quick_trampoline_entrypoints.cc revision 6bc4374e3fa00e3ee5e832e1761c43e0b8a71558
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_code.h"
18#include "art_method-inl.h"
19#include "callee_save_frame.h"
20#include "common_throws.h"
21#include "dex_file-inl.h"
22#include "dex_instruction-inl.h"
23#include "entrypoints/entrypoint_utils-inl.h"
24#include "entrypoints/runtime_asm_entrypoints.h"
25#include "gc/accounting/card_table-inl.h"
26#include "interpreter/interpreter.h"
27#include "method_reference.h"
28#include "mirror/class-inl.h"
29#include "mirror/dex_cache-inl.h"
30#include "mirror/method.h"
31#include "mirror/object-inl.h"
32#include "mirror/object_array-inl.h"
33#include "quick_exception_handler.h"
34#include "runtime.h"
35#include "scoped_thread_state_change.h"
36#include "stack.h"
37#include "debugger.h"
38
39namespace art {
40
41// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
42class QuickArgumentVisitor {
43  // Number of bytes for each out register in the caller method's frame.
44  static constexpr size_t kBytesStackArgLocation = 4;
45  // Frame size in bytes of a callee-save frame for RefsAndArgs.
46  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
47      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
48#if defined(__arm__)
49  // The callee save frame is pointed to by SP.
50  // | argN       |  |
51  // | ...        |  |
52  // | arg4       |  |
53  // | arg3 spill |  |  Caller's frame
54  // | arg2 spill |  |
55  // | arg1 spill |  |
56  // | Method*    | ---
57  // | LR         |
58  // | ...        |    4x6 bytes callee saves
59  // | R3         |
60  // | R2         |
61  // | R1         |
62  // | S15        |
63  // | :          |
64  // | S0         |
65  // |            |    4x2 bytes padding
66  // | Method*    |  <- sp
67  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
68  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
69  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
70  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
71  static constexpr bool kQuickSkipOddFpRegisters = false;
72  static constexpr size_t kNumQuickGprArgs = 3;
73  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
74  static constexpr bool kGprFprLockstep = false;
75  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
76      arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
77  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
78      arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
79  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
80      arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
81  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
82    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
83  }
84#elif defined(__aarch64__)
85  // The callee save frame is pointed to by SP.
86  // | argN       |  |
87  // | ...        |  |
88  // | arg4       |  |
89  // | arg3 spill |  |  Caller's frame
90  // | arg2 spill |  |
91  // | arg1 spill |  |
92  // | Method*    | ---
93  // | LR         |
94  // | X29        |
95  // |  :         |
96  // | X20        |
97  // | X7         |
98  // | :          |
99  // | X1         |
100  // | D7         |
101  // |  :         |
102  // | D0         |
103  // |            |    padding
104  // | Method*    |  <- sp
105  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
106  static constexpr bool kAlignPairRegister = false;
107  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
108  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
109  static constexpr bool kQuickSkipOddFpRegisters = false;
110  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
111  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
112  static constexpr bool kGprFprLockstep = false;
113  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
114      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
115  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
116      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
117  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
118      arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
119  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
120    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
121  }
122#elif defined(__mips__) && !defined(__LP64__)
123  // The callee save frame is pointed to by SP.
124  // | argN       |  |
125  // | ...        |  |
126  // | arg4       |  |
127  // | arg3 spill |  |  Caller's frame
128  // | arg2 spill |  |
129  // | arg1 spill |  |
130  // | Method*    | ---
131  // | RA         |
132  // | ...        |    callee saves
133  // | A3         |    arg3
134  // | A2         |    arg2
135  // | A1         |    arg1
136  // | F15        |
137  // | F14        |    f_arg1
138  // | F13        |
139  // | F12        |    f_arg0
140  // |            |    padding
141  // | A0/Method* |  <- sp
142  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
143  static constexpr bool kAlignPairRegister = true;
144  static constexpr bool kQuickSoftFloatAbi = false;
145  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
146  static constexpr bool kQuickSkipOddFpRegisters = true;
147  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
148  static constexpr size_t kNumQuickFprArgs = 4;  // 2 arguments passed in FPRs. Floats can be passed
149                                                 // only in even numbered registers and each double
150                                                 // occupies two registers.
151  static constexpr bool kGprFprLockstep = false;
152  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
153  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 32;  // Offset of first GPR arg.
154  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 76;  // Offset of return address.
155  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
156    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
157  }
158#elif defined(__mips__) && defined(__LP64__)
159  // The callee save frame is pointed to by SP.
160  // | argN       |  |
161  // | ...        |  |
162  // | arg4       |  |
163  // | arg3 spill |  |  Caller's frame
164  // | arg2 spill |  |
165  // | arg1 spill |  |
166  // | Method*    | ---
167  // | RA         |
168  // | ...        |    callee saves
169  // | A7         |    arg7
170  // | A6         |    arg6
171  // | A5         |    arg5
172  // | A4         |    arg4
173  // | A3         |    arg3
174  // | A2         |    arg2
175  // | A1         |    arg1
176  // | F19        |    f_arg7
177  // | F18        |    f_arg6
178  // | F17        |    f_arg5
179  // | F16        |    f_arg4
180  // | F15        |    f_arg3
181  // | F14        |    f_arg2
182  // | F13        |    f_arg1
183  // | F12        |    f_arg0
184  // |            |    padding
185  // | A0/Method* |  <- sp
186  // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
187  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
188  static constexpr bool kAlignPairRegister = false;
189  static constexpr bool kQuickSoftFloatAbi = false;
190  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
191  static constexpr bool kQuickSkipOddFpRegisters = false;
192  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
193  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
194  static constexpr bool kGprFprLockstep = true;
195
196  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
197  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
198  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
199  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
200    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
201  }
202#elif defined(__i386__)
203  // The callee save frame is pointed to by SP.
