quick_trampoline_entrypoints.cc revision 3a35714ebca10c989aa383c0861e2e84fe8dadf8
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "callee_save_frame.h"
19#include "common_throws.h"
20#include "dex_file-inl.h"
21#include "dex_instruction-inl.h"
22#include "entrypoints/entrypoint_utils-inl.h"
23#include "entrypoints/runtime_asm_entrypoints.h"
24#include "gc/accounting/card_table-inl.h"
25#include "interpreter/interpreter.h"
26#include "method_reference.h"
27#include "mirror/class-inl.h"
28#include "mirror/dex_cache-inl.h"
29#include "mirror/method.h"
30#include "mirror/object-inl.h"
31#include "mirror/object_array-inl.h"
32#include "runtime.h"
33#include "scoped_thread_state_change.h"
34#include "debugger.h"
35
36namespace art {
37
38// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
39class QuickArgumentVisitor {
40  // Number of bytes for each out register in the caller method's frame.
41  static constexpr size_t kBytesStackArgLocation = 4;
42  // Frame size in bytes of a callee-save frame for RefsAndArgs.
43  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
44      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
45#if defined(__arm__)
46  // The callee save frame is pointed to by SP.
47  // | argN       |  |
48  // | ...        |  |
49  // | arg4       |  |
50  // | arg3 spill |  |  Caller's frame
51  // | arg2 spill |  |
52  // | arg1 spill |  |
53  // | Method*    | ---
54  // | LR         |
55  // | ...        |    4x6 bytes callee saves
56  // | R3         |
57  // | R2         |
58  // | R1         |
59  // | S15        |
60  // | :          |
61  // | S0         |
62  // |            |    4x2 bytes padding
63  // | Method*    |  <- sp
64  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
65  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
66  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
67  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
68  static constexpr size_t kNumQuickGprArgs = 3;
69  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
70  static constexpr bool kGprFprLockstep = false;
71  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
72      arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
73  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
74      arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
75  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
76      arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
77  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
78    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
79  }
80#elif defined(__aarch64__)
81  // The callee save frame is pointed to by SP.
82  // | argN       |  |
83  // | ...        |  |
84  // | arg4       |  |
85  // | arg3 spill |  |  Caller's frame
86  // | arg2 spill |  |
87  // | arg1 spill |  |
88  // | Method*    | ---
89  // | LR         |
90  // | X29        |
91  // |  :         |
92  // | X20        |
93  // | X7         |
94  // | :          |
95  // | X1         |
96  // | D7         |
97  // |  :         |
98  // | D0         |
99  // |            |    padding
100  // | Method*    |  <- sp
101  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
102  static constexpr bool kAlignPairRegister = false;
103  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
104  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
105  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
106  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
107  static constexpr bool kGprFprLockstep = false;
108  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
109      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
110  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
111      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
112  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
113      arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
114  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
115    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
116  }
117#elif defined(__mips__) && !defined(__LP64__)
118  // The callee save frame is pointed to by SP.
119  // | argN       |  |
120  // | ...        |  |
121  // | arg4       |  |
122  // | arg3 spill |  |  Caller's frame
123  // | arg2 spill |  |
124  // | arg1 spill |  |
125  // | Method*    | ---
126  // | RA         |
127  // | ...        |    callee saves
128  // | A3         |    arg3
129  // | A2         |    arg2
130  // | A1         |    arg1
131  // | A0/Method* |  <- sp
132  static constexpr bool kSplitPairAcrossRegisterAndStack = true;
133  static constexpr bool kAlignPairRegister = false;
134  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
135  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
136  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
137  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
138  static constexpr bool kGprFprLockstep = false;
139  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
140  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 16;  // Offset of first GPR arg.
141  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60;  // Offset of return address.
142  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
143    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
144  }
145#elif defined(__mips__) && defined(__LP64__)
146  // The callee save frame is pointed to by SP.
147  // | argN       |  |
148  // | ...        |  |
149  // | arg4       |  |
150  // | arg3 spill |  |  Caller's frame
151  // | arg2 spill |  |
152  // | arg1 spill |  |
153  // | Method*    | ---
154  // | RA         |
155  // | ...        |    callee saves
156  // | F7         |    f_arg7
157  // | F6         |    f_arg6
158  // | F5         |    f_arg5
159  // | F4         |    f_arg4
160  // | F3         |    f_arg3
161  // | F2         |    f_arg2
162  // | F1         |    f_arg1
163  // | F0         |    f_arg0
164  // | A7         |    arg7
165  // | A6         |    arg6
166  // | A5         |    arg5
167  // | A4         |    arg4
168  // | A3         |    arg3
169  // | A2         |    arg2
170  // | A1         |    arg1
171  // |            |    padding
172  // | A0/Method* |  <- sp
173  // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
174  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
175  static constexpr bool kAlignPairRegister = false;
176  static constexpr bool kQuickSoftFloatAbi = false;
177  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
178  // These values are set to zeros because GPR and FPR register
179  // assignments for Mips64 are interleaved, which the current VisitArguments()
180  // function does not support.
181  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
182  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
183  static constexpr bool kGprFprLockstep = true;
184
185  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
186  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
187  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
188  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
189    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
190  }
191#elif defined(__i386__)
192  // The callee save frame is pointed to by SP.
193  // | argN        |  |
194  // | ...         |  |
195  // | arg4        |  |
196  // | arg3 spill  |  |  Caller's frame
197  // | arg2 spill  |  |
198  // | arg1 spill  |  |
199  // | Method*     | ---
200  // | Return      |
201  // | EBP,ESI,EDI |    callee saves
202  // | EBX         |    arg3
203  // | EDX         |    arg2
204  // | ECX         |    arg1
205  // | XMM3        |    float arg 4
206  // | XMM2        |    float arg 3
207  // | XMM1        |    float arg 2
208  // | XMM0        |    float arg 1
209  // | EAX/Method* |  <- sp
210  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
211  static constexpr bool kAlignPairRegister = false;
212  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
213  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
214  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
215  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
216  static constexpr bool kGprFprLockstep = false;
217  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
218  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
219  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
220  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
221    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
222  }
223#elif defined(__x86_64__)
224  // The callee save frame is pointed to by SP.
225  // | argN            |  |
226  // | ...             |  |
227  // | reg. arg spills |  |  Caller's frame
228  // | Method*         | ---
229  // | Return          |
230  // | R15             |    callee save
231  // | R14             |    callee save
232  // | R13             |    callee save
233  // | R12             |    callee save
234  // | R9              |    arg5
235  // | R8              |    arg4
236  // | RSI/R6          |    arg1
237  // | RBP/R5          |    callee save
238  // | RBX/R3          |    callee save
239  // | RDX/R2          |    arg2
240  // | RCX/R1          |    arg3
241  // | XMM7            |    float arg 8
242  // | XMM6            |    float arg 7
243  // | XMM5            |    float arg 6
244  // | XMM4            |    float arg 5
245  // | XMM3            |    float arg 4
246  // | XMM2            |    float arg 3
247  // | XMM1            |    float arg 2
248  // | XMM0            |    float arg 1
249  // | Padding         |
250  // | RDI/Method*     |  <- sp
251  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
252  static constexpr bool kAlignPairRegister = false;
253  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
254  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
255  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
256  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
257  static constexpr bool kGprFprLockstep = false;
258  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
259  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
260  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
261  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
262    switch (gpr_index) {
263      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
264      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
265      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
266      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
267      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
268      default:
269      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
270      return 0;
271    }
272  }
273#else
274#error "Unsupported architecture"
275#endif
276
277 public:
278  // Special handling for proxy methods. Proxy methods are instance methods so the
279  // 'this' object is the 1st argument. They also have the same frame layout as the
280  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
281  // 1st GPR.
