quick_trampoline_entrypoints.cc revision 3d21bdf8894e780d349c481e5c9e29fe1556051c
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "callee_save_frame.h"
19#include "common_throws.h"
20#include "dex_file-inl.h"
21#include "dex_instruction-inl.h"
22#include "entrypoints/entrypoint_utils-inl.h"
23#include "entrypoints/runtime_asm_entrypoints.h"
24#include "gc/accounting/card_table-inl.h"
25#include "interpreter/interpreter.h"
26#include "method_reference.h"
27#include "mirror/class-inl.h"
28#include "mirror/dex_cache-inl.h"
29#include "mirror/method.h"
30#include "mirror/object-inl.h"
31#include "mirror/object_array-inl.h"
32#include "runtime.h"
33#include "scoped_thread_state_change.h"
34#include "debugger.h"
35
36namespace art {
37
38// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
39class QuickArgumentVisitor {
40  // Number of bytes for each out register in the caller method's frame.
41  static constexpr size_t kBytesStackArgLocation = 4;
42  // Frame size in bytes of a callee-save frame for RefsAndArgs.
43  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
44      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
45#if defined(__arm__)
46  // The callee save frame is pointed to by SP.
47  // | argN       |  |
48  // | ...        |  |
49  // | arg4       |  |
50  // | arg3 spill |  |  Caller's frame
51  // | arg2 spill |  |
52  // | arg1 spill |  |
53  // | Method*    | ---
54  // | LR         |
55  // | ...        |    4x6 bytes callee saves
56  // | R3         |
57  // | R2         |
58  // | R1         |
59  // | S15        |
60  // | :          |
61  // | S0         |
62  // |            |    4x2 bytes padding
63  // | Method*    |  <- sp
64  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
65  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
66  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
67  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
68  static constexpr size_t kNumQuickGprArgs = 3;
69  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
70  static constexpr bool kGprFprLockstep = false;
71  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
72      arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
73  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
74      arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
75  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
76      arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
77  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
78    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
79  }
80#elif defined(__aarch64__)
81  // The callee save frame is pointed to by SP.
82  // | argN       |  |
83  // | ...        |  |
84  // | arg4       |  |
85  // | arg3 spill |  |  Caller's frame
86  // | arg2 spill |  |
87  // | arg1 spill |  |
88  // | Method*    | ---
89  // | LR         |
90  // | X29        |
91  // |  :         |
92  // | X19        |
93  // | X7         |
94  // | :          |
95  // | X1         |
96  // | D7         |
97  // |  :         |
98  // | D0         |
99  // |            |    padding
100  // | Method*    |  <- sp
101  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
102  static constexpr bool kAlignPairRegister = false;
103  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
104  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
105  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
106  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
107  static constexpr bool kGprFprLockstep = false;
108  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
109      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
110  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
111      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
112  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
113      arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
114  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
115    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
116  }
117#elif defined(__mips__) && !defined(__LP64__)
118  // The callee save frame is pointed to by SP.
119  // | argN       |  |
120  // | ...        |  |
121  // | arg4       |  |
122  // | arg3 spill |  |  Caller's frame
123  // | arg2 spill |  |
124  // | arg1 spill |  |
125  // | Method*    | ---
126  // | RA         |
127  // | ...        |    callee saves
128  // | A3         |    arg3
129  // | A2         |    arg2
130  // | A1         |    arg1
131  // | A0/Method* |  <- sp
132  static constexpr bool kSplitPairAcrossRegisterAndStack = true;
133  static constexpr bool kAlignPairRegister = false;
134  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
135  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
136  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
137  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
138  static constexpr bool kGprFprLockstep = false;
139  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
140  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 16;  // Offset of first GPR arg.
141  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60;  // Offset of return address.
142  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
143    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
144  }
145#elif defined(__mips__) && defined(__LP64__)
146  // The callee save frame is pointed to by SP.
147  // | argN       |  |
148  // | ...        |  |
149  // | arg4       |  |
150  // | arg3 spill |  |  Caller's frame
151  // | arg2 spill |  |
152  // | arg1 spill |  |
153  // | Method*    | ---
154  // | RA         |
155  // | ...        |    callee saves
156  // | F7         |    f_arg7
157  // | F6         |    f_arg6
158  // | F5         |    f_arg5
159  // | F4         |    f_arg4
160  // | F3         |    f_arg3
161  // | F2         |    f_arg2
162  // | F1         |    f_arg1
163  // | F0         |    f_arg0
164  // | A7         |    arg7
165  // | A6         |    arg6
166  // | A5         |    arg5
167  // | A4         |    arg4
168  // | A3         |    arg3
169  // | A2         |    arg2
170  // | A1         |    arg1
171  // |            |    padding
172  // | A0/Method* |  <- sp
173  // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
174  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
175  static constexpr bool kAlignPairRegister = false;
176  static constexpr bool kQuickSoftFloatAbi = false;
177  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
178  // These values are set to zeros because GPR and FPR register
179  // assignments for Mips64 are interleaved, which the current VisitArguments()
180  // function does not support.
181  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
182  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
183  static constexpr bool kGprFprLockstep = true;
184
185  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
186  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
187  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
188  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
189    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
190  }
191#elif defined(__i386__)
192  // The callee save frame is pointed to by SP.
193  // | argN        |  |
194  // | ...         |  |
195  // | arg4        |  |
196  // | arg3 spill  |  |  Caller's frame
197  // | arg2 spill  |  |
198  // | arg1 spill  |  |
199  // | Method*     | ---
200  // | Return      |
201  // | EBP,ESI,EDI |    callee saves
202  // | EBX         |    arg3
203  // | EDX         |    arg2
204  // | ECX         |    arg1
205  // | XMM3        |    float arg 4
206  // | XMM2        |    float arg 3
207  // | XMM1        |    float arg 2
208  // | XMM0        |    float arg 1
209  // | EAX/Method* |  <- sp
210  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
211  static constexpr bool kAlignPairRegister = false;
212  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
213  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
214  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
215  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
216  static constexpr bool kGprFprLockstep = false;
217  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
218  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
219  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
220  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
221    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
222  }
223#elif defined(__x86_64__)
224  // The callee save frame is pointed to by SP.
225  // | argN            |  |
226  // | ...             |  |
227  // | reg. arg spills |  |  Caller's frame
228  // | Method*         | ---
229  // | Return          |
230  // | R15             |    callee save
231  // | R14             |    callee save
232  // | R13             |    callee save
233  // | R12             |    callee save
234  // | R9              |    arg5
235  // | R8              |    arg4
236  // | RSI/R6          |    arg1
237  // | RBP/R5          |    callee save
238  // | RBX/R3          |    callee save
239  // | RDX/R2          |    arg2
240  // | RCX/R1          |    arg3
241  // | XMM7            |    float arg 8
242  // | XMM6            |    float arg 7
243  // | XMM5            |    float arg 6
244  // | XMM4            |    float arg 5
245  // | XMM3            |    float arg 4
246  // | XMM2            |    float arg 3
247  // | XMM1            |    float arg 2
248  // | XMM0            |    float arg 1
249  // | Padding         |
250  // | RDI/Method*     |  <- sp
251  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
252  static constexpr bool kAlignPairRegister = false;
253  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
254  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
255  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
256  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
257  static constexpr bool kGprFprLockstep = false;
258  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
259  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
260  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
261  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
262    switch (gpr_index) {
263      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
264      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
265      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
266      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
267      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
268      default:
269      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
270      return 0;
271    }
272  }
273#else
274#error "Unsupported architecture"
275#endif
276
277 public:
278  // Special handling for proxy methods. Proxy methods are instance methods so the
279  // 'this' object is the 1st argument. They also have the same frame layout as the
280  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
281  // 1st GPR.