204  // | argN        |  |
205  // | ...         |  |
206  // | arg4        |  |
207  // | arg3 spill  |  |  Caller's frame
208  // | arg2 spill  |  |
209  // | arg1 spill  |  |
210  // | Method*     | ---
211  // | Return      |
212  // | EBP,ESI,EDI |    callee saves
213  // | EBX         |    arg3
214  // | EDX         |    arg2
215  // | ECX         |    arg1
216  // | XMM3        |    float arg 4
217  // | XMM2        |    float arg 3
218  // | XMM1        |    float arg 2
219  // | XMM0        |    float arg 1
220  // | EAX/Method* |  <- sp
221  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
222  static constexpr bool kAlignPairRegister = false;
223  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
224  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
225  static constexpr bool kQuickSkipOddFpRegisters = false;
226  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
227  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
228  static constexpr bool kGprFprLockstep = false;
229  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
230  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
231  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
232  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
233    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
234  }
235#elif defined(__x86_64__)
236  // The callee save frame is pointed to by SP.
237  // | argN            |  |
238  // | ...             |  |
239  // | reg. arg spills |  |  Caller's frame
240  // | Method*         | ---
241  // | Return          |
242  // | R15             |    callee save
243  // | R14             |    callee save
244  // | R13             |    callee save
245  // | R12             |    callee save
246  // | R9              |    arg5
247  // | R8              |    arg4
248  // | RSI/R6          |    arg1
249  // | RBP/R5          |    callee save
250  // | RBX/R3          |    callee save
251  // | RDX/R2          |    arg2
252  // | RCX/R1          |    arg3
253  // | XMM7            |    float arg 8
254  // | XMM6            |    float arg 7
255  // | XMM5            |    float arg 6
256  // | XMM4            |    float arg 5
257  // | XMM3            |    float arg 4
258  // | XMM2            |    float arg 3
259  // | XMM1            |    float arg 2
260  // | XMM0            |    float arg 1
261  // | Padding         |
262  // | RDI/Method*     |  <- sp
263  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
264  static constexpr bool kAlignPairRegister = false;
265  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
266  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
267  static constexpr bool kQuickSkipOddFpRegisters = false;
268  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
269  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
270  static constexpr bool kGprFprLockstep = false;
271  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
272  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
273  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
274  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
275    switch (gpr_index) {
276      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
277      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
278      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
279      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
280      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
281      default:
282      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
283      return 0;
284    }
285  }
286#else
287#error "Unsupported architecture"
288#endif
289
290 public:
291  // Special handling for proxy methods. Proxy methods are instance methods so the
292  // 'this' object is the 1st argument. They also have the same frame layout as the
293  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
294  // 1st GPR.
295  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
296      SHARED_REQUIRES(Locks::mutator_lock_) {
297    CHECK((*sp)->IsProxyMethod());
298    CHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize,
299             GetCallingCodeFrom(sp).GetFrameSizeInBytes());
300    CHECK_GT(kNumQuickGprArgs, 0u);
301    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
302    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
303        GprIndexToGprOffset(kThisGprIndex);
304    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
305    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
306  }
307
308  static ArtMethod* GetCallingMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
309    DCHECK((*sp)->IsCalleeSaveMethod());
310    return GetCalleeSaveMethodCaller(sp, Runtime::kRefsAndArgs);
311  }
312
313  static ArtMethod* GetOuterMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
314    DCHECK((*sp)->IsCalleeSaveMethod());
315    uint8_t* previous_sp =
316        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
317    return *reinterpret_cast<ArtMethod**>(previous_sp);
318  }
319
320  static uint32_t GetCallingDexPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
321    DCHECK((*sp)->IsCalleeSaveMethod());
322    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
323    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
324        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
325    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
326    uintptr_t outer_pc_offset = GetCallingCodeFrom(caller_sp).NativeQuickPcOffset(outer_pc);
327
328    if (GetCallingCodeFrom(caller_sp).IsOptimized(sizeof(void*))) {
329      CodeInfo code_info = GetCallingCodeFrom(caller_sp).GetOptimizedCodeInfo();
330      StackMapEncoding encoding = code_info.ExtractEncoding();
331      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
332      DCHECK(stack_map.IsValid());
333      if (stack_map.HasInlineInfo(encoding)) {
334        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
335        return inline_info.GetDexPcAtDepth(inline_info.GetDepth() - 1);
336      } else {
337        return stack_map.GetDexPc(encoding);
338      }
339    } else {
340      return GetCallingCodeFrom(caller_sp).ToDexPc(outer_pc);
341    }
342  }
343
344  // For the given quick ref and args quick frame, return the caller's PC.
345  static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
346    DCHECK((*sp)->IsCalleeSaveMethod());
347    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
348    return *reinterpret_cast<uintptr_t*>(lr);
349  }
350
351  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
352                       uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) :
353          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
354          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
355          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
356          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
357              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
358          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
359          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
360    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
361                  "Number of Quick FPR arguments unexpected");
362    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
363                  "Double alignment unexpected");
364    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
365    // next register is even.
366    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
367                  "Number of Quick FPR arguments not even");
368    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
369  }
370
371  virtual ~QuickArgumentVisitor() {}
372
373  virtual void Visit() = 0;
374
375  Primitive::Type GetParamPrimitiveType() const {
376    return cur_type_;
377  }
378
379  uint8_t* GetParamAddress() const {
380    if (!kQuickSoftFloatAbi) {
381      Primitive::Type type = GetParamPrimitiveType();
382      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
383        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
384          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
385            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
386          }
387        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
388          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
389        }
390        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
391      }
392    }
393    if (gpr_index_ < kNumQuickGprArgs) {
394      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
395    }
396    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
397  }
398
399  bool IsSplitLongOrDouble() const {
400    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
401        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
402      return is_split_long_or_double_;
403    } else {
404      return false;  // An optimization for when GPR and FPRs are 64bit.
405    }
406  }
407
408  bool IsParamAReference() const {
409    return GetParamPrimitiveType() == Primitive::kPrimNot;
410  }
411
412  bool IsParamALongOrDouble() const {
413    Primitive::Type type = GetParamPrimitiveType();
414    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
415  }
416
417  uint64_t ReadSplitLongParam() const {
418    // The splitted long is always available through the stack.
419    return *reinterpret_cast<uint64_t*>(stack_args_
420        + stack_index_ * kBytesStackArgLocation);
421  }
422
423  void IncGprIndex() {
424    gpr_index_++;
425    if (kGprFprLockstep) {
426      fpr_index_++;
427    }
428  }
429
430  void IncFprIndex() {
431    fpr_index_++;
432    if (kGprFprLockstep) {
433      gpr_index_++;
434    }
435  }
436
437  void VisitArguments() SHARED_REQUIRES(Locks::mutator_lock_) {
438    // (a) 'stack_args_' should point to the first method's argument
439    // (b) whatever the argument type it is, the 'stack_index_' should
440    //     be moved forward along with every visiting.