282  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
283      SHARED_REQUIRES(Locks::mutator_lock_) {
284    CHECK((*sp)->IsProxyMethod());
285    CHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, (*sp)->GetFrameSizeInBytes());
286    CHECK_GT(kNumQuickGprArgs, 0u);
287    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
288    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
289        GprIndexToGprOffset(kThisGprIndex);
290    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
291    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
292  }
293
294  static ArtMethod* GetCallingMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
295    DCHECK((*sp)->IsCalleeSaveMethod());
296    return GetCalleeSaveMethodCaller(sp, Runtime::kRefsAndArgs);
297  }
298
299  static ArtMethod* GetOuterMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
300    DCHECK((*sp)->IsCalleeSaveMethod());
301    uint8_t* previous_sp =
302        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
303    return *reinterpret_cast<ArtMethod**>(previous_sp);
304  }
305
306  static uint32_t GetCallingDexPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
307    DCHECK((*sp)->IsCalleeSaveMethod());
308    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
309    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
310        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
311    ArtMethod* outer_method = *caller_sp;
312    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
313    uintptr_t outer_pc_offset = outer_method->NativeQuickPcOffset(outer_pc);
314
315    if (outer_method->IsOptimized(sizeof(void*))) {
316      CodeInfo code_info = outer_method->GetOptimizedCodeInfo();
317      StackMapEncoding encoding = code_info.ExtractEncoding();
318      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
319      DCHECK(stack_map.IsValid());
320      if (stack_map.HasInlineInfo(encoding)) {
321        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
322        return inline_info.GetDexPcAtDepth(inline_info.GetDepth() - 1);
323      } else {
324        return stack_map.GetDexPc(encoding);
325      }
326    } else {
327      return outer_method->ToDexPc(outer_pc);
328    }
329  }
330
331  // For the given quick ref and args quick frame, return the caller's PC.
332  static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
333    DCHECK((*sp)->IsCalleeSaveMethod());
334    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
335    return *reinterpret_cast<uintptr_t*>(lr);
336  }
337
338  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
339                       uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) :
340          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
341          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
342          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
343          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
344              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
345          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
346          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
347    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
348                  "Number of Quick FPR arguments unexpected");
349    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
350                  "Double alignment unexpected");
351    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
352    // next register is even.
353    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
354                  "Number of Quick FPR arguments not even");
355    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
356  }
357
358  virtual ~QuickArgumentVisitor() {}
359
360  virtual void Visit() = 0;
361
362  Primitive::Type GetParamPrimitiveType() const {
363    return cur_type_;
364  }
365
366  uint8_t* GetParamAddress() const {
367    if (!kQuickSoftFloatAbi) {
368      Primitive::Type type = GetParamPrimitiveType();
369      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
370        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
371          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
372            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
373          }
374        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
375          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
376        }
377        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
378      }
379    }
380    if (gpr_index_ < kNumQuickGprArgs) {
381      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
382    }
383    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
384  }
385
386  bool IsSplitLongOrDouble() const {
387    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
388        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
389      return is_split_long_or_double_;
390    } else {
391      return false;  // An optimization for when GPR and FPRs are 64bit.
392    }
393  }
394
395  bool IsParamAReference() const {
396    return GetParamPrimitiveType() == Primitive::kPrimNot;
397  }
398
399  bool IsParamALongOrDouble() const {
400    Primitive::Type type = GetParamPrimitiveType();
401    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
402  }
403
404  uint64_t ReadSplitLongParam() const {
405    // The splitted long is always available through the stack.
406    return *reinterpret_cast<uint64_t*>(stack_args_
407        + stack_index_ * kBytesStackArgLocation);
408  }
409
410  void IncGprIndex() {
411    gpr_index_++;
412    if (kGprFprLockstep) {
413      fpr_index_++;
414    }
415  }
416
417  void IncFprIndex() {
418    fpr_index_++;
419    if (kGprFprLockstep) {
420      gpr_index_++;
421    }
422  }
423
424  void VisitArguments() SHARED_REQUIRES(Locks::mutator_lock_) {
425    // (a) 'stack_args_' should point to the first method's argument
426    // (b) whatever the argument type it is, the 'stack_index_' should
427    //     be moved forward along with every visiting.
428    gpr_index_ = 0;
429    fpr_index_ = 0;
430    if (kQuickDoubleRegAlignedFloatBackFilled) {
431      fpr_double_index_ = 0;
432    }
433    stack_index_ = 0;
434    if (!is_static_) {  // Handle this.
435      cur_type_ = Primitive::kPrimNot;
436      is_split_long_or_double_ = false;
437      Visit();
438      stack_index_++;
439      if (kNumQuickGprArgs > 0) {
440        IncGprIndex();
441      }
442    }
443    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
444      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
445      switch (cur_type_) {
446        case Primitive::kPrimNot:
447        case Primitive::kPrimBoolean:
448        case Primitive::kPrimByte:
449        case Primitive::kPrimChar:
450        case Primitive::kPrimShort:
451        case Primitive::kPrimInt:
452          is_split_long_or_double_ = false;
453          Visit();
454          stack_index_++;
455          if (gpr_index_ < kNumQuickGprArgs) {
456            IncGprIndex();
457          }
458          break;
459        case Primitive::kPrimFloat:
460          is_split_long_or_double_ = false;
461          Visit();
462          stack_index_++;
463          if (kQuickSoftFloatAbi) {
464            if (gpr_index_ < kNumQuickGprArgs) {
465              IncGprIndex();
466            }
467          } else {
468            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
469              IncFprIndex();
470              if (kQuickDoubleRegAlignedFloatBackFilled) {
471                // Double should not overlap with float.
472                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
473                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
474                // Float should not overlap with double.
475                if (fpr_index_ % 2 == 0) {
476                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
477                }
478              }
479            }
480          }
481          break;
482        case Primitive::kPrimDouble:
483        case Primitive::kPrimLong:
484          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
485            if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
486              // Currently, this is only for ARM, where the first available parameter register
487              // is R1. So we skip it, and use R2 instead.
488              IncGprIndex();
489            }
490            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
491                ((gpr_index_ + 1) == kNumQuickGprArgs);
492            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
493              // We don't want to split this. Pass over this register.
494              gpr_index_++;
495              is_split_long_or_double_ = false;
496            }
497            Visit();
498            if (kBytesStackArgLocation == 4) {
499              stack_index_+= 2;
500            } else {
501              CHECK_EQ(kBytesStackArgLocation, 8U);
502              stack_index_++;
503            }
504            if (gpr_index_ < kNumQuickGprArgs) {
505              IncGprIndex();
506              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
507                if (gpr_index_ < kNumQuickGprArgs) {
508                  IncGprIndex();
509                }
510              }
511            }
512          } else {
513            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
514                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
515            Visit();
516            if (kBytesStackArgLocation == 4) {
517              stack_index_+= 2;
518            } else {
519              CHECK_EQ(kBytesStackArgLocation, 8U);
520              stack_index_++;
521            }
522            if (kQuickDoubleRegAlignedFloatBackFilled) {
523              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
524                fpr_double_index_ += 2;
525                // Float should not overlap with double.
526                if (fpr_index_ % 2 == 0) {
527                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
528                }
529              }
530            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
531              IncFprIndex();
532              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
533                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
534                  IncFprIndex();
535                }
536              }
537            }
538          }
539          break;
540        default:
541          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
542      }
543    }
544  }
545
546 protected:
547  const bool is_static_;
548  const char* const shorty_;
549  const uint32_t shorty_len_;
550
551 private:
552  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
553  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
554  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
555  uint32_t gpr_index_;  // Index into spilled GPRs.
556  // Index into spilled FPRs.
557  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
558  // holds a higher register number.
559  uint32_t fpr_index_;
560  // Index into spilled FPRs for aligned double.
561  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
562  // terms of singles, may be behind fpr_index.
563  uint32_t fpr_double_index_;
564  uint32_t stack_index_;  // Index into arguments on the stack.
565  // The current type of argument during VisitArguments.
566  Primitive::Type cur_type_;
567  // Does a 64bit parameter straddle the register and stack arguments?
