hs(self);
4131  MutableHandle<mirror::Class> klass(hs.NewHandle(
4132      AllocClass(self, GetClassRoot(kJavaLangClass), sizeof(mirror::Class))));
4133  if (klass.Get() == nullptr) {
4134    CHECK(self->IsExceptionPending());  // OOME.
4135    return nullptr;
4136  }
4137  DCHECK(klass->GetClass() != nullptr);
4138  klass->SetObjectSize(sizeof(mirror::Proxy));
4139  // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on
4140  // the methods.
4141  klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal | kAccVerificationAttempted);
4142  klass->SetClassLoader(soa.Decode<mirror::ClassLoader*>(loader));
4143  DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
4144  klass->SetName(soa.Decode<mirror::String*>(name));
4145  klass->SetDexCache(GetClassRoot(kJavaLangReflectProxy)->GetDexCache());
4146  mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, self);
4147  std::string descriptor(GetDescriptorForProxy(klass.Get()));
4148  const size_t hash = ComputeModifiedUtf8Hash(descriptor.c_str());
4149
4150  // Needs to be before we insert the class so that the allocator field is set.
4151  LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(klass->GetClassLoader());
4152
4153  // Insert the class before loading the fields as the field roots
4154  // (ArtField::declaring_class_) are only visited from the class
4155  // table. There can't be any suspend points between inserting the
4156  // class and setting the field arrays below.
4157  mirror::Class* existing = InsertClass(descriptor.c_str(), klass.Get(), hash);
4158  CHECK(existing == nullptr);
4159
4160  // Instance fields are inherited, but we add a couple of static fields...
4161  const size_t num_fields = 2;
4162  LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, allocator, num_fields);
4163  klass->SetSFieldsPtr(sfields);
4164
4165  // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by
4166  // our proxy, so Class.getInterfaces doesn't return the flattened set.
4167  ArtField& interfaces_sfield = sfields->At(0);
4168  interfaces_sfield.SetDexFieldIndex(0);
4169  interfaces_sfield.SetDeclaringClass(klass.Get());
4170  interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4171
4172  // 2. Create a static field 'throws' that holds exceptions thrown by our methods.
4173  ArtField& throws_sfield = sfields->At(1);
4174  throws_sfield.SetDexFieldIndex(1);
4175  throws_sfield.SetDeclaringClass(klass.Get());
4176  throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4177
4178  // Proxies have 1 direct method, the constructor
4179  const size_t num_direct_methods = 1;
4180
4181  // They have as many virtual methods as the array
4182  auto h_methods = hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Method>*>(methods));
4183  DCHECK_EQ(h_methods->GetClass(), mirror::Method::ArrayClass())
4184      << PrettyClass(h_methods->GetClass());
4185  const size_t num_virtual_methods = h_methods->GetLength();
4186
4187  // Create the methods array.
4188  LengthPrefixedArray<ArtMethod>* proxy_class_methods = AllocArtMethodArray(
4189        self, allocator, num_direct_methods + num_virtual_methods);
4190  // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we
4191  // want to throw OOM in the future.
4192  if (UNLIKELY(proxy_class_methods == nullptr)) {
4193    self->AssertPendingOOMException();
4194    return nullptr;
4195  }
4196  klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods);
4197
4198  // Create the single direct method.
4199  CreateProxyConstructor(klass, klass->GetDirectMethodUnchecked(0, image_pointer_size_));
4200
4201  // Create virtual method using specified prototypes.
4202  // TODO These should really use the iterators.
4203  for (size_t i = 0; i < num_virtual_methods; ++i) {
4204    auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4205    auto* prototype = h_methods->Get(i)->GetArtMethod();
4206    CreateProxyMethod(klass, prototype, virtual_method);
4207    DCHECK(virtual_method->GetDeclaringClass() != nullptr);
4208    DCHECK(prototype->GetDeclaringClass() != nullptr);
4209  }
4210
4211  // The super class is java.lang.reflect.Proxy
4212  klass->SetSuperClass(GetClassRoot(kJavaLangReflectProxy));
4213  // Now effectively in the loaded state.
4214  mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, self);
4215  self->AssertNoPendingException();
4216
4217  MutableHandle<mirror::Class> new_class = hs.NewHandle<mirror::Class>(nullptr);
4218  {
4219    // Must hold lock on object when resolved.
4220    ObjectLock<mirror::Class> resolution_lock(self, klass);
4221    // Link the fields and virtual methods, creating vtable and iftables.
4222    // The new class will replace the old one in the class table.
4223    Handle<mirror::ObjectArray<mirror::Class>> h_interfaces(
4224        hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces)));
4225    if (!LinkClass(self, descriptor.c_str(), klass, h_interfaces, &new_class)) {
4226      mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4227      return nullptr;
4228    }
4229  }
4230  CHECK(klass->IsRetired());
4231  CHECK_NE(klass.Get(), new_class.Get());
4232  klass.Assign(new_class.Get());
4233
4234  CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get());
4235  interfaces_sfield.SetObject<false>(klass.Get(),
4236                                     soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
4237  CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get());
4238  throws_sfield.SetObject<false>(
4239      klass.Get(), soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class> >*>(throws));
4240
4241  {
4242    // Lock on klass is released. Lock new class object.
4243    ObjectLock<mirror::Class> initialization_lock(self, klass);
4244    mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4245  }
4246
4247  // sanity checks
4248  if (kIsDebugBuild) {
4249    CHECK(klass->GetIFieldsPtr() == nullptr);
4250    CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_));
4251
4252    for (size_t i = 0; i < num_virtual_methods; ++i) {
4253      auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4254      auto* prototype = h_methods->Get(i++)->GetArtMethod();
4255      CheckProxyMethod(virtual_method, prototype);
4256    }
4257
4258    StackHandleScope<1> hs2(self);
4259    Handle<mirror::String> decoded_name = hs2.NewHandle(soa.Decode<mirror::String*>(name));
4260    std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces",
4261                                                   decoded_name->ToModifiedUtf8().c_str()));
4262    CHECK_EQ(PrettyField(klass->GetStaticField(0)), interfaces_field_name);
4263
4264    std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws",
4265                                               decoded_name->ToModifiedUtf8().c_str()));
4266    CHECK_EQ(PrettyField(klass->GetStaticField(1)), throws_field_name);
4267
4268    CHECK_EQ(klass.Get()->GetInterfaces(),
4269             soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
4270    CHECK_EQ(klass.Get()->GetThrows(),
4271             soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>*>(throws));
4272  }
4273  return klass.Get();
4274}
4275
4276std::string ClassLinker::GetDescriptorForProxy(mirror::Class* proxy_class) {
4277  DCHECK(proxy_class->IsProxyClass());
4278  mirror::String* name = proxy_class->GetName();
4279  DCHECK(name != nullptr);
4280  return DotToDescriptor(name->ToModifiedUtf8().c_str());
4281}
4282
4283ArtMethod* ClassLinker::FindMethodForProxy(mirror::Class* proxy_class, ArtMethod* proxy_method) {
4284  DCHECK(proxy_class->IsProxyClass());
4285  DCHECK(proxy_method->IsProxyMethod());
4286  {
4287    Thread* const self = Thread::Current();
4288    ReaderMutexLock mu(self, dex_lock_);
4289    // Locate the dex cache of the original interface/Object
4290    for (const DexCacheData& data : dex_caches_) {
4291      if (!self->IsJWeakCleared(data.weak_root) &&
4292          proxy_method->HasSameDexCacheResolvedTypes(data.resolved_types,
4293                                                     image_pointer_size_)) {
4294        mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(
4295            self->DecodeJObject(data.weak_root));
4296        if (dex_cache != nullptr) {
4297          ArtMethod* resolved_method = dex_cache->GetResolvedMethod(
4298              proxy_method->GetDexMethodIndex(), image_pointer_size_);
4299          CHECK(resolved_method != nullptr);
4300          return resolved_method;
4301        }
4302      }
4303    }
4304  }
4305  LOG(FATAL) << "Didn't find dex cache for " << PrettyClass(proxy_class) << " "
4306      << PrettyMethod(proxy_method);
4307  UNREACHABLE();
4308}
4309
4310void ClassLinker::CreateProxyConstructor(Handle<mirror::Class> klass, ArtMethod* out) {
4311  // Create constructor for Proxy that must initialize the method.
4312  CHECK_EQ(GetClassRoot(kJavaLangReflectProxy)->NumDirectMethods(), 18u);
4313  ArtMethod* proxy_constructor = GetClassRoot(kJavaLangReflectProxy)->GetDirectMethodUnchecked(
4314      2, image_pointer_size_);
4315  DCHECK_EQ(std::string(proxy_constructor->GetName()), "<init>");
4316  // Ensure constructor is in dex cache so that we can use the dex cache to look up the overridden
4317  // constructor method.
4318  GetClassRoot(kJavaLangReflectProxy)->GetDexCache()->SetResolvedMethod(
4319      proxy_constructor->GetDexMethodIndex(), proxy_constructor, image_pointer_size_);
4320  // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its
4321  // code_ too)
4322  DCHECK(out != nullptr);
4323  out->CopyFrom(proxy_constructor, image_pointer_size_);
4324  // Make this constructor public and fix the class to be our Proxy version
4325  out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) | kAccPublic);
4326  out->SetDeclaringClass(klass.Get());
4327}
4328
4329void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const {
4330  CHECK(constructor->IsConstructor());
4331  auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_);
4332  CHECK_STREQ(np->GetName(), "<init>");
4333  CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V");
4334  DCHECK(constructor->IsPublic());
4335}
4336
4337void ClassLinker::CreateProxyMethod(Handle<mirror::Class> klass, ArtMethod* prototype,
4338                                    ArtMethod* out) {
4339  // Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden
4340  // prototype method
4341  auto* dex_cache = prototype->GetDeclaringClass()->GetDexCache();
4342  // Avoid dirtying the dex cache unless we need to.
4343  if (dex_cache->GetResolvedMethod(prototype->GetDexMethodIndex(), image_pointer_size_) !=
4344      prototype) {
4345    dex_cache->SetResolvedMethod(
4346        prototype->GetDexMethodIndex(), prototype, image_pointer_size_);
4347  }
4348  // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize
4349  // as necessary
4350  DCHECK(out != nullptr);
4351  out->CopyFrom(prototype, image_pointer_size_);
4352
4353  // Set class to be the concrete proxy class.
4354  out->SetDeclaringClass(klass.Get());
4355  // Clear the abstract, default and conflict flags to ensure that defaults aren't picked in
4356  // preference to the invocation handler.
4357  const uint32_t kRemoveFlags = kAccAbstract | kAccDefault | kAccDefaultConflict;
4358  // Make the method final.
4359  const uint32_t kAddFlags = kAccFinal;
4360  out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags);
4361
4362  // Clear the dex_code_item_offset_. It needs to be 0 since proxy methods have no CodeItems but the
4363  // method they copy might (if it's a default method).
4364  out->SetCodeItemOffset(0);
4365
4366  // At runtime the method looks like a reference and argument saving method, clone the code
4367  // related parameters from this method.
4368  out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler());
4369}
4370
4371void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const {
4372  // Basic sanity
4373  CHECK(!prototype->IsFinal());
4374  CHECK(method->IsFinal());
4375  CHECK(method->IsInvokable());
4376
4377  // The proxy method doesn't have its own dex cache or dex file and so it steals those of its
4378  // interface prototype. The exception to this are Constructors and the Class of the Proxy itself.
4379  CHECK(prototype->HasSameDexCacheResolvedMethods(method, image_pointer_size_));
4380  CHECK(prototype->HasSameDexCacheResolvedTypes(method, image_pointer_size_));
4381  auto* np = method->GetInterfaceMethodIfProxy(image_pointer_size_);
4382  CHECK_EQ(prototype->GetDeclaringClass()->GetDexCache(), np->GetDexCache());
4383  CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex());
4384
4385  CHECK_STREQ(np->GetName(), prototype->GetName());
4386  CHECK_STREQ(np->GetShorty(), prototype->GetShorty());
4387  // More complex sanity - via dex cache
4388  CHECK_EQ(np->GetReturnType(true /* resolve */, image_pointer_size_),
4389           prototype->GetReturnType(true /* resolve */, image_pointer_size_));
4390}
4391
4392bool ClassLinker::CanWeInitializeClass(mirror::Class* klass, bool can_init_statics,
4393                                       bool can_init_parents) {
4394  if (can_init_statics && can_init_parents) {
4395    return true;
4396  }
4397  if (!can_init_statics) {
4398    // Check if there's a class initializer.
4399    ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4400    if (clinit != nullptr) {
4401      return false;
4402    }
4403    // Check if there are encoded static values needing initialization.
4404    if (klass->NumStaticFields() != 0) {
4405      const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4406      DCHECK(dex_class_def != nullptr);
4407      if (dex_class_def->static_values_off_ != 0) {
4408        return false;
4409      }
4410    }
4411    // If we are a class we need to initialize all interfaces with default methods when we are
4412    // initialized. Check all of them.
4413    if (!klass->IsInterface()) {
4414      size_t num_interfaces = klass->GetIfTableCount();
4415      for (size_t i = 0; i < num_interfaces; i++) {
4416        mirror::Class* iface = klass->GetIfTable()->GetInterface(i);
4417        if (iface->HasDefaultMethods() &&
4418            !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) {
4419          return false;
4420        }
4421      }
4422    }
4423  }
4424  if (klass->IsInterface() || !klass->HasSuperClass()) {
4425    return true;
4426  }
4427  mirror::Class* super_class = klass->GetSuperClass();
4428  if (!can_init_parents && !super_class->IsInitialized()) {
4429    return false;
4430  }
4431  return CanWeInitializeClass(super_class, can_init_statics, can_init_parents);
4432}
4433
4434bool ClassLinker::InitializeClass(Thread* self, Handle<mirror::Class> klass,
4435                                  bool can_init_statics, bool can_init_parents) {
4436  // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol
4437
4438  // Are we already initialized and therefore done?
4439  // Note: we differ from the JLS here as we don't do this under the lock, this is benign as
4440  // an initialized class will never change its state.
4441  if (klass->IsInitialized()) {
4442    return true;
4443  }
4444
4445  // Fast fail if initialization requires a full runtime. Not part of the JLS.
4446  if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) {
4447    return false;
4448  }
4449
4450  self->AllowThreadSuspension();
4451  uint64_t t0;
4452  {
4453    ObjectLock<mirror::Class> lock(self, klass);
4454
4455    // Re-check under the lock in case another thread initialized ahead of us.
4456    if (klass->IsInitialized()) {
4457      return true;
4458    }
4459
4460    // Was the class already found to be erroneous? Done under the lock to match the JLS.
4461    if (klass->IsErroneous()) {
4462      ThrowEarlierClassFailure(klass.Get(), true);
4463      VlogClassInitializationFailure(klass);
4464      return false;
4465    }
4466
4467    CHECK(klass->IsResolved()) << PrettyClass(klass.Get()) << ": state=" << klass->GetStatus();
4468
4469    if (!klass->IsVerified()) {
4470      VerifyClass(self, klass);
4471      if (!klass->IsVerified()) {
4472        // We failed to verify, expect either the klass to be erroneous or verification failed at
4473        // compile time.
4474        if (klass->IsErroneous()) {
4475          // The class is erroneous. This may be a verifier error, or another thread attempted
4476          // verification and/or initialization and failed. We can distinguish those cases by
4477          // whether an exception is already pending.
4478          if (self->IsExceptionPending()) {
4479            // Check that it's a VerifyError.
4480            DCHECK_EQ("java.lang.Class<java.lang.VerifyError>",
4481                      PrettyClass(self->GetException()->GetClass()));
4482          } else {
4483            // Check that another thread attempted initialization.
4484            DCHECK_NE(0, klass->GetClinitThreadId());
4485            DCHECK_NE(self->GetTid(), klass->GetClinitThreadId());
4486            // Need to rethrow the previous failure now.
4487            ThrowEarlierClassFailure(klass.Get(), true);
4488          }
4489          VlogClassInitializationFailure(klass);
4490        } else {
4491          CHECK(Runtime::Current()->IsAotCompiler());
4492          CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
4493        }
4494        return false;
4495      } else {
4496        self->AssertNoPendingException();
4497      }
4498
4499      // A separate thread could have moved us all the way to initialized. A "simple" example
4500      // involves a subclass of the current class being initialized at the same time (which
4501      // will implicitly initialize the superclass, if scheduled that way). b/28254258
4502      DCHECK_NE(mirror::Class::kStatusError, klass->GetStatus());
4503      if (klass->IsInitialized()) {
4504        return true;
4505      }
4506    }
4507
4508    // If the class is kStatusInitializing, either this thread is
4509    // initializing higher up the stack or another thread has beat us
4510    // to initializing and we need to wait. Either way, this
4511    // invocation of InitializeClass will not be responsible for
4512    // running <clinit> and will return.
4513    if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4514      // Could have got an exception during verification.
4515      if (self->IsExceptionPending()) {
4516        VlogClassInitializationFailure(klass);
4517        return false;
4518      }
4519      // We caught somebody else in the act; was it us?
4520      if (klass->GetClinitThreadId() == self->GetTid()) {
4521        // Yes. That's fine. Return so we can continue initializing.
4522        return true;
4523      }
4524      // No. That's fine. Wait for another thread to finish initializing.
4525      return WaitForInitializeClass(klass, self, lock);
4526    }
4527
4528    if (!ValidateSuperClassDescriptors(klass)) {
4529      mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4530      return false;
4531    }
4532    self->AllowThreadSuspension();
4533
4534    CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << PrettyClass(klass.Get())
4535        << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId();
4536
4537    // From here out other threads may observe that we're initializing and so changes of state
4538    // require the a notification.
4539    klass->SetClinitThreadId(self->GetTid());
4540    mirror::Class::SetStatus(klass, mirror::Class::kStatusInitializing, self);
4541
4542    t0 = NanoTime();
4543  }
4544
4545  // Initialize super classes, must be done while initializing for the JLS.
4546  if (!klass->IsInterface() && klass->HasSuperClass()) {
4547    mirror::Class* super_class = klass->GetSuperClass();
4548    if (!super_class->IsInitialized()) {
4549      CHECK(!super_class->IsInterface());
4550      CHECK(can_init_parents);
4551      StackHandleScope<1> hs(self);
4552      Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
4553      bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true);
4554      if (!super_initialized) {
4555        // The super class was verified ahead of entering initializing, we should only be here if
4556        // the super class became erroneous due to initialization.
4557        CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending())
4558            << "Super class initialization failed for "
4559            << PrettyDescriptor(handle_scope_super.Get())
4560            << " that has unexpected status " << handle_scope_super->GetStatus()
4561            << "\nPending exception:\n"
4562            << (self->GetException() != nullptr ? self->GetException()->Dump() : "");
4563        ObjectLock<mirror::Class> lock(self, klass);
4564        // Initialization failed because the super-class is erroneous.
4565        mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4566        return false;
4567      }
4568    }
4569  }
4570
4571  if (!klass->IsInterface()) {
4572    // Initialize interfaces with default methods for the JLS.
4573    size_t num_direct_interfaces = klass->NumDirectInterfaces();
4574    // Only setup the (expensive) handle scope if we actually need to.
4575    if (UNLIKELY(num_direct_interfaces > 0)) {
4576      StackHandleScope<1> hs_iface(self);
4577      MutableHandle<mirror::Class> handle_scope_iface(hs_iface.NewHandle<mirror::Class>(nullptr));
4578      for (size_t i = 0; i < num_direct_interfaces; i++) {
4579        handle_scope_iface.Assign(mirror::Class::GetDirectInterface(self, klass, i));
4580        CHECK(handle_scope_iface.Get() != nullptr);
4581        CHECK(handle_scope_iface->IsInterface());
4582        if (handle_scope_iface->HasBeenRecursivelyInitialized()) {
4583          // We have already done this for this interface. Skip it.
4584          continue;
4585        }
4586        // We cannot just call initialize class directly because we need to ensure that ALL
4587        // interfaces with default methods are initialized. Non-default interface initialization
4588        // will not affect other non-default super-interfaces.
4589        bool iface_initialized = InitializeDefaultInterfaceRecursive(self,
4590                                                                     handle_scope_iface,
4591                                                                     can_init_statics,
4592                                                                     can_init_parents);
4593        if (!iface_initialized) {
4594          ObjectLock<mirror::Class> lock(self, klass);
4595          // Initialization failed because one of our interfaces with default methods is erroneous.
4596          mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4597          return false;
4598        }
4599      }
4600    }
4601  }
4602
4603  const size_t num_static_fields = klass->NumStaticFields();
4604  if (num_static_fields > 0) {
4605    const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4606    CHECK(dex_class_def != nullptr);
4607    const DexFile& dex_file = klass->GetDexFile();
4608    StackHandleScope<3> hs(self);
4609    Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
4610    Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
4611
4612    // Eagerly fill in static fields so that the we don't have to do as many expensive
4613    // Class::FindStaticField in ResolveField.