441    gpr_index_ = 0;
442    fpr_index_ = 0;
443    if (kQuickDoubleRegAlignedFloatBackFilled) {
444      fpr_double_index_ = 0;
445    }
446    stack_index_ = 0;
447    if (!is_static_) {  // Handle this.
448      cur_type_ = Primitive::kPrimNot;
449      is_split_long_or_double_ = false;
450      Visit();
451      stack_index_++;
452      if (kNumQuickGprArgs > 0) {
453        IncGprIndex();
454      }
455    }
456    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
457      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
458      switch (cur_type_) {
459        case Primitive::kPrimNot:
460        case Primitive::kPrimBoolean:
461        case Primitive::kPrimByte:
462        case Primitive::kPrimChar:
463        case Primitive::kPrimShort:
464        case Primitive::kPrimInt:
465          is_split_long_or_double_ = false;
466          Visit();
467          stack_index_++;
468          if (gpr_index_ < kNumQuickGprArgs) {
469            IncGprIndex();
470          }
471          break;
472        case Primitive::kPrimFloat:
473          is_split_long_or_double_ = false;
474          Visit();
475          stack_index_++;
476          if (kQuickSoftFloatAbi) {
477            if (gpr_index_ < kNumQuickGprArgs) {
478              IncGprIndex();
479            }
480          } else {
481            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
482              IncFprIndex();
483              if (kQuickDoubleRegAlignedFloatBackFilled) {
484                // Double should not overlap with float.
485                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
486                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
487                // Float should not overlap with double.
488                if (fpr_index_ % 2 == 0) {
489                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
490                }
491              } else if (kQuickSkipOddFpRegisters) {
492                IncFprIndex();
493              }
494            }
495          }
496          break;
497        case Primitive::kPrimDouble:
498        case Primitive::kPrimLong:
499          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
500            if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
501              // Currently, this is only for ARM and MIPS, where the first available parameter
502              // register is R1 (on ARM) or A1 (on MIPS). So we skip it, and use R2 (on ARM) or
503              // A2 (on MIPS) instead.
504              IncGprIndex();
505            }
506            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
507                ((gpr_index_ + 1) == kNumQuickGprArgs);
508            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
509              // We don't want to split this. Pass over this register.
510              gpr_index_++;
511              is_split_long_or_double_ = false;
512            }
513            Visit();
514            if (kBytesStackArgLocation == 4) {
515              stack_index_+= 2;
516            } else {
517              CHECK_EQ(kBytesStackArgLocation, 8U);
518              stack_index_++;
519            }
520            if (gpr_index_ < kNumQuickGprArgs) {
521              IncGprIndex();
522              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
523                if (gpr_index_ < kNumQuickGprArgs) {
524                  IncGprIndex();
525                }
526              }
527            }
528          } else {
529            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
530                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
531            Visit();
532            if (kBytesStackArgLocation == 4) {
533              stack_index_+= 2;
534            } else {
535              CHECK_EQ(kBytesStackArgLocation, 8U);
536              stack_index_++;
537            }
538            if (kQuickDoubleRegAlignedFloatBackFilled) {
539              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
540                fpr_double_index_ += 2;
541                // Float should not overlap with double.
542                if (fpr_index_ % 2 == 0) {
543                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
544                }
545              }
546            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
547              IncFprIndex();
548              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
549                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
550                  IncFprIndex();
551                }
552              }
553            }
554          }
555          break;
556        default:
557          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
558      }
559    }
560  }
561
562 protected:
563  const bool is_static_;
564  const char* const shorty_;
565  const uint32_t shorty_len_;
566
567 private:
568  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
569  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
570  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
571  uint32_t gpr_index_;  // Index into spilled GPRs.
572  // Index into spilled FPRs.
573  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
574  // holds a higher register number.
575  uint32_t fpr_index_;
576  // Index into spilled FPRs for aligned double.
577  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
578  // terms of singles, may be behind fpr_index.
579  uint32_t fpr_double_index_;
580  uint32_t stack_index_;  // Index into arguments on the stack.
581  // The current type of argument during VisitArguments.
582  Primitive::Type cur_type_;
583  // Does a 64bit parameter straddle the register and stack arguments?
584  bool is_split_long_or_double_;
585};
586
587// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
588// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
589extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
590    SHARED_REQUIRES(Locks::mutator_lock_) {
591  return QuickArgumentVisitor::GetProxyThisObject(sp);
592}
593
594// Visits arguments on the stack placing them into the shadow frame.
595class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
596 public:
597  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
598                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
599      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
600
601  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
602
603 private:
604  ShadowFrame* const sf_;
605  uint32_t cur_reg_;
606
607  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
608};
609
610void BuildQuickShadowFrameVisitor::Visit() {
611  Primitive::Type type = GetParamPrimitiveType();
612  switch (type) {
613    case Primitive::kPrimLong:  // Fall-through.
614    case Primitive::kPrimDouble:
615      if (IsSplitLongOrDouble()) {
616        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
617      } else {
618        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
619      }
620      ++cur_reg_;
621      break;
622    case Primitive::kPrimNot: {
623        StackReference<mirror::Object>* stack_ref =
624            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
625        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
626      }
627      break;
628    case Primitive::kPrimBoolean:  // Fall-through.
629    case Primitive::kPrimByte:     // Fall-through.
630    case Primitive::kPrimChar:     // Fall-through.
631    case Primitive::kPrimShort:    // Fall-through.
632    case Primitive::kPrimInt:      // Fall-through.
633    case Primitive::kPrimFloat:
634      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
635      break;
636    case Primitive::kPrimVoid:
637      LOG(FATAL) << "UNREACHABLE";
638      UNREACHABLE();
639  }
640  ++cur_reg_;
641}
642
643extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
644    SHARED_REQUIRES(Locks::mutator_lock_) {
645  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
646  // frame.