282  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
283      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
284    CHECK((*sp)->IsProxyMethod());
285    CHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, (*sp)->GetFrameSizeInBytes());
286    CHECK_GT(kNumQuickGprArgs, 0u);
287    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
288    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
289        GprIndexToGprOffset(kThisGprIndex);
290    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
291    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
292  }
293
294  static ArtMethod* GetCallingMethod(ArtMethod** sp)
295      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
296    DCHECK((*sp)->IsCalleeSaveMethod());
297    uint8_t* previous_sp = reinterpret_cast<uint8_t*>(sp) +
298        kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
299    return *reinterpret_cast<ArtMethod**>(previous_sp);
300  }
301
302  // For the given quick ref and args quick frame, return the caller's PC.
303  static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
304    DCHECK((*sp)->IsCalleeSaveMethod());
305    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
306    return *reinterpret_cast<uintptr_t*>(lr);
307  }
308
309  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
310                       uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
311          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
312          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
313          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
314          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
315              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
316          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
317          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
318    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
319                  "Number of Quick FPR arguments unexpected");
320    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
321                  "Double alignment unexpected");
322    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
323    // next register is even.
324    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
325                  "Number of Quick FPR arguments not even");
326    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
327  }
328
329  virtual ~QuickArgumentVisitor() {}
330
331  virtual void Visit() = 0;
332
333  Primitive::Type GetParamPrimitiveType() const {
334    return cur_type_;
335  }
336
337  uint8_t* GetParamAddress() const {
338    if (!kQuickSoftFloatAbi) {
339      Primitive::Type type = GetParamPrimitiveType();
340      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
341        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
342          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
343            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
344          }
345        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
346          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
347        }
348        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
349      }
350    }
351    if (gpr_index_ < kNumQuickGprArgs) {
352      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
353    }
354    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
355  }
356
357  bool IsSplitLongOrDouble() const {
358    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
359        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
360      return is_split_long_or_double_;
361    } else {
362      return false;  // An optimization for when GPR and FPRs are 64bit.
363    }
364  }
365
366  bool IsParamAReference() const {
367    return GetParamPrimitiveType() == Primitive::kPrimNot;
368  }
369
370  bool IsParamALongOrDouble() const {
371    Primitive::Type type = GetParamPrimitiveType();
372    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
373  }
374
375  uint64_t ReadSplitLongParam() const {
376    // The splitted long is always available through the stack.
377    return *reinterpret_cast<uint64_t*>(stack_args_
378        + stack_index_ * kBytesStackArgLocation);
379  }
380
381  void IncGprIndex() {
382    gpr_index_++;
383    if (kGprFprLockstep) {
384      fpr_index_++;
385    }
386  }
387
388  void IncFprIndex() {
389    fpr_index_++;
390    if (kGprFprLockstep) {
391      gpr_index_++;
392    }
393  }
394
395  void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
396    // (a) 'stack_args_' should point to the first method's argument
397    // (b) whatever the argument type it is, the 'stack_index_' should
398    //     be moved forward along with every visiting.
399    gpr_index_ = 0;
400    fpr_index_ = 0;
401    if (kQuickDoubleRegAlignedFloatBackFilled) {
402      fpr_double_index_ = 0;
403    }
404    stack_index_ = 0;
405    if (!is_static_) {  // Handle this.
406      cur_type_ = Primitive::kPrimNot;
407      is_split_long_or_double_ = false;
408      Visit();
409      stack_index_++;
410      if (kNumQuickGprArgs > 0) {
411        IncGprIndex();
412      }
413    }
414    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
415      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
416      switch (cur_type_) {
417        case Primitive::kPrimNot:
418        case Primitive::kPrimBoolean:
419        case Primitive::kPrimByte:
420        case Primitive::kPrimChar:
421        case Primitive::kPrimShort:
422        case Primitive::kPrimInt:
423          is_split_long_or_double_ = false;
424          Visit();
425          stack_index_++;
426          if (gpr_index_ < kNumQuickGprArgs) {
427            IncGprIndex();
428          }
429          break;
430        case Primitive::kPrimFloat:
431          is_split_long_or_double_ = false;
432          Visit();
433          stack_index_++;
434          if (kQuickSoftFloatAbi) {
435            if (gpr_index_ < kNumQuickGprArgs) {
436              IncGprIndex();
437            }
438          } else {
439            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
440              IncFprIndex();
441              if (kQuickDoubleRegAlignedFloatBackFilled) {
442                // Double should not overlap with float.
443                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
444                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
445                // Float should not overlap with double.
446                if (fpr_index_ % 2 == 0) {
447                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
448                }
449              }
450            }
451          }
452          break;
453        case Primitive::kPrimDouble:
454        case Primitive::kPrimLong:
455          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
456            if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
457              // Currently, this is only for ARM, where the first available parameter register
458              // is R1. So we skip it, and use R2 instead.
459              IncGprIndex();
460            }
461            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
462                ((gpr_index_ + 1) == kNumQuickGprArgs);
463            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
464              // We don't want to split this. Pass over this register.
465              gpr_index_++;
466              is_split_long_or_double_ = false;
467            }
468            Visit();
469            if (kBytesStackArgLocation == 4) {
470              stack_index_+= 2;
471            } else {
472              CHECK_EQ(kBytesStackArgLocation, 8U);
473              stack_index_++;
474            }
475            if (gpr_index_ < kNumQuickGprArgs) {
476              IncGprIndex();
477              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
478                if (gpr_index_ < kNumQuickGprArgs) {
479                  IncGprIndex();
480                }
481              }
482            }
483          } else {
484            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
485                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
486            Visit();
487            if (kBytesStackArgLocation == 4) {
488              stack_index_+= 2;
489            } else {
490              CHECK_EQ(kBytesStackArgLocation, 8U);
491              stack_index_++;
492            }
493            if (kQuickDoubleRegAlignedFloatBackFilled) {
494              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
495                fpr_double_index_ += 2;
496                // Float should not overlap with double.
497                if (fpr_index_ % 2 == 0) {
498                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
499                }
500              }
501            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
502              IncFprIndex();
503              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
504                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
505                  IncFprIndex();
506                }
507              }
508            }
509          }
510          break;
511        default:
512          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
513      }
514    }
515  }
516
517 protected:
518  const bool is_static_;
519  const char* const shorty_;
520  const uint32_t shorty_len_;
521
522 private:
523  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
524  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
525  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
526  uint32_t gpr_index_;  // Index into spilled GPRs.
527  // Index into spilled FPRs.
528  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
529  // holds a higher register number.
530  uint32_t fpr_index_;
531  // Index into spilled FPRs for aligned double.
532  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
533  // terms of singles, may be behind fpr_index.
534  uint32_t fpr_double_index_;
535  uint32_t stack_index_;  // Index into arguments on the stack.
536  // The current type of argument during VisitArguments.
537  Primitive::Type cur_type_;
538  // Does a 64bit parameter straddle the register and stack arguments?
539  bool is_split_long_or_double_;
540};
541
542// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
543// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
544extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
545    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
546  return QuickArgumentVisitor::GetProxyThisObject(sp);
547}
548
549// Visits arguments on the stack placing them into the shadow frame.
550class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
551 public:
552  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
553                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
554      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
555
556  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
557
558 private:
559  ShadowFrame* const sf_;
560  uint32_t cur_reg_;
561
562  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
563};
564
565void BuildQuickShadowFrameVisitor::Visit() {
566  Primitive::Type type = GetParamPrimitiveType();
567  switch (type) {
568    case Primitive::kPrimLong:  // Fall-through.