4614    for (size_t i = 0; i < num_static_fields; ++i) {
4615      ArtField* field = klass->GetStaticField(i);
4616      const uint32_t field_idx = field->GetDexFieldIndex();
4617      ArtField* resolved_field = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
4618      if (resolved_field == nullptr) {
4619        dex_cache->SetResolvedField(field_idx, field, image_pointer_size_);
4620      } else {
4621        DCHECK_EQ(field, resolved_field);
4622      }
4623    }
4624
4625    EncodedStaticFieldValueIterator value_it(dex_file, &dex_cache, &class_loader,
4626                                             this, *dex_class_def);
4627    const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
4628    ClassDataItemIterator field_it(dex_file, class_data);
4629    if (value_it.HasNext()) {
4630      DCHECK(field_it.HasNextStaticField());
4631      CHECK(can_init_statics);
4632      for ( ; value_it.HasNext(); value_it.Next(), field_it.Next()) {
4633        ArtField* field = ResolveField(
4634            dex_file, field_it.GetMemberIndex(), dex_cache, class_loader, true);
4635        if (Runtime::Current()->IsActiveTransaction()) {
4636          value_it.ReadValueToField<true>(field);
4637        } else {
4638          value_it.ReadValueToField<false>(field);
4639        }
4640        DCHECK(!value_it.HasNext() || field_it.HasNextStaticField());
4641      }
4642    }
4643  }
4644
4645  ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4646  if (clinit != nullptr) {
4647    CHECK(can_init_statics);
4648    JValue result;
4649    clinit->Invoke(self, nullptr, 0, &result, "V");
4650  }
4651
4652  self->AllowThreadSuspension();
4653  uint64_t t1 = NanoTime();
4654
4655  bool success = true;
4656  {
4657    ObjectLock<mirror::Class> lock(self, klass);
4658
4659    if (self->IsExceptionPending()) {
4660      WrapExceptionInInitializer(klass);
4661      mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4662      success = false;
4663    } else if (Runtime::Current()->IsTransactionAborted()) {
4664      // The exception thrown when the transaction aborted has been caught and cleared
4665      // so we need to throw it again now.
4666      VLOG(compiler) << "Return from class initializer of " << PrettyDescriptor(klass.Get())
4667                     << " without exception while transaction was aborted: re-throw it now.";
4668      Runtime::Current()->ThrowTransactionAbortError(self);
4669      mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4670      success = false;
4671    } else {
4672      RuntimeStats* global_stats = Runtime::Current()->GetStats();
4673      RuntimeStats* thread_stats = self->GetStats();
4674      ++global_stats->class_init_count;
4675      ++thread_stats->class_init_count;
4676      global_stats->class_init_time_ns += (t1 - t0);
4677      thread_stats->class_init_time_ns += (t1 - t0);
4678      // Set the class as initialized except if failed to initialize static fields.
4679      mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4680      if (VLOG_IS_ON(class_linker)) {
4681        std::string temp;
4682        LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " <<
4683            klass->GetLocation();
4684      }
4685      // Opportunistically set static method trampolines to their destination.
4686      FixupStaticTrampolines(klass.Get());
4687    }
4688  }
4689  return success;
4690}
4691
4692// We recursively run down the tree of interfaces. We need to do this in the order they are declared
4693// and perform the initialization only on those interfaces that contain default methods.
4694bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self,
4695                                                      Handle<mirror::Class> iface,
4696                                                      bool can_init_statics,
4697                                                      bool can_init_parents) {
4698  CHECK(iface->IsInterface());
4699  size_t num_direct_ifaces = iface->NumDirectInterfaces();
4700  // Only create the (expensive) handle scope if we need it.
4701  if (UNLIKELY(num_direct_ifaces > 0)) {
4702    StackHandleScope<1> hs(self);
4703    MutableHandle<mirror::Class> handle_super_iface(hs.NewHandle<mirror::Class>(nullptr));
4704    // First we initialize all of iface's super-interfaces recursively.
4705    for (size_t i = 0; i < num_direct_ifaces; i++) {
4706      mirror::Class* super_iface = mirror::Class::GetDirectInterface(self, iface, i);
4707      if (!super_iface->HasBeenRecursivelyInitialized()) {
4708        // Recursive step
4709        handle_super_iface.Assign(super_iface);
4710        if (!InitializeDefaultInterfaceRecursive(self,
4711                                                 handle_super_iface,
4712                                                 can_init_statics,
4713                                                 can_init_parents)) {
4714          return false;
4715        }
4716      }
4717    }
4718  }
4719
4720  bool result = true;
4721  // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not)
4722  // initialize if we don't have default methods.
4723  if (iface->HasDefaultMethods()) {
4724    result = EnsureInitialized(self, iface, can_init_statics, can_init_parents);
4725  }
4726
4727  // Mark that this interface has undergone recursive default interface initialization so we know we
4728  // can skip it on any later class initializations. We do this even if we are not a default
4729  // interface since we can still avoid the traversal. This is purely a performance optimization.
4730  if (result) {
4731    // TODO This should be done in a better way
4732    ObjectLock<mirror::Class> lock(self, iface);
4733    iface->SetRecursivelyInitialized();
4734  }
4735  return result;
4736}
4737
4738bool ClassLinker::WaitForInitializeClass(Handle<mirror::Class> klass,
4739                                         Thread* self,
4740                                         ObjectLock<mirror::Class>& lock)
4741    SHARED_REQUIRES(Locks::mutator_lock_) {
4742  while (true) {
4743    self->AssertNoPendingException();
4744    CHECK(!klass->IsInitialized());
4745    lock.WaitIgnoringInterrupts();
4746
4747    // When we wake up, repeat the test for init-in-progress.  If
4748    // there's an exception pending (only possible if
4749    // we were not using WaitIgnoringInterrupts), bail out.
4750    if (self->IsExceptionPending()) {
4751      WrapExceptionInInitializer(klass);
4752      mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4753      return false;
4754    }
4755    // Spurious wakeup? Go back to waiting.
4756    if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4757      continue;
4758    }
4759    if (klass->GetStatus() == mirror::Class::kStatusVerified &&
4760        Runtime::Current()->IsAotCompiler()) {
4761      // Compile time initialization failed.
4762      return false;
4763    }
4764    if (klass->IsErroneous()) {
4765      // The caller wants an exception, but it was thrown in a
4766      // different thread.  Synthesize one here.
4767      ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread",
4768                                PrettyDescriptor(klass.Get()).c_str());
4769      VlogClassInitializationFailure(klass);
4770      return false;
4771    }
4772    if (klass->IsInitialized()) {
4773      return true;
4774    }
4775    LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass.Get()) << " is "
4776        << klass->GetStatus();
4777  }
4778  UNREACHABLE();
4779}
4780
4781static void ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,
4782                                                          Handle<mirror::Class> super_klass,
4783                                                          ArtMethod* method,
4784                                                          ArtMethod* m)
4785    SHARED_REQUIRES(Locks::mutator_lock_) {
4786  DCHECK(Thread::Current()->IsExceptionPending());
4787  DCHECK(!m->IsProxyMethod());
4788  const DexFile* dex_file = m->GetDexFile();
4789  const DexFile::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex());
4790  const DexFile::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id);
4791  uint16_t return_type_idx = proto_id.return_type_idx_;
4792  std::string return_type = PrettyType(return_type_idx, *dex_file);
4793  std::string class_loader = PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4794  ThrowWrappedLinkageError(klass.Get(),
4795                           "While checking class %s method %s signature against %s %s: "
4796                           "Failed to resolve return type %s with %s",
4797                           PrettyDescriptor(klass.Get()).c_str(),
4798                           PrettyMethod(method).c_str(),
4799                           super_klass->IsInterface() ? "interface" : "superclass",
4800                           PrettyDescriptor(super_klass.Get()).c_str(),
4801                           return_type.c_str(), class_loader.c_str());
4802}
4803
4804static void ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,
4805                                                   Handle<mirror::Class> super_klass,
4806                                                   ArtMethod* method,
4807                                                   ArtMethod* m,
4808                                                   uint32_t index,
4809                                                   uint32_t arg_type_idx)
4810    SHARED_REQUIRES(Locks::mutator_lock_) {
4811  DCHECK(Thread::Current()->IsExceptionPending());
4812  DCHECK(!m->IsProxyMethod());
4813  const DexFile* dex_file = m->GetDexFile();
4814  std::string arg_type = PrettyType(arg_type_idx, *dex_file);
4815  std::string class_loader = PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4816  ThrowWrappedLinkageError(klass.Get(),
4817                           "While checking class %s method %s signature against %s %s: "
4818                           "Failed to resolve arg %u type %s with %s",
4819                           PrettyDescriptor(klass.Get()).c_str(),
4820                           PrettyMethod(method).c_str(),
4821                           super_klass->IsInterface() ? "interface" : "superclass",
4822                           PrettyDescriptor(super_klass.Get()).c_str(),
4823                           index, arg_type.c_str(), class_loader.c_str());
4824}
4825
4826static void ThrowSignatureMismatch(Handle<mirror::Class> klass,
4827                                   Handle<mirror::Class> super_klass,
4828                                   ArtMethod* method,
4829                                   const std::string& error_msg)
4830    SHARED_REQUIRES(Locks::mutator_lock_) {
4831  ThrowLinkageError(klass.Get(),
4832                    "Class %s method %s resolves differently in %s %s: %s",
4833                    PrettyDescriptor(klass.Get()).c_str(),
4834                    PrettyMethod(method).c_str(),
4835                    super_klass->IsInterface() ? "interface" : "superclass",
4836                    PrettyDescriptor(super_klass.Get()).c_str(),
4837                    error_msg.c_str());
4838}
4839
4840static bool HasSameSignatureWithDifferentClassLoaders(Thread* self,
4841                                                      size_t pointer_size,
4842                                                      Handle<mirror::Class> klass,
4843                                                      Handle<mirror::Class> super_klass,
4844                                                      ArtMethod* method1,
4845                                                      ArtMethod* method2)
4846    SHARED_REQUIRES(Locks::mutator_lock_) {
4847  {
4848    StackHandleScope<1> hs(self);
4849    Handle<mirror::Class> return_type(hs.NewHandle(method1->GetReturnType(true /* resolve */,
4850                                                                          pointer_size)));
4851    if (UNLIKELY(return_type.Get() == nullptr)) {
4852      ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1);
4853      return false;
4854    }
4855    mirror::Class* other_return_type = method2->GetReturnType(true /* resolve */,
4856                                                              pointer_size);
4857    if (UNLIKELY(other_return_type == nullptr)) {
4858      ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2);
4859      return false;
4860    }
4861    if (UNLIKELY(other_return_type != return_type.Get())) {
4862      ThrowSignatureMismatch(klass, super_klass, method1,
4863                             StringPrintf("Return types mismatch: %s(%p) vs %s(%p)",
4864                                          PrettyClassAndClassLoader(return_type.Get()).c_str(),
4865                                          return_type.Get(),
4866                                          PrettyClassAndClassLoader(other_return_type).c_str(),
4867                                          other_return_type));
4868      return false;
4869    }
4870  }
4871  const DexFile::TypeList* types1 = method1->GetParameterTypeList();
4872  const DexFile::TypeList* types2 = method2->GetParameterTypeList();
4873  if (types1 == nullptr) {
4874    if (types2 != nullptr && types2->Size() != 0) {
4875      ThrowSignatureMismatch(klass, super_klass, method1,
4876                             StringPrintf("Type list mismatch with %s",
4877                                          PrettyMethod(method2, true).c_str()));
4878      return false;
4879    }
4880    return true;
4881  } else if (UNLIKELY(types2 == nullptr)) {
4882    if (types1->Size() != 0) {
4883      ThrowSignatureMismatch(klass, super_klass, method1,
4884                             StringPrintf("Type list mismatch with %s",
4885                                          PrettyMethod(method2, true).c_str()));
4886      return false;
4887    }
4888    return true;
4889  }
4890  uint32_t num_types = types1->Size();
4891  if (UNLIKELY(num_types != types2->Size())) {
4892    ThrowSignatureMismatch(klass, super_klass, method1,
4893                           StringPrintf("Type list mismatch with %s",
4894                                        PrettyMethod(method2, true).c_str()));
4895    return false;
4896  }
4897  for (uint32_t i = 0; i < num_types; ++i) {
4898    StackHandleScope<1> hs(self);
4899    uint32_t param_type_idx = types1->GetTypeItem(i).type_idx_;
4900    Handle<mirror::Class> param_type(hs.NewHandle(
4901        method1->GetClassFromTypeIndex(param_type_idx, true /* resolve */, pointer_size)));
4902    if (UNLIKELY(param_type.Get() == nullptr)) {
4903      ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
4904                                             method1, i, param_type_idx);
4905      return false;
4906    }
4907    uint32_t other_param_type_idx = types2->GetTypeItem(i).type_idx_;
4908    mirror::Class* other_param_type =
4909        method2->GetClassFromTypeIndex(other_param_type_idx, true /* resolve */, pointer_size);
4910    if (UNLIKELY(other_param_type == nullptr)) {
4911      ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
4912                                             method2, i, other_param_type_idx);
4913      return false;
4914    }
4915    if (UNLIKELY(param_type.Get() != other_param_type)) {
4916      ThrowSignatureMismatch(klass, super_klass, method1,
4917                             StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)",
4918                                          i,
4919                                          PrettyClassAndClassLoader(param_type.Get()).c_str(),
4920                                          param_type.Get(),
4921                                          PrettyClassAndClassLoader(other_param_type).c_str(),
4922                                          other_param_type));
4923      return false;
4924    }
4925  }
4926  return true;
4927}
4928
4929
4930bool ClassLinker::ValidateSuperClassDescriptors(Handle<mirror::Class> klass) {
4931  if (klass->IsInterface()) {
4932    return true;
4933  }
4934  // Begin with the methods local to the superclass.
4935  Thread* self = Thread::Current();
4936  StackHandleScope<1> hs(self);
4937  MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(nullptr));
4938  if (klass->HasSuperClass() &&
4939      klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
4940    super_klass.Assign(klass->GetSuperClass());
4941    for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) {
4942      auto* m = klass->GetVTableEntry(i, image_pointer_size_);
4943      auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_);
4944      if (m != super_m) {
4945        if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, image_pointer_size_,
4946                                                                klass, super_klass,
4947                                                                m, super_m))) {
4948          self->AssertPendingException();
4949          return false;
4950        }
4951      }
4952    }
4953  }
4954  for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
4955    super_klass.Assign(klass->GetIfTable()->GetInterface(i));
4956    if (klass->GetClassLoader() != super_klass->GetClassLoader()) {
4957      uint32_t num_methods = super_klass->NumVirtualMethods();
4958      for (uint32_t j = 0; j < num_methods; ++j) {
4959        auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>(
4960            j, image_pointer_size_);
4961        auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_);
4962        if (m != super_m) {
4963          if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, image_pointer_size_,
4964                                                                  klass, super_klass,
4965                                                                  m, super_m))) {
4966            self->AssertPendingException();
4967            return false;
4968          }
4969        }
4970      }
4971    }
4972  }
4973  return true;
4974}
4975
4976bool ClassLinker::EnsureInitialized(Thread* self, Handle<mirror::Class> c, bool can_init_fields,
4977                                    bool can_init_parents) {
4978  DCHECK(c.Get() != nullptr);
4979  if (c->IsInitialized()) {
4980    EnsureSkipAccessChecksMethods(c);
4981    return true;
4982  }
4983  const bool success = InitializeClass(self, c, can_init_fields, can_init_parents);
4984  if (!success) {
4985    if (can_init_fields && can_init_parents) {
4986      CHECK(self->IsExceptionPending()) << PrettyClass(c.Get());
4987    }
4988  } else {
4989    self->AssertNoPendingException();
4990  }
4991  return success;
4992}
4993
4994void ClassLinker::FixupTemporaryDeclaringClass(mirror::Class* temp_class,
4995                                               mirror::Class* new_class) {
4996  DCHECK_EQ(temp_class->NumInstanceFields(), 0u);
4997  for (ArtField& field : new_class->GetIFields()) {
4998    if (field.GetDeclaringClass() == temp_class) {
4999      field.SetDeclaringClass(new_class);
5000    }
5001  }
5002
5003  DCHECK_EQ(temp_class->NumStaticFields(), 0u);
5004  for (ArtField& field : new_class->GetSFields()) {
5005    if (field.GetDeclaringClass() == temp_class) {
5006      field.SetDeclaringClass(new_class);
5007    }
5008  }
5009
5010  DCHECK_EQ(temp_class->NumDirectMethods(), 0u);
5011  DCHECK_EQ(temp_class->NumVirtualMethods(), 0u);
5012  for (auto& method : new_class->GetMethods(image_pointer_size_)) {
5013    if (method.GetDeclaringClass() == temp_class) {
5014      method.SetDeclaringClass(new_class);
5015    }
5016  }
5017
5018  // Make sure the remembered set and mod-union tables know that we updated some of the native
5019  // roots.
5020  Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(new_class);
5021}
5022
5023void ClassLinker::RegisterClassLoader(mirror::ClassLoader* class_loader) {
5024  CHECK(class_loader->GetAllocator() == nullptr);
5025  CHECK(class_loader->GetClassTable() == nullptr);
5026  Thread* const self = Thread::Current();
5027  ClassLoaderData data;
5028  data.weak_root = self->GetJniEnv()->vm->AddWeakGlobalRef(self, class_loader);
5029  // Create and set the class table.
5030  data.class_table = new ClassTable;
5031  class_loader->SetClassTable(data.class_table);
5032  // Create and set the linear allocator.
5033  data.allocator = Runtime::Current()->CreateLinearAlloc();
5034  class_loader->SetAllocator(data.allocator);
5035  // Add to the list so that we know to free the data later.
5036  class_loaders_.push_back(data);
5037}
5038
5039ClassTable* ClassLinker::InsertClassTableForClassLoader(mirror::ClassLoader* class_loader) {
5040  if (class_loader == nullptr) {
5041    return &boot_class_table_;
5042  }
5043  ClassTable* class_table = class_loader->GetClassTable();
5044  if (class_table == nullptr) {
5045    RegisterClassLoader(class_loader);
5046    class_table = class_loader->GetClassTable();
5047    DCHECK(class_table != nullptr);
5048  }
5049  return class_table;
5050}
5051
5052ClassTable* ClassLinker::ClassTableForClassLoader(mirror::ClassLoader* class_loader) {
5053  return class_loader == nullptr ? &boot_class_table_ : class_loader->GetClassTable();
5054}
5055
5056bool ClassLinker::LinkClass(Thread* self,
5057                            const char* descriptor,
5058                            Handle<mirror::Class> klass,
5059                            Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5060                            MutableHandle<mirror::Class>* h_new_class_out) {
5061  CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5062
5063  if (!LinkSuperClass(klass)) {
5064    return false;
5065  }
5066  ArtMethod* imt[mirror::Class::kImtSize];
5067  std::fill_n(imt, arraysize(imt), Runtime::Current()->GetImtUnimplementedMethod());
5068  if (!LinkMethods(self, klass, interfaces, imt)) {
5069    return false;
5070  }
5071  if (!LinkInstanceFields(self, klass)) {
5072    return false;
5073  }
5074  size_t class_size;
5075  if (!LinkStaticFields(self, klass, &class_size)) {
5076    return false;
5077  }
5078  CreateReferenceInstanceOffsets(klass);
5079  CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5080
5081  if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) {
5082    // We don't need to retire this class as it has no embedded tables or it was created the
5083    // correct size during class linker initialization.
5084    CHECK_EQ(klass->GetClassSize(), class_size) << PrettyDescriptor(klass.Get());
5085
5086    if (klass->ShouldHaveEmbeddedImtAndVTable()) {
5087      klass->PopulateEmbeddedImtAndVTable(imt, image_pointer_size_);
5088    }
5089
5090    // This will notify waiters on klass that saw the not yet resolved
5091    // class in the class_table_ during EnsureResolved.
5092    mirror::Class::SetStatus(klass, mirror::Class::kStatusResolved, self);
5093    h_new_class_out->Assign(klass.Get());
5094  } else {
5095    CHECK(!klass->IsResolved());
5096    // Retire the temporary class and create the correctly sized resolved class.
5097    StackHandleScope<1> hs(self);
5098    auto h_new_class = hs.NewHandle(klass->CopyOf(self, class_size, imt, image_pointer_size_));
5099    // Set arrays to null since we don't want to have multiple classes with the same ArtField or
5100    // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC
5101    // may not see any references to the target space and clean the card for a class if another
5102    // class had the same array pointer.
5103    klass->SetMethodsPtrUnchecked(nullptr, 0, 0);
5104    klass->SetSFieldsPtrUnchecked(nullptr);
5105    klass->SetIFieldsPtrUnchecked(nullptr);
5106    if (UNLIKELY(h_new_class.Get() == nullptr)) {
5107      self->AssertPendingOOMException();
5108      mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
5109      return false;
5110    }
5111
5112    CHECK_EQ(h_new_class->GetClassSize(), class_size);
5113    ObjectLock<mirror::Class> lock(self, h_new_class);
5114    FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get());
5115
5116    {
5117      WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
5118      mirror::ClassLoader* const class_loader = h_new_class.Get()->GetClassLoader();
5119      ClassTable* const table = InsertClassTableForClassLoader(class_loader);
5120      mirror::Class* existing = table->UpdateClass(descriptor, h_new_class.Get(),
5121                                                   ComputeModifiedUtf8Hash(descriptor));
5122      if (class_loader != nullptr) {
5123        // We updated the class in the class table, perform the write barrier so that the GC knows
5124        // about the change.
5125        Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
5126      }
5127      CHECK_EQ(existing, klass.Get());
5128      if (kIsDebugBuild && class_loader == nullptr && dex_cache_boot_image_class_lookup_required_) {
5129        // Check a class loaded with the system class loader matches one in the image if the class
5130        // is in the image.
5131        mirror::Class* const image_class = LookupClassFromBootImage(descriptor);
5132        if (image_class != nullptr) {
5133          CHECK_EQ(klass.Get(), existing) << descriptor;
5134        }
5135      }
5136      if (log_new_class_table_roots_) {
5137        new_class_roots_.push_back(GcRoot<mirror::Class>(h_new_class.Get()));
5138      }
5139    }
5140
5141    // This will notify waiters on temp class that saw the not yet resolved class in the
5142    // class_table_ during EnsureResolved.