647  ScopedQuickEntrypointChecks sqec(self);
648
649  if (method->IsAbstract()) {
650    ThrowAbstractMethodError(method);
651    return 0;
652  }
653
654  JValue tmp_value;
655  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
656      StackedShadowFrameType::kSingleFrameDeoptimizationShadowFrame, false);
657  const DexFile::CodeItem* code_item = method->GetCodeItem();
658  DCHECK(code_item != nullptr) << PrettyMethod(method);
659  ManagedStack fragment;
660
661  DCHECK(!method->IsNative()) << PrettyMethod(method);
662  uint32_t shorty_len = 0;
663  auto* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*));
664  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
665
666  JValue result;
667
668  if (deopt_frame != nullptr) {
669    // Coming from single-frame deopt.
670
671    if (kIsDebugBuild) {
672      // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
673      // of the call-stack) corresponds to the called method.
674      ShadowFrame* linked = deopt_frame;
675      while (linked->GetLink() != nullptr) {
676        linked = linked->GetLink();
677      }
678      CHECK_EQ(method, linked->GetMethod()) << PrettyMethod(method) << " "
679          << PrettyMethod(linked->GetMethod());
680    }
681
682    if (VLOG_IS_ON(deopt)) {
683      // Print out the stack to verify that it was a single-frame deopt.
684      LOG(INFO) << "Continue-ing from deopt. Stack is:";
685      QuickExceptionHandler::DumpFramesWithType(self, true);
686    }
687
688    mirror::Throwable* pending_exception = nullptr;
689    self->PopDeoptimizationContext(&result, &pending_exception);
690
691    // Push a transition back into managed code onto the linked list in thread.
692    self->PushManagedStackFragment(&fragment);
693
694    // Ensure that the stack is still in order.
695    if (kIsDebugBuild) {
696      class DummyStackVisitor : public StackVisitor {
697       public:
698        explicit DummyStackVisitor(Thread* self_in) SHARED_REQUIRES(Locks::mutator_lock_)
699            : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
700
701        bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
702          // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
703          // logic. Just always say we want to continue.
704          return true;
705        }
706      };
707      DummyStackVisitor dsv(self);
708      dsv.WalkStack();
709    }
710
711    // Restore the exception that was pending before deoptimization then interpret the
712    // deoptimized frames.
713    if (pending_exception != nullptr) {
714      self->SetException(pending_exception);
715    }
716    interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, &result);
717  } else {
718    const char* old_cause = self->StartAssertNoThreadSuspension(
719        "Building interpreter shadow frame");
720    uint16_t num_regs = code_item->registers_size_;
721    // No last shadow coming from quick.
722    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
723        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
724    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
725    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
726    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
727                                                      shadow_frame, first_arg_reg);
728    shadow_frame_builder.VisitArguments();
729    const bool needs_initialization =
730        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
731    // Push a transition back into managed code onto the linked list in thread.
732    self->PushManagedStackFragment(&fragment);
733    self->PushShadowFrame(shadow_frame);
734    self->EndAssertNoThreadSuspension(old_cause);
735
736    if (needs_initialization) {
737      // Ensure static method's class is initialized.
738      StackHandleScope<1> hs(self);
739      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
740      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
741        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
742        self->PopManagedStackFragment(fragment);
743        return 0;
744      }
745    }
746
747    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
748  }
749
750  // Pop transition.
751  self->PopManagedStackFragment(fragment);
752
753  // Request a stack deoptimization if needed
754  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
755  if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
756    // Push the context of the deoptimization stack so we can restore the return value and the
757    // exception before executing the deoptimized frames.
758    self->PushDeoptimizationContext(result, shorty[0] == 'L', self->GetException());
759
760    // Set special exception to cause deoptimization.
761    self->SetException(Thread::GetDeoptimizationException());
762  }
763
764  // No need to restore the args since the method has already been run by the interpreter.
765  return result.GetJ();
766}
767
768// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
769// to jobjects.
770class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
771 public:
772  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
773                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
774      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
775
776  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
777
778  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
779
780 private:
781  ScopedObjectAccessUnchecked* const soa_;
782  std::vector<jvalue>* const args_;
783  // References which we must update when exiting in case the GC moved the objects.
784  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
785
786  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
787};
788
789void BuildQuickArgumentVisitor::Visit() {
790  jvalue val;
791  Primitive::Type type = GetParamPrimitiveType();
792  switch (type) {
793    case Primitive::kPrimNot: {
794      StackReference<mirror::Object>* stack_ref =
795          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
796      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
797      references_.push_back(std::make_pair(val.l, stack_ref));
798      break;
799    }
800    case Primitive::kPrimLong:  // Fall-through.
801    case Primitive::kPrimDouble:
802      if (IsSplitLongOrDouble()) {
803        val.j = ReadSplitLongParam();
804      } else {
805        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
806      }
807      break;
808    case Primitive::kPrimBoolean:  // Fall-through.
809    case Primitive::kPrimByte:     // Fall-through.
810    case Primitive::kPrimChar:     // Fall-through.
811    case Primitive::kPrimShort:    // Fall-through.
812    case Primitive::kPrimInt:      // Fall-through.
813    case Primitive::kPrimFloat:
814      val.i = *reinterpret_cast<jint*>(GetParamAddress());
815      break;
816    case Primitive::kPrimVoid:
817      LOG(FATAL) << "UNREACHABLE";
818      UNREACHABLE();
819  }
820  args_->push_back(val);
821}
822
823void BuildQuickArgumentVisitor::FixupReferences() {
824  // Fixup any references which may have changed.
825  for (const auto& pair : references_) {
826    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
827    soa_->Env()->DeleteLocalRef(pair.first);
828  }
829}
830
831// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
832// which is responsible for recording callee save registers. We explicitly place into jobjects the
833// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
834// field within the proxy object, which will box the primitive arguments and deal with error cases.
835extern "C" uint64_t artQuickProxyInvokeHandler(
836    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
837    SHARED_REQUIRES(Locks::mutator_lock_) {
838  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
839  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
840  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
841  const char* old_cause =
842      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
843  // Register the top of the managed stack, making stack crawlable.
844  DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
845  DCHECK_EQ(GetCallingCodeFrom(sp).GetFrameSizeInBytes(),
846            ArtCode(Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs))
847                .GetFrameSizeInBytes())
848      << PrettyMethod(proxy_method);
849  self->VerifyStack();
850  // Start new JNI local reference state.