569    case Primitive::kPrimDouble:
570      if (IsSplitLongOrDouble()) {
571        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
572      } else {
573        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
574      }
575      ++cur_reg_;
576      break;
577    case Primitive::kPrimNot: {
578        StackReference<mirror::Object>* stack_ref =
579            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
580        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
581      }
582      break;
583    case Primitive::kPrimBoolean:  // Fall-through.
584    case Primitive::kPrimByte:     // Fall-through.
585    case Primitive::kPrimChar:     // Fall-through.
586    case Primitive::kPrimShort:    // Fall-through.
587    case Primitive::kPrimInt:      // Fall-through.
588    case Primitive::kPrimFloat:
589      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
590      break;
591    case Primitive::kPrimVoid:
592      LOG(FATAL) << "UNREACHABLE";
593      UNREACHABLE();
594  }
595  ++cur_reg_;
596}
597
598extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
599    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
600  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
601  // frame.
602  ScopedQuickEntrypointChecks sqec(self);
603
604  if (method->IsAbstract()) {
605    ThrowAbstractMethodError(method);
606    return 0;
607  } else {
608    DCHECK(!method->IsNative()) << PrettyMethod(method);
609    const char* old_cause = self->StartAssertNoThreadSuspension(
610        "Building interpreter shadow frame");
611    const DexFile::CodeItem* code_item = method->GetCodeItem();
612    DCHECK(code_item != nullptr) << PrettyMethod(method);
613    uint16_t num_regs = code_item->registers_size_;
614    void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
615    // No last shadow coming from quick.
616    ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory));
617    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
618    uint32_t shorty_len = 0;
619    auto* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*));
620    const char* shorty = non_proxy_method->GetShorty(&shorty_len);
621    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
622                                                      shadow_frame, first_arg_reg);
623    shadow_frame_builder.VisitArguments();
624    const bool needs_initialization =
625        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
626    // Push a transition back into managed code onto the linked list in thread.
627    ManagedStack fragment;
628    self->PushManagedStackFragment(&fragment);
629    self->PushShadowFrame(shadow_frame);
630    self->EndAssertNoThreadSuspension(old_cause);
631
632    if (needs_initialization) {
633      // Ensure static method's class is initialized.
634      StackHandleScope<1> hs(self);
635      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
636      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
637        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
638        self->PopManagedStackFragment(fragment);
639        return 0;
640      }
641    }
642    JValue result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
643    // Pop transition.
644    self->PopManagedStackFragment(fragment);
645
646    // Request a stack deoptimization if needed
647    ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
648    if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
649      self->SetException(Thread::GetDeoptimizationException());
650      self->SetDeoptimizationReturnValue(result);
651    }
652
653    // No need to restore the args since the method has already been run by the interpreter.
654    return result.GetJ();
655  }
656}
657
658// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
659// to jobjects.
660class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
661 public:
662  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
663                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
664      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
665
666  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
667
668  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
669
670 private:
671  ScopedObjectAccessUnchecked* const soa_;
672  std::vector<jvalue>* const args_;
673  // References which we must update when exiting in case the GC moved the objects.
674  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
675
676  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
677};
678
679void BuildQuickArgumentVisitor::Visit() {
680  jvalue val;
681  Primitive::Type type = GetParamPrimitiveType();
682  switch (type) {
683    case Primitive::kPrimNot: {
684      StackReference<mirror::Object>* stack_ref =
685          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
686      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
687      references_.push_back(std::make_pair(val.l, stack_ref));
688      break;
689    }
690    case Primitive::kPrimLong:  // Fall-through.
691    case Primitive::kPrimDouble:
692      if (IsSplitLongOrDouble()) {
693        val.j = ReadSplitLongParam();
694      } else {
695        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
696      }
697      break;
698    case Primitive::kPrimBoolean:  // Fall-through.
699    case Primitive::kPrimByte:     // Fall-through.
700    case Primitive::kPrimChar:     // Fall-through.
701    case Primitive::kPrimShort:    // Fall-through.
702    case Primitive::kPrimInt:      // Fall-through.
703    case Primitive::kPrimFloat:
704      val.i = *reinterpret_cast<jint*>(GetParamAddress());
705      break;
706    case Primitive::kPrimVoid:
707      LOG(FATAL) << "UNREACHABLE";
708      UNREACHABLE();
709  }
710  args_->push_back(val);
711}
712
713void BuildQuickArgumentVisitor::FixupReferences() {
714  // Fixup any references which may have changed.
715  for (const auto& pair : references_) {
716    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
717    soa_->Env()->DeleteLocalRef(pair.first);
718  }
719}
720
721// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
722// which is responsible for recording callee save registers. We explicitly place into jobjects the
723// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
724// field within the proxy object, which will box the primitive arguments and deal with error cases.
725extern "C" uint64_t artQuickProxyInvokeHandler(
726    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
727    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
728  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
729  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
730  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
731  const char* old_cause =
732      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
733  // Register the top of the managed stack, making stack crawlable.
734  DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
735  DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
736            Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
737      << PrettyMethod(proxy_method);
738  self->VerifyStack();
739  // Start new JNI local reference state.
740  JNIEnvExt* env = self->GetJniEnv();
741  ScopedObjectAccessUnchecked soa(env);
742  ScopedJniEnvLocalRefState env_state(env);
743  // Create local ref. copies of proxy method and the receiver.
744  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
745
746  // Placing arguments into args vector and remove the receiver.
747  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*));
748  CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
749                                       << PrettyMethod(non_proxy_method);
750  std::vector<jvalue> args;
751  uint32_t shorty_len = 0;
752  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
753  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
754
755  local_ref_visitor.VisitArguments();
756  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
757  args.erase(args.begin());
758
759  // Convert proxy method into expected interface method.
760  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*));
761  DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
762  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
763  self->EndAssertNoThreadSuspension(old_cause);
764  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
765      mirror::Method::CreateFromArtMethod(soa.Self(), interface_method));
766
767  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
768  // that performs allocations.
769  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
770  // Restore references which might have moved.
771  local_ref_visitor.FixupReferences();
772  return result.GetJ();
773}
774
775// Read object references held in arguments from quick frames and place in a JNI local references,
776// so they don't get garbage collected.
777class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
778 public:
779  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
780                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
781      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
782
783  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
784
785  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
786
787 private:
788  ScopedObjectAccessUnchecked* const soa_;
789  // References which we must update when exiting in case the GC moved the objects.
790  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
791
792  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
793};
794
795void RememberForGcArgumentVisitor::Visit() {
796  if (IsParamAReference()) {
797    StackReference<mirror::Object>* stack_ref =
798        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
799    jobject reference =
800        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
801    references_.push_back(std::make_pair(reference, stack_ref));
802  }
803}
804
805void RememberForGcArgumentVisitor::FixupReferences() {
806  // Fixup any references which may have changed.
807  for (const auto& pair : references_) {
808    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
809    soa_->Env()->DeleteLocalRef(pair.first);
810  }
811}
812
813// Lazily resolve a method for quick. Called by stub code.