568  bool is_split_long_or_double_;
569};
570
571// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
572// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
573extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
574    SHARED_REQUIRES(Locks::mutator_lock_) {
575  return QuickArgumentVisitor::GetProxyThisObject(sp);
576}
577
578// Visits arguments on the stack placing them into the shadow frame.
579class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
580 public:
581  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
582                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
583      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
584
585  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
586
587 private:
588  ShadowFrame* const sf_;
589  uint32_t cur_reg_;
590
591  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
592};
593
594void BuildQuickShadowFrameVisitor::Visit() {
595  Primitive::Type type = GetParamPrimitiveType();
596  switch (type) {
597    case Primitive::kPrimLong:  // Fall-through.
598    case Primitive::kPrimDouble:
599      if (IsSplitLongOrDouble()) {
600        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
601      } else {
602        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
603      }
604      ++cur_reg_;
605      break;
606    case Primitive::kPrimNot: {
607        StackReference<mirror::Object>* stack_ref =
608            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
609        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
610      }
611      break;
612    case Primitive::kPrimBoolean:  // Fall-through.
613    case Primitive::kPrimByte:     // Fall-through.
614    case Primitive::kPrimChar:     // Fall-through.
615    case Primitive::kPrimShort:    // Fall-through.
616    case Primitive::kPrimInt:      // Fall-through.
617    case Primitive::kPrimFloat:
618      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
619      break;
620    case Primitive::kPrimVoid:
621      LOG(FATAL) << "UNREACHABLE";
622      UNREACHABLE();
623  }
624  ++cur_reg_;
625}
626
627extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
628    SHARED_REQUIRES(Locks::mutator_lock_) {
629  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
630  // frame.
631  ScopedQuickEntrypointChecks sqec(self);
632
633  if (method->IsAbstract()) {
634    ThrowAbstractMethodError(method);
635    return 0;
636  } else {
637    DCHECK(!method->IsNative()) << PrettyMethod(method);
638    const char* old_cause = self->StartAssertNoThreadSuspension(
639        "Building interpreter shadow frame");
640    const DexFile::CodeItem* code_item = method->GetCodeItem();
641    DCHECK(code_item != nullptr) << PrettyMethod(method);
642    uint16_t num_regs = code_item->registers_size_;
643    void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
644    // No last shadow coming from quick.
645    ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory));
646    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
647    uint32_t shorty_len = 0;
648    auto* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*));
649    const char* shorty = non_proxy_method->GetShorty(&shorty_len);
650    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
651                                                      shadow_frame, first_arg_reg);
652    shadow_frame_builder.VisitArguments();
653    const bool needs_initialization =
654        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
655    // Push a transition back into managed code onto the linked list in thread.
656    ManagedStack fragment;
657    self->PushManagedStackFragment(&fragment);
658    self->PushShadowFrame(shadow_frame);
659    self->EndAssertNoThreadSuspension(old_cause);
660
661    if (needs_initialization) {
662      // Ensure static method's class is initialized.
663      StackHandleScope<1> hs(self);
664      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
665      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
666        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
667        self->PopManagedStackFragment(fragment);
668        return 0;
669      }
670    }
671    JValue result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
672    // Pop transition.
673    self->PopManagedStackFragment(fragment);
674
675    // Request a stack deoptimization if needed
676    ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
677    if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
678      self->SetException(Thread::GetDeoptimizationException());
679      self->SetDeoptimizationReturnValue(result, shorty[0] == 'L');
680    }
681
682    // No need to restore the args since the method has already been run by the interpreter.
683    return result.GetJ();
684  }
685}
686
687// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
688// to jobjects.
689class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
690 public:
691  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
692                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
693      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
694
695  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
696
697  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
698
699 private:
700  ScopedObjectAccessUnchecked* const soa_;
701  std::vector<jvalue>* const args_;
702  // References which we must update when exiting in case the GC moved the objects.
703  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
704
705  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
706};
707
708void BuildQuickArgumentVisitor::Visit() {
709  jvalue val;
710  Primitive::Type type = GetParamPrimitiveType();
711  switch (type) {
712    case Primitive::kPrimNot: {
713      StackReference<mirror::Object>* stack_ref =
714          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
715      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
716      references_.push_back(std::make_pair(val.l, stack_ref));
717      break;
718    }
719    case Primitive::kPrimLong:  // Fall-through.
720    case Primitive::kPrimDouble:
721      if (IsSplitLongOrDouble()) {
722        val.j = ReadSplitLongParam();
723      } else {
724        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
725      }
726      break;
727    case Primitive::kPrimBoolean:  // Fall-through.
728    case Primitive::kPrimByte:     // Fall-through.
729    case Primitive::kPrimChar:     // Fall-through.
730    case Primitive::kPrimShort:    // Fall-through.
731    case Primitive::kPrimInt:      // Fall-through.
732    case Primitive::kPrimFloat:
733      val.i = *reinterpret_cast<jint*>(GetParamAddress());
734      break;
735    case Primitive::kPrimVoid:
736      LOG(FATAL) << "UNREACHABLE";
737      UNREACHABLE();
738  }
739  args_->push_back(val);
740}
741
742void BuildQuickArgumentVisitor::FixupReferences() {
743  // Fixup any references which may have changed.
744  for (const auto& pair : references_) {
745    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
746    soa_->Env()->DeleteLocalRef(pair.first);
747  }
748}
749
750// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
751// which is responsible for recording callee save registers. We explicitly place into jobjects the
752// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
753// field within the proxy object, which will box the primitive arguments and deal with error cases.
754extern "C" uint64_t artQuickProxyInvokeHandler(
755    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
756    SHARED_REQUIRES(Locks::mutator_lock_) {
757  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
758  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
759  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
760  const char* old_cause =
761      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
762  // Register the top of the managed stack, making stack crawlable.
763  DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
764  DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
765            Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
766      << PrettyMethod(proxy_method);
767  self->VerifyStack();
768  // Start new JNI local reference state.
769  JNIEnvExt* env = self->GetJniEnv();
770  ScopedObjectAccessUnchecked soa(env);
771  ScopedJniEnvLocalRefState env_state(env);
772  // Create local ref. copies of proxy method and the receiver.
773  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
774
775  // Placing arguments into args vector and remove the receiver.
776  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*));
777  CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
778                                       << PrettyMethod(non_proxy_method);
779  std::vector<jvalue> args;
780  uint32_t shorty_len = 0;
781  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
782  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
783
784  local_ref_visitor.VisitArguments();
785  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
786  args.erase(args.begin());
787
788  // Convert proxy method into expected interface method.
789  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*));
790  DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
791  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
792  self->EndAssertNoThreadSuspension(old_cause);
793  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
794      mirror::Method::CreateFromArtMethod(soa.Self(), interface_method));
795
796  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
797  // that performs allocations.
798  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
799  // Restore references which might have moved.
800  local_ref_visitor.FixupReferences();
801  return result.GetJ();
802}
803
804// Read object references held in arguments from quick frames and place in a JNI local references,
805// so they don't get garbage collected.
806class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
807 public:
808  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
809                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
810      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
811
812  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
813
814  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
815
816 private:
817  ScopedObjectAccessUnchecked* const soa_;
818  // References which we must update when exiting in case the GC moved the objects.
819  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
820
821  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
822};
823
824void RememberForGcArgumentVisitor::Visit() {
825  if (IsParamAReference()) {
826    StackReference<mirror::Object>* stack_ref =
827        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
828    jobject reference =
829        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
830    references_.push_back(std::make_pair(reference, stack_ref));
831  }
832}
833
834void RememberForGcArgumentVisitor::FixupReferences() {
835  // Fixup any references which may have changed.
836  for (const auto& pair : references_) {
837    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
838    soa_->Env()->DeleteLocalRef(pair.first);
839  }
840}
841
842// Lazily resolve a method for quick. Called by stub code.