5143    mirror::Class::SetStatus(klass, mirror::Class::kStatusRetired, self);
5144
5145    CHECK_EQ(h_new_class->GetStatus(), mirror::Class::kStatusResolving);
5146    // This will notify waiters on new_class that saw the not yet resolved
5147    // class in the class_table_ during EnsureResolved.
5148    mirror::Class::SetStatus(h_new_class, mirror::Class::kStatusResolved, self);
5149    // Return the new class.
5150    h_new_class_out->Assign(h_new_class.Get());
5151  }
5152  return true;
5153}
5154
5155static void CountMethodsAndFields(ClassDataItemIterator& dex_data,
5156                                  size_t* virtual_methods,
5157                                  size_t* direct_methods,
5158                                  size_t* static_fields,
5159                                  size_t* instance_fields) {
5160  *virtual_methods = *direct_methods = *static_fields = *instance_fields = 0;
5161
5162  while (dex_data.HasNextStaticField()) {
5163    dex_data.Next();
5164    (*static_fields)++;
5165  }
5166  while (dex_data.HasNextInstanceField()) {
5167    dex_data.Next();
5168    (*instance_fields)++;
5169  }
5170  while (dex_data.HasNextDirectMethod()) {
5171    (*direct_methods)++;
5172    dex_data.Next();
5173  }
5174  while (dex_data.HasNextVirtualMethod()) {
5175    (*virtual_methods)++;
5176    dex_data.Next();
5177  }
5178  DCHECK(!dex_data.HasNext());
5179}
5180
5181static void DumpClass(std::ostream& os,
5182                      const DexFile& dex_file, const DexFile::ClassDef& dex_class_def,
5183                      const char* suffix) {
5184  ClassDataItemIterator dex_data(dex_file, dex_file.GetClassData(dex_class_def));
5185  os << dex_file.GetClassDescriptor(dex_class_def) << suffix << ":\n";
5186  os << " Static fields:\n";
5187  while (dex_data.HasNextStaticField()) {
5188    const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5189    os << "  " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5190    dex_data.Next();
5191  }
5192  os << " Instance fields:\n";
5193  while (dex_data.HasNextInstanceField()) {
5194    const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5195    os << "  " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5196    dex_data.Next();
5197  }
5198  os << " Direct methods:\n";
5199  while (dex_data.HasNextDirectMethod()) {
5200    const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5201    os << "  " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5202    dex_data.Next();
5203  }
5204  os << " Virtual methods:\n";
5205  while (dex_data.HasNextVirtualMethod()) {
5206    const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5207    os << "  " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5208    dex_data.Next();
5209  }
5210}
5211
5212static std::string DumpClasses(const DexFile& dex_file1,
5213                               const DexFile::ClassDef& dex_class_def1,
5214                               const DexFile& dex_file2,
5215                               const DexFile::ClassDef& dex_class_def2) {
5216  std::ostringstream os;
5217  DumpClass(os, dex_file1, dex_class_def1, " (Compile time)");
5218  DumpClass(os, dex_file2, dex_class_def2, " (Runtime)");
5219  return os.str();
5220}
5221
5222
5223// Very simple structural check on whether the classes match. Only compares the number of
5224// methods and fields.
5225static bool SimpleStructuralCheck(const DexFile& dex_file1,
5226                                  const DexFile::ClassDef& dex_class_def1,
5227                                  const DexFile& dex_file2,
5228                                  const DexFile::ClassDef& dex_class_def2,
5229                                  std::string* error_msg) {
5230  ClassDataItemIterator dex_data1(dex_file1, dex_file1.GetClassData(dex_class_def1));
5231  ClassDataItemIterator dex_data2(dex_file2, dex_file2.GetClassData(dex_class_def2));
5232
5233  // Counters for current dex file.
5234  size_t dex_virtual_methods1, dex_direct_methods1, dex_static_fields1, dex_instance_fields1;
5235  CountMethodsAndFields(dex_data1,
5236                        &dex_virtual_methods1,
5237                        &dex_direct_methods1,
5238                        &dex_static_fields1,
5239                        &dex_instance_fields1);
5240  // Counters for compile-time dex file.
5241  size_t dex_virtual_methods2, dex_direct_methods2, dex_static_fields2, dex_instance_fields2;
5242  CountMethodsAndFields(dex_data2,
5243                        &dex_virtual_methods2,
5244                        &dex_direct_methods2,
5245                        &dex_static_fields2,
5246                        &dex_instance_fields2);
5247
5248  if (dex_virtual_methods1 != dex_virtual_methods2) {
5249    std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5250    *error_msg = StringPrintf("Virtual method count off: %zu vs %zu\n%s",
5251                              dex_virtual_methods1,
5252                              dex_virtual_methods2,
5253                              class_dump.c_str());
5254    return false;
5255  }
5256  if (dex_direct_methods1 != dex_direct_methods2) {
5257    std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5258    *error_msg = StringPrintf("Direct method count off: %zu vs %zu\n%s",
5259                              dex_direct_methods1,
5260                              dex_direct_methods2,
5261                              class_dump.c_str());
5262    return false;
5263  }
5264  if (dex_static_fields1 != dex_static_fields2) {
5265    std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5266    *error_msg = StringPrintf("Static field count off: %zu vs %zu\n%s",
5267                              dex_static_fields1,
5268                              dex_static_fields2,
5269                              class_dump.c_str());
5270    return false;
5271  }
5272  if (dex_instance_fields1 != dex_instance_fields2) {
5273    std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5274    *error_msg = StringPrintf("Instance field count off: %zu vs %zu\n%s",
5275                              dex_instance_fields1,
5276                              dex_instance_fields2,
5277                              class_dump.c_str());
5278    return false;
5279  }
5280
5281  return true;
5282}
5283
5284// Checks whether a the super-class changed from what we had at compile-time. This would
5285// invalidate quickening.
5286static bool CheckSuperClassChange(Handle<mirror::Class> klass,
5287                                  const DexFile& dex_file,
5288                                  const DexFile::ClassDef& class_def,
5289                                  mirror::Class* super_class)
5290    SHARED_REQUIRES(Locks::mutator_lock_) {
5291  // Check for unexpected changes in the superclass.
5292  // Quick check 1) is the super_class class-loader the boot class loader? This always has
5293  // precedence.
5294  if (super_class->GetClassLoader() != nullptr &&
5295      // Quick check 2) different dex cache? Breaks can only occur for different dex files,
5296      // which is implied by different dex cache.
5297      klass->GetDexCache() != super_class->GetDexCache()) {
5298    // Now comes the expensive part: things can be broken if (a) the klass' dex file has a
5299    // definition for the super-class, and (b) the files are in separate oat files. The oat files
5300    // are referenced from the dex file, so do (b) first. Only relevant if we have oat files.
5301    const OatDexFile* class_oat_dex_file = dex_file.GetOatDexFile();
5302    const OatFile* class_oat_file = nullptr;
5303    if (class_oat_dex_file != nullptr) {
5304      class_oat_file = class_oat_dex_file->GetOatFile();
5305    }
5306
5307    if (class_oat_file != nullptr) {
5308      const OatDexFile* loaded_super_oat_dex_file = super_class->GetDexFile().GetOatDexFile();
5309      const OatFile* loaded_super_oat_file = nullptr;
5310      if (loaded_super_oat_dex_file != nullptr) {
5311        loaded_super_oat_file = loaded_super_oat_dex_file->GetOatFile();
5312      }
5313
5314      if (loaded_super_oat_file != nullptr && class_oat_file != loaded_super_oat_file) {
5315        // Now check (a).
5316        const DexFile::ClassDef* super_class_def = dex_file.FindClassDef(class_def.superclass_idx_);
5317        if (super_class_def != nullptr) {
5318          // Uh-oh, we found something. Do our check.
5319          std::string error_msg;
5320          if (!SimpleStructuralCheck(dex_file, *super_class_def,
5321                                     super_class->GetDexFile(), *super_class->GetClassDef(),
5322                                     &error_msg)) {
5323            // Print a warning to the log. This exception might be caught, e.g., as common in test
5324            // drivers. When the class is later tried to be used, we re-throw a new instance, as we
5325            // only save the type of the exception.
5326            LOG(WARNING) << "Incompatible structural change detected: " <<
5327                StringPrintf(
5328                    "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5329                    PrettyType(super_class_def->class_idx_, dex_file).c_str(),
5330                    class_oat_file->GetLocation().c_str(),
5331                    loaded_super_oat_file->GetLocation().c_str(),
5332                    error_msg.c_str());
5333            ThrowIncompatibleClassChangeError(klass.Get(),
5334                "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5335                PrettyType(super_class_def->class_idx_, dex_file).c_str(),
5336                class_oat_file->GetLocation().c_str(),
5337                loaded_super_oat_file->GetLocation().c_str(),
5338                error_msg.c_str());
5339            return false;
5340          }
5341        }
5342      }
5343    }
5344  }
5345  return true;
5346}
5347
5348bool ClassLinker::LoadSuperAndInterfaces(Handle<mirror::Class> klass, const DexFile& dex_file) {
5349  CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus());
5350  const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex());
5351  uint16_t super_class_idx = class_def.superclass_idx_;
5352  if (super_class_idx != DexFile::kDexNoIndex16) {
5353    // Check that a class does not inherit from itself directly.
5354    //
5355    // TODO: This is a cheap check to detect the straightforward case
5356    // of a class extending itself (b/28685551), but we should do a
5357    // proper cycle detection on loaded classes, to detect all cases
5358    // of class circularity errors (b/28830038).
5359    if (super_class_idx == class_def.class_idx_) {
5360      ThrowClassCircularityError(klass.Get(),
5361                                 "Class %s extends itself",
5362                                 PrettyDescriptor(klass.Get()).c_str());
5363      return false;
5364    }
5365
5366    mirror::Class* super_class = ResolveType(dex_file, super_class_idx, klass.Get());
5367    if (super_class == nullptr) {
5368      DCHECK(Thread::Current()->IsExceptionPending());
5369      return false;
5370    }
5371    // Verify
5372    if (!klass->CanAccess(super_class)) {
5373      ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible",
5374                              PrettyDescriptor(super_class).c_str(),
5375                              PrettyDescriptor(klass.Get()).c_str());
5376      return false;
5377    }
5378    CHECK(super_class->IsResolved());
5379    klass->SetSuperClass(super_class);
5380
5381    if (!CheckSuperClassChange(klass, dex_file, class_def, super_class)) {
5382      DCHECK(Thread::Current()->IsExceptionPending());
5383      return false;
5384    }
5385  }
5386  const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def);
5387  if (interfaces != nullptr) {
5388    for (size_t i = 0; i < interfaces->Size(); i++) {
5389      uint16_t idx = interfaces->GetTypeItem(i).type_idx_;
5390      mirror::Class* interface = ResolveType(dex_file, idx, klass.Get());
5391      if (interface == nullptr) {
5392        DCHECK(Thread::Current()->IsExceptionPending());
5393        return false;
5394      }
5395      // Verify
5396      if (!klass->CanAccess(interface)) {
5397        // TODO: the RI seemed to ignore this in my testing.
5398        ThrowIllegalAccessError(klass.Get(),
5399                                "Interface %s implemented by class %s is inaccessible",
5400                                PrettyDescriptor(interface).c_str(),
5401                                PrettyDescriptor(klass.Get()).c_str());
5402        return false;
5403      }
5404    }
5405  }
5406  // Mark the class as loaded.
5407  mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, nullptr);
5408  return true;
5409}
5410
5411bool ClassLinker::LinkSuperClass(Handle<mirror::Class> klass) {
5412  CHECK(!klass->IsPrimitive());
5413  mirror::Class* super = klass->GetSuperClass();
5414  if (klass.Get() == GetClassRoot(kJavaLangObject)) {
5415    if (super != nullptr) {
5416      ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass");
5417      return false;
5418    }
5419    return true;
5420  }
5421  if (super == nullptr) {
5422    ThrowLinkageError(klass.Get(), "No superclass defined for class %s",
5423                      PrettyDescriptor(klass.Get()).c_str());
5424    return false;
5425  }
5426  // Verify
5427  if (super->IsFinal() || super->IsInterface()) {
5428    ThrowIncompatibleClassChangeError(klass.Get(),
5429                                      "Superclass %s of %s is %s",
5430                                      PrettyDescriptor(super).c_str(),
5431                                      PrettyDescriptor(klass.Get()).c_str(),
5432                                      super->IsFinal() ? "declared final" : "an interface");
5433    return false;
5434  }
5435  if (!klass->CanAccess(super)) {
5436    ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s",
5437                            PrettyDescriptor(super).c_str(),
5438                            PrettyDescriptor(klass.Get()).c_str());
5439    return false;
5440  }
5441
5442  // Inherit kAccClassIsFinalizable from the superclass in case this
5443  // class doesn't override finalize.
5444  if (super->IsFinalizable()) {
5445    klass->SetFinalizable();
5446  }
5447
5448  // Inherit class loader flag form super class.
5449  if (super->IsClassLoaderClass()) {
5450    klass->SetClassLoaderClass();
5451  }
5452
5453  // Inherit reference flags (if any) from the superclass.
5454  uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference);
5455  if (reference_flags != 0) {
5456    CHECK_EQ(klass->GetClassFlags(), 0u);
5457    klass->SetClassFlags(klass->GetClassFlags() | reference_flags);
5458  }
5459  // Disallow custom direct subclasses of java.lang.ref.Reference.
5460  if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) {
5461    ThrowLinkageError(klass.Get(),
5462                      "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed",
5463                      PrettyDescriptor(klass.Get()).c_str());
5464    return false;
5465  }
5466
5467  if (kIsDebugBuild) {
5468    // Ensure super classes are fully resolved prior to resolving fields..
5469    while (super != nullptr) {
5470      CHECK(super->IsResolved());
5471      super = super->GetSuperClass();
5472    }
5473  }
5474  return true;
5475}
5476
5477// Populate the class vtable and itable. Compute return type indices.
5478bool ClassLinker::LinkMethods(Thread* self,
5479                              Handle<mirror::Class> klass,
5480                              Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5481                              ArtMethod** out_imt) {
5482  self->AllowThreadSuspension();
5483  // A map from vtable indexes to the method they need to be updated to point to. Used because we
5484  // need to have default methods be in the virtuals array of each class but we don't set that up
5485  // until LinkInterfaceMethods.
5486  std::unordered_map<size_t, ClassLinker::MethodTranslation> default_translations;
5487  // Link virtual methods then interface methods.
5488  // We set up the interface lookup table first because we need it to determine if we need to update
5489  // any vtable entries with new default method implementations.
5490  return SetupInterfaceLookupTable(self, klass, interfaces)
5491          && LinkVirtualMethods(self, klass, /*out*/ &default_translations)
5492          && LinkInterfaceMethods(self, klass, default_translations, out_imt);
5493}
5494
5495// Comparator for name and signature of a method, used in finding overriding methods. Implementation
5496// avoids the use of handles, if it didn't then rather than compare dex files we could compare dex
5497// caches in the implementation below.
5498class MethodNameAndSignatureComparator FINAL : public ValueObject {
5499 public:
5500  explicit MethodNameAndSignatureComparator(ArtMethod* method)
5501      SHARED_REQUIRES(Locks::mutator_lock_) :
5502      dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())),
5503      name_(nullptr), name_len_(0) {
5504    DCHECK(!method->IsProxyMethod()) << PrettyMethod(method);
5505  }
5506
5507  const char* GetName() {
5508    if (name_ == nullptr) {
5509      name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_);
5510    }
5511    return name_;
5512  }
5513
5514  bool HasSameNameAndSignature(ArtMethod* other)
5515      SHARED_REQUIRES(Locks::mutator_lock_) {
5516    DCHECK(!other->IsProxyMethod()) << PrettyMethod(other);
5517    const DexFile* other_dex_file = other->GetDexFile();
5518    const DexFile::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex());
5519    if (dex_file_ == other_dex_file) {
5520      return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_;
5521    }
5522    GetName();  // Only used to make sure its calculated.
5523    uint32_t other_name_len;
5524    const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_,
5525                                                                           &other_name_len);
5526    if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) {
5527      return false;
5528    }
5529    return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid);
5530  }
5531
5532 private:
5533  // Dex file for the method to compare against.
5534  const DexFile* const dex_file_;
5535  // MethodId for the method to compare against.
5536  const DexFile::MethodId* const mid_;
5537  // Lazily computed name from the dex file's strings.
5538  const char* name_;
5539  // Lazily computed name length.
5540  uint32_t name_len_;
5541};
5542
5543class LinkVirtualHashTable {
5544 public:
5545  LinkVirtualHashTable(Handle<mirror::Class> klass,
5546                       size_t hash_size,
5547                       uint32_t* hash_table,
5548                       size_t image_pointer_size)
5549     : klass_(klass),
5550       hash_size_(hash_size),
5551       hash_table_(hash_table),
5552       image_pointer_size_(image_pointer_size) {
5553    std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_);
5554  }
5555
5556  void Add(uint32_t virtual_method_index) SHARED_REQUIRES(Locks::mutator_lock_) {
5557    ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking(
5558        virtual_method_index, image_pointer_size_);
5559    const char* name = local_method->GetInterfaceMethodIfProxy(image_pointer_size_)->GetName();
5560    uint32_t hash = ComputeModifiedUtf8Hash(name);
5561    uint32_t index = hash % hash_size_;
5562    // Linear probe until we have an empty slot.
5563    while (hash_table_[index] != invalid_index_) {
5564      if (++index == hash_size_) {
5565        index = 0;
5566      }
5567    }
5568    hash_table_[index] = virtual_method_index;
5569  }
5570
5571  uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator)
5572      SHARED_REQUIRES(Locks::mutator_lock_) {
5573    const char* name = comparator->GetName();
5574    uint32_t hash = ComputeModifiedUtf8Hash(name);
5575    size_t index = hash % hash_size_;
5576    while (true) {
5577      const uint32_t value = hash_table_[index];
5578      // Since linear probe makes continuous blocks, hitting an invalid index means we are done
5579      // the block and can safely assume not found.
5580      if (value == invalid_index_) {
5581        break;
5582      }
5583      if (value != removed_index_) {  // This signifies not already overriden.
5584        ArtMethod* virtual_method =
5585            klass_->GetVirtualMethodDuringLinking(value, image_pointer_size_);
5586        if (comparator->HasSameNameAndSignature(
5587            virtual_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
5588          hash_table_[index] = removed_index_;
5589          return value;
5590        }
5591      }
5592      if (++index == hash_size_) {
5593        index = 0;
5594      }
5595    }
5596    return GetNotFoundIndex();
5597  }
5598
5599  static uint32_t GetNotFoundIndex() {
5600    return invalid_index_;
5601  }
5602
5603 private:
5604  static const uint32_t invalid_index_;
5605  static const uint32_t removed_index_;
5606
5607  Handle<mirror::Class> klass_;
5608  const size_t hash_size_;
5609  uint32_t* const hash_table_;
5610  const size_t image_pointer_size_;
5611};
5612
5613const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits<uint32_t>::max();
5614const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits<uint32_t>::max() - 1;
5615
5616bool ClassLinker::LinkVirtualMethods(
5617    Thread* self,
5618    Handle<mirror::Class> klass,
5619    /*out*/std::unordered_map<size_t, ClassLinker::MethodTranslation>* default_translations) {
5620  const size_t num_virtual_methods = klass->NumVirtualMethods();
5621  if (klass->IsInterface()) {
5622    // No vtable.
5623    if (!IsUint<16>(num_virtual_methods)) {
5624      ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods);
5625      return false;
5626    }
5627    bool has_defaults = false;
5628    // Assign each method an IMT index and set the default flag.
5629    for (size_t i = 0; i < num_virtual_methods; ++i) {
5630      ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5631      m->SetMethodIndex(i);
5632      if (!m->IsAbstract()) {
5633        m->SetAccessFlags(m->GetAccessFlags() | kAccDefault);
5634        has_defaults = true;
5635      }
5636    }
5637    // Mark that we have default methods so that we won't need to scan the virtual_methods_ array
5638    // during initialization. This is a performance optimization. We could simply traverse the
5639    // virtual_methods_ array again during initialization.
5640    if (has_defaults) {
5641      klass->SetHasDefaultMethods();
5642    }
5643    return true;
5644  } else if (klass->HasSuperClass()) {
5645    const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength();
5646    const size_t max_count = num_virtual_methods + super_vtable_length;
5647    StackHandleScope<2> hs(self);
5648    Handle<mirror::Class> super_class(hs.NewHandle(klass->GetSuperClass()));
5649    MutableHandle<mirror::PointerArray> vtable;
5650    if (super_class->ShouldHaveEmbeddedImtAndVTable()) {
5651      vtable = hs.NewHandle(AllocPointerArray(self, max_count));
5652      if (UNLIKELY(vtable.Get() == nullptr)) {
5653        self->AssertPendingOOMException();
5654        return false;
5655      }
5656      for (size_t i = 0; i < super_vtable_length; i++) {
5657        vtable->SetElementPtrSize(
5658            i, super_class->GetEmbeddedVTableEntry(i, image_pointer_size_), image_pointer_size_);
5659      }
5660      // We might need to change vtable if we have new virtual methods or new interfaces (since that
5661      // might give us new default methods). If no new interfaces then we can skip the rest since
5662      // the class cannot override any of the super-class's methods. This is required for
5663      // correctness since without it we might not update overridden default method vtable entries
5664      // correctly.