814extern "C" const void* artQuickResolutionTrampoline(
815    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
816    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
817  ScopedQuickEntrypointChecks sqec(self);
818  // Start new JNI local reference state
819  JNIEnvExt* env = self->GetJniEnv();
820  ScopedObjectAccessUnchecked soa(env);
821  ScopedJniEnvLocalRefState env_state(env);
822  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
823
824  // Compute details about the called method (avoid GCs)
825  ClassLinker* linker = Runtime::Current()->GetClassLinker();
826  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
827  InvokeType invoke_type;
828  MethodReference called_method(nullptr, 0);
829  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
830  if (!called_method_known_on_entry) {
831    uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
832    const DexFile::CodeItem* code;
833    called_method.dex_file = caller->GetDexFile();
834    code = caller->GetCodeItem();
835    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
836    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
837    Instruction::Code instr_code = instr->Opcode();
838    bool is_range;
839    switch (instr_code) {
840      case Instruction::INVOKE_DIRECT:
841        invoke_type = kDirect;
842        is_range = false;
843        break;
844      case Instruction::INVOKE_DIRECT_RANGE:
845        invoke_type = kDirect;
846        is_range = true;
847        break;
848      case Instruction::INVOKE_STATIC:
849        invoke_type = kStatic;
850        is_range = false;
851        break;
852      case Instruction::INVOKE_STATIC_RANGE:
853        invoke_type = kStatic;
854        is_range = true;
855        break;
856      case Instruction::INVOKE_SUPER:
857        invoke_type = kSuper;
858        is_range = false;
859        break;
860      case Instruction::INVOKE_SUPER_RANGE:
861        invoke_type = kSuper;
862        is_range = true;
863        break;
864      case Instruction::INVOKE_VIRTUAL:
865        invoke_type = kVirtual;
866        is_range = false;
867        break;
868      case Instruction::INVOKE_VIRTUAL_RANGE:
869        invoke_type = kVirtual;
870        is_range = true;
871        break;
872      case Instruction::INVOKE_INTERFACE:
873        invoke_type = kInterface;
874        is_range = false;
875        break;
876      case Instruction::INVOKE_INTERFACE_RANGE:
877        invoke_type = kInterface;
878        is_range = true;
879        break;
880      default:
881        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
882        UNREACHABLE();
883    }
884    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
885  } else {
886    invoke_type = kStatic;
887    called_method.dex_file = called->GetDexFile();
888    called_method.dex_method_index = called->GetDexMethodIndex();
889  }
890  uint32_t shorty_len;
891  const char* shorty =
892      called_method.dex_file->GetMethodShorty(
893          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
894  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
895  visitor.VisitArguments();
896  self->EndAssertNoThreadSuspension(old_cause);
897  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
898  // Resolve method filling in dex cache.
899  if (!called_method_known_on_entry) {
900    StackHandleScope<1> hs(self);
901    mirror::Object* dummy = nullptr;
902    HandleWrapper<mirror::Object> h_receiver(
903        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
904    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
905    called = linker->ResolveMethod(self, called_method.dex_method_index, caller, invoke_type);
906  }
907  const void* code = nullptr;
908  if (LIKELY(!self->IsExceptionPending())) {
909    // Incompatible class change should have been handled in resolve method.
910    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
911        << PrettyMethod(called) << " " << invoke_type;
912    if (virtual_or_interface) {
913      // Refine called method based on receiver.
914      CHECK(receiver != nullptr) << invoke_type;
915
916      ArtMethod* orig_called = called;
917      if (invoke_type == kVirtual) {
918        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
919      } else {
920        called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
921      }
922
923      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
924                               << PrettyTypeOf(receiver) << " "
925                               << invoke_type << " " << orig_called->GetVtableIndex();
926
927      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
928      // of the sharpened method avoiding dirtying the dex cache if possible.
929      // Note, called_method.dex_method_index references the dex method before the
930      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
931      // about the name and signature.
932      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
933      if (!called->HasSameDexCacheResolvedMethods(caller)) {
934        // Calling from one dex file to another, need to compute the method index appropriate to
935        // the caller's dex file. Since we get here only if the original called was a runtime
936        // method, we've got the correct dex_file and a dex_method_idx from above.
937        DCHECK(!called_method_known_on_entry);
938        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
939        const DexFile* caller_dex_file = called_method.dex_file;
940        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
941        update_dex_cache_method_index =
942            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
943                                                     caller_method_name_and_sig_index);
944      }
945      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
946          (caller->GetDexCacheResolvedMethod(
947              update_dex_cache_method_index, sizeof(void*)) != called)) {
948        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
949      }
950    } else if (invoke_type == kStatic) {
951      const auto called_dex_method_idx = called->GetDexMethodIndex();
952      // For static invokes, we may dispatch to the static method in the superclass but resolve
953      // using the subclass. To prevent getting slow paths on each invoke, we force set the
954      // resolved method for the super class dex method index if we are in the same dex file.
955      // b/19175856
956      if (called->GetDexFile() == called_method.dex_file &&
957          called_method.dex_method_index != called_dex_method_idx) {
958        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
959      }
960    }
961
962    // Ensure that the called method's class is initialized.
963    StackHandleScope<1> hs(soa.Self());
964    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
965    linker->EnsureInitialized(soa.Self(), called_class, true, true);
966    if (LIKELY(called_class->IsInitialized())) {
967      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
968        // If we are single-stepping or the called method is deoptimized (by a
969        // breakpoint, for example), then we have to execute the called method
970        // with the interpreter.
971        code = GetQuickToInterpreterBridge();
972      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
973        // If the caller is deoptimized (by a breakpoint, for example), we have to
974        // continue its execution with interpreter when returning from the called
975        // method. Because we do not want to execute the called method with the
976        // interpreter, we wrap its execution into the instrumentation stubs.
977        // When the called method returns, it will execute the instrumentation
978        // exit hook that will determine the need of the interpreter with a call
979        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
980        // it is needed.
981        code = GetQuickInstrumentationEntryPoint();
982      } else {
983        code = called->GetEntryPointFromQuickCompiledCode();
984      }
985    } else if (called_class->IsInitializing()) {
986      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
987        // If we are single-stepping or the called method is deoptimized (by a
988        // breakpoint, for example), then we have to execute the called method
989        // with the interpreter.
990        code = GetQuickToInterpreterBridge();
991      } else if (invoke_type == kStatic) {
992        // Class is still initializing, go to oat and grab code (trampoline must be left in place
993        // until class is initialized to stop races between threads).
994        code = linker->GetQuickOatCodeFor(called);
995      } else {
996        // No trampoline for non-static methods.
997        code = called->GetEntryPointFromQuickCompiledCode();
998      }
999    } else {
1000      DCHECK(called_class->IsErroneous());
1001    }
1002  }
1003  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1004  // Fixup any locally saved objects may have moved during a GC.
1005  visitor.FixupReferences();
1006  // Place called method in callee-save frame to be placed as first argument to quick method.
1007  *sp = called;
1008
1009  return code;
1010}
1011
1012/*
1013 * This class uses a couple of observations to unite the different calling conventions through
1014 * a few constants.
1015 *
1016 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1017 *    possible alignment.
1018 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1019 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1020 *    when we have to split things
1021 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1022 *    and we can use Int handling directly.
1023 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1024 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1025 *    extension should be compatible with Aarch64, which mandates copying the available bits
1026 *    into LSB and leaving the rest unspecified.
1027 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1028 *    the stack.
1029 * 6) There is only little endian.
1030 *
1031 *
1032 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1033 * follows:
1034 *
1035 * void PushGpr(uintptr_t):   Add a value for the next GPR
1036 *
1037 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1038 *                            padding, that is, think the architecture is 32b and aligns 64b.
1039 *
1040 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1041 *                            split this if necessary. The current state will have aligned, if
1042 *                            necessary.
1043 *
1044 * void PushStack(uintptr_t): Push a value to the stack.
1045 *
1046 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1047 *                                          as this might be important for null initialization.
1048 *                                          Must return the jobject, that is, the reference to the
1049 *                                          entry in the HandleScope (nullptr if necessary).
1050 *
1051 */
1052template<class T> class BuildNativeCallFrameStateMachine {
1053 public:
1054#if defined(__arm__)
1055  // TODO: These are all dummy values!