843extern "C" const void* artQuickResolutionTrampoline(
844    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
845    SHARED_REQUIRES(Locks::mutator_lock_) {
846  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
847  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
848  // does not have the same stack layout as the callee-save method).
849  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
850  // Start new JNI local reference state
851  JNIEnvExt* env = self->GetJniEnv();
852  ScopedObjectAccessUnchecked soa(env);
853  ScopedJniEnvLocalRefState env_state(env);
854  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
855
856  // Compute details about the called method (avoid GCs)
857  ClassLinker* linker = Runtime::Current()->GetClassLinker();
858  InvokeType invoke_type;
859  MethodReference called_method(nullptr, 0);
860  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
861  ArtMethod* caller = nullptr;
862  if (!called_method_known_on_entry) {
863    caller = QuickArgumentVisitor::GetCallingMethod(sp);
864    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
865    const DexFile::CodeItem* code;
866    called_method.dex_file = caller->GetDexFile();
867    code = caller->GetCodeItem();
868    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
869    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
870    Instruction::Code instr_code = instr->Opcode();
871    bool is_range;
872    switch (instr_code) {
873      case Instruction::INVOKE_DIRECT:
874        invoke_type = kDirect;
875        is_range = false;
876        break;
877      case Instruction::INVOKE_DIRECT_RANGE:
878        invoke_type = kDirect;
879        is_range = true;
880        break;
881      case Instruction::INVOKE_STATIC:
882        invoke_type = kStatic;
883        is_range = false;
884        break;
885      case Instruction::INVOKE_STATIC_RANGE:
886        invoke_type = kStatic;
887        is_range = true;
888        break;
889      case Instruction::INVOKE_SUPER:
890        invoke_type = kSuper;
891        is_range = false;
892        break;
893      case Instruction::INVOKE_SUPER_RANGE:
894        invoke_type = kSuper;
895        is_range = true;
896        break;
897      case Instruction::INVOKE_VIRTUAL:
898        invoke_type = kVirtual;
899        is_range = false;
900        break;
901      case Instruction::INVOKE_VIRTUAL_RANGE:
902        invoke_type = kVirtual;
903        is_range = true;
904        break;
905      case Instruction::INVOKE_INTERFACE:
906        invoke_type = kInterface;
907        is_range = false;
908        break;
909      case Instruction::INVOKE_INTERFACE_RANGE:
910        invoke_type = kInterface;
911        is_range = true;
912        break;
913      default:
914        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
915        UNREACHABLE();
916    }
917    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
918  } else {
919    invoke_type = kStatic;
920    called_method.dex_file = called->GetDexFile();
921    called_method.dex_method_index = called->GetDexMethodIndex();
922  }
923  uint32_t shorty_len;
924  const char* shorty =
925      called_method.dex_file->GetMethodShorty(
926          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
927  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
928  visitor.VisitArguments();
929  self->EndAssertNoThreadSuspension(old_cause);
930  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
931  // Resolve method filling in dex cache.
932  if (!called_method_known_on_entry) {
933    StackHandleScope<1> hs(self);
934    mirror::Object* dummy = nullptr;
935    HandleWrapper<mirror::Object> h_receiver(
936        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
937    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
938    called = linker->ResolveMethod(self, called_method.dex_method_index, caller, invoke_type);
939  }
940  const void* code = nullptr;
941  if (LIKELY(!self->IsExceptionPending())) {
942    // Incompatible class change should have been handled in resolve method.
943    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
944        << PrettyMethod(called) << " " << invoke_type;
945    if (virtual_or_interface) {
946      // Refine called method based on receiver.
947      CHECK(receiver != nullptr) << invoke_type;
948
949      ArtMethod* orig_called = called;
950      if (invoke_type == kVirtual) {
951        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
952      } else {
953        called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
954      }
955
956      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
957                               << PrettyTypeOf(receiver) << " "
958                               << invoke_type << " " << orig_called->GetVtableIndex();
959
960      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
961      // of the sharpened method avoiding dirtying the dex cache if possible.
962      // Note, called_method.dex_method_index references the dex method before the
963      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
964      // about the name and signature.
965      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
966      if (!called->HasSameDexCacheResolvedMethods(caller)) {
967        // Calling from one dex file to another, need to compute the method index appropriate to
968        // the caller's dex file. Since we get here only if the original called was a runtime
969        // method, we've got the correct dex_file and a dex_method_idx from above.
970        DCHECK(!called_method_known_on_entry);
971        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
972        const DexFile* caller_dex_file = called_method.dex_file;
973        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
974        update_dex_cache_method_index =
975            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
976                                                     caller_method_name_and_sig_index);
977      }
978      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
979          (caller->GetDexCacheResolvedMethod(
980              update_dex_cache_method_index, sizeof(void*)) != called)) {
981        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
982      }
983    } else if (invoke_type == kStatic) {
984      const auto called_dex_method_idx = called->GetDexMethodIndex();
985      // For static invokes, we may dispatch to the static method in the superclass but resolve
986      // using the subclass. To prevent getting slow paths on each invoke, we force set the
987      // resolved method for the super class dex method index if we are in the same dex file.
988      // b/19175856
989      if (called->GetDexFile() == called_method.dex_file &&
990          called_method.dex_method_index != called_dex_method_idx) {
991        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
992      }
993    }
994
995    // Ensure that the called method's class is initialized.
996    StackHandleScope<1> hs(soa.Self());
997    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
998    linker->EnsureInitialized(soa.Self(), called_class, true, true);
999    if (LIKELY(called_class->IsInitialized())) {
1000      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1001        // If we are single-stepping or the called method is deoptimized (by a
1002        // breakpoint, for example), then we have to execute the called method
1003        // with the interpreter.
1004        code = GetQuickToInterpreterBridge();
1005      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1006        // If the caller is deoptimized (by a breakpoint, for example), we have to
1007        // continue its execution with interpreter when returning from the called
1008        // method. Because we do not want to execute the called method with the
1009        // interpreter, we wrap its execution into the instrumentation stubs.
1010        // When the called method returns, it will execute the instrumentation
1011        // exit hook that will determine the need of the interpreter with a call
1012        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1013        // it is needed.
1014        code = GetQuickInstrumentationEntryPoint();
1015      } else {
1016        code = called->GetEntryPointFromQuickCompiledCode();
1017      }
1018    } else if (called_class->IsInitializing()) {
1019      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1020        // If we are single-stepping or the called method is deoptimized (by a
1021        // breakpoint, for example), then we have to execute the called method
1022        // with the interpreter.
1023        code = GetQuickToInterpreterBridge();
1024      } else if (invoke_type == kStatic) {
1025        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1026        // until class is initialized to stop races between threads).
1027        code = linker->GetQuickOatCodeFor(called);
1028      } else {
1029        // No trampoline for non-static methods.
1030        code = called->GetEntryPointFromQuickCompiledCode();
1031      }
1032    } else {
1033      DCHECK(called_class->IsErroneous());
1034    }
1035  }
1036  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1037  // Fixup any locally saved objects may have moved during a GC.
1038  visitor.FixupReferences();
1039  // Place called method in callee-save frame to be placed as first argument to quick method.
1040  *sp = called;
1041
1042  return code;
1043}
1044
1045/*
1046 * This class uses a couple of observations to unite the different calling conventions through
1047 * a few constants.
1048 *
1049 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1050 *    possible alignment.
1051 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1052 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1053 *    when we have to split things
1054 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1055 *    and we can use Int handling directly.
1056 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1057 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1058 *    extension should be compatible with Aarch64, which mandates copying the available bits
1059 *    into LSB and leaving the rest unspecified.
1060 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1061 *    the stack.
1062 * 6) There is only little endian.
1063 *
1064 *
1065 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1066 * follows:
1067 *
1068 * void PushGpr(uintptr_t):   Add a value for the next GPR
1069 *
1070 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1071 *                            padding, that is, think the architecture is 32b and aligns 64b.
1072 *
1073 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1074 *                            split this if necessary. The current state will have aligned, if
1075 *                            necessary.