851  JNIEnvExt* env = self->GetJniEnv();
852  ScopedObjectAccessUnchecked soa(env);
853  ScopedJniEnvLocalRefState env_state(env);
854  // Create local ref. copies of proxy method and the receiver.
855  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
856
857  // Placing arguments into args vector and remove the receiver.
858  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*));
859  CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
860                                       << PrettyMethod(non_proxy_method);
861  std::vector<jvalue> args;
862  uint32_t shorty_len = 0;
863  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
864  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
865
866  local_ref_visitor.VisitArguments();
867  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
868  args.erase(args.begin());
869
870  // Convert proxy method into expected interface method.
871  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*));
872  DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
873  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
874  self->EndAssertNoThreadSuspension(old_cause);
875  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
876      mirror::Method::CreateFromArtMethod(soa.Self(), interface_method));
877
878  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
879  // that performs allocations.
880  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
881  // Restore references which might have moved.
882  local_ref_visitor.FixupReferences();
883  return result.GetJ();
884}
885
886// Read object references held in arguments from quick frames and place in a JNI local references,
887// so they don't get garbage collected.
888class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
889 public:
890  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
891                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
892      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
893
894  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
895
896  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
897
898 private:
899  ScopedObjectAccessUnchecked* const soa_;
900  // References which we must update when exiting in case the GC moved the objects.
901  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
902
903  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
904};
905
906void RememberForGcArgumentVisitor::Visit() {
907  if (IsParamAReference()) {
908    StackReference<mirror::Object>* stack_ref =
909        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
910    jobject reference =
911        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
912    references_.push_back(std::make_pair(reference, stack_ref));
913  }
914}
915
916void RememberForGcArgumentVisitor::FixupReferences() {
917  // Fixup any references which may have changed.
918  for (const auto& pair : references_) {
919    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
920    soa_->Env()->DeleteLocalRef(pair.first);
921  }
922}
923
924// Lazily resolve a method for quick. Called by stub code.
925extern "C" const void* artQuickResolutionTrampoline(
926    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
927    SHARED_REQUIRES(Locks::mutator_lock_) {
928  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
929  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
930  // does not have the same stack layout as the callee-save method).
931  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
932  // Start new JNI local reference state
933  JNIEnvExt* env = self->GetJniEnv();
934  ScopedObjectAccessUnchecked soa(env);
935  ScopedJniEnvLocalRefState env_state(env);
936  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
937
938  // Compute details about the called method (avoid GCs)
939  ClassLinker* linker = Runtime::Current()->GetClassLinker();
940  InvokeType invoke_type;
941  MethodReference called_method(nullptr, 0);
942  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
943  ArtMethod* caller = nullptr;
944  if (!called_method_known_on_entry) {
945    caller = QuickArgumentVisitor::GetCallingMethod(sp);
946    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
947    const DexFile::CodeItem* code;
948    called_method.dex_file = caller->GetDexFile();
949    code = caller->GetCodeItem();
950    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
951    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
952    Instruction::Code instr_code = instr->Opcode();
953    bool is_range;
954    switch (instr_code) {
955      case Instruction::INVOKE_DIRECT:
956        invoke_type = kDirect;
957        is_range = false;
958        break;
959      case Instruction::INVOKE_DIRECT_RANGE:
960        invoke_type = kDirect;
961        is_range = true;
962        break;
963      case Instruction::INVOKE_STATIC:
964        invoke_type = kStatic;
965        is_range = false;
966        break;
967      case Instruction::INVOKE_STATIC_RANGE:
968        invoke_type = kStatic;
969        is_range = true;
970        break;
971      case Instruction::INVOKE_SUPER:
972        invoke_type = kSuper;
973        is_range = false;
974        break;
975      case Instruction::INVOKE_SUPER_RANGE:
976        invoke_type = kSuper;
977        is_range = true;
978        break;
979      case Instruction::INVOKE_VIRTUAL:
980        invoke_type = kVirtual;
981        is_range = false;
982        break;
983      case Instruction::INVOKE_VIRTUAL_RANGE:
984        invoke_type = kVirtual;
985        is_range = true;
986        break;
987      case Instruction::INVOKE_INTERFACE:
988        invoke_type = kInterface;
989        is_range = false;
990        break;
991      case Instruction::INVOKE_INTERFACE_RANGE:
992        invoke_type = kInterface;
993        is_range = true;
994        break;
995      default:
996        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
997        UNREACHABLE();
998    }
999    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1000  } else {
1001    invoke_type = kStatic;
1002    called_method.dex_file = called->GetDexFile();
1003    called_method.dex_method_index = called->GetDexMethodIndex();
1004  }
1005  uint32_t shorty_len;
1006  const char* shorty =
1007      called_method.dex_file->GetMethodShorty(
1008          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1009  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1010  visitor.VisitArguments();
1011  self->EndAssertNoThreadSuspension(old_cause);
1012  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1013  // Resolve method filling in dex cache.
1014  if (!called_method_known_on_entry) {
1015    StackHandleScope<1> hs(self);
1016    mirror::Object* dummy = nullptr;
1017    HandleWrapper<mirror::Object> h_receiver(
1018        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1019    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1020    called = linker->ResolveMethod(self, called_method.dex_method_index, caller, invoke_type);
1021  }
1022  const void* code = nullptr;
1023  if (LIKELY(!self->IsExceptionPending())) {
1024    // Incompatible class change should have been handled in resolve method.
1025    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1026        << PrettyMethod(called) << " " << invoke_type;
1027    if (virtual_or_interface) {
1028      // Refine called method based on receiver.
1029      CHECK(receiver != nullptr) << invoke_type;
1030
1031      ArtMethod* orig_called = called;
1032      if (invoke_type == kVirtual) {
1033        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
1034      } else {
1035        called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
1036      }
1037
1038      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
1039                               << PrettyTypeOf(receiver) << " "
1040                               << invoke_type << " " << orig_called->GetVtableIndex();
1041
1042      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1043      // of the sharpened method avoiding dirtying the dex cache if possible.
1044      // Note, called_method.dex_method_index references the dex method before the
1045      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1046      // about the name and signature.
1047      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1048      if (!called->HasSameDexCacheResolvedMethods(caller, sizeof(void*))) {
1049        // Calling from one dex file to another, need to compute the method index appropriate to
1050        // the caller's dex file. Since we get here only if the original called was a runtime
1051        // method, we've got the correct dex_file and a dex_method_idx from above.