1056  static constexpr bool kNativeSoftFloatAbi = true;
1057  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1058  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1059
1060  static constexpr size_t kRegistersNeededForLong = 2;
1061  static constexpr size_t kRegistersNeededForDouble = 2;
1062  static constexpr bool kMultiRegistersAligned = true;
1063  static constexpr bool kMultiFPRegistersWidened = false;
1064  static constexpr bool kMultiGPRegistersWidened = false;
1065  static constexpr bool kAlignLongOnStack = true;
1066  static constexpr bool kAlignDoubleOnStack = true;
1067#elif defined(__aarch64__)
1068  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1069  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1070  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1071
1072  static constexpr size_t kRegistersNeededForLong = 1;
1073  static constexpr size_t kRegistersNeededForDouble = 1;
1074  static constexpr bool kMultiRegistersAligned = false;
1075  static constexpr bool kMultiFPRegistersWidened = false;
1076  static constexpr bool kMultiGPRegistersWidened = false;
1077  static constexpr bool kAlignLongOnStack = false;
1078  static constexpr bool kAlignDoubleOnStack = false;
1079#elif defined(__mips__) && !defined(__LP64__)
1080  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1081  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1082  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1083
1084  static constexpr size_t kRegistersNeededForLong = 2;
1085  static constexpr size_t kRegistersNeededForDouble = 2;
1086  static constexpr bool kMultiRegistersAligned = true;
1087  static constexpr bool kMultiFPRegistersWidened = true;
1088  static constexpr bool kMultiGPRegistersWidened = false;
1089  static constexpr bool kAlignLongOnStack = true;
1090  static constexpr bool kAlignDoubleOnStack = true;
1091#elif defined(__mips__) && defined(__LP64__)
1092  // Let the code prepare GPRs only and we will load the FPRs with same data.
1093  static constexpr bool kNativeSoftFloatAbi = true;
1094  static constexpr size_t kNumNativeGprArgs = 8;
1095  static constexpr size_t kNumNativeFprArgs = 0;
1096
1097  static constexpr size_t kRegistersNeededForLong = 1;
1098  static constexpr size_t kRegistersNeededForDouble = 1;
1099  static constexpr bool kMultiRegistersAligned = false;
1100  static constexpr bool kMultiFPRegistersWidened = false;
1101  static constexpr bool kMultiGPRegistersWidened = true;
1102  static constexpr bool kAlignLongOnStack = false;
1103  static constexpr bool kAlignDoubleOnStack = false;
1104#elif defined(__i386__)
1105  // TODO: Check these!
1106  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1107  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1108  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1109
1110  static constexpr size_t kRegistersNeededForLong = 2;
1111  static constexpr size_t kRegistersNeededForDouble = 2;
1112  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1113  static constexpr bool kMultiFPRegistersWidened = false;
1114  static constexpr bool kMultiGPRegistersWidened = false;
1115  static constexpr bool kAlignLongOnStack = false;
1116  static constexpr bool kAlignDoubleOnStack = false;
1117#elif defined(__x86_64__)
1118  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1119  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1120  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1121
1122  static constexpr size_t kRegistersNeededForLong = 1;
1123  static constexpr size_t kRegistersNeededForDouble = 1;
1124  static constexpr bool kMultiRegistersAligned = false;
1125  static constexpr bool kMultiFPRegistersWidened = false;
1126  static constexpr bool kMultiGPRegistersWidened = false;
1127  static constexpr bool kAlignLongOnStack = false;
1128  static constexpr bool kAlignDoubleOnStack = false;
1129#else
1130#error "Unsupported architecture"
1131#endif
1132
1133 public:
1134  explicit BuildNativeCallFrameStateMachine(T* delegate)
1135      : gpr_index_(kNumNativeGprArgs),
1136        fpr_index_(kNumNativeFprArgs),
1137        stack_entries_(0),
1138        delegate_(delegate) {
1139    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1140    // the next register is even; counting down is just to make the compiler happy...
1141    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1142    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1143  }
1144
1145  virtual ~BuildNativeCallFrameStateMachine() {}
1146
1147  bool HavePointerGpr() const {
1148    return gpr_index_ > 0;
1149  }
1150
1151  void AdvancePointer(const void* val) {
1152    if (HavePointerGpr()) {
1153      gpr_index_--;
1154      PushGpr(reinterpret_cast<uintptr_t>(val));
1155    } else {
1156      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1157      PushStack(reinterpret_cast<uintptr_t>(val));
1158      gpr_index_ = 0;
1159    }
1160  }
1161
1162  bool HaveHandleScopeGpr() const {
1163    return gpr_index_ > 0;
1164  }
1165
1166  void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1167    uintptr_t handle = PushHandle(ptr);
1168    if (HaveHandleScopeGpr()) {
1169      gpr_index_--;
1170      PushGpr(handle);
1171    } else {
1172      stack_entries_++;
1173      PushStack(handle);
1174      gpr_index_ = 0;
1175    }
1176  }
1177
1178  bool HaveIntGpr() const {
1179    return gpr_index_ > 0;
1180  }
1181
1182  void AdvanceInt(uint32_t val) {
1183    if (HaveIntGpr()) {
1184      gpr_index_--;
1185      if (kMultiGPRegistersWidened) {
1186        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1187        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1188      } else {
1189        PushGpr(val);
1190      }
1191    } else {
1192      stack_entries_++;
1193      if (kMultiGPRegistersWidened) {
1194        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1195        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1196      } else {
1197        PushStack(val);
1198      }
1199      gpr_index_ = 0;
1200    }
1201  }
1202
1203  bool HaveLongGpr() const {
1204    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1205  }
1206
1207  bool LongGprNeedsPadding() const {
1208    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1209        kAlignLongOnStack &&                  // and when it needs alignment
1210        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1211  }
1212
1213  bool LongStackNeedsPadding() const {
1214    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1215        kAlignLongOnStack &&                  // and when it needs 8B alignment
1216        (stack_entries_ & 1) == 1;            // counter is odd
1217  }
1218
1219  void AdvanceLong(uint64_t val) {
1220    if (HaveLongGpr()) {
1221      if (LongGprNeedsPadding()) {
1222        PushGpr(0);
1223        gpr_index_--;
1224      }
1225      if (kRegistersNeededForLong == 1) {
1226        PushGpr(static_cast<uintptr_t>(val));
1227      } else {
1228        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1229        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1230      }
1231      gpr_index_ -= kRegistersNeededForLong;
1232    } else {
1233      if (LongStackNeedsPadding()) {
1234        PushStack(0);
1235        stack_entries_++;
1236      }
1237      if (kRegistersNeededForLong == 1) {
1238        PushStack(static_cast<uintptr_t>(val));
1239        stack_entries_++;
1240      } else {
1241        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1242        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1243        stack_entries_ += 2;
1244      }
1245      gpr_index_ = 0;
1246    }
1247  }
1248
1249  bool HaveFloatFpr() const {
1250    return fpr_index_ > 0;
1251  }
1252
1253  void AdvanceFloat(float val) {
1254    if (kNativeSoftFloatAbi) {
1255      AdvanceInt(bit_cast<uint32_t, float>(val));
1256    } else {
1257      if (HaveFloatFpr()) {
1258        fpr_index_--;
1259        if (kRegistersNeededForDouble == 1) {
1260          if (kMultiFPRegistersWidened) {
1261            PushFpr8(bit_cast<uint64_t, double>(val));
1262          } else {
1263            // No widening, just use the bits.