1076 *
1077 * void PushStack(uintptr_t): Push a value to the stack.
1078 *
1079 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1080 *                                          as this might be important for null initialization.
1081 *                                          Must return the jobject, that is, the reference to the
1082 *                                          entry in the HandleScope (nullptr if necessary).
1083 *
1084 */
1085template<class T> class BuildNativeCallFrameStateMachine {
1086 public:
1087#if defined(__arm__)
1088  // TODO: These are all dummy values!
1089  static constexpr bool kNativeSoftFloatAbi = true;
1090  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1091  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1092
1093  static constexpr size_t kRegistersNeededForLong = 2;
1094  static constexpr size_t kRegistersNeededForDouble = 2;
1095  static constexpr bool kMultiRegistersAligned = true;
1096  static constexpr bool kMultiFPRegistersWidened = false;
1097  static constexpr bool kMultiGPRegistersWidened = false;
1098  static constexpr bool kAlignLongOnStack = true;
1099  static constexpr bool kAlignDoubleOnStack = true;
1100#elif defined(__aarch64__)
1101  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1102  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1103  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1104
1105  static constexpr size_t kRegistersNeededForLong = 1;
1106  static constexpr size_t kRegistersNeededForDouble = 1;
1107  static constexpr bool kMultiRegistersAligned = false;
1108  static constexpr bool kMultiFPRegistersWidened = false;
1109  static constexpr bool kMultiGPRegistersWidened = false;
1110  static constexpr bool kAlignLongOnStack = false;
1111  static constexpr bool kAlignDoubleOnStack = false;
1112#elif defined(__mips__) && !defined(__LP64__)
1113  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1114  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1115  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1116
1117  static constexpr size_t kRegistersNeededForLong = 2;
1118  static constexpr size_t kRegistersNeededForDouble = 2;
1119  static constexpr bool kMultiRegistersAligned = true;
1120  static constexpr bool kMultiFPRegistersWidened = true;
1121  static constexpr bool kMultiGPRegistersWidened = false;
1122  static constexpr bool kAlignLongOnStack = true;
1123  static constexpr bool kAlignDoubleOnStack = true;
1124#elif defined(__mips__) && defined(__LP64__)
1125  // Let the code prepare GPRs only and we will load the FPRs with same data.
1126  static constexpr bool kNativeSoftFloatAbi = true;
1127  static constexpr size_t kNumNativeGprArgs = 8;
1128  static constexpr size_t kNumNativeFprArgs = 0;
1129
1130  static constexpr size_t kRegistersNeededForLong = 1;
1131  static constexpr size_t kRegistersNeededForDouble = 1;
1132  static constexpr bool kMultiRegistersAligned = false;
1133  static constexpr bool kMultiFPRegistersWidened = false;
1134  static constexpr bool kMultiGPRegistersWidened = true;
1135  static constexpr bool kAlignLongOnStack = false;
1136  static constexpr bool kAlignDoubleOnStack = false;
1137#elif defined(__i386__)
1138  // TODO: Check these!
1139  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1140  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1141  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1142
1143  static constexpr size_t kRegistersNeededForLong = 2;
1144  static constexpr size_t kRegistersNeededForDouble = 2;
1145  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1146  static constexpr bool kMultiFPRegistersWidened = false;
1147  static constexpr bool kMultiGPRegistersWidened = false;
1148  static constexpr bool kAlignLongOnStack = false;
1149  static constexpr bool kAlignDoubleOnStack = false;
1150#elif defined(__x86_64__)
1151  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1152  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1153  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1154
1155  static constexpr size_t kRegistersNeededForLong = 1;
1156  static constexpr size_t kRegistersNeededForDouble = 1;
1157  static constexpr bool kMultiRegistersAligned = false;
1158  static constexpr bool kMultiFPRegistersWidened = false;
1159  static constexpr bool kMultiGPRegistersWidened = false;
1160  static constexpr bool kAlignLongOnStack = false;
1161  static constexpr bool kAlignDoubleOnStack = false;
1162#else
1163#error "Unsupported architecture"
1164#endif
1165
1166 public:
1167  explicit BuildNativeCallFrameStateMachine(T* delegate)
1168      : gpr_index_(kNumNativeGprArgs),
1169        fpr_index_(kNumNativeFprArgs),
1170        stack_entries_(0),
1171        delegate_(delegate) {
1172    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1173    // the next register is even; counting down is just to make the compiler happy...
1174    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1175    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1176  }
1177
1178  virtual ~BuildNativeCallFrameStateMachine() {}
1179
1180  bool HavePointerGpr() const {
1181    return gpr_index_ > 0;
1182  }
1183
1184  void AdvancePointer(const void* val) {
1185    if (HavePointerGpr()) {
1186      gpr_index_--;
1187      PushGpr(reinterpret_cast<uintptr_t>(val));
1188    } else {
1189      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1190      PushStack(reinterpret_cast<uintptr_t>(val));
1191      gpr_index_ = 0;
1192    }
1193  }
1194
1195  bool HaveHandleScopeGpr() const {
1196    return gpr_index_ > 0;
1197  }
1198
1199  void AdvanceHandleScope(mirror::Object* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
1200    uintptr_t handle = PushHandle(ptr);
1201    if (HaveHandleScopeGpr()) {
1202      gpr_index_--;
1203      PushGpr(handle);
1204    } else {
1205      stack_entries_++;
1206      PushStack(handle);
1207      gpr_index_ = 0;
1208    }
1209  }
1210
1211  bool HaveIntGpr() const {
1212    return gpr_index_ > 0;
1213  }
1214
1215  void AdvanceInt(uint32_t val) {
1216    if (HaveIntGpr()) {
1217      gpr_index_--;
1218      if (kMultiGPRegistersWidened) {
1219        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1220        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1221      } else {
1222        PushGpr(val);
1223      }
1224    } else {
1225      stack_entries_++;
1226      if (kMultiGPRegistersWidened) {
1227        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1228        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1229      } else {
1230        PushStack(val);
1231      }
1232      gpr_index_ = 0;
1233    }
1234  }
1235
1236  bool HaveLongGpr() const {
1237    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1238  }
1239
1240  bool LongGprNeedsPadding() const {
1241    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1242        kAlignLongOnStack &&                  // and when it needs alignment
1243        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1244  }
1245
1246  bool LongStackNeedsPadding() const {
1247    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1248        kAlignLongOnStack &&                  // and when it needs 8B alignment
1249        (stack_entries_ & 1) == 1;            // counter is odd
1250  }
1251
1252  void AdvanceLong(uint64_t val) {
1253    if (HaveLongGpr()) {
1254      if (LongGprNeedsPadding()) {
1255        PushGpr(0);
1256        gpr_index_--;
1257      }
1258      if (kRegistersNeededForLong == 1) {
1259        PushGpr(static_cast<uintptr_t>(val));
1260      } else {
1261        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1262        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1263      }
1264      gpr_index_ -= kRegistersNeededForLong;
1265    } else {
1266      if (LongStackNeedsPadding()) {
1267        PushStack(0);
1268        stack_entries_++;
1269      }
1270      if (kRegistersNeededForLong == 1) {
1271        PushStack(static_cast<uintptr_t>(val));
1272        stack_entries_++;
1273      } else {
1274        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1275        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1276        stack_entries_ += 2;
1277      }
1278      gpr_index_ = 0;
1279    }
1280  }
1281
1282  bool HaveFloatFpr() const {
1283    return fpr_index_ > 0;
1284  }
1285
1286  void AdvanceFloat(float val) {
1287    if (kNativeSoftFloatAbi) {
1288      AdvanceInt(bit_cast<uint32_t, float>(val));
1289    } else {
1290      if (HaveFloatFpr()) {
1291        fpr_index_--;
1292        if (kRegistersNeededForDouble == 1) {
1293          if (kMultiFPRegistersWidened) {
1294            PushFpr8(bit_cast<uint64_t, double>(val));
1295          } else {
1296            // No widening, just use the bits.