5665      if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5666        klass->SetVTable(vtable.Get());
5667        return true;
5668      }
5669    } else {
5670      DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass());
5671      auto* super_vtable = super_class->GetVTable();
5672      CHECK(super_vtable != nullptr) << PrettyClass(super_class.Get());
5673      // We might need to change vtable if we have new virtual methods or new interfaces (since that
5674      // might give us new default methods). See comment above.
5675      if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5676        klass->SetVTable(super_vtable);
5677        return true;
5678      }
5679      vtable = hs.NewHandle(down_cast<mirror::PointerArray*>(
5680          super_vtable->CopyOf(self, max_count)));
5681      if (UNLIKELY(vtable.Get() == nullptr)) {
5682        self->AssertPendingOOMException();
5683        return false;
5684      }
5685    }
5686    // How the algorithm works:
5687    // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash
5688    // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual
5689    // method which has not been matched to a vtable method, and j if the virtual method at the
5690    // index overrode the super virtual method at index j.
5691    // 2. Loop through super virtual methods, if they overwrite, update hash table to j
5692    // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing
5693    // the need for the initial vtable which we later shrink back down).
5694    // 3. Add non overridden methods to the end of the vtable.
5695    static constexpr size_t kMaxStackHash = 250;
5696    // + 1 so that even if we only have new default methods we will still be able to use this hash
5697    // table (i.e. it will never have 0 size).
5698    const size_t hash_table_size = num_virtual_methods * 3 + 1;
5699    uint32_t* hash_table_ptr;
5700    std::unique_ptr<uint32_t[]> hash_heap_storage;
5701    if (hash_table_size <= kMaxStackHash) {
5702      hash_table_ptr = reinterpret_cast<uint32_t*>(
5703          alloca(hash_table_size * sizeof(*hash_table_ptr)));
5704    } else {
5705      hash_heap_storage.reset(new uint32_t[hash_table_size]);
5706      hash_table_ptr = hash_heap_storage.get();
5707    }
5708    LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr, image_pointer_size_);
5709    // Add virtual methods to the hash table.
5710    for (size_t i = 0; i < num_virtual_methods; ++i) {
5711      DCHECK(klass->GetVirtualMethodDuringLinking(
5712          i, image_pointer_size_)->GetDeclaringClass() != nullptr);
5713      hash_table.Add(i);
5714    }
5715    // Loop through each super vtable method and see if they are overridden by a method we added to
5716    // the hash table.
5717    for (size_t j = 0; j < super_vtable_length; ++j) {
5718      // Search the hash table to see if we are overridden by any method.
5719      ArtMethod* super_method = vtable->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
5720      MethodNameAndSignatureComparator super_method_name_comparator(
5721          super_method->GetInterfaceMethodIfProxy(image_pointer_size_));
5722      uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator);
5723      if (hash_index != hash_table.GetNotFoundIndex()) {
5724        ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(
5725            hash_index, image_pointer_size_);
5726        if (klass->CanAccessMember(super_method->GetDeclaringClass(),
5727                                   super_method->GetAccessFlags())) {
5728          if (super_method->IsFinal()) {
5729            ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s",
5730                              PrettyMethod(virtual_method).c_str(),
5731                              super_method->GetDeclaringClassDescriptor());
5732            return false;
5733          }
5734          vtable->SetElementPtrSize(j, virtual_method, image_pointer_size_);
5735          virtual_method->SetMethodIndex(j);
5736        } else {
5737          LOG(WARNING) << "Before Android 4.1, method " << PrettyMethod(virtual_method)
5738                       << " would have incorrectly overridden the package-private method in "
5739                       << PrettyDescriptor(super_method->GetDeclaringClassDescriptor());
5740        }
5741      } else if (super_method->IsOverridableByDefaultMethod()) {
5742        // We didn't directly override this method but we might through default methods...
5743        // Check for default method update.
5744        ArtMethod* default_method = nullptr;
5745        switch (FindDefaultMethodImplementation(self,
5746                                                super_method,
5747                                                klass,
5748                                                /*out*/&default_method)) {
5749          case DefaultMethodSearchResult::kDefaultConflict: {
5750            // A conflict was found looking for default methods. Note this (assuming it wasn't
5751            // pre-existing) in the translations map.
5752            if (UNLIKELY(!super_method->IsDefaultConflicting())) {
5753              // Don't generate another conflict method to reduce memory use as an optimization.
5754              default_translations->insert(
5755                  {j, ClassLinker::MethodTranslation::CreateConflictingMethod()});
5756            }
5757            break;
5758          }
5759          case DefaultMethodSearchResult::kAbstractFound: {
5760            // No conflict but method is abstract.
5761            // We note that this vtable entry must be made abstract.
5762            if (UNLIKELY(!super_method->IsAbstract())) {
5763              default_translations->insert(
5764                  {j, ClassLinker::MethodTranslation::CreateAbstractMethod()});
5765            }
5766            break;
5767          }
5768          case DefaultMethodSearchResult::kDefaultFound: {
5769            if (UNLIKELY(super_method->IsDefaultConflicting() ||
5770                        default_method->GetDeclaringClass() != super_method->GetDeclaringClass())) {
5771              // Found a default method implementation that is new.
5772              // TODO Refactor this add default methods to virtuals here and not in
5773              //      LinkInterfaceMethods maybe.
5774              //      The problem is default methods might override previously present
5775              //      default-method or miranda-method vtable entries from the superclass.
5776              //      Unfortunately we need these to be entries in this class's virtuals. We do not
5777              //      give these entries there until LinkInterfaceMethods so we pass this map around
5778              //      to let it know which vtable entries need to be updated.
5779              // Make a note that vtable entry j must be updated, store what it needs to be updated
5780              // to. We will allocate a virtual method slot in LinkInterfaceMethods and fix it up
5781              // then.
5782              default_translations->insert(
5783                  {j, ClassLinker::MethodTranslation::CreateTranslatedMethod(default_method)});
5784              VLOG(class_linker) << "Method " << PrettyMethod(super_method)
5785                                 << " overridden by default " << PrettyMethod(default_method)
5786                                 << " in " << PrettyClass(klass.Get());
5787            }
5788            break;
5789          }
5790        }
5791      }
5792    }
5793    size_t actual_count = super_vtable_length;
5794    // Add the non-overridden methods at the end.
5795    for (size_t i = 0; i < num_virtual_methods; ++i) {
5796      ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5797      size_t method_idx = local_method->GetMethodIndexDuringLinking();
5798      if (method_idx < super_vtable_length &&
5799          local_method == vtable->GetElementPtrSize<ArtMethod*>(method_idx, image_pointer_size_)) {
5800        continue;
5801      }
5802      vtable->SetElementPtrSize(actual_count, local_method, image_pointer_size_);
5803      local_method->SetMethodIndex(actual_count);
5804      ++actual_count;
5805    }
5806    if (!IsUint<16>(actual_count)) {
5807      ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count);
5808      return false;
5809    }
5810    // Shrink vtable if possible
5811    CHECK_LE(actual_count, max_count);
5812    if (actual_count < max_count) {
5813      vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, actual_count)));
5814      if (UNLIKELY(vtable.Get() == nullptr)) {
5815        self->AssertPendingOOMException();
5816        return false;
5817      }
5818    }
5819    klass->SetVTable(vtable.Get());
5820  } else {
5821    CHECK_EQ(klass.Get(), GetClassRoot(kJavaLangObject));
5822    if (!IsUint<16>(num_virtual_methods)) {
5823      ThrowClassFormatError(klass.Get(), "Too many methods: %d",
5824                            static_cast<int>(num_virtual_methods));
5825      return false;
5826    }
5827    auto* vtable = AllocPointerArray(self, num_virtual_methods);
5828    if (UNLIKELY(vtable == nullptr)) {
5829      self->AssertPendingOOMException();
5830      return false;
5831    }
5832    for (size_t i = 0; i < num_virtual_methods; ++i) {
5833      ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5834      vtable->SetElementPtrSize(i, virtual_method, image_pointer_size_);
5835      virtual_method->SetMethodIndex(i & 0xFFFF);
5836    }
5837    klass->SetVTable(vtable);
5838  }
5839  return true;
5840}
5841
5842// Determine if the given iface has any subinterface in the given list that declares the method
5843// specified by 'target'.
5844//
5845// Arguments
5846// - self:    The thread we are running on
5847// - target:  A comparator that will match any method that overrides the method we are checking for
5848// - iftable: The iftable we are searching for an overriding method on.
5849// - ifstart: The index of the interface we are checking to see if anything overrides
5850// - iface:   The interface we are checking to see if anything overrides.
5851// - image_pointer_size:
5852//            The image pointer size.
5853//
5854// Returns
5855// - True:  There is some method that matches the target comparator defined in an interface that
5856//          is a subtype of iface.
5857// - False: There is no method that matches the target comparator in any interface that is a subtype
5858//          of iface.
5859static bool ContainsOverridingMethodOf(Thread* self,
5860                                       MethodNameAndSignatureComparator& target,
5861                                       Handle<mirror::IfTable> iftable,
5862                                       size_t ifstart,
5863                                       Handle<mirror::Class> iface,
5864                                       size_t image_pointer_size)
5865    SHARED_REQUIRES(Locks::mutator_lock_) {
5866  DCHECK(self != nullptr);
5867  DCHECK(iface.Get() != nullptr);
5868  DCHECK(iftable.Get() != nullptr);
5869  DCHECK_GE(ifstart, 0u);
5870  DCHECK_LT(ifstart, iftable->Count());
5871  DCHECK_EQ(iface.Get(), iftable->GetInterface(ifstart));
5872  DCHECK(iface->IsInterface());
5873
5874  size_t iftable_count = iftable->Count();
5875  StackHandleScope<1> hs(self);
5876  MutableHandle<mirror::Class> current_iface(hs.NewHandle<mirror::Class>(nullptr));
5877  for (size_t k = ifstart + 1; k < iftable_count; k++) {
5878    // Skip ifstart since our current interface obviously cannot override itself.
5879    current_iface.Assign(iftable->GetInterface(k));
5880    // Iterate through every method on this interface. The order does not matter.
5881    for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(image_pointer_size)) {
5882      if (UNLIKELY(target.HasSameNameAndSignature(
5883                      current_method.GetInterfaceMethodIfProxy(image_pointer_size)))) {
5884        // Check if the i'th interface is a subtype of this one.
5885        if (iface->IsAssignableFrom(current_iface.Get())) {
5886          return true;
5887        }
5888        break;
5889      }
5890    }
5891  }
5892  return false;
5893}
5894
5895// Find the default method implementation for 'interface_method' in 'klass'. Stores it into
5896// out_default_method and returns kDefaultFound on success. If no default method was found return
5897// kAbstractFound and store nullptr into out_default_method. If an error occurs (such as a
5898// default_method conflict) it will return kDefaultConflict.
5899ClassLinker::DefaultMethodSearchResult ClassLinker::FindDefaultMethodImplementation(
5900    Thread* self,
5901    ArtMethod* target_method,
5902    Handle<mirror::Class> klass,
5903    /*out*/ArtMethod** out_default_method) const {
5904  DCHECK(self != nullptr);
5905  DCHECK(target_method != nullptr);
5906  DCHECK(out_default_method != nullptr);
5907
5908  *out_default_method = nullptr;
5909
5910  // We organize the interface table so that, for interface I any subinterfaces J follow it in the
5911  // table. This lets us walk the table backwards when searching for default methods.  The first one
5912  // we encounter is the best candidate since it is the most specific. Once we have found it we keep
5913  // track of it and then continue checking all other interfaces, since we need to throw an error if
5914  // we encounter conflicting default method implementations (one is not a subtype of the other).
5915  //
5916  // The order of unrelated interfaces does not matter and is not defined.
5917  size_t iftable_count = klass->GetIfTableCount();
5918  if (iftable_count == 0) {
5919    // No interfaces. We have already reset out to null so just return kAbstractFound.
5920    return DefaultMethodSearchResult::kAbstractFound;
5921  }
5922
5923  StackHandleScope<3> hs(self);
5924  MutableHandle<mirror::Class> chosen_iface(hs.NewHandle<mirror::Class>(nullptr));
5925  MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
5926  MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
5927  MethodNameAndSignatureComparator target_name_comparator(
5928      target_method->GetInterfaceMethodIfProxy(image_pointer_size_));
5929  // Iterates over the klass's iftable in reverse
5930  for (size_t k = iftable_count; k != 0; ) {
5931    --k;
5932
5933    DCHECK_LT(k, iftable->Count());
5934
5935    iface.Assign(iftable->GetInterface(k));
5936    // Iterate through every declared method on this interface. The order does not matter.
5937    for (auto& method_iter : iface->GetDeclaredVirtualMethods(image_pointer_size_)) {
5938      ArtMethod* current_method = &method_iter;
5939      // Skip abstract methods and methods with different names.
5940      if (current_method->IsAbstract() ||
5941          !target_name_comparator.HasSameNameAndSignature(
5942              current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
5943        continue;
5944      } else if (!current_method->IsPublic()) {
5945        // The verifier should have caught the non-public method for dex version 37. Just warn and
5946        // skip it since this is from before default-methods so we don't really need to care that it
5947        // has code.
5948        LOG(WARNING) << "Interface method " << PrettyMethod(current_method) << " is not public! "
5949                     << "This will be a fatal error in subsequent versions of android. "
5950                     << "Continuing anyway.";
5951      }
5952      if (UNLIKELY(chosen_iface.Get() != nullptr)) {
5953        // We have multiple default impls of the same method. This is a potential default conflict.
5954        // We need to check if this possibly conflicting method is either a superclass of the chosen
5955        // default implementation or is overridden by a non-default interface method. In either case
5956        // there is no conflict.
5957        if (!iface->IsAssignableFrom(chosen_iface.Get()) &&
5958            !ContainsOverridingMethodOf(self,
5959                                        target_name_comparator,
5960                                        iftable,
5961                                        k,
5962                                        iface,
5963                                        image_pointer_size_)) {
5964          VLOG(class_linker) << "Conflicting default method implementations found: "
5965                             << PrettyMethod(current_method) << " and "
5966                             << PrettyMethod(*out_default_method) << " in class "
5967                             << PrettyClass(klass.Get()) << " conflict.";
5968          *out_default_method = nullptr;
5969          return DefaultMethodSearchResult::kDefaultConflict;
5970        } else {
5971          break;  // Continue checking at the next interface.
5972        }
5973      } else {
5974        // chosen_iface == null
5975        if (!ContainsOverridingMethodOf(self,
5976                                        target_name_comparator,
5977                                        iftable,
5978                                        k,
5979                                        iface,
5980                                        image_pointer_size_)) {
5981          // Don't set this as the chosen interface if something else is overriding it (because that
5982          // other interface would be potentially chosen instead if it was default). If the other
5983          // interface was abstract then we wouldn't select this interface as chosen anyway since
5984          // the abstract method masks it.
5985          *out_default_method = current_method;
5986          chosen_iface.Assign(iface.Get());
5987          // We should now finish traversing the graph to find if we have default methods that
5988          // conflict.
5989        } else {
5990          VLOG(class_linker) << "A default method '" << PrettyMethod(current_method) << "' was "
5991                            << "skipped because it was overridden by an abstract method in a "
5992                            << "subinterface on class '" << PrettyClass(klass.Get()) << "'";
5993        }
5994      }
5995      break;
5996    }
5997  }
5998  if (*out_default_method != nullptr) {
5999    VLOG(class_linker) << "Default method '" << PrettyMethod(*out_default_method) << "' selected "
6000                       << "as the implementation for '" << PrettyMethod(target_method) << "' "
6001                       << "in '" << PrettyClass(klass.Get()) << "'";
6002    return DefaultMethodSearchResult::kDefaultFound;
6003  } else {
6004    return DefaultMethodSearchResult::kAbstractFound;
6005  }
6006}
6007
6008ArtMethod* ClassLinker::AddMethodToConflictTable(mirror::Class* klass,
6009                                                 ArtMethod* conflict_method,
6010                                                 ArtMethod* interface_method,
6011                                                 ArtMethod* method,
6012                                                 bool force_new_conflict_method) {
6013  ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*));
6014  Runtime* const runtime = Runtime::Current();
6015  LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6016  bool new_entry = conflict_method == runtime->GetImtConflictMethod() || force_new_conflict_method;
6017
6018  // Create a new entry if the existing one is the shared conflict method.
6019  ArtMethod* new_conflict_method = new_entry
6020      ? runtime->CreateImtConflictMethod(linear_alloc)
6021      : conflict_method;
6022
6023  // Allocate a new table. Note that we will leak this table at the next conflict,
6024  // but that's a tradeoff compared to making the table fixed size.
6025  void* data = linear_alloc->Alloc(
6026      Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table,
6027                                                                       image_pointer_size_));
6028  if (data == nullptr) {
6029    LOG(ERROR) << "Failed to allocate conflict table";
6030    return conflict_method;
6031  }
6032  ImtConflictTable* new_table = new (data) ImtConflictTable(current_table,
6033                                                            interface_method,
6034                                                            method,
6035                                                            image_pointer_size_);
6036
6037  // Do a fence to ensure threads see the data in the table before it is assigned
6038  // to the conflict method.
6039  // Note that there is a race in the presence of multiple threads and we may leak
6040  // memory from the LinearAlloc, but that's a tradeoff compared to using
6041  // atomic operations.
6042  QuasiAtomic::ThreadFenceRelease();
6043  new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6044  return new_conflict_method;
6045}
6046
6047void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method,
6048                            ArtMethod* imt_conflict_method,
6049                            ArtMethod* current_method,
6050                            /*out*/ArtMethod** imt_ref) {
6051  // Place method in imt if entry is empty, place conflict otherwise.
6052  if (*imt_ref == unimplemented_method) {
6053    *imt_ref = current_method;
6054  } else if (!(*imt_ref)->IsRuntimeMethod()) {
6055    // If we are not a conflict and we have the same signature and name as the imt
6056    // entry, it must be that we overwrote a superclass vtable entry.
6057    // Note that we have checked IsRuntimeMethod, as there may be multiple different
6058    // conflict methods.
6059    MethodNameAndSignatureComparator imt_comparator(
6060        (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_));
6061    if (imt_comparator.HasSameNameAndSignature(
6062          current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6063      *imt_ref = current_method;
6064    } else {
6065      *imt_ref = imt_conflict_method;
6066    }
6067  } else {
6068    // Place the default conflict method. Note that there may be an existing conflict
6069    // method in the IMT, but it could be one tailored to the super class, with a
6070    // specific ImtConflictTable.
6071    *imt_ref = imt_conflict_method;
6072  }
6073}
6074
6075void ClassLinker::FillIMTAndConflictTables(mirror::Class* klass) {
6076  DCHECK(klass->ShouldHaveEmbeddedImtAndVTable()) << PrettyClass(klass);
6077  DCHECK(!klass->IsTemp()) << PrettyClass(klass);
6078  ArtMethod* imt[mirror::Class::kImtSize];
6079  Runtime* const runtime = Runtime::Current();
6080  ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
6081  ArtMethod* const conflict_method = runtime->GetImtConflictMethod();
6082  std::fill_n(imt, arraysize(imt), unimplemented_method);
6083  if (klass->GetIfTable() != nullptr) {
6084    FillIMTFromIfTable(klass->GetIfTable(),
6085                       unimplemented_method,
6086                       conflict_method,
6087                       klass,
6088                       true,
6089                       false,
6090                       &imt[0]);
6091  }
6092  for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
6093    klass->SetEmbeddedImTableEntry(i, imt[i], image_pointer_size_);
6094  }
6095}
6096
6097static inline uint32_t GetIMTIndex(ArtMethod* interface_method)
6098    SHARED_REQUIRES(Locks::mutator_lock_) {
6099  return interface_method->GetDexMethodIndex() % mirror::Class::kImtSize;
6100}
6101
6102ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count,
6103                                                      LinearAlloc* linear_alloc,
6104                                                      size_t image_pointer_size) {
6105  void* data = linear_alloc->Alloc(Thread::Current(),
6106                                   ImtConflictTable::ComputeSize(count,
6107                                                                 image_pointer_size));
6108  return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr;
6109}
6110
6111ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) {
6112  return CreateImtConflictTable(count, linear_alloc, image_pointer_size_);
6113}
6114
6115void ClassLinker::FillIMTFromIfTable(mirror::IfTable* if_table,
6116                                     ArtMethod* unimplemented_method,
6117                                     ArtMethod* imt_conflict_method,
6118                                     mirror::Class* klass,
6119                                     bool create_conflict_tables,
6120                                     bool ignore_copied_methods,
6121                                     ArtMethod** imt) {
6122  uint32_t conflict_counts[mirror::Class::kImtSize] = {};
6123  for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6124    mirror::Class* interface = if_table->GetInterface(i);
6125    const size_t num_virtuals = interface->NumVirtualMethods();
6126    const size_t method_array_count = if_table->GetMethodArrayCount(i);
6127    // Virtual methods can be larger than the if table methods if there are default methods.
6128    DCHECK_GE(num_virtuals, method_array_count);
6129    if (kIsDebugBuild) {
6130      if (klass->IsInterface()) {
6131        DCHECK_EQ(method_array_count, 0u);
6132      } else {
6133        DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count);
6134      }
6135    }
6136    if (method_array_count == 0) {
6137      continue;
6138    }
6139    auto* method_array = if_table->GetMethodArray(i);
6140    for (size_t j = 0; j < method_array_count; ++j) {
6141      ArtMethod* implementation_method =
6142          method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6143      if (ignore_copied_methods && implementation_method->IsCopied()) {
6144        continue;
6145      }
6146      DCHECK(implementation_method != nullptr);
6147      // Miranda methods cannot be used to implement an interface method, but they are safe to put
6148      // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods
6149      // or interface methods in the IMT here they will not create extra conflicts since we compare
6150      // names and signatures in SetIMTRef.