1264            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1265          }
1266        } else {
1267          PushFpr4(val);
1268        }
1269      } else {
1270        stack_entries_++;
1271        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1272          // Need to widen before storing: Note the "double" in the template instantiation.
1273          // Note: We need to jump through those hoops to make the compiler happy.
1274          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1275          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1276        } else {
1277          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1278        }
1279        fpr_index_ = 0;
1280      }
1281    }
1282  }
1283
1284  bool HaveDoubleFpr() const {
1285    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1286  }
1287
1288  bool DoubleFprNeedsPadding() const {
1289    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1290        kAlignDoubleOnStack &&                  // and when it needs alignment
1291        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1292  }
1293
1294  bool DoubleStackNeedsPadding() const {
1295    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1296        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1297        (stack_entries_ & 1) == 1;              // counter is odd
1298  }
1299
1300  void AdvanceDouble(uint64_t val) {
1301    if (kNativeSoftFloatAbi) {
1302      AdvanceLong(val);
1303    } else {
1304      if (HaveDoubleFpr()) {
1305        if (DoubleFprNeedsPadding()) {
1306          PushFpr4(0);
1307          fpr_index_--;
1308        }
1309        PushFpr8(val);
1310        fpr_index_ -= kRegistersNeededForDouble;
1311      } else {
1312        if (DoubleStackNeedsPadding()) {
1313          PushStack(0);
1314          stack_entries_++;
1315        }
1316        if (kRegistersNeededForDouble == 1) {
1317          PushStack(static_cast<uintptr_t>(val));
1318          stack_entries_++;
1319        } else {
1320          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1321          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1322          stack_entries_ += 2;
1323        }
1324        fpr_index_ = 0;
1325      }
1326    }
1327  }
1328
1329  uint32_t GetStackEntries() const {
1330    return stack_entries_;
1331  }
1332
1333  uint32_t GetNumberOfUsedGprs() const {
1334    return kNumNativeGprArgs - gpr_index_;
1335  }
1336
1337  uint32_t GetNumberOfUsedFprs() const {
1338    return kNumNativeFprArgs - fpr_index_;
1339  }
1340
1341 private:
1342  void PushGpr(uintptr_t val) {
1343    delegate_->PushGpr(val);
1344  }
1345  void PushFpr4(float val) {
1346    delegate_->PushFpr4(val);
1347  }
1348  void PushFpr8(uint64_t val) {
1349    delegate_->PushFpr8(val);
1350  }
1351  void PushStack(uintptr_t val) {
1352    delegate_->PushStack(val);
1353  }
1354  uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1355    return delegate_->PushHandle(ref);
1356  }
1357
1358  uint32_t gpr_index_;      // Number of free GPRs
1359  uint32_t fpr_index_;      // Number of free FPRs
1360  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1361                            // extended
1362  T* const delegate_;             // What Push implementation gets called
1363};
1364
1365// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1366// in subclasses.
1367//
1368// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1369// them with handles.
1370class ComputeNativeCallFrameSize {
1371 public:
1372  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1373
1374  virtual ~ComputeNativeCallFrameSize() {}
1375
1376  uint32_t GetStackSize() const {
1377    return num_stack_entries_ * sizeof(uintptr_t);
1378  }
1379
1380  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1381    sp8 -= GetStackSize();
1382    // Align by kStackAlignment.
1383    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1384    return sp8;
1385  }
1386
1387  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1388      const {
1389    // Assumption is OK right now, as we have soft-float arm
1390    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1391    sp8 -= fregs * sizeof(uintptr_t);
1392    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1393    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1394    sp8 -= iregs * sizeof(uintptr_t);
1395    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1396    return sp8;
1397  }
1398
1399  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1400                            uint32_t** start_fpr) const {
1401    // Native call stack.
1402    sp8 = LayoutCallStack(sp8);
1403    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1404
1405    // Put fprs and gprs below.
1406    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1407
1408    // Return the new bottom.
1409    return sp8;
1410  }
1411
1412  virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1413      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1414    UNUSED(sm);
1415  }
1416
1417  void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1418    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1419
1420    WalkHeader(&sm);
1421
1422    for (uint32_t i = 1; i < shorty_len; ++i) {
1423      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1424      switch (cur_type_) {
1425        case Primitive::kPrimNot:
1426          // TODO: fix abuse of mirror types.
1427          sm.AdvanceHandleScope(
1428              reinterpret_cast<mirror::Object*>(0x12345678));
1429          break;
1430
1431        case Primitive::kPrimBoolean:
1432        case Primitive::kPrimByte:
1433        case Primitive::kPrimChar:
1434        case Primitive::kPrimShort:
1435        case Primitive::kPrimInt:
1436          sm.AdvanceInt(0);
1437          break;
1438        case Primitive::kPrimFloat:
1439          sm.AdvanceFloat(0);
1440          break;
1441        case Primitive::kPrimDouble:
1442          sm.AdvanceDouble(0);
1443          break;
1444        case Primitive::kPrimLong:
1445          sm.AdvanceLong(0);
1446          break;
1447        default:
1448          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1449          UNREACHABLE();
1450      }
1451    }
1452
1453    num_stack_entries_ = sm.GetStackEntries();
1454  }
1455
1456  void PushGpr(uintptr_t /* val */) {
1457    // not optimizing registers, yet
1458  }
1459
1460  void PushFpr4(float /* val */) {
1461    // not optimizing registers, yet
1462  }
1463
1464  void PushFpr8(uint64_t /* val */) {
1465    // not optimizing registers, yet
1466  }
1467
1468  void PushStack(uintptr_t /* val */) {
1469    // counting is already done in the superclass
1470  }
1471
1472  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1473    return reinterpret_cast<uintptr_t>(nullptr);
1474  }
1475
1476 protected:
1477  uint32_t num_stack_entries_;
1478};
1479
1480class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1481 public:
1482  ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1483
1484  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1485  // is at *m = sp. Will update to point to the bottom of the save frame.
1486  //
1487  // Note: assumes ComputeAll() has been run before.
1488  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1489      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1490    ArtMethod* method = **m;
1491
1492    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
1493
1494    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1495
1496    // First, fix up the layout of the callee-save frame.
1497    // We have to squeeze in the HandleScope, and relocate the method pointer.
1498
1499    // "Free" the slot for the method.
1500    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1501
1502    // Under the callee saves put handle scope and new method stack reference.
1503    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1504    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1505
1506    sp8 -= scope_and_method;
1507    // Align by kStackAlignment.
1508    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1509
1510    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1511    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1512                                        num_handle_scope_references_);
1513
1514    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1515    uint8_t* method_pointer = sp8;
1516    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1517    *new_method_ref = method;
1518    *m = new_method_ref;
1519  }
1520
1521  // Adds space for the cookie. Note: may leave stack unaligned.
1522  void LayoutCookie(uint8_t** sp) const {
1523    // Reference cookie and padding
1524    *sp -= 8;
1525  }
1526
1527  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1528  // Returns the new bottom. Note: this may be unaligned.
1529  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1530      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1531    // First, fix up the layout of the callee-save frame.
1532    // We have to squeeze in the HandleScope, and relocate the method pointer.
1533    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1534
1535    // The bottom of the callee-save frame is now where the method is, *m.
1536    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1537
1538    // Add space for cookie.
1539    LayoutCookie(&sp8);
1540
1541    return sp8;
1542  }
1543
1544  // WARNING: After this, *sp won't be pointing to the method anymore!
1545  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1546                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1547                         uint32_t** start_fpr)
1548      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1549    Walk(shorty, shorty_len);
1550
1551    // JNI part.
1552    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1553
1554    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1555
1556    // Return the new bottom.