1297            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1298          }
1299        } else {
1300          PushFpr4(val);
1301        }
1302      } else {
1303        stack_entries_++;
1304        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1305          // Need to widen before storing: Note the "double" in the template instantiation.
1306          // Note: We need to jump through those hoops to make the compiler happy.
1307          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1308          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1309        } else {
1310          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1311        }
1312        fpr_index_ = 0;
1313      }
1314    }
1315  }
1316
1317  bool HaveDoubleFpr() const {
1318    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1319  }
1320
1321  bool DoubleFprNeedsPadding() const {
1322    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1323        kAlignDoubleOnStack &&                  // and when it needs alignment
1324        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1325  }
1326
1327  bool DoubleStackNeedsPadding() const {
1328    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1329        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1330        (stack_entries_ & 1) == 1;              // counter is odd
1331  }
1332
1333  void AdvanceDouble(uint64_t val) {
1334    if (kNativeSoftFloatAbi) {
1335      AdvanceLong(val);
1336    } else {
1337      if (HaveDoubleFpr()) {
1338        if (DoubleFprNeedsPadding()) {
1339          PushFpr4(0);
1340          fpr_index_--;
1341        }
1342        PushFpr8(val);
1343        fpr_index_ -= kRegistersNeededForDouble;
1344      } else {
1345        if (DoubleStackNeedsPadding()) {
1346          PushStack(0);
1347          stack_entries_++;
1348        }
1349        if (kRegistersNeededForDouble == 1) {
1350          PushStack(static_cast<uintptr_t>(val));
1351          stack_entries_++;
1352        } else {
1353          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1354          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1355          stack_entries_ += 2;
1356        }
1357        fpr_index_ = 0;
1358      }
1359    }
1360  }
1361
1362  uint32_t GetStackEntries() const {
1363    return stack_entries_;
1364  }
1365
1366  uint32_t GetNumberOfUsedGprs() const {
1367    return kNumNativeGprArgs - gpr_index_;
1368  }
1369
1370  uint32_t GetNumberOfUsedFprs() const {
1371    return kNumNativeFprArgs - fpr_index_;
1372  }
1373
1374 private:
1375  void PushGpr(uintptr_t val) {
1376    delegate_->PushGpr(val);
1377  }
1378  void PushFpr4(float val) {
1379    delegate_->PushFpr4(val);
1380  }
1381  void PushFpr8(uint64_t val) {
1382    delegate_->PushFpr8(val);
1383  }
1384  void PushStack(uintptr_t val) {
1385    delegate_->PushStack(val);
1386  }
1387  uintptr_t PushHandle(mirror::Object* ref) SHARED_REQUIRES(Locks::mutator_lock_) {
1388    return delegate_->PushHandle(ref);
1389  }
1390
1391  uint32_t gpr_index_;      // Number of free GPRs
1392  uint32_t fpr_index_;      // Number of free FPRs
1393  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1394                            // extended
1395  T* const delegate_;             // What Push implementation gets called
1396};
1397
1398// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1399// in subclasses.
1400//
1401// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1402// them with handles.
1403class ComputeNativeCallFrameSize {
1404 public:
1405  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1406
1407  virtual ~ComputeNativeCallFrameSize() {}
1408
1409  uint32_t GetStackSize() const {
1410    return num_stack_entries_ * sizeof(uintptr_t);
1411  }
1412
1413  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1414    sp8 -= GetStackSize();
1415    // Align by kStackAlignment.
1416    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1417    return sp8;
1418  }
1419
1420  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1421      const {
1422    // Assumption is OK right now, as we have soft-float arm
1423    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1424    sp8 -= fregs * sizeof(uintptr_t);
1425    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1426    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1427    sp8 -= iregs * sizeof(uintptr_t);
1428    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1429    return sp8;
1430  }
1431
1432  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1433                            uint32_t** start_fpr) const {
1434    // Native call stack.
1435    sp8 = LayoutCallStack(sp8);
1436    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1437
1438    // Put fprs and gprs below.
1439    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1440
1441    // Return the new bottom.
1442    return sp8;
1443  }
1444
1445  virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1446      SHARED_REQUIRES(Locks::mutator_lock_) {
1447    UNUSED(sm);
1448  }
1449
1450  void Walk(const char* shorty, uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) {
1451    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1452
1453    WalkHeader(&sm);
1454
1455    for (uint32_t i = 1; i < shorty_len; ++i) {
1456      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1457      switch (cur_type_) {
1458        case Primitive::kPrimNot:
1459          // TODO: fix abuse of mirror types.
1460          sm.AdvanceHandleScope(
1461              reinterpret_cast<mirror::Object*>(0x12345678));
1462          break;
1463
1464        case Primitive::kPrimBoolean:
1465        case Primitive::kPrimByte:
1466        case Primitive::kPrimChar:
1467        case Primitive::kPrimShort:
1468        case Primitive::kPrimInt:
1469          sm.AdvanceInt(0);
1470          break;
1471        case Primitive::kPrimFloat:
1472          sm.AdvanceFloat(0);
1473          break;
1474        case Primitive::kPrimDouble:
1475          sm.AdvanceDouble(0);
1476          break;
1477        case Primitive::kPrimLong:
1478          sm.AdvanceLong(0);
1479          break;
1480        default:
1481          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1482          UNREACHABLE();
1483      }
1484    }
1485
1486    num_stack_entries_ = sm.GetStackEntries();
1487  }
1488
1489  void PushGpr(uintptr_t /* val */) {
1490    // not optimizing registers, yet
1491  }
1492
1493  void PushFpr4(float /* val */) {
1494    // not optimizing registers, yet
1495  }
1496
1497  void PushFpr8(uint64_t /* val */) {
1498    // not optimizing registers, yet
1499  }
1500
1501  void PushStack(uintptr_t /* val */) {
1502    // counting is already done in the superclass
1503  }
1504
1505  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1506    return reinterpret_cast<uintptr_t>(nullptr);
1507  }
1508
1509 protected:
1510  uint32_t num_stack_entries_;
1511};
1512
1513class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1514 public:
1515  ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1516
1517  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1518  // is at *m = sp. Will update to point to the bottom of the save frame.
1519  //
1520  // Note: assumes ComputeAll() has been run before.
1521  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1522      SHARED_REQUIRES(Locks::mutator_lock_) {
1523    ArtMethod* method = **m;
1524
1525    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
1526
1527    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1528
1529    // First, fix up the layout of the callee-save frame.
1530    // We have to squeeze in the HandleScope, and relocate the method pointer.
1531
1532    // "Free" the slot for the method.
1533    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1534
1535    // Under the callee saves put handle scope and new method stack reference.
1536    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1537    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1538
1539    sp8 -= scope_and_method;
1540    // Align by kStackAlignment.
1541    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1542
1543    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1544    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1545                                        num_handle_scope_references_);
1546
1547    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1548    uint8_t* method_pointer = sp8;
1549    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1550    *new_method_ref = method;
1551    *m = new_method_ref;
1552  }
1553
1554  // Adds space for the cookie. Note: may leave stack unaligned.
1555  void LayoutCookie(uint8_t** sp) const {
1556    // Reference cookie and padding
1557    *sp -= 8;
1558  }
1559
1560  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1561  // Returns the new bottom. Note: this may be unaligned.
1562  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1563      SHARED_REQUIRES(Locks::mutator_lock_) {
1564    // First, fix up the layout of the callee-save frame.
1565    // We have to squeeze in the HandleScope, and relocate the method pointer.
1566    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1567
1568    // The bottom of the callee-save frame is now where the method is, *m.
1569    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1570
1571    // Add space for cookie.
1572    LayoutCookie(&sp8);
1573
1574    return sp8;
1575  }
1576
1577  // WARNING: After this, *sp won't be pointing to the method anymore!
1578  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1579                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1580                         uint32_t** start_fpr)
1581      SHARED_REQUIRES(Locks::mutator_lock_) {
1582    Walk(shorty, shorty_len);
1583
1584    // JNI part.