1052        DCHECK(!called_method_known_on_entry);
1053        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1054        const DexFile* caller_dex_file = called_method.dex_file;
1055        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1056        update_dex_cache_method_index =
1057            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1058                                                     caller_method_name_and_sig_index);
1059      }
1060      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1061          (caller->GetDexCacheResolvedMethod(
1062              update_dex_cache_method_index, sizeof(void*)) != called)) {
1063        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
1064      }
1065    } else if (invoke_type == kStatic) {
1066      const auto called_dex_method_idx = called->GetDexMethodIndex();
1067      // For static invokes, we may dispatch to the static method in the superclass but resolve
1068      // using the subclass. To prevent getting slow paths on each invoke, we force set the
1069      // resolved method for the super class dex method index if we are in the same dex file.
1070      // b/19175856
1071      if (called->GetDexFile() == called_method.dex_file &&
1072          called_method.dex_method_index != called_dex_method_idx) {
1073        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
1074      }
1075    }
1076
1077    // Ensure that the called method's class is initialized.
1078    StackHandleScope<1> hs(soa.Self());
1079    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1080    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1081    if (LIKELY(called_class->IsInitialized())) {
1082      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1083        // If we are single-stepping or the called method is deoptimized (by a
1084        // breakpoint, for example), then we have to execute the called method
1085        // with the interpreter.
1086        code = GetQuickToInterpreterBridge();
1087      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1088        // If the caller is deoptimized (by a breakpoint, for example), we have to
1089        // continue its execution with interpreter when returning from the called
1090        // method. Because we do not want to execute the called method with the
1091        // interpreter, we wrap its execution into the instrumentation stubs.
1092        // When the called method returns, it will execute the instrumentation
1093        // exit hook that will determine the need of the interpreter with a call
1094        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1095        // it is needed.
1096        code = GetQuickInstrumentationEntryPoint();
1097      } else {
1098        code = called->GetEntryPointFromQuickCompiledCode();
1099      }
1100    } else if (called_class->IsInitializing()) {
1101      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1102        // If we are single-stepping or the called method is deoptimized (by a
1103        // breakpoint, for example), then we have to execute the called method
1104        // with the interpreter.
1105        code = GetQuickToInterpreterBridge();
1106      } else if (invoke_type == kStatic) {
1107        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1108        // until class is initialized to stop races between threads).
1109        code = linker->GetQuickOatCodeFor(called);
1110      } else {
1111        // No trampoline for non-static methods.
1112        code = called->GetEntryPointFromQuickCompiledCode();
1113      }
1114    } else {
1115      DCHECK(called_class->IsErroneous());
1116    }
1117  }
1118  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1119  // Fixup any locally saved objects may have moved during a GC.
1120  visitor.FixupReferences();
1121  // Place called method in callee-save frame to be placed as first argument to quick method.
1122  *sp = called;
1123
1124  return code;
1125}
1126
1127/*
1128 * This class uses a couple of observations to unite the different calling conventions through
1129 * a few constants.
1130 *
1131 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1132 *    possible alignment.
1133 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1134 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1135 *    when we have to split things
1136 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1137 *    and we can use Int handling directly.
1138 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1139 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1140 *    extension should be compatible with Aarch64, which mandates copying the available bits
1141 *    into LSB and leaving the rest unspecified.
1142 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1143 *    the stack.
1144 * 6) There is only little endian.
1145 *
1146 *
1147 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1148 * follows:
1149 *
1150 * void PushGpr(uintptr_t):   Add a value for the next GPR
1151 *
1152 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1153 *                            padding, that is, think the architecture is 32b and aligns 64b.
1154 *
1155 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1156 *                            split this if necessary. The current state will have aligned, if
1157 *                            necessary.
1158 *
1159 * void PushStack(uintptr_t): Push a value to the stack.
1160 *
1161 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1162 *                                          as this might be important for null initialization.
1163 *                                          Must return the jobject, that is, the reference to the
1164 *                                          entry in the HandleScope (nullptr if necessary).
1165 *
1166 */
1167template<class T> class BuildNativeCallFrameStateMachine {
1168 public:
1169#if defined(__arm__)
1170  // TODO: These are all dummy values!
1171  static constexpr bool kNativeSoftFloatAbi = true;
1172  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1173  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1174
1175  static constexpr size_t kRegistersNeededForLong = 2;
1176  static constexpr size_t kRegistersNeededForDouble = 2;
1177  static constexpr bool kMultiRegistersAligned = true;
1178  static constexpr bool kMultiFPRegistersWidened = false;
1179  static constexpr bool kMultiGPRegistersWidened = false;
1180  static constexpr bool kAlignLongOnStack = true;
1181  static constexpr bool kAlignDoubleOnStack = true;
1182#elif defined(__aarch64__)
1183  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1184  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1185  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1186
1187  static constexpr size_t kRegistersNeededForLong = 1;
1188  static constexpr size_t kRegistersNeededForDouble = 1;
1189  static constexpr bool kMultiRegistersAligned = false;
1190  static constexpr bool kMultiFPRegistersWidened = false;
1191  static constexpr bool kMultiGPRegistersWidened = false;
1192  static constexpr bool kAlignLongOnStack = false;
1193  static constexpr bool kAlignDoubleOnStack = false;
1194#elif defined(__mips__) && !defined(__LP64__)
1195  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1196  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1197  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1198
1199  static constexpr size_t kRegistersNeededForLong = 2;
1200  static constexpr size_t kRegistersNeededForDouble = 2;
1201  static constexpr bool kMultiRegistersAligned = true;
1202  static constexpr bool kMultiFPRegistersWidened = true;
1203  static constexpr bool kMultiGPRegistersWidened = false;
1204  static constexpr bool kAlignLongOnStack = true;
1205  static constexpr bool kAlignDoubleOnStack = true;
1206#elif defined(__mips__) && defined(__LP64__)
1207  // Let the code prepare GPRs only and we will load the FPRs with same data.