6151      ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6152      const uint32_t imt_index = GetIMTIndex(interface_method);
6153
6154      // There is only any conflicts if all of the interface methods for an IMT slot don't have
6155      // the same implementation method, keep track of this to avoid creating a conflict table in
6156      // this case.
6157
6158      // Conflict table size for each IMT slot.
6159      ++conflict_counts[imt_index];
6160
6161      SetIMTRef(unimplemented_method,
6162                imt_conflict_method,
6163                implementation_method,
6164                /*out*/&imt[imt_index]);
6165    }
6166  }
6167
6168  if (create_conflict_tables) {
6169    // Create the conflict tables.
6170    LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6171    for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
6172      size_t conflicts = conflict_counts[i];
6173      if (imt[i] == imt_conflict_method) {
6174        ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc);
6175        if (new_table != nullptr) {
6176          ArtMethod* new_conflict_method =
6177              Runtime::Current()->CreateImtConflictMethod(linear_alloc);
6178          new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6179          imt[i] = new_conflict_method;
6180        } else {
6181          LOG(ERROR) << "Failed to allocate conflict table";
6182          imt[i] = imt_conflict_method;
6183        }
6184      } else {
6185        DCHECK_NE(imt[i], imt_conflict_method);
6186      }
6187    }
6188
6189    for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6190      mirror::Class* interface = if_table->GetInterface(i);
6191      const size_t method_array_count = if_table->GetMethodArrayCount(i);
6192      // Virtual methods can be larger than the if table methods if there are default methods.
6193      if (method_array_count == 0) {
6194        continue;
6195      }
6196      auto* method_array = if_table->GetMethodArray(i);
6197      for (size_t j = 0; j < method_array_count; ++j) {
6198        ArtMethod* implementation_method =
6199            method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6200        if (ignore_copied_methods && implementation_method->IsCopied()) {
6201          continue;
6202        }
6203        DCHECK(implementation_method != nullptr);
6204        ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6205        const uint32_t imt_index = GetIMTIndex(interface_method);
6206        if (!imt[imt_index]->IsRuntimeMethod() ||
6207            imt[imt_index] == unimplemented_method ||
6208            imt[imt_index] == imt_conflict_method) {
6209          continue;
6210        }
6211        ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_);
6212        const size_t num_entries = table->NumEntries(image_pointer_size_);
6213        table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method);
6214        table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method);
6215      }
6216    }
6217  }
6218}
6219
6220// Simple helper function that checks that no subtypes of 'val' are contained within the 'classes'
6221// set.
6222static bool NotSubinterfaceOfAny(const std::unordered_set<mirror::Class*>& classes,
6223                                 mirror::Class* val)
6224    REQUIRES(Roles::uninterruptible_)
6225    SHARED_REQUIRES(Locks::mutator_lock_) {
6226  DCHECK(val != nullptr);
6227  for (auto c : classes) {
6228    if (val->IsAssignableFrom(&*c)) {
6229      return false;
6230    }
6231  }
6232  return true;
6233}
6234
6235// Fills in and flattens the interface inheritance hierarchy.
6236//
6237// By the end of this function all interfaces in the transitive closure of to_process are added to
6238// the iftable and every interface precedes all of its sub-interfaces in this list.
6239//
6240// all I, J: Interface | I <: J implies J precedes I
6241//
6242// (note A <: B means that A is a subtype of B)
6243//
6244// This returns the total number of items in the iftable. The iftable might be resized down after
6245// this call.
6246//
6247// We order this backwards so that we do not need to reorder superclass interfaces when new
6248// interfaces are added in subclass's interface tables.
6249//
6250// Upon entry into this function iftable is a copy of the superclass's iftable with the first
6251// super_ifcount entries filled in with the transitive closure of the interfaces of the superclass.
6252// The other entries are uninitialized.  We will fill in the remaining entries in this function. The
6253// iftable must be large enough to hold all interfaces without changing its size.
6254static size_t FillIfTable(mirror::IfTable* iftable,
6255                          size_t super_ifcount,
6256                          std::vector<mirror::Class*> to_process)
6257    REQUIRES(Roles::uninterruptible_)
6258    SHARED_REQUIRES(Locks::mutator_lock_) {
6259  // This is the set of all class's already in the iftable. Used to make checking if a class has
6260  // already been added quicker.
6261  std::unordered_set<mirror::Class*> classes_in_iftable;
6262  // The first super_ifcount elements are from the superclass. We note that they are already added.
6263  for (size_t i = 0; i < super_ifcount; i++) {
6264    mirror::Class* iface = iftable->GetInterface(i);
6265    DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering.";
6266    classes_in_iftable.insert(iface);
6267  }
6268  size_t filled_ifcount = super_ifcount;
6269  for (mirror::Class* interface : to_process) {
6270    // Let us call the first filled_ifcount elements of iftable the current-iface-list.
6271    // At this point in the loop current-iface-list has the invariant that:
6272    //    for every pair of interfaces I,J within it:
6273    //      if index_of(I) < index_of(J) then I is not a subtype of J
6274
6275    // If we have already seen this element then all of its super-interfaces must already be in the
6276    // current-iface-list so we can skip adding it.
6277    if (!ContainsElement(classes_in_iftable, interface)) {
6278      // We haven't seen this interface so add all of its super-interfaces onto the
6279      // current-iface-list, skipping those already on it.
6280      int32_t ifcount = interface->GetIfTableCount();
6281      for (int32_t j = 0; j < ifcount; j++) {
6282        mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j);
6283        if (!ContainsElement(classes_in_iftable, super_interface)) {
6284          DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering.";
6285          classes_in_iftable.insert(super_interface);
6286          iftable->SetInterface(filled_ifcount, super_interface);
6287          filled_ifcount++;
6288        }
6289      }
6290      DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering";
6291      // Place this interface onto the current-iface-list after all of its super-interfaces.
6292      classes_in_iftable.insert(interface);
6293      iftable->SetInterface(filled_ifcount, interface);
6294      filled_ifcount++;
6295    } else if (kIsDebugBuild) {
6296      // Check all super-interfaces are already in the list.
6297      int32_t ifcount = interface->GetIfTableCount();
6298      for (int32_t j = 0; j < ifcount; j++) {
6299        mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j);
6300        DCHECK(ContainsElement(classes_in_iftable, super_interface))
6301            << "Iftable does not contain " << PrettyClass(super_interface)
6302            << ", a superinterface of " << PrettyClass(interface);
6303      }
6304    }
6305  }
6306  if (kIsDebugBuild) {
6307    // Check that the iftable is ordered correctly.
6308    for (size_t i = 0; i < filled_ifcount; i++) {
6309      mirror::Class* if_a = iftable->GetInterface(i);
6310      for (size_t j = i + 1; j < filled_ifcount; j++) {
6311        mirror::Class* if_b = iftable->GetInterface(j);
6312        // !(if_a <: if_b)
6313        CHECK(!if_b->IsAssignableFrom(if_a))
6314            << "Bad interface order: " << PrettyClass(if_a) << " (index " << i << ") extends "
6315            << PrettyClass(if_b) << " (index " << j << ") and so should be after it in the "
6316            << "interface list.";
6317      }
6318    }
6319  }
6320  return filled_ifcount;
6321}
6322
6323bool ClassLinker::SetupInterfaceLookupTable(Thread* self, Handle<mirror::Class> klass,
6324                                            Handle<mirror::ObjectArray<mirror::Class>> interfaces) {
6325  StackHandleScope<1> hs(self);
6326  const size_t super_ifcount =
6327      klass->HasSuperClass() ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6328  const bool have_interfaces = interfaces.Get() != nullptr;
6329  const size_t num_interfaces =
6330      have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces();
6331  if (num_interfaces == 0) {
6332    if (super_ifcount == 0) {
6333      // Class implements no interfaces.
6334      DCHECK_EQ(klass->GetIfTableCount(), 0);
6335      DCHECK(klass->GetIfTable() == nullptr);
6336      return true;
6337    }
6338    // Class implements same interfaces as parent, are any of these not marker interfaces?
6339    bool has_non_marker_interface = false;
6340    mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
6341    for (size_t i = 0; i < super_ifcount; ++i) {
6342      if (super_iftable->GetMethodArrayCount(i) > 0) {
6343        has_non_marker_interface = true;
6344        break;
6345      }
6346    }
6347    // Class just inherits marker interfaces from parent so recycle parent's iftable.
6348    if (!has_non_marker_interface) {
6349      klass->SetIfTable(super_iftable);
6350      return true;
6351    }
6352  }
6353  size_t ifcount = super_ifcount + num_interfaces;
6354  // Check that every class being implemented is an interface.
6355  for (size_t i = 0; i < num_interfaces; i++) {
6356    mirror::Class* interface = have_interfaces
6357        ? interfaces->GetWithoutChecks(i)
6358        : mirror::Class::GetDirectInterface(self, klass, i);
6359    DCHECK(interface != nullptr);
6360    if (UNLIKELY(!interface->IsInterface())) {
6361      std::string temp;
6362      ThrowIncompatibleClassChangeError(klass.Get(),
6363                                        "Class %s implements non-interface class %s",
6364                                        PrettyDescriptor(klass.Get()).c_str(),
6365                                        PrettyDescriptor(interface->GetDescriptor(&temp)).c_str());
6366      return false;
6367    }
6368    ifcount += interface->GetIfTableCount();
6369  }
6370  // Create the interface function table.
6371  MutableHandle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount)));
6372  if (UNLIKELY(iftable.Get() == nullptr)) {
6373    self->AssertPendingOOMException();
6374    return false;
6375  }
6376  // Fill in table with superclass's iftable.
6377  if (super_ifcount != 0) {
6378    mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
6379    for (size_t i = 0; i < super_ifcount; i++) {
6380      mirror::Class* super_interface = super_iftable->GetInterface(i);
6381      iftable->SetInterface(i, super_interface);
6382    }
6383  }
6384
6385  // Note that AllowThreadSuspension is to thread suspension as pthread_testcancel is to pthread
6386  // cancellation. That is it will suspend if one has a pending suspend request but otherwise
6387  // doesn't really do anything.
6388  self->AllowThreadSuspension();
6389
6390  size_t new_ifcount;
6391  {
6392    ScopedAssertNoThreadSuspension nts(self, "Copying mirror::Class*'s for FillIfTable");
6393    std::vector<mirror::Class*> to_add;
6394    for (size_t i = 0; i < num_interfaces; i++) {
6395      mirror::Class* interface = have_interfaces ? interfaces->Get(i) :
6396          mirror::Class::GetDirectInterface(self, klass, i);
6397      to_add.push_back(interface);
6398    }
6399
6400    new_ifcount = FillIfTable(iftable.Get(), super_ifcount, std::move(to_add));
6401  }
6402
6403  self->AllowThreadSuspension();
6404
6405  // Shrink iftable in case duplicates were found
6406  if (new_ifcount < ifcount) {
6407    DCHECK_NE(num_interfaces, 0U);
6408    iftable.Assign(down_cast<mirror::IfTable*>(
6409        iftable->CopyOf(self, new_ifcount * mirror::IfTable::kMax)));
6410    if (UNLIKELY(iftable.Get() == nullptr)) {
6411      self->AssertPendingOOMException();
6412      return false;
6413    }
6414    ifcount = new_ifcount;
6415  } else {
6416    DCHECK_EQ(new_ifcount, ifcount);
6417  }
6418  klass->SetIfTable(iftable.Get());
6419  return true;
6420}
6421
6422// Finds the method with a name/signature that matches cmp in the given list of methods. The list of
6423// methods must be unique.
6424static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp,
6425                                           const ScopedArenaVector<ArtMethod*>& list)
6426    SHARED_REQUIRES(Locks::mutator_lock_) {
6427  for (ArtMethod* method : list) {
6428    if (cmp.HasSameNameAndSignature(method)) {
6429      return method;
6430    }
6431  }
6432  return nullptr;
6433}
6434
6435static void SanityCheckVTable(Handle<mirror::Class> klass, uint32_t pointer_size)
6436    SHARED_REQUIRES(Locks::mutator_lock_) {
6437  mirror::PointerArray* check_vtable = klass->GetVTableDuringLinking();
6438  mirror::Class* superclass = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr;
6439  int32_t super_vtable_length = (superclass != nullptr) ? superclass->GetVTableLength() : 0;
6440  for (int32_t i = 0; i < check_vtable->GetLength(); ++i) {
6441    ArtMethod* m = check_vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
6442    CHECK(m != nullptr);
6443
6444    ArraySlice<ArtMethod> virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size);
6445    auto is_same_method = [m] (const ArtMethod& meth) {
6446      return &meth == m;
6447    };
6448    CHECK((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) ||
6449          std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end())
6450        << "While linking class '" << PrettyClass(klass.Get()) << "' unable to find owning class "
6451        << "of '" << PrettyMethod(m) << "' (vtable index: " << i << ").";
6452  }
6453}
6454
6455void ClassLinker::FillImtFromSuperClass(Handle<mirror::Class> klass,
6456                                        ArtMethod* unimplemented_method,
6457                                        ArtMethod* imt_conflict_method,
6458                                        ArtMethod** imt) {
6459  DCHECK(klass->HasSuperClass());
6460  mirror::Class* super_class = klass->GetSuperClass();
6461  if (super_class->ShouldHaveEmbeddedImtAndVTable()) {
6462    for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
6463      imt[i] = super_class->GetEmbeddedImTableEntry(i, image_pointer_size_);
6464    }
6465  } else {
6466    // No imt in the super class, need to reconstruct from the iftable.
6467    mirror::IfTable* if_table = super_class->GetIfTable();
6468    if (if_table != nullptr) {
6469      // Ignore copied methods since we will handle these in LinkInterfaceMethods.
6470      FillIMTFromIfTable(if_table,
6471                         unimplemented_method,
6472                         imt_conflict_method,
6473                         klass.Get(),
6474                         /*create_conflict_table*/false,
6475                         /*ignore_copied_methods*/true,
6476                         /*out*/imt);
6477    }
6478  }
6479}
6480
6481// TODO This method needs to be split up into several smaller methods.
6482bool ClassLinker::LinkInterfaceMethods(
6483    Thread* self,
6484    Handle<mirror::Class> klass,
6485    const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations,
6486    ArtMethod** out_imt) {
6487  StackHandleScope<3> hs(self);
6488  Runtime* const runtime = Runtime::Current();
6489
6490  const bool is_interface = klass->IsInterface();
6491  const bool has_superclass = klass->HasSuperClass();
6492  const bool fill_tables = !is_interface;
6493  const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6494  const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
6495  const size_t method_size = ArtMethod::Size(image_pointer_size_);
6496  const size_t ifcount = klass->GetIfTableCount();
6497
6498  MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
6499
6500  // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create
6501  // the virtual methods array.
6502  // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array
6503  // during cross compilation.
6504  // Use the linear alloc pool since this one is in the low 4gb for the compiler.
6505  ArenaStack stack(runtime->GetLinearAlloc()->GetArenaPool());
6506  ScopedArenaAllocator allocator(&stack);
6507
6508  ScopedArenaVector<ArtMethod*> default_conflict_methods(allocator.Adapter());
6509  ScopedArenaVector<ArtMethod*> miranda_methods(allocator.Adapter());
6510  ScopedArenaVector<ArtMethod*> default_methods(allocator.Adapter());
6511
6512  MutableHandle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
6513  ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
6514  ArtMethod* const imt_conflict_method = runtime->GetImtConflictMethod();
6515  // Copy the IMT from the super class if possible.
6516  const bool extend_super_iftable = has_superclass;
6517  if (has_superclass && fill_tables) {
6518    FillImtFromSuperClass(klass,
6519                          unimplemented_method,
6520                          imt_conflict_method,
6521                          out_imt);
6522  }
6523  // Allocate method arrays before since we don't want miss visiting miranda method roots due to
6524  // thread suspension.
6525  if (fill_tables) {
6526    for (size_t i = 0; i < ifcount; ++i) {
6527      size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
6528      if (num_methods > 0) {
6529        const bool is_super = i < super_ifcount;
6530        // This is an interface implemented by a super-class. Therefore we can just copy the method
6531        // array from the superclass.
6532        const bool super_interface = is_super && extend_super_iftable;
6533        mirror::PointerArray* method_array;
6534        if (super_interface) {
6535          mirror::IfTable* if_table = klass->GetSuperClass()->GetIfTable();
6536          DCHECK(if_table != nullptr);
6537          DCHECK(if_table->GetMethodArray(i) != nullptr);
6538          // If we are working on a super interface, try extending the existing method array.
6539          method_array = down_cast<mirror::PointerArray*>(if_table->GetMethodArray(i)->Clone(self));
6540        } else {
6541          method_array = AllocPointerArray(self, num_methods);
6542        }
6543        if (UNLIKELY(method_array == nullptr)) {
6544          self->AssertPendingOOMException();
6545          return false;
6546        }
6547        iftable->SetMethodArray(i, method_array);
6548      }
6549    }
6550  }
6551
6552  auto* old_cause = self->StartAssertNoThreadSuspension(
6553      "Copying ArtMethods for LinkInterfaceMethods");
6554  // Going in reverse to ensure that we will hit abstract methods that override defaults before the
6555  // defaults. This means we don't need to do any trickery when creating the Miranda methods, since
6556  // they will already be null. This has the additional benefit that the declarer of a miranda
6557  // method will actually declare an abstract method.
6558  for (size_t i = ifcount; i != 0; ) {
6559    --i;
6560
6561    DCHECK_GE(i, 0u);
6562    DCHECK_LT(i, ifcount);
6563
6564    size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
6565    if (num_methods > 0) {
6566      StackHandleScope<2> hs2(self);
6567      const bool is_super = i < super_ifcount;
6568      const bool super_interface = is_super && extend_super_iftable;
6569      // We don't actually create or fill these tables for interfaces, we just copy some methods for
6570      // conflict methods. Just set this as nullptr in those cases.
6571      Handle<mirror::PointerArray> method_array(fill_tables
6572                                                ? hs2.NewHandle(iftable->GetMethodArray(i))
6573                                                : hs2.NewHandle<mirror::PointerArray>(nullptr));
6574
6575      ArraySlice<ArtMethod> input_virtual_methods;
6576      ScopedNullHandle<mirror::PointerArray> null_handle;
6577      Handle<mirror::PointerArray> input_vtable_array(null_handle);
6578      int32_t input_array_length = 0;
6579
6580      // TODO Cleanup Needed: In the presence of default methods this optimization is rather dirty
6581      //      and confusing. Default methods should always look through all the superclasses
6582      //      because they are the last choice of an implementation. We get around this by looking
6583      //      at the super-classes iftable methods (copied into method_array previously) when we are
6584      //      looking for the implementation of a super-interface method but that is rather dirty.
6585      bool using_virtuals;
6586      if (super_interface || is_interface) {
6587        // If we are overwriting a super class interface, try to only virtual methods instead of the
6588        // whole vtable.
6589        using_virtuals = true;
6590        input_virtual_methods = klass->GetDeclaredMethodsSlice(image_pointer_size_);
6591        input_array_length = input_virtual_methods.size();
6592      } else {
6593        // For a new interface, however, we need the whole vtable in case a new
6594        // interface method is implemented in the whole superclass.
6595        using_virtuals = false;
6596        DCHECK(vtable.Get() != nullptr);
6597        input_vtable_array = vtable;
6598        input_array_length = input_vtable_array->GetLength();
6599      }
6600
6601      // For each method in interface
6602      for (size_t j = 0; j < num_methods; ++j) {
6603        auto* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j, image_pointer_size_);
6604        MethodNameAndSignatureComparator interface_name_comparator(
6605            interface_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6606        uint32_t imt_index = GetIMTIndex(interface_method);
6607        ArtMethod** imt_ptr = &out_imt[imt_index];
6608        // For each method listed in the interface's method list, find the
6609        // matching method in our class's method list.  We want to favor the
6610        // subclass over the superclass, which just requires walking
6611        // back from the end of the vtable.  (This only matters if the
6612        // superclass defines a private method and this class redefines
6613        // it -- otherwise it would use the same vtable slot.  In .dex files
6614        // those don't end up in the virtual method table, so it shouldn't
6615        // matter which direction we go.  We walk it backward anyway.)
6616        //
6617        // To find defaults we need to do the same but also go over interfaces.
6618        bool found_impl = false;
6619        ArtMethod* vtable_impl = nullptr;
6620        for (int32_t k = input_array_length - 1; k >= 0; --k) {
6621          ArtMethod* vtable_method = using_virtuals ?
6622              &input_virtual_methods[k] :
6623              input_vtable_array->GetElementPtrSize<ArtMethod*>(k, image_pointer_size_);
6624          ArtMethod* vtable_method_for_name_comparison =
6625              vtable_method->GetInterfaceMethodIfProxy(image_pointer_size_);
6626          if (interface_name_comparator.HasSameNameAndSignature(
6627              vtable_method_for_name_comparison)) {
6628            if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) {
6629              // Must do EndAssertNoThreadSuspension before throw since the throw can cause
6630              // allocations.
6631              self->EndAssertNoThreadSuspension(old_cause);
6632              ThrowIllegalAccessError(klass.Get(),
6633                  "Method '%s' implementing interface method '%s' is not public",
6634                  PrettyMethod(vtable_method).c_str(), PrettyMethod(interface_method).c_str());
6635              return false;
6636            } else if (UNLIKELY(vtable_method->IsOverridableByDefaultMethod())) {
6637              // We might have a newer, better, default method for this, so we just skip it. If we
6638              // are still using this we will select it again when scanning for default methods. To
6639              // obviate the need to copy the method again we will make a note that we already found
6640              // a default here.