1585    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1586
1587    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1588
1589    // Return the new bottom.
1590    return sp8;
1591  }
1592
1593  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1594
1595  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1596  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1597      SHARED_REQUIRES(Locks::mutator_lock_);
1598
1599 private:
1600  uint32_t num_handle_scope_references_;
1601};
1602
1603uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1604  num_handle_scope_references_++;
1605  return reinterpret_cast<uintptr_t>(nullptr);
1606}
1607
1608void ComputeGenericJniFrameSize::WalkHeader(
1609    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1610  // JNIEnv
1611  sm->AdvancePointer(nullptr);
1612
1613  // Class object or this as first argument
1614  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1615}
1616
1617// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1618// the template requirements of BuildGenericJniFrameStateMachine.
1619class FillNativeCall {
1620 public:
1621  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1622      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1623
1624  virtual ~FillNativeCall() {}
1625
1626  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1627    cur_gpr_reg_ = gpr_regs;
1628    cur_fpr_reg_ = fpr_regs;
1629    cur_stack_arg_ = stack_args;
1630  }
1631
1632  void PushGpr(uintptr_t val) {
1633    *cur_gpr_reg_ = val;
1634    cur_gpr_reg_++;
1635  }
1636
1637  void PushFpr4(float val) {
1638    *cur_fpr_reg_ = val;
1639    cur_fpr_reg_++;
1640  }
1641
1642  void PushFpr8(uint64_t val) {
1643    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1644    *tmp = val;
1645    cur_fpr_reg_ += 2;
1646  }
1647
1648  void PushStack(uintptr_t val) {
1649    *cur_stack_arg_ = val;
1650    cur_stack_arg_++;
1651  }
1652
1653  virtual uintptr_t PushHandle(mirror::Object*) SHARED_REQUIRES(Locks::mutator_lock_) {
1654    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1655    UNREACHABLE();
1656  }
1657
1658 private:
1659  uintptr_t* cur_gpr_reg_;
1660  uint32_t* cur_fpr_reg_;
1661  uintptr_t* cur_stack_arg_;
1662};
1663
1664// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1665// of transitioning into native code.
1666class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1667 public:
1668  BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1669                              ArtMethod*** sp)
1670     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1671       jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1672    ComputeGenericJniFrameSize fsc;
1673    uintptr_t* start_gpr_reg;
1674    uint32_t* start_fpr_reg;
1675    uintptr_t* start_stack_arg;
1676    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1677                                             &handle_scope_,
1678                                             &start_stack_arg,
1679                                             &start_gpr_reg, &start_fpr_reg);
1680
1681    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1682
1683    // jni environment is always first argument
1684    sm_.AdvancePointer(self->GetJniEnv());
1685
1686    if (is_static) {
1687      sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1688    }
1689  }
1690
1691  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
1692
1693  void FinalizeHandleScope(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_);
1694
1695  StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1696      SHARED_REQUIRES(Locks::mutator_lock_) {
1697    return handle_scope_->GetHandle(0).GetReference();
1698  }
1699
1700  jobject GetFirstHandleScopeJObject() const SHARED_REQUIRES(Locks::mutator_lock_) {
1701    return handle_scope_->GetHandle(0).ToJObject();
1702  }
1703
1704  void* GetBottomOfUsedArea() const {
1705    return bottom_of_used_area_;
1706  }
1707
1708 private:
1709  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1710  class FillJniCall FINAL : public FillNativeCall {
1711   public:
1712    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1713                HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1714                                             handle_scope_(handle_scope), cur_entry_(0) {}
1715
1716    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
1717
1718    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1719      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1720      handle_scope_ = scope;
1721      cur_entry_ = 0U;
1722    }
1723
1724    void ResetRemainingScopeSlots() SHARED_REQUIRES(Locks::mutator_lock_) {
1725      // Initialize padding entries.
1726      size_t expected_slots = handle_scope_->NumberOfReferences();
1727      while (cur_entry_ < expected_slots) {
1728        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1729      }
1730      DCHECK_NE(cur_entry_, 0U);
1731    }
1732
1733   private:
1734    HandleScope* handle_scope_;
1735    size_t cur_entry_;
1736  };
1737
1738  HandleScope* handle_scope_;
1739  FillJniCall jni_call_;
1740  void* bottom_of_used_area_;
1741
1742  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1743
1744  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1745};
1746
1747uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1748  uintptr_t tmp;
1749  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1750  h.Assign(ref);
1751  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1752  cur_entry_++;
1753  return tmp;
1754}
1755
1756void BuildGenericJniFrameVisitor::Visit() {
1757  Primitive::Type type = GetParamPrimitiveType();
1758  switch (type) {
1759    case Primitive::kPrimLong: {
1760      jlong long_arg;
1761      if (IsSplitLongOrDouble()) {
1762        long_arg = ReadSplitLongParam();
1763      } else {
1764        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1765      }
1766      sm_.AdvanceLong(long_arg);
1767      break;
1768    }
1769    case Primitive::kPrimDouble: {
1770      uint64_t double_arg;
1771      if (IsSplitLongOrDouble()) {
1772        // Read into union so that we don't case to a double.
1773        double_arg = ReadSplitLongParam();
1774      } else {
1775        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1776      }
1777      sm_.AdvanceDouble(double_arg);
1778      break;
1779    }
1780    case Primitive::kPrimNot: {
1781      StackReference<mirror::Object>* stack_ref =
1782          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1783      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1784      break;
1785    }
1786    case Primitive::kPrimFloat:
1787      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1788      break;
1789    case Primitive::kPrimBoolean:  // Fall-through.
1790    case Primitive::kPrimByte:     // Fall-through.
1791    case Primitive::kPrimChar:     // Fall-through.
1792    case Primitive::kPrimShort:    // Fall-through.
1793    case Primitive::kPrimInt:      // Fall-through.
1794      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1795      break;
1796    case Primitive::kPrimVoid:
1797      LOG(FATAL) << "UNREACHABLE";
1798      UNREACHABLE();
1799  }
1800}
1801
1802void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1803  // Clear out rest of the scope.
1804  jni_call_.ResetRemainingScopeSlots();
1805  // Install HandleScope.
1806  self->PushHandleScope(handle_scope_);
1807}
1808
1809#if defined(__arm__) || defined(__aarch64__)
1810extern "C" void* artFindNativeMethod();
1811#else
1812extern "C" void* artFindNativeMethod(Thread* self);
1813#endif
1814
1815uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1816  if (lock != nullptr) {
1817    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1818  } else {
1819    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1820  }
1821}
1822
1823void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1824  if (lock != nullptr) {
1825    JniMethodEndSynchronized(cookie, lock, self);
1826  } else {
1827    JniMethodEnd(cookie, self);
1828  }
1829}
1830
1831/*
1832 * Initializes an alloca region assumed to be directly below sp for a native call:
1833 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1834 * The final element on the stack is a pointer to the native code.
1835 *
1836 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1837 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1838 *
1839 * The return of this function denotes:
1840 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1841 * 2) An error, if the value is negative.
1842 */
1843extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
1844    SHARED_REQUIRES(Locks::mutator_lock_) {
1845  ArtMethod* called = *sp;
1846  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1847  uint32_t shorty_len = 0;
1848  const char* shorty = called->GetShorty(&shorty_len);
1849
1850  // Run the visitor and update sp.
1851  BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1852  visitor.VisitArguments();
1853  visitor.FinalizeHandleScope(self);
1854
1855  // Fix up managed-stack things in Thread.
1856  self->SetTopOfStack(sp);
1857
1858  self->VerifyStack();
1859
1860  // Start JNI, save the cookie.
1861  uint32_t cookie;
1862  if (called->IsSynchronized()) {
1863    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1864    if (self->IsExceptionPending()) {
1865      self->PopHandleScope();
1866      // A negative value denotes an error.