1208  static constexpr bool kNativeSoftFloatAbi = true;
1209  static constexpr size_t kNumNativeGprArgs = 8;
1210  static constexpr size_t kNumNativeFprArgs = 0;
1211
1212  static constexpr size_t kRegistersNeededForLong = 1;
1213  static constexpr size_t kRegistersNeededForDouble = 1;
1214  static constexpr bool kMultiRegistersAligned = false;
1215  static constexpr bool kMultiFPRegistersWidened = false;
1216  static constexpr bool kMultiGPRegistersWidened = true;
1217  static constexpr bool kAlignLongOnStack = false;
1218  static constexpr bool kAlignDoubleOnStack = false;
1219#elif defined(__i386__)
1220  // TODO: Check these!
1221  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1222  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1223  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1224
1225  static constexpr size_t kRegistersNeededForLong = 2;
1226  static constexpr size_t kRegistersNeededForDouble = 2;
1227  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1228  static constexpr bool kMultiFPRegistersWidened = false;
1229  static constexpr bool kMultiGPRegistersWidened = false;
1230  static constexpr bool kAlignLongOnStack = false;
1231  static constexpr bool kAlignDoubleOnStack = false;
1232#elif defined(__x86_64__)
1233  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1234  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1235  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1236
1237  static constexpr size_t kRegistersNeededForLong = 1;
1238  static constexpr size_t kRegistersNeededForDouble = 1;
1239  static constexpr bool kMultiRegistersAligned = false;
1240  static constexpr bool kMultiFPRegistersWidened = false;
1241  static constexpr bool kMultiGPRegistersWidened = false;
1242  static constexpr bool kAlignLongOnStack = false;
1243  static constexpr bool kAlignDoubleOnStack = false;
1244#else
1245#error "Unsupported architecture"
1246#endif
1247
1248 public:
1249  explicit BuildNativeCallFrameStateMachine(T* delegate)
1250      : gpr_index_(kNumNativeGprArgs),
1251        fpr_index_(kNumNativeFprArgs),
1252        stack_entries_(0),
1253        delegate_(delegate) {
1254    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1255    // the next register is even; counting down is just to make the compiler happy...
1256    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1257    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1258  }
1259
1260  virtual ~BuildNativeCallFrameStateMachine() {}
1261
1262  bool HavePointerGpr() const {
1263    return gpr_index_ > 0;
1264  }
1265
1266  void AdvancePointer(const void* val) {
1267    if (HavePointerGpr()) {
1268      gpr_index_--;
1269      PushGpr(reinterpret_cast<uintptr_t>(val));
1270    } else {
1271      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1272      PushStack(reinterpret_cast<uintptr_t>(val));
1273      gpr_index_ = 0;
1274    }
1275  }
1276
1277  bool HaveHandleScopeGpr() const {
1278    return gpr_index_ > 0;
1279  }
1280
1281  void AdvanceHandleScope(mirror::Object* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
1282    uintptr_t handle = PushHandle(ptr);
1283    if (HaveHandleScopeGpr()) {
1284      gpr_index_--;
1285      PushGpr(handle);
1286    } else {
1287      stack_entries_++;
1288      PushStack(handle);
1289      gpr_index_ = 0;
1290    }
1291  }
1292
1293  bool HaveIntGpr() const {
1294    return gpr_index_ > 0;
1295  }
1296
1297  void AdvanceInt(uint32_t val) {
1298    if (HaveIntGpr()) {
1299      gpr_index_--;
1300      if (kMultiGPRegistersWidened) {
1301        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1302        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1303      } else {
1304        PushGpr(val);
1305      }
1306    } else {
1307      stack_entries_++;
1308      if (kMultiGPRegistersWidened) {
1309        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1310        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1311      } else {
1312        PushStack(val);
1313      }
1314      gpr_index_ = 0;
1315    }
1316  }
1317
1318  bool HaveLongGpr() const {
1319    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1320  }
1321
1322  bool LongGprNeedsPadding() const {
1323    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1324        kAlignLongOnStack &&                  // and when it needs alignment
1325        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1326  }
1327
1328  bool LongStackNeedsPadding() const {
1329    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1330        kAlignLongOnStack &&                  // and when it needs 8B alignment
1331        (stack_entries_ & 1) == 1;            // counter is odd
1332  }
1333
1334  void AdvanceLong(uint64_t val) {
1335    if (HaveLongGpr()) {
1336      if (LongGprNeedsPadding()) {
1337        PushGpr(0);
1338        gpr_index_--;
1339      }
1340      if (kRegistersNeededForLong == 1) {
1341        PushGpr(static_cast<uintptr_t>(val));
1342      } else {
1343        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1344        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1345      }
1346      gpr_index_ -= kRegistersNeededForLong;
1347    } else {
1348      if (LongStackNeedsPadding()) {
1349        PushStack(0);
1350        stack_entries_++;
1351      }
1352      if (kRegistersNeededForLong == 1) {
1353        PushStack(static_cast<uintptr_t>(val));
1354        stack_entries_++;
1355      } else {
1356        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1357        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1358        stack_entries_ += 2;
1359      }
1360      gpr_index_ = 0;
1361    }
1362  }
1363
1364  bool HaveFloatFpr() const {
1365    return fpr_index_ > 0;
1366  }
1367
1368  void AdvanceFloat(float val) {
1369    if (kNativeSoftFloatAbi) {
1370      AdvanceInt(bit_cast<uint32_t, float>(val));
1371    } else {
1372      if (HaveFloatFpr()) {
1373        fpr_index_--;
1374        if (kRegistersNeededForDouble == 1) {
1375          if (kMultiFPRegistersWidened) {
1376            PushFpr8(bit_cast<uint64_t, double>(val));
1377          } else {
1378            // No widening, just use the bits.
1379            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1380          }
1381        } else {
1382          PushFpr4(val);
1383        }
1384      } else {
1385        stack_entries_++;
1386        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1387          // Need to widen before storing: Note the "double" in the template instantiation.
1388          // Note: We need to jump through those hoops to make the compiler happy.