6641              // TODO This should be much cleaner.
6642              vtable_impl = vtable_method;
6643              break;
6644            } else {
6645              found_impl = true;
6646              if (LIKELY(fill_tables)) {
6647                method_array->SetElementPtrSize(j, vtable_method, image_pointer_size_);
6648                // Place method in imt if entry is empty, place conflict otherwise.
6649                SetIMTRef(unimplemented_method,
6650                          imt_conflict_method,
6651                          vtable_method,
6652                          /*out*/imt_ptr);
6653              }
6654              break;
6655            }
6656          }
6657        }
6658        // Continue on to the next method if we are done.
6659        if (LIKELY(found_impl)) {
6660          continue;
6661        } else if (LIKELY(super_interface)) {
6662          // Don't look for a default implementation when the super-method is implemented directly
6663          // by the class.
6664          //
6665          // See if we can use the superclasses method and skip searching everything else.
6666          // Note: !found_impl && super_interface
6667          CHECK(extend_super_iftable);
6668          // If this is a super_interface method it is possible we shouldn't override it because a
6669          // superclass could have implemented it directly.  We get the method the superclass used
6670          // to implement this to know if we can override it with a default method. Doing this is
6671          // safe since we know that the super_iftable is filled in so we can simply pull it from
6672          // there. We don't bother if this is not a super-classes interface since in that case we
6673          // have scanned the entire vtable anyway and would have found it.
6674          // TODO This is rather dirty but it is faster than searching through the entire vtable
6675          //      every time.
6676          ArtMethod* supers_method =
6677              method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6678          DCHECK(supers_method != nullptr);
6679          DCHECK(interface_name_comparator.HasSameNameAndSignature(supers_method));
6680          if (LIKELY(!supers_method->IsOverridableByDefaultMethod())) {
6681            // The method is not overridable by a default method (i.e. it is directly implemented
6682            // in some class). Therefore move onto the next interface method.
6683            continue;
6684          } else {
6685            // If the super-classes method is override-able by a default method we need to keep
6686            // track of it since though it is override-able it is not guaranteed to be 'overridden'.
6687            // If it turns out not to be overridden and we did not keep track of it we might add it
6688            // to the vtable twice, causing corruption in this class and possibly any subclasses.
6689            DCHECK(vtable_impl == nullptr || vtable_impl == supers_method)
6690                << "vtable_impl was " << PrettyMethod(vtable_impl) << " and not 'nullptr' or "
6691                << PrettyMethod(supers_method) << " as expected. IFTable appears to be corrupt!";
6692            vtable_impl = supers_method;
6693          }
6694        }
6695        // If we haven't found it yet we should search through the interfaces for default methods.
6696        ArtMethod* current_method = nullptr;
6697        switch (FindDefaultMethodImplementation(self,
6698                                                interface_method,
6699                                                klass,
6700                                                /*out*/&current_method)) {
6701          case DefaultMethodSearchResult::kDefaultConflict: {
6702            // Default method conflict.
6703            DCHECK(current_method == nullptr);
6704            ArtMethod* default_conflict_method = nullptr;
6705            if (vtable_impl != nullptr && vtable_impl->IsDefaultConflicting()) {
6706              // We can reuse the method from the superclass, don't bother adding it to virtuals.
6707              default_conflict_method = vtable_impl;
6708            } else {
6709              // See if we already have a conflict method for this method.
6710              ArtMethod* preexisting_conflict = FindSameNameAndSignature(interface_name_comparator,
6711                                                                         default_conflict_methods);
6712              if (LIKELY(preexisting_conflict != nullptr)) {
6713                // We already have another conflict we can reuse.
6714                default_conflict_method = preexisting_conflict;
6715              } else {
6716                // Note that we do this even if we are an interface since we need to create this and
6717                // cannot reuse another classes.
6718                // Create a new conflict method for this to use.
6719                default_conflict_method =
6720                    reinterpret_cast<ArtMethod*>(allocator.Alloc(method_size));
6721                new(default_conflict_method) ArtMethod(interface_method, image_pointer_size_);
6722                default_conflict_methods.push_back(default_conflict_method);
6723              }
6724            }
6725            current_method = default_conflict_method;
6726            break;
6727          }  // case kDefaultConflict
6728          case DefaultMethodSearchResult::kDefaultFound: {
6729            DCHECK(current_method != nullptr);
6730            // Found a default method.
6731            if (vtable_impl != nullptr &&
6732                current_method->GetDeclaringClass() == vtable_impl->GetDeclaringClass()) {
6733              // We found a default method but it was the same one we already have from our
6734              // superclass. Don't bother adding it to our vtable again.
6735              current_method = vtable_impl;
6736            } else if (LIKELY(fill_tables)) {
6737              // Interfaces don't need to copy default methods since they don't have vtables.
6738              // Only record this default method if it is new to save space.
6739              // TODO It might be worthwhile to copy default methods on interfaces anyway since it
6740              //      would make lookup for interface super much faster. (We would only need to scan
6741              //      the iftable to find if there is a NSME or AME.)
6742              ArtMethod* old = FindSameNameAndSignature(interface_name_comparator, default_methods);
6743              if (old == nullptr) {
6744                // We found a default method implementation and there were no conflicts.
6745                // Save the default method. We need to add it to the vtable.
6746                default_methods.push_back(current_method);
6747              } else {
6748                CHECK(old == current_method) << "Multiple default implementations selected!";
6749              }
6750            }
6751            break;
6752          }  // case kDefaultFound
6753          case DefaultMethodSearchResult::kAbstractFound: {
6754            DCHECK(current_method == nullptr);
6755            // Abstract method masks all defaults.
6756            if (vtable_impl != nullptr &&
6757                vtable_impl->IsAbstract() &&
6758                !vtable_impl->IsDefaultConflicting()) {
6759              // We need to make this an abstract method but the version in the vtable already is so
6760              // don't do anything.
6761              current_method = vtable_impl;
6762            }
6763            break;
6764          }  // case kAbstractFound
6765        }
6766        if (LIKELY(fill_tables)) {
6767          if (current_method == nullptr && !super_interface) {
6768            // We could not find an implementation for this method and since it is a brand new
6769            // interface we searched the entire vtable (and all default methods) for an
6770            // implementation but couldn't find one. We therefore need to make a miranda method.
6771            //
6772            // Find out if there is already a miranda method we can use.
6773            ArtMethod* miranda_method = FindSameNameAndSignature(interface_name_comparator,
6774                                                                 miranda_methods);
6775            if (miranda_method == nullptr) {
6776              DCHECK(interface_method->IsAbstract()) << PrettyMethod(interface_method);
6777              miranda_method = reinterpret_cast<ArtMethod*>(allocator.Alloc(method_size));
6778              CHECK(miranda_method != nullptr);
6779              // Point the interface table at a phantom slot.
6780              new(miranda_method) ArtMethod(interface_method, image_pointer_size_);
6781              miranda_methods.push_back(miranda_method);
6782            }
6783            current_method = miranda_method;
6784          }
6785
6786          if (current_method != nullptr) {
6787            // We found a default method implementation. Record it in the iftable and IMT.
6788            method_array->SetElementPtrSize(j, current_method, image_pointer_size_);
6789            SetIMTRef(unimplemented_method,
6790                      imt_conflict_method,
6791                      current_method,
6792                      /*out*/imt_ptr);
6793          }
6794        }
6795      }  // For each method in interface end.
6796    }  // if (num_methods > 0)
6797  }  // For each interface.
6798  const bool has_new_virtuals = !(miranda_methods.empty() &&
6799                                  default_methods.empty() &&
6800                                  default_conflict_methods.empty());
6801  // TODO don't extend virtuals of interface unless necessary (when is it?).
6802  if (has_new_virtuals) {
6803    DCHECK(!is_interface || (default_methods.empty() && miranda_methods.empty()))
6804        << "Interfaces should only have default-conflict methods appended to them.";
6805    VLOG(class_linker) << PrettyClass(klass.Get()) << ": miranda_methods=" << miranda_methods.size()
6806                       << " default_methods=" << default_methods.size()
6807                       << " default_conflict_methods=" << default_conflict_methods.size();
6808    const size_t old_method_count = klass->NumMethods();
6809    const size_t new_method_count = old_method_count +
6810                                    miranda_methods.size() +
6811                                    default_methods.size() +
6812                                    default_conflict_methods.size();
6813    // Attempt to realloc to save RAM if possible.
6814    LengthPrefixedArray<ArtMethod>* old_methods = klass->GetMethodsPtr();
6815    // The Realloced virtual methods aren't visible from the class roots, so there is no issue
6816    // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the
6817    // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since
6818    // CopyFrom has internal read barriers.
6819    //
6820    // TODO We should maybe move some of this into mirror::Class or at least into another method.
6821    const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_method_count,
6822                                                                        method_size,
6823                                                                        method_alignment);
6824    const size_t new_size = LengthPrefixedArray<ArtMethod>::ComputeSize(new_method_count,
6825                                                                        method_size,
6826                                                                        method_alignment);
6827    const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0;
6828    auto* methods = reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(
6829        runtime->GetLinearAlloc()->Realloc(self, old_methods, old_methods_ptr_size, new_size));
6830    if (UNLIKELY(methods == nullptr)) {
6831      self->AssertPendingOOMException();
6832      self->EndAssertNoThreadSuspension(old_cause);
6833      return false;
6834    }
6835    ScopedArenaUnorderedMap<ArtMethod*, ArtMethod*> move_table(allocator.Adapter());
6836    if (methods != old_methods) {
6837      // Maps from heap allocated miranda method to linear alloc miranda method.
6838      StrideIterator<ArtMethod> out = methods->begin(method_size, method_alignment);
6839      // Copy over the old methods.
6840      for (auto& m : klass->GetMethods(image_pointer_size_)) {
6841        move_table.emplace(&m, &*out);
6842        // The CopyFrom is only necessary to not miss read barriers since Realloc won't do read
6843        // barriers when it copies.
6844        out->CopyFrom(&m, image_pointer_size_);
6845        ++out;
6846      }
6847    }
6848    StrideIterator<ArtMethod> out(methods->begin(method_size, method_alignment) + old_method_count);
6849    // Copy over miranda methods before copying vtable since CopyOf may cause thread suspension and
6850    // we want the roots of the miranda methods to get visited.
6851    for (ArtMethod* mir_method : miranda_methods) {
6852      ArtMethod& new_method = *out;
6853      new_method.CopyFrom(mir_method, image_pointer_size_);
6854      new_method.SetAccessFlags(new_method.GetAccessFlags() | kAccMiranda | kAccCopied);
6855      DCHECK_NE(new_method.GetAccessFlags() & kAccAbstract, 0u)
6856          << "Miranda method should be abstract!";
6857      move_table.emplace(mir_method, &new_method);
6858      ++out;
6859    }
6860    // We need to copy the default methods into our own method table since the runtime requires that
6861    // every method on a class's vtable be in that respective class's virtual method table.
6862    // NOTE This means that two classes might have the same implementation of a method from the same
6863    // interface but will have different ArtMethod*s for them. This also means we cannot compare a
6864    // default method found on a class with one found on the declaring interface directly and must
6865    // look at the declaring class to determine if they are the same.
6866    for (ArtMethod* def_method : default_methods) {
6867      ArtMethod& new_method = *out;
6868      new_method.CopyFrom(def_method, image_pointer_size_);
6869      // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been verified
6870      // yet it shouldn't have methods that are skipping access checks.
6871      // TODO This is rather arbitrary. We should maybe support classes where only some of its
6872      // methods are skip_access_checks.
6873      constexpr uint32_t kSetFlags = kAccDefault | kAccCopied;
6874      constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks;
6875      new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
6876      move_table.emplace(def_method, &new_method);
6877      ++out;
6878    }
6879    for (ArtMethod* conf_method : default_conflict_methods) {
6880      ArtMethod& new_method = *out;
6881      new_method.CopyFrom(conf_method, image_pointer_size_);
6882      // This is a type of default method (there are default method impls, just a conflict) so mark
6883      // this as a default, non-abstract method, since thats what it is. Also clear the
6884      // kAccSkipAccessChecks bit since this class hasn't been verified yet it shouldn't have
6885      // methods that are skipping access checks.
6886      constexpr uint32_t kSetFlags = kAccDefault | kAccDefaultConflict | kAccCopied;
6887      constexpr uint32_t kMaskFlags = ~(kAccAbstract | kAccSkipAccessChecks);
6888      new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
6889      DCHECK(new_method.IsDefaultConflicting());
6890      // The actual method might or might not be marked abstract since we just copied it from a
6891      // (possibly default) interface method. We need to set it entry point to be the bridge so that
6892      // the compiler will not invoke the implementation of whatever method we copied from.
6893      EnsureThrowsInvocationError(&new_method);
6894      move_table.emplace(conf_method, &new_method);
6895      ++out;
6896    }
6897    methods->SetSize(new_method_count);
6898    UpdateClassMethods(klass.Get(), methods);
6899    // Done copying methods, they are all roots in the class now, so we can end the no thread
6900    // suspension assert.
6901    self->EndAssertNoThreadSuspension(old_cause);
6902
6903    if (fill_tables) {
6904      // Update the vtable to the new method structures. We can skip this for interfaces since they
6905      // do not have vtables.
6906      const size_t old_vtable_count = vtable->GetLength();
6907      const size_t new_vtable_count = old_vtable_count +
6908                                      miranda_methods.size() +
6909                                      default_methods.size() +
6910                                      default_conflict_methods.size();
6911      vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, new_vtable_count)));
6912      if (UNLIKELY(vtable.Get() == nullptr)) {
6913        self->AssertPendingOOMException();
6914        return false;
6915      }
6916      out = methods->begin(method_size, method_alignment) + old_method_count;
6917      size_t vtable_pos = old_vtable_count;
6918      // Update all the newly copied method's indexes so they denote their placement in the vtable.
6919      for (size_t i = old_method_count; i < new_method_count; ++i) {
6920        // Leave the declaring class alone the method's dex_code_item_offset_ and dex_method_index_
6921        // fields are references into the dex file the method was defined in. Since the ArtMethod
6922        // does not store that information it uses declaring_class_->dex_cache_.
6923        out->SetMethodIndex(0xFFFF & vtable_pos);
6924        vtable->SetElementPtrSize(vtable_pos, &*out, image_pointer_size_);
6925        ++out;
6926        ++vtable_pos;
6927      }
6928      CHECK_EQ(vtable_pos, new_vtable_count);
6929      // Update old vtable methods. We use the default_translations map to figure out what each
6930      // vtable entry should be updated to, if they need to be at all.
6931      for (size_t i = 0; i < old_vtable_count; ++i) {
6932        ArtMethod* translated_method = vtable->GetElementPtrSize<ArtMethod*>(
6933              i, image_pointer_size_);
6934        // Try and find what we need to change this method to.
6935        auto translation_it = default_translations.find(i);
6936        bool found_translation = false;
6937        if (translation_it != default_translations.end()) {
6938          if (translation_it->second.IsInConflict()) {
6939            // Find which conflict method we are to use for this method.
6940            MethodNameAndSignatureComparator old_method_comparator(
6941                translated_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6942            ArtMethod* new_conflict_method = FindSameNameAndSignature(old_method_comparator,
6943                                                                      default_conflict_methods);
6944            CHECK(new_conflict_method != nullptr) << "Expected a conflict method!";
6945            translated_method = new_conflict_method;
6946          } else if (translation_it->second.IsAbstract()) {
6947            // Find which miranda method we are to use for this method.
6948            MethodNameAndSignatureComparator old_method_comparator(
6949                translated_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6950            ArtMethod* miranda_method = FindSameNameAndSignature(old_method_comparator,
6951                                                                miranda_methods);
6952            DCHECK(miranda_method != nullptr);
6953            translated_method = miranda_method;
6954          } else {
6955            // Normal default method (changed from an older default or abstract interface method).
6956            DCHECK(translation_it->second.IsTranslation());
6957            translated_method = translation_it->second.GetTranslation();
6958          }
6959          found_translation = true;
6960        }
6961        DCHECK(translated_method != nullptr);
6962        auto it = move_table.find(translated_method);
6963        if (it != move_table.end()) {
6964          auto* new_method = it->second;
6965          DCHECK(new_method != nullptr);
6966          vtable->SetElementPtrSize(i, new_method, image_pointer_size_);
6967        } else {
6968          // If it was not going to be updated we wouldn't have put it into the default_translations
6969          // map.
6970          CHECK(!found_translation) << "We were asked to update this vtable entry. Must not fail.";
6971        }
6972      }
6973      klass->SetVTable(vtable.Get());
6974
6975      // Go fix up all the stale iftable pointers.
6976      for (size_t i = 0; i < ifcount; ++i) {
6977        for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) {
6978          auto* method_array = iftable->GetMethodArray(i);
6979          auto* m = method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6980          DCHECK(m != nullptr) << PrettyClass(klass.Get());
6981          auto it = move_table.find(m);
6982          if (it != move_table.end()) {
6983            auto* new_m = it->second;
6984            DCHECK(new_m != nullptr) << PrettyClass(klass.Get());
6985            method_array->SetElementPtrSize(j, new_m, image_pointer_size_);
6986          }
6987        }
6988      }
6989
6990      // Fix up IMT next
6991      for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
6992        auto it = move_table.find(out_imt[i]);
6993        if (it != move_table.end()) {
6994          out_imt[i] = it->second;
6995        }
6996      }
6997    }
6998
6999    // Check that there are no stale methods are in the dex cache array.
7000    if (kIsDebugBuild) {
7001      auto* resolved_methods = klass->GetDexCache()->GetResolvedMethods();
7002      for (size_t i = 0, count = klass->GetDexCache()->NumResolvedMethods(); i < count; ++i) {
7003        auto* m = mirror::DexCache::GetElementPtrSize(resolved_methods, i, image_pointer_size_);
7004        CHECK(move_table.find(m) == move_table.end() ||
7005              // The original versions of copied methods will still be present so allow those too.
7006              // Note that if the first check passes this might fail to GetDeclaringClass().
7007              std::find_if(m->GetDeclaringClass()->GetMethods(image_pointer_size_).begin(),
7008                           m->GetDeclaringClass()->GetMethods(image_pointer_size_).end(),
7009                           [m] (ArtMethod& meth) {
7010                             return &meth == m;
7011                           }) != m->GetDeclaringClass()->GetMethods(image_pointer_size_).end())
7012            << "Obsolete methods " << PrettyMethod(m) << " is in dex cache!";
7013      }
7014    }
7015    // Put some random garbage in old methods to help find stale pointers.
7016    if (methods != old_methods && old_methods != nullptr && kIsDebugBuild) {
7017      // Need to make sure the GC is not running since it could be scanning the methods we are
7018      // about to overwrite.
7019      ScopedThreadStateChange tsc(self, kSuspended);
7020      gc::ScopedGCCriticalSection gcs(self,
7021                                      gc::kGcCauseClassLinker,
7022                                      gc::kCollectorTypeClassLinker);
7023      memset(old_methods, 0xFEu, old_size);
7024    }
7025  } else {
7026    self->EndAssertNoThreadSuspension(old_cause);
7027  }
7028  if (kIsDebugBuild && !is_interface) {
7029    SanityCheckVTable(klass, image_pointer_size_);
7030  }
7031  return true;
7032}
7033
7034bool ClassLinker::LinkInstanceFields(Thread* self, Handle<mirror::Class> klass) {
7035  CHECK(klass.Get() != nullptr);
7036  return LinkFields(self, klass, false, nullptr);
7037}
7038
7039bool ClassLinker::LinkStaticFields(Thread* self, Handle<mirror::Class> klass, size_t* class_size) {
7040  CHECK(klass.Get() != nullptr);
7041  return LinkFields(self, klass, true, class_size);
7042}
7043
7044struct LinkFieldsComparator {
7045  explicit LinkFieldsComparator() SHARED_REQUIRES(Locks::mutator_lock_) {
7046  }
7047  // No thread safety analysis as will be called from STL. Checked lock held in constructor.
7048  bool operator()(ArtField* field1, ArtField* field2)
7049      NO_THREAD_SAFETY_ANALYSIS {
7050    // First come reference fields, then 64-bit, then 32-bit, and then 16-bit, then finally 8-bit.
7051    Primitive::Type type1 = field1->GetTypeAsPrimitiveType();
7052    Primitive::Type type2 = field2->GetTypeAsPrimitiveType();
7053    if (type1 != type2) {
7054      if (type1 == Primitive::kPrimNot) {
7055        // Reference always goes first.
7056        return true;
7057      }
7058      if (type2 == Primitive::kPrimNot) {
7059        // Reference always goes first.
7060        return false;
7061      }
7062      size_t size1 = Primitive::ComponentSize(type1);
7063      size_t size2 = Primitive::ComponentSize(type2);
7064      if (size1 != size2) {
7065        // Larger primitive types go first.
7066        return size1 > size2;
7067      }
7068      // Primitive types differ but sizes match. Arbitrarily order by primitive type.
7069      return type1 < type2;
7070    }
7071    // Same basic group? Then sort by dex field index. This is guaranteed to be sorted
7072    // by name and for equal names by type id index.
7073    // NOTE: This works also for proxies. Their static fields are assigned appropriate indexes.