1867      return GetTwoWordFailureValue();
1868    }
1869  } else {
1870    cookie = JniMethodStart(self);
1871  }
1872  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1873  *(sp32 - 1) = cookie;
1874
1875  // Retrieve the stored native code.
1876  void* nativeCode = called->GetEntryPointFromJni();
1877
1878  // There are two cases for the content of nativeCode:
1879  // 1) Pointer to the native function.
1880  // 2) Pointer to the trampoline for native code binding.
1881  // In the second case, we need to execute the binding and continue with the actual native function
1882  // pointer.
1883  DCHECK(nativeCode != nullptr);
1884  if (nativeCode == GetJniDlsymLookupStub()) {
1885#if defined(__arm__) || defined(__aarch64__)
1886    nativeCode = artFindNativeMethod();
1887#else
1888    nativeCode = artFindNativeMethod(self);
1889#endif
1890
1891    if (nativeCode == nullptr) {
1892      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1893
1894      // End JNI, as the assembly will move to deliver the exception.
1895      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1896      if (shorty[0] == 'L') {
1897        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1898      } else {
1899        artQuickGenericJniEndJNINonRef(self, cookie, lock);
1900      }
1901
1902      return GetTwoWordFailureValue();
1903    }
1904    // Note that the native code pointer will be automatically set by artFindNativeMethod().
1905  }
1906
1907  // Return native code addr(lo) and bottom of alloca address(hi).
1908  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
1909                                reinterpret_cast<uintptr_t>(nativeCode));
1910}
1911
1912/*
1913 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
1914 * unlocking.
1915 */
1916extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f)
1917    SHARED_REQUIRES(Locks::mutator_lock_) {
1918  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
1919  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1920  ArtMethod* called = *sp;
1921  uint32_t cookie = *(sp32 - 1);
1922
1923  jobject lock = nullptr;
1924  if (called->IsSynchronized()) {
1925    HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp)
1926        + sizeof(*sp));
1927    lock = table->GetHandle(0).ToJObject();
1928  }
1929
1930  char return_shorty_char = called->GetShorty()[0];
1931
1932  if (return_shorty_char == 'L') {
1933    return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1934  } else {
1935    artQuickGenericJniEndJNINonRef(self, cookie, lock);
1936
1937    switch (return_shorty_char) {
1938      case 'F': {
1939        if (kRuntimeISA == kX86) {
1940          // Convert back the result to float.
1941          double d = bit_cast<double, uint64_t>(result_f);
1942          return bit_cast<uint32_t, float>(static_cast<float>(d));
1943        } else {
1944          return result_f;
1945        }
1946      }
1947      case 'D':
1948        return result_f;
1949      case 'Z':
1950        return result.z;
1951      case 'B':
1952        return result.b;
1953      case 'C':
1954        return result.c;
1955      case 'S':
1956        return result.s;
1957      case 'I':
1958        return result.i;
1959      case 'J':
1960        return result.j;
1961      case 'V':
1962        return 0;
1963      default:
1964        LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1965        return 0;
1966    }
1967  }
1968}
1969
1970// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
1971// for the method pointer.
1972//
1973// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
1974// to hold the mutator lock (see SHARED_REQUIRES(Locks::mutator_lock_) annotations).
1975
1976template<InvokeType type, bool access_check>
1977static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self,
1978                                     ArtMethod** sp) {
1979  ScopedQuickEntrypointChecks sqec(self);
1980  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
1981  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
1982  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
1983  if (UNLIKELY(method == nullptr)) {
1984    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1985    uint32_t shorty_len;
1986    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1987    {
1988      // Remember the args in case a GC happens in FindMethodFromCode.
1989      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1990      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1991      visitor.VisitArguments();
1992      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method,
1993                                                      self);
1994      visitor.FixupReferences();
1995    }
1996
1997    if (UNLIKELY(method == nullptr)) {
1998      CHECK(self->IsExceptionPending());
1999      return GetTwoWordFailureValue();  // Failure.
2000    }
2001  }
2002  DCHECK(!self->IsExceptionPending());
2003  const void* code = method->GetEntryPointFromQuickCompiledCode();
2004
2005  // When we return, the caller will branch to this address, so it had better not be 0!
2006  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2007                          << " location: "
2008                          << method->GetDexFile()->GetLocation();
2009
2010  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2011                                reinterpret_cast<uintptr_t>(method));
2012}
2013
2014// Explicit artInvokeCommon template function declarations to please analysis tool.
2015#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2016  template SHARED_REQUIRES(Locks::mutator_lock_)                                          \
2017  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2018      uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2019
2020EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2021EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2022EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2023EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2024EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2025EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2026EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2027EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2028EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2029EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2030#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2031
2032// See comments in runtime_support_asm.S
2033extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2034    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2035    SHARED_REQUIRES(Locks::mutator_lock_) {
2036  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2037}
2038
2039extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2040    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2041    SHARED_REQUIRES(Locks::mutator_lock_) {
2042  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2043}
2044
2045extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2046    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2047    SHARED_REQUIRES(Locks::mutator_lock_) {
2048  return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp);
2049}
2050
2051extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2052    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2053    SHARED_REQUIRES(Locks::mutator_lock_) {
2054  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2055}
2056
2057extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2058    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2059    SHARED_REQUIRES(Locks::mutator_lock_) {
2060  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2061}
2062
2063// Determine target of interface dispatch. This object is known non-null.
2064extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t dex_method_idx,
2065                                                      mirror::Object* this_object,
2066                                                      Thread* self, ArtMethod** sp)
2067    SHARED_REQUIRES(Locks::mutator_lock_) {
2068  ScopedQuickEntrypointChecks sqec(self);
2069  // The optimizing compiler currently does not inline methods that have an interface
2070  // invocation. We use the outer method directly to avoid fetching a stack map, which is
2071  // more expensive.
2072  ArtMethod* caller_method = QuickArgumentVisitor::GetOuterMethod(sp);
2073  DCHECK_EQ(caller_method, QuickArgumentVisitor::GetCallingMethod(sp));
2074  ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2075      dex_method_idx, sizeof(void*));
2076  DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method);
2077  ArtMethod* method;
2078  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2079    method = this_object->GetClass()->FindVirtualMethodForInterface(
2080        interface_method, sizeof(void*));
2081    if (UNLIKELY(method == nullptr)) {
2082      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2083          interface_method, this_object, caller_method);
2084      return GetTwoWordFailureValue();  // Failure.
2085    }
2086  } else {
2087    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2088    if (kIsDebugBuild) {
2089      uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2090      const DexFile::CodeItem* code = caller_method->GetCodeItem();
2091      CHECK_LT(dex_pc, code->insns_size_in_code_units_);
2092      const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
2093      Instruction::Code instr_code = instr->Opcode();
2094      CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2095            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2096          << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2097      if (instr_code == Instruction::INVOKE_INTERFACE) {
2098        CHECK_EQ(dex_method_idx, instr->VRegB_35c());
2099      } else {
2100        CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2101        CHECK_EQ(dex_method_idx, instr->VRegB_3rc());
2102      }
2103    }
2104
2105    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2106        ->GetDexFile();
2107    uint32_t shorty_len;
2108    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2109                                                   &shorty_len);
2110    {
2111      // Remember the args in case a GC happens in FindMethodFromCode.
2112      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2113      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2114      visitor.VisitArguments();
2115      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method,
2116                                                     self);
2117      visitor.FixupReferences();
2118    }
2119
2120    if (UNLIKELY(method == nullptr)) {
2121      CHECK(self->IsExceptionPending());
2122      return GetTwoWordFailureValue();  // Failure.
2123    }
2124  }
2125  const void* code = method->GetEntryPointFromQuickCompiledCode();
2126
2127  // When we return, the caller will branch to this address, so it had better not be 0!
2128  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2129                          << " location: " << method->GetDexFile()->GetLocation();
2130
2131  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2132                                reinterpret_cast<uintptr_t>(method));
2133}
2134
2135}  // namespace art
2136