1557    return sp8;
1558  }
1559
1560  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1561
1562  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1563  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1564      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1565
1566 private:
1567  uint32_t num_handle_scope_references_;
1568};
1569
1570uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1571  num_handle_scope_references_++;
1572  return reinterpret_cast<uintptr_t>(nullptr);
1573}
1574
1575void ComputeGenericJniFrameSize::WalkHeader(
1576    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1577  // JNIEnv
1578  sm->AdvancePointer(nullptr);
1579
1580  // Class object or this as first argument
1581  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1582}
1583
1584// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1585// the template requirements of BuildGenericJniFrameStateMachine.
1586class FillNativeCall {
1587 public:
1588  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1589      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1590
1591  virtual ~FillNativeCall() {}
1592
1593  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1594    cur_gpr_reg_ = gpr_regs;
1595    cur_fpr_reg_ = fpr_regs;
1596    cur_stack_arg_ = stack_args;
1597  }
1598
1599  void PushGpr(uintptr_t val) {
1600    *cur_gpr_reg_ = val;
1601    cur_gpr_reg_++;
1602  }
1603
1604  void PushFpr4(float val) {
1605    *cur_fpr_reg_ = val;
1606    cur_fpr_reg_++;
1607  }
1608
1609  void PushFpr8(uint64_t val) {
1610    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1611    *tmp = val;
1612    cur_fpr_reg_ += 2;
1613  }
1614
1615  void PushStack(uintptr_t val) {
1616    *cur_stack_arg_ = val;
1617    cur_stack_arg_++;
1618  }
1619
1620  virtual uintptr_t PushHandle(mirror::Object*) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1621    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1622    UNREACHABLE();
1623  }
1624
1625 private:
1626  uintptr_t* cur_gpr_reg_;
1627  uint32_t* cur_fpr_reg_;
1628  uintptr_t* cur_stack_arg_;
1629};
1630
1631// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1632// of transitioning into native code.
1633class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1634 public:
1635  BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1636                              ArtMethod*** sp)
1637     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1638       jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1639    ComputeGenericJniFrameSize fsc;
1640    uintptr_t* start_gpr_reg;
1641    uint32_t* start_fpr_reg;
1642    uintptr_t* start_stack_arg;
1643    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1644                                             &handle_scope_,
1645                                             &start_stack_arg,
1646                                             &start_gpr_reg, &start_fpr_reg);
1647
1648    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1649
1650    // jni environment is always first argument
1651    sm_.AdvancePointer(self->GetJniEnv());
1652
1653    if (is_static) {
1654      sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1655    }
1656  }
1657
1658  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1659
1660  void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1661
1662  StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1663      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1664    return handle_scope_->GetHandle(0).GetReference();
1665  }
1666
1667  jobject GetFirstHandleScopeJObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1668    return handle_scope_->GetHandle(0).ToJObject();
1669  }
1670
1671  void* GetBottomOfUsedArea() const {
1672    return bottom_of_used_area_;
1673  }
1674
1675 private:
1676  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1677  class FillJniCall FINAL : public FillNativeCall {
1678   public:
1679    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1680                HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1681                                             handle_scope_(handle_scope), cur_entry_(0) {}
1682
1683    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1684
1685    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1686      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1687      handle_scope_ = scope;
1688      cur_entry_ = 0U;
1689    }
1690
1691    void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1692      // Initialize padding entries.
1693      size_t expected_slots = handle_scope_->NumberOfReferences();
1694      while (cur_entry_ < expected_slots) {
1695        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1696      }
1697      DCHECK_NE(cur_entry_, 0U);
1698    }
1699
1700   private:
1701    HandleScope* handle_scope_;
1702    size_t cur_entry_;
1703  };
1704
1705  HandleScope* handle_scope_;
1706  FillJniCall jni_call_;
1707  void* bottom_of_used_area_;
1708
1709  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1710
1711  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1712};
1713
1714uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1715  uintptr_t tmp;
1716  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1717  h.Assign(ref);
1718  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1719  cur_entry_++;
1720  return tmp;
1721}
1722
1723void BuildGenericJniFrameVisitor::Visit() {
1724  Primitive::Type type = GetParamPrimitiveType();
1725  switch (type) {
1726    case Primitive::kPrimLong: {
1727      jlong long_arg;
1728      if (IsSplitLongOrDouble()) {
1729        long_arg = ReadSplitLongParam();
1730      } else {
1731        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1732      }
1733      sm_.AdvanceLong(long_arg);
1734      break;
1735    }
1736    case Primitive::kPrimDouble: {
1737      uint64_t double_arg;
1738      if (IsSplitLongOrDouble()) {
1739        // Read into union so that we don't case to a double.
1740        double_arg = ReadSplitLongParam();
1741      } else {
1742        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1743      }
1744      sm_.AdvanceDouble(double_arg);
1745      break;
1746    }
1747    case Primitive::kPrimNot: {
1748      StackReference<mirror::Object>* stack_ref =
1749          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1750      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1751      break;
1752    }
1753    case Primitive::kPrimFloat:
1754      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1755      break;
1756    case Primitive::kPrimBoolean:  // Fall-through.
1757    case Primitive::kPrimByte:     // Fall-through.
1758    case Primitive::kPrimChar:     // Fall-through.
1759    case Primitive::kPrimShort:    // Fall-through.
1760    case Primitive::kPrimInt:      // Fall-through.
1761      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1762      break;
1763    case Primitive::kPrimVoid:
1764      LOG(FATAL) << "UNREACHABLE";
1765      UNREACHABLE();
1766  }
1767}
1768
1769void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1770  // Clear out rest of the scope.
1771  jni_call_.ResetRemainingScopeSlots();
1772  // Install HandleScope.
1773  self->PushHandleScope(handle_scope_);
1774}
1775
1776#if defined(__arm__) || defined(__aarch64__)
1777extern "C" void* artFindNativeMethod();
1778#else
1779extern "C" void* artFindNativeMethod(Thread* self);
1780#endif
1781
1782uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1783  if (lock != nullptr) {
1784    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1785  } else {
1786    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1787  }
1788}
1789
1790void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1791  if (lock != nullptr) {
1792    JniMethodEndSynchronized(cookie, lock, self);
1793  } else {
1794    JniMethodEnd(cookie, self);
1795  }
1796}
1797
1798/*
1799 * Initializes an alloca region assumed to be directly below sp for a native call:
1800 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1801 * The final element on the stack is a pointer to the native code.
1802 *
1803 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1804 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1805 *
1806 * The return of this function denotes:
1807 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1808 * 2) An error, if the value is negative.
1809 */
1810extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
1811    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1812  ArtMethod* called = *sp;
1813  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1814  uint32_t shorty_len = 0;
1815  const char* shorty = called->GetShorty(&shorty_len);
1816
1817  // Run the visitor and update sp.
1818  BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1819  visitor.VisitArguments();
1820  visitor.FinalizeHandleScope(self);
1821
1822  // Fix up managed-stack things in Thread.
1823  self->SetTopOfStack(sp);
1824
1825  self->VerifyStack();
1826
1827  // Start JNI, save the cookie.
1828  uint32_t cookie;
1829  if (called->IsSynchronized()) {
1830    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1831    if (self->IsExceptionPending()) {
1832      self->PopHandleScope();
1833      // A negative value denotes an error.
1834      return GetTwoWordFailureValue();
1835    }
1836  } else {
1837    cookie = JniMethodStart(self);
1838  }
1839  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1840  *(sp32 - 1) = cookie;
1841
1842  // Retrieve the stored native code.
1843  void* nativeCode = called->GetEntryPointFromJni();
1844
1845  // There are two cases for the content of nativeCode:
1846  // 1) Pointer to the native function.