7074    return field1->GetDexFieldIndex() < field2->GetDexFieldIndex();
7075  }
7076};
7077
7078bool ClassLinker::LinkFields(Thread* self,
7079                             Handle<mirror::Class> klass,
7080                             bool is_static,
7081                             size_t* class_size) {
7082  self->AllowThreadSuspension();
7083  const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
7084  LengthPrefixedArray<ArtField>* const fields = is_static ? klass->GetSFieldsPtr() :
7085      klass->GetIFieldsPtr();
7086
7087  // Initialize field_offset
7088  MemberOffset field_offset(0);
7089  if (is_static) {
7090    field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_);
7091  } else {
7092    mirror::Class* super_class = klass->GetSuperClass();
7093    if (super_class != nullptr) {
7094      CHECK(super_class->IsResolved())
7095          << PrettyClass(klass.Get()) << " " << PrettyClass(super_class);
7096      field_offset = MemberOffset(super_class->GetObjectSize());
7097    }
7098  }
7099
7100  CHECK_EQ(num_fields == 0, fields == nullptr) << PrettyClass(klass.Get());
7101
7102  // we want a relatively stable order so that adding new fields
7103  // minimizes disruption of C++ version such as Class and Method.
7104  //
7105  // The overall sort order order is:
7106  // 1) All object reference fields, sorted alphabetically.
7107  // 2) All java long (64-bit) integer fields, sorted alphabetically.
7108  // 3) All java double (64-bit) floating point fields, sorted alphabetically.
7109  // 4) All java int (32-bit) integer fields, sorted alphabetically.
7110  // 5) All java float (32-bit) floating point fields, sorted alphabetically.
7111  // 6) All java char (16-bit) integer fields, sorted alphabetically.
7112  // 7) All java short (16-bit) integer fields, sorted alphabetically.
7113  // 8) All java boolean (8-bit) integer fields, sorted alphabetically.
7114  // 9) All java byte (8-bit) integer fields, sorted alphabetically.
7115  //
7116  // Once the fields are sorted in this order we will attempt to fill any gaps that might be present
7117  // in the memory layout of the structure. See ShuffleForward for how this is done.
7118  std::deque<ArtField*> grouped_and_sorted_fields;
7119  const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension(
7120      "Naked ArtField references in deque");
7121  for (size_t i = 0; i < num_fields; i++) {
7122    grouped_and_sorted_fields.push_back(&fields->At(i));
7123  }
7124  std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(),
7125            LinkFieldsComparator());
7126
7127  // References should be at the front.
7128  size_t current_field = 0;
7129  size_t num_reference_fields = 0;
7130  FieldGaps gaps;
7131
7132  for (; current_field < num_fields; current_field++) {
7133    ArtField* field = grouped_and_sorted_fields.front();
7134    Primitive::Type type = field->GetTypeAsPrimitiveType();
7135    bool isPrimitive = type != Primitive::kPrimNot;
7136    if (isPrimitive) {
7137      break;  // past last reference, move on to the next phase
7138    }
7139    if (UNLIKELY(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(
7140        field_offset.Uint32Value()))) {
7141      MemberOffset old_offset = field_offset;
7142      field_offset = MemberOffset(RoundUp(field_offset.Uint32Value(), 4));
7143      AddFieldGap(old_offset.Uint32Value(), field_offset.Uint32Value(), &gaps);
7144    }
7145    DCHECK_ALIGNED(field_offset.Uint32Value(), sizeof(mirror::HeapReference<mirror::Object>));
7146    grouped_and_sorted_fields.pop_front();
7147    num_reference_fields++;
7148    field->SetOffset(field_offset);
7149    field_offset = MemberOffset(field_offset.Uint32Value() +
7150                                sizeof(mirror::HeapReference<mirror::Object>));
7151  }
7152  // Gaps are stored as a max heap which means that we must shuffle from largest to smallest
7153  // otherwise we could end up with suboptimal gap fills.
7154  ShuffleForward<8>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7155  ShuffleForward<4>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7156  ShuffleForward<2>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7157  ShuffleForward<1>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7158  CHECK(grouped_and_sorted_fields.empty()) << "Missed " << grouped_and_sorted_fields.size() <<
7159      " fields.";
7160  self->EndAssertNoThreadSuspension(old_no_suspend_cause);
7161
7162  // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it.
7163  if (!is_static && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) {
7164    // We know there are no non-reference fields in the Reference classes, and we know
7165    // that 'referent' is alphabetically last, so this is easy...
7166    CHECK_EQ(num_reference_fields, num_fields) << PrettyClass(klass.Get());
7167    CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent")
7168        << PrettyClass(klass.Get());
7169    --num_reference_fields;
7170  }
7171
7172  size_t size = field_offset.Uint32Value();
7173  // Update klass
7174  if (is_static) {
7175    klass->SetNumReferenceStaticFields(num_reference_fields);
7176    *class_size = size;
7177  } else {
7178    klass->SetNumReferenceInstanceFields(num_reference_fields);
7179    mirror::Class* super_class = klass->GetSuperClass();
7180    if (num_reference_fields == 0 || super_class == nullptr) {
7181      // object has one reference field, klass, but we ignore it since we always visit the class.
7182      // super_class is null iff the class is java.lang.Object.
7183      if (super_class == nullptr ||
7184          (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) {
7185        klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields);
7186      }
7187    }
7188    if (kIsDebugBuild) {
7189      DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;"));
7190      size_t total_reference_instance_fields = 0;
7191      mirror::Class* cur_super = klass.Get();
7192      while (cur_super != nullptr) {
7193        total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking();
7194        cur_super = cur_super->GetSuperClass();
7195      }
7196      if (super_class == nullptr) {
7197        CHECK_EQ(total_reference_instance_fields, 1u) << PrettyDescriptor(klass.Get());
7198      } else {
7199        // Check that there is at least num_reference_fields other than Object.class.
7200        CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields)
7201            << PrettyClass(klass.Get());
7202      }
7203    }
7204    if (!klass->IsVariableSize()) {
7205      std::string temp;
7206      DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp);
7207      size_t previous_size = klass->GetObjectSize();
7208      if (previous_size != 0) {
7209        // Make sure that we didn't originally have an incorrect size.
7210        CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp);
7211      }
7212      klass->SetObjectSize(size);
7213    }
7214  }
7215
7216  if (kIsDebugBuild) {
7217    // Make sure that the fields array is ordered by name but all reference
7218    // offsets are at the beginning as far as alignment allows.
7219    MemberOffset start_ref_offset = is_static
7220        ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_)
7221        : klass->GetFirstReferenceInstanceFieldOffset();
7222    MemberOffset end_ref_offset(start_ref_offset.Uint32Value() +
7223                                num_reference_fields *
7224                                    sizeof(mirror::HeapReference<mirror::Object>));
7225    MemberOffset current_ref_offset = start_ref_offset;
7226    for (size_t i = 0; i < num_fields; i++) {
7227      ArtField* field = &fields->At(i);
7228      VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance")
7229          << " class=" << PrettyClass(klass.Get()) << " field=" << PrettyField(field) << " offset="
7230          << field->GetOffsetDuringLinking();
7231      if (i != 0) {
7232        ArtField* const prev_field = &fields->At(i - 1);
7233        // NOTE: The field names can be the same. This is not possible in the Java language
7234        // but it's valid Java/dex bytecode and for example proguard can generate such bytecode.
7235        DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0);
7236      }
7237      Primitive::Type type = field->GetTypeAsPrimitiveType();
7238      bool is_primitive = type != Primitive::kPrimNot;
7239      if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") &&
7240          strcmp("referent", field->GetName()) == 0) {
7241        is_primitive = true;  // We lied above, so we have to expect a lie here.
7242      }
7243      MemberOffset offset = field->GetOffsetDuringLinking();
7244      if (is_primitive) {
7245        if (offset.Uint32Value() < end_ref_offset.Uint32Value()) {
7246          // Shuffled before references.
7247          size_t type_size = Primitive::ComponentSize(type);
7248          CHECK_LT(type_size, sizeof(mirror::HeapReference<mirror::Object>));
7249          CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value());
7250          CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value());
7251          CHECK(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(offset.Uint32Value()));
7252        }
7253      } else {
7254        CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value());
7255        current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() +
7256                                          sizeof(mirror::HeapReference<mirror::Object>));
7257      }
7258    }
7259    CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value());
7260  }
7261  return true;
7262}
7263
7264//  Set the bitmap of reference instance field offsets.
7265void ClassLinker::CreateReferenceInstanceOffsets(Handle<mirror::Class> klass) {
7266  uint32_t reference_offsets = 0;
7267  mirror::Class* super_class = klass->GetSuperClass();
7268  // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially).
7269  if (super_class != nullptr) {
7270    reference_offsets = super_class->GetReferenceInstanceOffsets();
7271    // Compute reference offsets unless our superclass overflowed.
7272    if (reference_offsets != mirror::Class::kClassWalkSuper) {
7273      size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking();
7274      if (num_reference_fields != 0u) {
7275        // All of the fields that contain object references are guaranteed be grouped in memory
7276        // starting at an appropriately aligned address after super class object data.
7277        uint32_t start_offset = RoundUp(super_class->GetObjectSize(),
7278                                        sizeof(mirror::HeapReference<mirror::Object>));
7279        uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) /
7280            sizeof(mirror::HeapReference<mirror::Object>);
7281        if (start_bit + num_reference_fields > 32) {
7282          reference_offsets = mirror::Class::kClassWalkSuper;
7283        } else {
7284          reference_offsets |= (0xffffffffu << start_bit) &
7285                               (0xffffffffu >> (32 - (start_bit + num_reference_fields)));
7286        }
7287      }
7288    }
7289  }
7290  klass->SetReferenceInstanceOffsets(reference_offsets);
7291}
7292
7293mirror::String* ClassLinker::ResolveString(const DexFile& dex_file,
7294                                           uint32_t string_idx,
7295                                           Handle<mirror::DexCache> dex_cache) {
7296  DCHECK(dex_cache.Get() != nullptr);
7297  mirror::String* resolved = dex_cache->GetResolvedString(string_idx);
7298  if (resolved != nullptr) {
7299    return resolved;
7300  }
7301  uint32_t utf16_length;
7302  const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7303  mirror::String* string = intern_table_->InternStrong(utf16_length, utf8_data);
7304  dex_cache->SetResolvedString(string_idx, string);
7305  return string;
7306}
7307
7308mirror::String* ClassLinker::LookupString(const DexFile& dex_file,
7309                                          uint32_t string_idx,
7310                                          Handle<mirror::DexCache> dex_cache) {
7311  DCHECK(dex_cache.Get() != nullptr);
7312  mirror::String* resolved = dex_cache->GetResolvedString(string_idx);
7313  if (resolved != nullptr) {
7314    return resolved;
7315  }
7316  uint32_t utf16_length;
7317  const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7318  mirror::String* string = intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data);
7319  if (string != nullptr) {
7320    dex_cache->SetResolvedString(string_idx, string);
7321  }
7322  return string;
7323}
7324
7325mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7326                                        uint16_t type_idx,
7327                                        mirror::Class* referrer) {
7328  StackHandleScope<2> hs(Thread::Current());
7329  Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
7330  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
7331  return ResolveType(dex_file, type_idx, dex_cache, class_loader);
7332}
7333
7334mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7335                                        uint16_t type_idx,
7336                                        Handle<mirror::DexCache> dex_cache,
7337                                        Handle<mirror::ClassLoader> class_loader) {
7338  DCHECK(dex_cache.Get() != nullptr);
7339  mirror::Class* resolved = dex_cache->GetResolvedType(type_idx);
7340  if (resolved == nullptr) {
7341    Thread* self = Thread::Current();
7342    const char* descriptor = dex_file.StringByTypeIdx(type_idx);
7343    resolved = FindClass(self, descriptor, class_loader);
7344    if (resolved != nullptr) {
7345      // TODO: we used to throw here if resolved's class loader was not the
7346      //       boot class loader. This was to permit different classes with the
7347      //       same name to be loaded simultaneously by different loaders
7348      dex_cache->SetResolvedType(type_idx, resolved);
7349    } else {
7350      CHECK(self->IsExceptionPending())
7351          << "Expected pending exception for failed resolution of: " << descriptor;
7352      // Convert a ClassNotFoundException to a NoClassDefFoundError.
7353      StackHandleScope<1> hs(self);
7354      Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
7355      if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) {
7356        DCHECK(resolved == nullptr);  // No Handle needed to preserve resolved.
7357        self->ClearException();
7358        ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor);
7359        self->GetException()->SetCause(cause.Get());
7360      }
7361    }
7362  }
7363  DCHECK((resolved == nullptr) || resolved->IsResolved() || resolved->IsErroneous())
7364      << PrettyDescriptor(resolved) << " " << resolved->GetStatus();
7365  return resolved;
7366}
7367
7368template <ClassLinker::ResolveMode kResolveMode>
7369ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file,
7370                                      uint32_t method_idx,
7371                                      Handle<mirror::DexCache> dex_cache,
7372                                      Handle<mirror::ClassLoader> class_loader,
7373                                      ArtMethod* referrer,
7374                                      InvokeType type) {
7375  DCHECK(dex_cache.Get() != nullptr);
7376  // Check for hit in the dex cache.
7377  ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
7378  if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
7379    DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
7380    if (kResolveMode == ClassLinker::kForceICCECheck) {
7381      if (resolved->CheckIncompatibleClassChange(type)) {
7382        ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
7383        return nullptr;
7384      }
7385    }
7386    return resolved;
7387  }
7388  // Fail, get the declaring class.
7389  const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7390  mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
7391  if (klass == nullptr) {
7392    DCHECK(Thread::Current()->IsExceptionPending());
7393    return nullptr;
7394  }
7395  // Scan using method_idx, this saves string compares but will only hit for matching dex
7396  // caches/files.
7397  switch (type) {
7398    case kDirect:  // Fall-through.
7399    case kStatic:
7400      resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7401      DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
7402      break;
7403    case kInterface:
7404      // We have to check whether the method id really belongs to an interface (dex static bytecode
7405      // constraint A15). Otherwise you must not invoke-interface on it.
7406      //
7407      // This is not symmetric to A12-A14 (direct, static, virtual), as using FindInterfaceMethod
7408      // assumes that the given type is an interface, and will check the interface table if the
7409      // method isn't declared in the class. So it may find an interface method (usually by name
7410      // in the handling below, but we do the constraint check early). In that case,
7411      // CheckIncompatibleClassChange will succeed (as it is called on an interface method)
7412      // unexpectedly.
7413      // Example:
7414      //    interface I {
7415      //      foo()
7416      //    }
7417      //    class A implements I {
7418      //      ...
7419      //    }
7420      //    class B extends A {
7421      //      ...
7422      //    }
7423      //    invoke-interface B.foo
7424      //      -> FindInterfaceMethod finds I.foo (interface method), not A.foo (miranda method)
7425      if (UNLIKELY(!klass->IsInterface())) {
7426        ThrowIncompatibleClassChangeError(klass,
7427                                          "Found class %s, but interface was expected",
7428                                          PrettyDescriptor(klass).c_str());
7429        return nullptr;
7430      } else {
7431        resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7432        DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
7433      }
7434      break;
7435    case kSuper:
7436      if (klass->IsInterface()) {
7437        resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7438      } else {
7439        resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7440      }
7441      break;
7442    case kVirtual:
7443      resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7444      break;
7445    default:
7446      LOG(FATAL) << "Unreachable - invocation type: " << type;
7447      UNREACHABLE();
7448  }
7449  if (resolved == nullptr) {
7450    // Search by name, which works across dex files.
7451    const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
7452    const Signature signature = dex_file.GetMethodSignature(method_id);
7453    switch (type) {
7454      case kDirect:  // Fall-through.
7455      case kStatic:
7456        resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
7457        DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
7458        break;
7459      case kInterface:
7460        resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7461        DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
7462        break;
7463      case kSuper:
7464        if (klass->IsInterface()) {
7465          resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7466        } else {
7467          resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7468        }
7469        break;
7470      case kVirtual:
7471        resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7472        break;
7473    }
7474  }
7475  // If we found a method, check for incompatible class changes.
7476  if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) {
7477    // Be a good citizen and update the dex cache to speed subsequent calls.
7478    dex_cache->SetResolvedMethod(method_idx, resolved, image_pointer_size_);
7479    return resolved;
7480  } else {
7481    // If we had a method, it's an incompatible-class-change error.
7482    if (resolved != nullptr) {
7483      ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
7484    } else {
7485      // We failed to find the method which means either an access error, an incompatible class
7486      // change, or no such method. First try to find the method among direct and virtual methods.
7487      const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
7488      const Signature signature = dex_file.GetMethodSignature(method_id);
7489      switch (type) {
7490        case kDirect:
7491        case kStatic:
7492          resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7493          // Note: kDirect and kStatic are also mutually exclusive, but in that case we would
7494          //       have had a resolved method before, which triggers the "true" branch above.
7495          break;
7496        case kInterface:
7497        case kVirtual:
7498        case kSuper:
7499          resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
7500          break;
7501      }
7502
7503      // If we found something, check that it can be accessed by the referrer.
7504      bool exception_generated = false;
7505      if (resolved != nullptr && referrer != nullptr) {
7506        mirror::Class* methods_class = resolved->GetDeclaringClass();
7507        mirror::Class* referring_class = referrer->GetDeclaringClass();
7508        if (!referring_class->CanAccess(methods_class)) {
7509          ThrowIllegalAccessErrorClassForMethodDispatch(referring_class,
7510                                                        methods_class,
7511                                                        resolved,
7512                                                        type);
7513          exception_generated = true;
7514        } else if (!referring_class->CanAccessMember(methods_class, resolved->GetAccessFlags())) {
7515          ThrowIllegalAccessErrorMethod(referring_class, resolved);
7516          exception_generated = true;
7517        }
7518      }
7519      if (!exception_generated) {
7520        // Otherwise, throw an IncompatibleClassChangeError if we found something, and check
7521        // interface methods and throw if we find the method there. If we find nothing, throw a
7522        // NoSuchMethodError.
7523        switch (type) {
7524          case kDirect:
7525          case kStatic:
7526            if (resolved != nullptr) {
7527              ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
7528            } else {
7529              resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7530              if (resolved != nullptr) {
7531                ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
7532              } else {
7533                ThrowNoSuchMethodError(type, klass, name, signature);
7534              }
7535            }
7536            break;
7537          case kInterface:
7538            if (resolved != nullptr) {
7539              ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
7540            } else {
7541              resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7542              if (resolved != nullptr) {
7543                ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
7544              } else {
7545                ThrowNoSuchMethodError(type, klass, name, signature);
7546              }
7547            }
7548            break;
7549          case kSuper:
7550            if (resolved != nullptr) {
7551              ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
7552            } else {
7553              ThrowNoSuchMethodError(type, klass, name, signature);
7554            }
7555            break;
7556          case kVirtual:
7557            if (resolved != nullptr) {
7558              ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
7559            } else {
7560              resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7561              if (resolved != nullptr) {
7562                ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
7563              } else {
7564                ThrowNoSuchMethodError(type, klass, name, signature);
7565              }
7566            }
7567            break;
7568        }
7569      }
7570    }
7571    Thread::Current()->AssertPendingException();
7572    return nullptr;
7573  }
7574}
7575
7576ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(const DexFile& dex_file,
7577                                                       uint32_t method_idx,
7578                                                       Handle<mirror::DexCache> dex_cache,
7579                                                       Handle<mirror::ClassLoader> class_loader) {
7580  ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
7581  if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
7582    DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
7583    return resolved;
7584  }
7585  // Fail, get the declaring class.
7586  const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7587  mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
7588  if (klass == nullptr) {
7589    Thread::Current()->AssertPendingException();
7590    return nullptr;
7591  }
7592  if (klass->IsInterface()) {
7593    LOG(FATAL) << "ResolveAmbiguousMethod: unexpected method in interface: " << PrettyClass(klass);
7594    return nullptr;
7595  }
7596
7597  // Search both direct and virtual methods
7598  resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7599  if (resolved == nullptr) {
7600    resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7601  }
7602
7603  return resolved;
7604}
7605
7606ArtField* ClassLinker::ResolveField(const DexFile& dex_file,
7607                                    uint32_t field_idx,
7608                                    Handle<mirror::DexCache> dex_cache,
7609                                    Handle<mirror::ClassLoader> class_loader,
7610                                    bool is_static) {
7611  DCHECK(dex_cache.Get() != nullptr);
7612  ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
7613  if (resolved != nullptr) {
7614    return resolved;
7615  }
7616  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
7617  Thread* const self = Thread::Current();
7618  StackHandleScope<1> hs(self);
7619  Handle<mirror::Class> klass(
7620      hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader)));
7621  if (klass.Get() == nullptr) {
7622    DCHECK(Thread::Current()->IsExceptionPending());
7623    return nullptr;
7624  }
7625
7626  if (is_static) {
7627    resolved = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx);
7628  } else {
7629    resolved = klass->FindInstanceField(dex_cache.Get(), field_idx);
7630  }
7631
7632  if (resolved == nullptr) {
7633    const char* name = dex_file.GetFieldName(field_id);
7634    const char* type = dex_file.GetFieldTypeDescriptor(field_id);
7635    if (is_static) {
7636      resolved = mirror::Class::FindStaticField(self, klass, name, type);
7637    } else {
7638      resolved = klass->FindInstanceField(name, type);
7639    }
7640    if (resolved == nullptr) {
7641      ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass.Get(), type, name);
7642      return nullptr;
7643    }
7644  }
7645  dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
7646  return resolved;
7647}
7648
7649ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file,
7650                                       uint32_t field_idx,
7651                                       Handle<mirror::DexCache> dex_cache,
7652                                       Handle<mirror::ClassLoader> class_loader) {
7653  DCHECK(dex_cache.Get() != nullptr);
7654  ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
7655  if (resolved != nullptr) {
7656    return resolved;
7657  }
7658  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
7659  Thread* self = Thread::Current();
7660  StackHandleScope<1> hs(self);
7661  Handle<mirror::Class> klass(
7662      hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader)));
7663  if (klass.Get() == nullptr) {
7664    DCHECK(Thread::Current()->IsExceptionPending());
7665    return nullptr;
7666  }
7667
7668  StringPiece name(dex_file.StringDataByIdx(field_id.name_idx_));
7669  StringPiece type(dex_file.StringDataByIdx(
7670      dex_file.GetTypeId(field_id.type_idx_).descriptor_idx_));
7671  resolved = mirror::Class::FindField(self, klass, name, type);
7672  if (resolved != nullptr) {
7673    dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
7674  } else {
7675    ThrowNoSuchFieldError("", klass.Get(), type, name);
7676  }
7677  return resolved;
7678}
7679
7680const char* ClassLinker::MethodShorty(uint32_t method_idx,
7681                                      ArtMethod* referrer,
7682                                      uint32_t* length) {
7683  mirror::Class* declaring_class = referrer->GetDeclaringClass();
7684  mirror::DexCache* dex_cache = declaring_class->GetDexCache();
7685  const DexFile& dex_file = *dex_cache->GetDexFile();
7686  const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7687  return dex_file.GetMethodShorty(method_id, length);
7688}
7689
7690class DumpClassVisitor : public ClassVisitor {
7691 public:
7692  explicit DumpClassVisitor(int flags) : flags_(flags) {}
7693
7694  bool operator()(mirror::Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
7695    klass->DumpClass(LOG(ERROR), flags_);
7696    return true;
7697  }
7698
7699 private:
7700  const int flags_;
7701};
7702
7703void ClassLinker::DumpAllClasses(int flags) {
7704  DumpClassVisitor visitor(flags);
7705  VisitClasses(&visitor);
7706}
7707
7708static OatFile::OatMethod CreateOatMethod(const void* code) {
7709  CHECK(code != nullptr);
7710  const uint8_t* base = reinterpret_cast<const uint8_t*>(code);  // Base of data points at code.