1847  // 2) Pointer to the trampoline for native code binding.
1848  // In the second case, we need to execute the binding and continue with the actual native function
1849  // pointer.
1850  DCHECK(nativeCode != nullptr);
1851  if (nativeCode == GetJniDlsymLookupStub()) {
1852#if defined(__arm__) || defined(__aarch64__)
1853    nativeCode = artFindNativeMethod();
1854#else
1855    nativeCode = artFindNativeMethod(self);
1856#endif
1857
1858    if (nativeCode == nullptr) {
1859      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1860
1861      // End JNI, as the assembly will move to deliver the exception.
1862      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1863      if (shorty[0] == 'L') {
1864        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1865      } else {
1866        artQuickGenericJniEndJNINonRef(self, cookie, lock);
1867      }
1868
1869      return GetTwoWordFailureValue();
1870    }
1871    // Note that the native code pointer will be automatically set by artFindNativeMethod().
1872  }
1873
1874  // Return native code addr(lo) and bottom of alloca address(hi).
1875  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
1876                                reinterpret_cast<uintptr_t>(nativeCode));
1877}
1878
1879/*
1880 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
1881 * unlocking.
1882 */
1883extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f)
1884    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1885  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
1886  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1887  ArtMethod* called = *sp;
1888  uint32_t cookie = *(sp32 - 1);
1889
1890  jobject lock = nullptr;
1891  if (called->IsSynchronized()) {
1892    HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp)
1893        + sizeof(*sp));
1894    lock = table->GetHandle(0).ToJObject();
1895  }
1896
1897  char return_shorty_char = called->GetShorty()[0];
1898
1899  if (return_shorty_char == 'L') {
1900    return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1901  } else {
1902    artQuickGenericJniEndJNINonRef(self, cookie, lock);
1903
1904    switch (return_shorty_char) {
1905      case 'F': {
1906        if (kRuntimeISA == kX86) {
1907          // Convert back the result to float.
1908          double d = bit_cast<double, uint64_t>(result_f);
1909          return bit_cast<uint32_t, float>(static_cast<float>(d));
1910        } else {
1911          return result_f;
1912        }
1913      }
1914      case 'D':
1915        return result_f;
1916      case 'Z':
1917        return result.z;
1918      case 'B':
1919        return result.b;
1920      case 'C':
1921        return result.c;
1922      case 'S':
1923        return result.s;
1924      case 'I':
1925        return result.i;
1926      case 'J':
1927        return result.j;
1928      case 'V':
1929        return 0;
1930      default:
1931        LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1932        return 0;
1933    }
1934  }
1935}
1936
1937// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
1938// for the method pointer.
1939//
1940// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
1941// to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations).
1942
1943template<InvokeType type, bool access_check>
1944static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1945                                     ArtMethod* caller_method, Thread* self, ArtMethod** sp);
1946
1947template<InvokeType type, bool access_check>
1948static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1949                                     ArtMethod* caller_method, Thread* self, ArtMethod** sp) {
1950  ScopedQuickEntrypointChecks sqec(self);
1951  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
1952  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
1953  if (UNLIKELY(method == nullptr)) {
1954    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1955    uint32_t shorty_len;
1956    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1957    {
1958      // Remember the args in case a GC happens in FindMethodFromCode.
1959      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1960      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1961      visitor.VisitArguments();
1962      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method,
1963                                                      self);
1964      visitor.FixupReferences();
1965    }
1966
1967    if (UNLIKELY(method == nullptr)) {
1968      CHECK(self->IsExceptionPending());
1969      return GetTwoWordFailureValue();  // Failure.
1970    }
1971  }
1972  DCHECK(!self->IsExceptionPending());
1973  const void* code = method->GetEntryPointFromQuickCompiledCode();
1974
1975  // When we return, the caller will branch to this address, so it had better not be 0!
1976  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
1977                          << " location: "
1978                          << method->GetDexFile()->GetLocation();
1979
1980  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1981                                reinterpret_cast<uintptr_t>(method));
1982}
1983
1984// Explicit artInvokeCommon template function declarations to please analysis tool.
1985#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
1986  template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)                                          \
1987  TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx,                        \
1988                                                    mirror::Object* this_object,                \
1989                                                    ArtMethod* caller_method,                   \
1990                                                    Thread* self,                               \
1991                                                    ArtMethod** sp)      \
1992
1993EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1994EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1995EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1996EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1997EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1998EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1999EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2000EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2001EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2002EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2003#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2004
2005// See comments in runtime_support_asm.S
2006extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2007    uint32_t method_idx, mirror::Object* this_object,
2008    ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2009        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2010  return artInvokeCommon<kInterface, true>(method_idx, this_object,
2011                                           caller_method, self, sp);
2012}
2013
2014extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2015    uint32_t method_idx, mirror::Object* this_object,
2016    ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2017        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2018  return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method,
2019                                        self, sp);
2020}
2021
2022extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2023    uint32_t method_idx, mirror::Object* this_object,
2024    ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2025        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2026  return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method,
2027                                        self, sp);
2028}
2029
2030extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2031    uint32_t method_idx, mirror::Object* this_object,
2032    ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2033        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2034  return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method,
2035                                       self, sp);
2036}
2037
2038extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2039    uint32_t method_idx, mirror::Object* this_object,
2040    ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2041        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2042  return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method,
2043                                         self, sp);
2044}
2045
2046// Determine target of interface dispatch. This object is known non-null.
2047extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2048                                                      mirror::Object* this_object,
2049                                                      ArtMethod* caller_method,
2050                                                      Thread* self,
2051                                                      ArtMethod** sp)
2052    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2053  ScopedQuickEntrypointChecks sqec(self);
2054  ArtMethod* method;
2055  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2056    method = this_object->GetClass()->FindVirtualMethodForInterface(
2057        interface_method, sizeof(void*));
2058    if (UNLIKELY(method == nullptr)) {
2059      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2060          interface_method, this_object, caller_method);
2061      return GetTwoWordFailureValue();  // Failure.
2062    }
2063  } else {
2064    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2065
2066    // Find the caller PC.
2067    constexpr size_t pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, Runtime::kRefsAndArgs);
2068    uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) + pc_offset);
2069
2070    // Map the caller PC to a dex PC.
2071    uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
2072    const DexFile::CodeItem* code = caller_method->GetCodeItem();
2073    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
2074    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
2075    Instruction::Code instr_code = instr->Opcode();
2076    CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2077          instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2078        << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2079    uint32_t dex_method_idx;
2080    if (instr_code == Instruction::INVOKE_INTERFACE) {
2081      dex_method_idx = instr->VRegB_35c();
2082    } else {
2083      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2084      dex_method_idx = instr->VRegB_3rc();
2085    }
2086
2087    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2088        ->GetDexFile();
2089    uint32_t shorty_len;
2090    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2091                                                   &shorty_len);
2092    {
2093      // Remember the args in case a GC happens in FindMethodFromCode.
2094      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2095      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2096      visitor.VisitArguments();
2097      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method,
2098                                                     self);
2099      visitor.FixupReferences();
2100    }
2101
2102    if (UNLIKELY(method == nullptr)) {
2103      CHECK(self->IsExceptionPending());
2104      return GetTwoWordFailureValue();  // Failure.
2105    }
2106  }
2107  const void* code = method->GetEntryPointFromQuickCompiledCode();
2108
2109  // When we return, the caller will branch to this address, so it had better not be 0!
2110  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2111                          << " location: " << method->GetDexFile()->GetLocation();
2112
2113  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2114                                reinterpret_cast<uintptr_t>(method));
2115}
2116
2117}  // namespace art
2118