7711  base -= sizeof(void*);  // Move backward so that code_offset != 0.
7712  const uint32_t code_offset = sizeof(void*);
7713  return OatFile::OatMethod(base, code_offset);
7714}
7715
7716bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const {
7717  return (entry_point == GetQuickResolutionStub()) ||
7718      (quick_resolution_trampoline_ == entry_point);
7719}
7720
7721bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const {
7722  return (entry_point == GetQuickToInterpreterBridge()) ||
7723      (quick_to_interpreter_bridge_trampoline_ == entry_point);
7724}
7725
7726bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const {
7727  return (entry_point == GetQuickGenericJniStub()) ||
7728      (quick_generic_jni_trampoline_ == entry_point);
7729}
7730
7731const void* ClassLinker::GetRuntimeQuickGenericJniStub() const {
7732  return GetQuickGenericJniStub();
7733}
7734
7735void ClassLinker::SetEntryPointsToCompiledCode(ArtMethod* method,
7736                                               const void* method_code) const {
7737  OatFile::OatMethod oat_method = CreateOatMethod(method_code);
7738  oat_method.LinkMethod(method);
7739}
7740
7741void ClassLinker::SetEntryPointsToInterpreter(ArtMethod* method) const {
7742  if (!method->IsNative()) {
7743    method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
7744  } else {
7745    const void* quick_method_code = GetQuickGenericJniStub();
7746    OatFile::OatMethod oat_method = CreateOatMethod(quick_method_code);
7747    oat_method.LinkMethod(method);
7748  }
7749}
7750
7751void ClassLinker::DumpForSigQuit(std::ostream& os) {
7752  ScopedObjectAccess soa(Thread::Current());
7753  if (dex_cache_boot_image_class_lookup_required_) {
7754    AddBootImageClassesToClassTable();
7755  }
7756  ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_);
7757  os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes="
7758     << NumNonZygoteClasses() << "\n";
7759}
7760
7761class CountClassesVisitor : public ClassLoaderVisitor {
7762 public:
7763  CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {}
7764
7765  void Visit(mirror::ClassLoader* class_loader)
7766      SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
7767    ClassTable* const class_table = class_loader->GetClassTable();
7768    if (class_table != nullptr) {
7769      num_zygote_classes += class_table->NumZygoteClasses();
7770      num_non_zygote_classes += class_table->NumNonZygoteClasses();
7771    }
7772  }
7773
7774  size_t num_zygote_classes;
7775  size_t num_non_zygote_classes;
7776};
7777
7778size_t ClassLinker::NumZygoteClasses() const {
7779  CountClassesVisitor visitor;
7780  VisitClassLoaders(&visitor);
7781  return visitor.num_zygote_classes + boot_class_table_.NumZygoteClasses();
7782}
7783
7784size_t ClassLinker::NumNonZygoteClasses() const {
7785  CountClassesVisitor visitor;
7786  VisitClassLoaders(&visitor);
7787  return visitor.num_non_zygote_classes + boot_class_table_.NumNonZygoteClasses();
7788}
7789
7790size_t ClassLinker::NumLoadedClasses() {
7791  if (dex_cache_boot_image_class_lookup_required_) {
7792    AddBootImageClassesToClassTable();
7793  }
7794  ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
7795  // Only return non zygote classes since these are the ones which apps which care about.
7796  return NumNonZygoteClasses();
7797}
7798
7799pid_t ClassLinker::GetClassesLockOwner() {
7800  return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid();
7801}
7802
7803pid_t ClassLinker::GetDexLockOwner() {
7804  return dex_lock_.GetExclusiveOwnerTid();
7805}
7806
7807void ClassLinker::SetClassRoot(ClassRoot class_root, mirror::Class* klass) {
7808  DCHECK(!init_done_);
7809
7810  DCHECK(klass != nullptr);
7811  DCHECK(klass->GetClassLoader() == nullptr);
7812
7813  mirror::ObjectArray<mirror::Class>* class_roots = class_roots_.Read();
7814  DCHECK(class_roots != nullptr);
7815  DCHECK(class_roots->Get(class_root) == nullptr);
7816  class_roots->Set<false>(class_root, klass);
7817}
7818
7819const char* ClassLinker::GetClassRootDescriptor(ClassRoot class_root) {
7820  static const char* class_roots_descriptors[] = {
7821    "Ljava/lang/Class;",
7822    "Ljava/lang/Object;",
7823    "[Ljava/lang/Class;",
7824    "[Ljava/lang/Object;",
7825    "Ljava/lang/String;",
7826    "Ljava/lang/DexCache;",
7827    "Ljava/lang/ref/Reference;",
7828    "Ljava/lang/reflect/Constructor;",
7829    "Ljava/lang/reflect/Field;",
7830    "Ljava/lang/reflect/Method;",
7831    "Ljava/lang/reflect/Proxy;",
7832    "[Ljava/lang/String;",
7833    "[Ljava/lang/reflect/Constructor;",
7834    "[Ljava/lang/reflect/Field;",
7835    "[Ljava/lang/reflect/Method;",
7836    "Ljava/lang/ClassLoader;",
7837    "Ljava/lang/Throwable;",
7838    "Ljava/lang/ClassNotFoundException;",
7839    "Ljava/lang/StackTraceElement;",
7840    "Z",
7841    "B",
7842    "C",
7843    "D",
7844    "F",
7845    "I",
7846    "J",
7847    "S",
7848    "V",
7849    "[Z",
7850    "[B",
7851    "[C",
7852    "[D",
7853    "[F",
7854    "[I",
7855    "[J",
7856    "[S",
7857    "[Ljava/lang/StackTraceElement;",
7858  };
7859  static_assert(arraysize(class_roots_descriptors) == size_t(kClassRootsMax),
7860                "Mismatch between class descriptors and class-root enum");
7861
7862  const char* descriptor = class_roots_descriptors[class_root];
7863  CHECK(descriptor != nullptr);
7864  return descriptor;
7865}
7866
7867jobject ClassLinker::CreatePathClassLoader(Thread* self,
7868                                           const std::vector<const DexFile*>& dex_files) {
7869  // SOAAlreadyRunnable is protected, and we need something to add a global reference.
7870  // We could move the jobject to the callers, but all call-sites do this...
7871  ScopedObjectAccessUnchecked soa(self);
7872
7873  // For now, create a libcore-level DexFile for each ART DexFile. This "explodes" multidex.
7874  StackHandleScope<10> hs(self);
7875
7876  ArtField* dex_elements_field =
7877      soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
7878
7879  mirror::Class* dex_elements_class = dex_elements_field->GetType<true>();
7880  DCHECK(dex_elements_class != nullptr);
7881  DCHECK(dex_elements_class->IsArrayClass());
7882  Handle<mirror::ObjectArray<mirror::Object>> h_dex_elements(hs.NewHandle(
7883      mirror::ObjectArray<mirror::Object>::Alloc(self, dex_elements_class, dex_files.size())));
7884  Handle<mirror::Class> h_dex_element_class =
7885      hs.NewHandle(dex_elements_class->GetComponentType());
7886
7887  ArtField* element_file_field =
7888      soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
7889  DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass());
7890
7891  ArtField* cookie_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie);
7892  DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->GetType<false>());
7893
7894  ArtField* file_name_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_fileName);
7895  DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->GetType<false>());
7896
7897  // Fill the elements array.
7898  int32_t index = 0;
7899  for (const DexFile* dex_file : dex_files) {
7900    StackHandleScope<4> hs2(self);
7901
7902    // CreatePathClassLoader is only used by gtests. Index 0 of h_long_array is supposed to be the
7903    // oat file but we can leave it null.
7904    Handle<mirror::LongArray> h_long_array = hs2.NewHandle(mirror::LongArray::Alloc(
7905        self,
7906        kDexFileIndexStart + 1));
7907    DCHECK(h_long_array.Get() != nullptr);
7908    h_long_array->Set(kDexFileIndexStart, reinterpret_cast<intptr_t>(dex_file));
7909
7910    Handle<mirror::Object> h_dex_file = hs2.NewHandle(
7911        cookie_field->GetDeclaringClass()->AllocObject(self));
7912    DCHECK(h_dex_file.Get() != nullptr);
7913    cookie_field->SetObject<false>(h_dex_file.Get(), h_long_array.Get());
7914
7915    Handle<mirror::String> h_file_name = hs2.NewHandle(
7916        mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str()));
7917    DCHECK(h_file_name.Get() != nullptr);
7918    file_name_field->SetObject<false>(h_dex_file.Get(), h_file_name.Get());
7919
7920    Handle<mirror::Object> h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self));
7921    DCHECK(h_element.Get() != nullptr);
7922    element_file_field->SetObject<false>(h_element.Get(), h_dex_file.Get());
7923
7924    h_dex_elements->Set(index, h_element.Get());
7925    index++;
7926  }
7927  DCHECK_EQ(index, h_dex_elements->GetLength());
7928
7929  // Create DexPathList.
7930  Handle<mirror::Object> h_dex_path_list = hs.NewHandle(
7931      dex_elements_field->GetDeclaringClass()->AllocObject(self));
7932  DCHECK(h_dex_path_list.Get() != nullptr);
7933  // Set elements.
7934  dex_elements_field->SetObject<false>(h_dex_path_list.Get(), h_dex_elements.Get());
7935
7936  // Create PathClassLoader.
7937  Handle<mirror::Class> h_path_class_class = hs.NewHandle(
7938      soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader));
7939  Handle<mirror::Object> h_path_class_loader = hs.NewHandle(
7940      h_path_class_class->AllocObject(self));
7941  DCHECK(h_path_class_loader.Get() != nullptr);
7942  // Set DexPathList.
7943  ArtField* path_list_field =
7944      soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList);
7945  DCHECK(path_list_field != nullptr);
7946  path_list_field->SetObject<false>(h_path_class_loader.Get(), h_dex_path_list.Get());
7947
7948  // Make a pretend boot-classpath.
7949  // TODO: Should we scan the image?
7950  ArtField* const parent_field =
7951      mirror::Class::FindField(self, hs.NewHandle(h_path_class_loader->GetClass()), "parent",
7952                               "Ljava/lang/ClassLoader;");
7953  DCHECK(parent_field != nullptr);
7954  mirror::Object* boot_cl =
7955      soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_BootClassLoader)->AllocObject(self);
7956  parent_field->SetObject<false>(h_path_class_loader.Get(), boot_cl);
7957
7958  // Make it a global ref and return.
7959  ScopedLocalRef<jobject> local_ref(
7960      soa.Env(), soa.Env()->AddLocalReference<jobject>(h_path_class_loader.Get()));
7961  return soa.Env()->NewGlobalRef(local_ref.get());
7962}
7963
7964ArtMethod* ClassLinker::CreateRuntimeMethod(LinearAlloc* linear_alloc) {
7965  const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
7966  const size_t method_size = ArtMethod::Size(image_pointer_size_);
7967  LengthPrefixedArray<ArtMethod>* method_array = AllocArtMethodArray(
7968      Thread::Current(),
7969      linear_alloc,
7970      1);
7971  ArtMethod* method = &method_array->At(0, method_size, method_alignment);
7972  CHECK(method != nullptr);
7973  method->SetDexMethodIndex(DexFile::kDexNoIndex);
7974  CHECK(method->IsRuntimeMethod());
7975  return method;
7976}
7977
7978void ClassLinker::DropFindArrayClassCache() {
7979  std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
7980  find_array_class_cache_next_victim_ = 0;
7981}
7982
7983void ClassLinker::ClearClassTableStrongRoots() const {
7984  Thread* const self = Thread::Current();
7985  WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
7986  for (const ClassLoaderData& data : class_loaders_) {
7987    if (data.class_table != nullptr) {
7988      data.class_table->ClearStrongRoots();
7989    }
7990  }
7991}
7992
7993void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const {
7994  Thread* const self = Thread::Current();
7995  for (const ClassLoaderData& data : class_loaders_) {
7996    // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
7997    auto* const class_loader = down_cast<mirror::ClassLoader*>(self->DecodeJObject(data.weak_root));
7998    if (class_loader != nullptr) {
7999      visitor->Visit(class_loader);
8000    }
8001  }
8002}
8003
8004void ClassLinker::InsertDexFileInToClassLoader(mirror::Object* dex_file,
8005                                               mirror::ClassLoader* class_loader) {
8006  DCHECK(dex_file != nullptr);
8007  Thread* const self = Thread::Current();
8008  WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8009  ClassTable* const table = ClassTableForClassLoader(class_loader);
8010  DCHECK(table != nullptr);
8011  if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) {
8012    // It was not already inserted, perform the write barrier to let the GC know the class loader's
8013    // class table was modified.
8014    Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
8015  }
8016}
8017
8018void ClassLinker::CleanupClassLoaders() {
8019  Thread* const self = Thread::Current();
8020  WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8021  for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) {
8022    const ClassLoaderData& data = *it;
8023    // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
8024    auto* const class_loader = down_cast<mirror::ClassLoader*>(self->DecodeJObject(data.weak_root));
8025    if (class_loader != nullptr) {
8026      ++it;
8027    } else {
8028      VLOG(class_linker) << "Freeing class loader";
8029      DeleteClassLoader(self, data);
8030      it = class_loaders_.erase(it);
8031    }
8032  }
8033}
8034
8035std::set<DexCacheResolvedClasses> ClassLinker::GetResolvedClasses(bool ignore_boot_classes) {
8036  ScopedTrace trace(__PRETTY_FUNCTION__);
8037  ScopedObjectAccess soa(Thread::Current());
8038  ScopedAssertNoThreadSuspension ants(soa.Self(), __FUNCTION__);
8039  std::set<DexCacheResolvedClasses> ret;
8040  VLOG(class_linker) << "Collecting resolved classes";
8041  const uint64_t start_time = NanoTime();
8042  ReaderMutexLock mu(soa.Self(), *DexLock());
8043  // Loop through all the dex caches and inspect resolved classes.
8044  for (const ClassLinker::DexCacheData& data : GetDexCachesData()) {
8045    if (soa.Self()->IsJWeakCleared(data.weak_root)) {
8046      continue;
8047    }
8048    mirror::DexCache* dex_cache =
8049        down_cast<mirror::DexCache*>(soa.Self()->DecodeJObject(data.weak_root));
8050    if (dex_cache == nullptr) {
8051      continue;
8052    }
8053    const DexFile* dex_file = dex_cache->GetDexFile();
8054    const std::string& location = dex_file->GetLocation();
8055    const size_t num_class_defs = dex_file->NumClassDefs();
8056    // Use the resolved types, this will miss array classes.
8057    const size_t num_types = dex_file->NumTypeIds();
8058    VLOG(class_linker) << "Collecting class profile for dex file " << location
8059                       << " types=" << num_types << " class_defs=" << num_class_defs;
8060    DexCacheResolvedClasses resolved_classes(dex_file->GetLocation(),
8061                                             dex_file->GetBaseLocation(),
8062                                             dex_file->GetLocationChecksum());
8063    size_t num_resolved = 0;
8064    std::unordered_set<uint16_t> class_set;
8065    CHECK_EQ(num_types, dex_cache->NumResolvedTypes());
8066    for (size_t i = 0; i < num_types; ++i) {
8067      mirror::Class* klass = dex_cache->GetResolvedType(i);
8068      // Filter out null class loader since that is the boot class loader.
8069      if (klass == nullptr || (ignore_boot_classes && klass->GetClassLoader() == nullptr)) {
8070        continue;
8071      }
8072      ++num_resolved;
8073      DCHECK(!klass->IsProxyClass());
8074      if (!klass->IsResolved()) {
8075        DCHECK(klass->IsErroneous());
8076        continue;
8077      }
8078      mirror::DexCache* klass_dex_cache = klass->GetDexCache();
8079      if (klass_dex_cache == dex_cache) {
8080        const size_t class_def_idx = klass->GetDexClassDefIndex();
8081        DCHECK(klass->IsResolved());
8082        CHECK_LT(class_def_idx, num_class_defs);
8083        class_set.insert(class_def_idx);
8084      }
8085    }
8086
8087    if (!class_set.empty()) {
8088      auto it = ret.find(resolved_classes);
8089      if (it != ret.end()) {
8090        // Already have the key, union the class def idxs.
8091        it->AddClasses(class_set.begin(), class_set.end());
8092      } else {
8093        resolved_classes.AddClasses(class_set.begin(), class_set.end());
8094        ret.insert(resolved_classes);
8095      }
8096    }
8097
8098    VLOG(class_linker) << "Dex location " << location << " has " << num_resolved << " / "
8099                       << num_class_defs << " resolved classes";
8100  }
8101  VLOG(class_linker) << "Collecting class profile took " << PrettyDuration(NanoTime() - start_time);
8102  return ret;
8103}
8104
8105std::unordered_set<std::string> ClassLinker::GetClassDescriptorsForProfileKeys(
8106    const std::set<DexCacheResolvedClasses>& classes) {
8107  ScopedTrace trace(__PRETTY_FUNCTION__);
8108  std::unordered_set<std::string> ret;
8109  Thread* const self = Thread::Current();
8110  std::unordered_map<std::string, const DexFile*> location_to_dex_file;
8111  ScopedObjectAccess soa(self);
8112  ScopedAssertNoThreadSuspension ants(soa.Self(), __FUNCTION__);
8113  ReaderMutexLock mu(self, *DexLock());
8114  for (const ClassLinker::DexCacheData& data : GetDexCachesData()) {
8115    if (!self->IsJWeakCleared(data.weak_root)) {
8116      mirror::DexCache* dex_cache =
8117          down_cast<mirror::DexCache*>(soa.Self()->DecodeJObject(data.weak_root));
8118      if (dex_cache != nullptr) {
8119        const DexFile* dex_file = dex_cache->GetDexFile();
8120        // There could be duplicates if two dex files with the same location are mapped.
8121        location_to_dex_file.emplace(
8122            ProfileCompilationInfo::GetProfileDexFileKey(dex_file->GetLocation()), dex_file);
8123      }
8124    }
8125  }
8126  for (const DexCacheResolvedClasses& info : classes) {
8127    const std::string& profile_key = info.GetDexLocation();
8128    auto found = location_to_dex_file.find(profile_key);
8129    if (found != location_to_dex_file.end()) {
8130      const DexFile* dex_file = found->second;
8131      VLOG(profiler) << "Found opened dex file for " << dex_file->GetLocation() << " with "
8132                     << info.GetClasses().size() << " classes";
8133      DCHECK_EQ(dex_file->GetLocationChecksum(), info.GetLocationChecksum());
8134      for (uint16_t class_def_idx : info.GetClasses()) {
8135        if (class_def_idx >= dex_file->NumClassDefs()) {
8136          LOG(WARNING) << "Class def index " << class_def_idx << " >= " << dex_file->NumClassDefs();
8137          continue;
8138        }
8139        const DexFile::TypeId& type_id = dex_file->GetTypeId(
8140            dex_file->GetClassDef(class_def_idx).class_idx_);
8141        const char* descriptor = dex_file->GetTypeDescriptor(type_id);
8142        ret.insert(descriptor);
8143      }
8144    } else {
8145      VLOG(class_linker) << "Failed to find opened dex file for profile key " << profile_key;
8146    }
8147  }
8148  return ret;
8149}
8150
8151// Instantiate ResolveMethod.
8152template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kForceICCECheck>(
8153    const DexFile& dex_file,
8154    uint32_t method_idx,
8155    Handle<mirror::DexCache> dex_cache,
8156    Handle<mirror::ClassLoader> class_loader,
8157    ArtMethod* referrer,
8158    InvokeType type);
8159template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kNoICCECheckForCache>(
8160    const DexFile& dex_file,
8161    uint32_t method_idx,
8162    Handle<mirror::DexCache> dex_cache,
8163    Handle<mirror::ClassLoader> class_loader,
8164    ArtMethod* referrer,
8165    InvokeType type);
8166
8167}  // namespace art
8168