1389          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1390          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1391        } else {
1392          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1393        }
1394        fpr_index_ = 0;
1395      }
1396    }
1397  }
1398
1399  bool HaveDoubleFpr() const {
1400    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1401  }
1402
1403  bool DoubleFprNeedsPadding() const {
1404    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1405        kAlignDoubleOnStack &&                  // and when it needs alignment
1406        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1407  }
1408
1409  bool DoubleStackNeedsPadding() const {
1410    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1411        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1412        (stack_entries_ & 1) == 1;              // counter is odd
1413  }
1414
1415  void AdvanceDouble(uint64_t val) {
1416    if (kNativeSoftFloatAbi) {
1417      AdvanceLong(val);
1418    } else {
1419      if (HaveDoubleFpr()) {
1420        if (DoubleFprNeedsPadding()) {
1421          PushFpr4(0);
1422          fpr_index_--;
1423        }
1424        PushFpr8(val);
1425        fpr_index_ -= kRegistersNeededForDouble;
1426      } else {
1427        if (DoubleStackNeedsPadding()) {
1428          PushStack(0);
1429          stack_entries_++;
1430        }
1431        if (kRegistersNeededForDouble == 1) {
1432          PushStack(static_cast<uintptr_t>(val));
1433          stack_entries_++;
1434        } else {
1435          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1436          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1437          stack_entries_ += 2;
1438        }
1439        fpr_index_ = 0;
1440      }
1441    }
1442  }
1443
1444  uint32_t GetStackEntries() const {
1445    return stack_entries_;
1446  }
1447
1448  uint32_t GetNumberOfUsedGprs() const {
1449    return kNumNativeGprArgs - gpr_index_;
1450  }
1451
1452  uint32_t GetNumberOfUsedFprs() const {
1453    return kNumNativeFprArgs - fpr_index_;
1454  }
1455
1456 private:
1457  void PushGpr(uintptr_t val) {
1458    delegate_->PushGpr(val);
1459  }
1460  void PushFpr4(float val) {
1461    delegate_->PushFpr4(val);
1462  }
1463  void PushFpr8(uint64_t val) {
1464    delegate_->PushFpr8(val);
1465  }
1466  void PushStack(uintptr_t val) {
1467    delegate_->PushStack(val);
1468  }
1469  uintptr_t PushHandle(mirror::Object* ref) SHARED_REQUIRES(Locks::mutator_lock_) {
1470    return delegate_->PushHandle(ref);
1471  }
1472
1473  uint32_t gpr_index_;      // Number of free GPRs
1474  uint32_t fpr_index_;      // Number of free FPRs
1475  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1476                            // extended
1477  T* const delegate_;             // What Push implementation gets called
1478};
1479
1480// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1481// in subclasses.
1482//
1483// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1484// them with handles.
1485class ComputeNativeCallFrameSize {
1486 public:
1487  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1488
1489  virtual ~ComputeNativeCallFrameSize() {}
1490
1491  uint32_t GetStackSize() const {
1492    return num_stack_entries_ * sizeof(uintptr_t);
1493  }
1494
1495  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1496    sp8 -= GetStackSize();
1497    // Align by kStackAlignment.
1498    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1499    return sp8;
1500  }
1501
1502  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1503      const {
1504    // Assumption is OK right now, as we have soft-float arm
1505    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1506    sp8 -= fregs * sizeof(uintptr_t);
1507    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1508    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1509    sp8 -= iregs * sizeof(uintptr_t);
1510    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1511    return sp8;
1512  }
1513
1514  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1515                            uint32_t** start_fpr) const {
1516    // Native call stack.
1517    sp8 = LayoutCallStack(sp8);
1518    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1519
1520    // Put fprs and gprs below.
1521    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1522
1523    // Return the new bottom.
1524    return sp8;
1525  }
1526
1527  virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1528      SHARED_REQUIRES(Locks::mutator_lock_) {
1529    UNUSED(sm);
1530  }
1531
1532  void Walk(const char* shorty, uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) {
1533    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1534
1535    WalkHeader(&sm);
1536
1537    for (uint32_t i = 1; i < shorty_len; ++i) {
1538      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1539      switch (cur_type_) {
1540        case Primitive::kPrimNot:
1541          // TODO: fix abuse of mirror types.
1542          sm.AdvanceHandleScope(
1543              reinterpret_cast<mirror::Object*>(0x12345678));
1544          break;
1545
1546        case Primitive::kPrimBoolean:
1547        case Primitive::kPrimByte:
1548        case Primitive::kPrimChar:
1549        case Primitive::kPrimShort:
1550        case Primitive::kPrimInt:
1551          sm.AdvanceInt(0);
1552          break;
1553        case Primitive::kPrimFloat:
1554          sm.AdvanceFloat(0);
1555          break;
1556        case Primitive::kPrimDouble:
1557          sm.AdvanceDouble(0);
1558          break;
1559        case Primitive::kPrimLong:
1560          sm.AdvanceLong(0);
1561          break;
1562        default:
1563          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1564          UNREACHABLE();
1565      }
1566    }
1567
1568    num_stack_entries_ = sm.GetStackEntries();
1569  }
1570
1571  void PushGpr(uintptr_t /* val */) {
1572    // not optimizing registers, yet
1573  }
1574
1575  void PushFpr4(float /* val */) {
1576    // not optimizing registers, yet
1577  }
1578
1579  void PushFpr8(uint64_t /* val */) {
1580    // not optimizing registers, yet
1581  }
1582
1583  void PushStack(uintptr_t /* val */) {
1584    // counting is already done in the superclass
1585  }
1586
1587  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1588    return reinterpret_cast<uintptr_t>(nullptr);
1589  }
1590
1591 protected:
1592  uint32_t num_stack_entries_;
1593};
1594
1595class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1596 public:
1597  ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1598
1599  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1600  // is at *m = sp. Will update to point to the bottom of the save frame.
1601  //
1602  // Note: assumes ComputeAll() has been run before.
1603  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1604      SHARED_REQUIRES(Locks::mutator_lock_) {
1605    ArtMethod* method = **m;
1606
1607    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
1608
1609    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1610
1611    // First, fix up the layout of the callee-save frame.
1612    // We have to squeeze in the HandleScope, and relocate the method pointer.
1613
1614    // "Free" the slot for the method.
1615    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1616
1617    // Under the callee saves put handle scope and new method stack reference.
1618    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1619    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1620
1621    sp8 -= scope_and_method;
1622    // Align by kStackAlignment.
1623    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1624
1625    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1626    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1627                                        num_handle_scope_references_);
1628
1629    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1630    uint8_t* method_pointer = sp8;
1631    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1632    *new_method_ref = method;
1633    *m = new_method_ref;
1634  }
1635
1636  // Adds space for the cookie. Note: may leave stack unaligned.
1637  void LayoutCookie(uint8_t** sp) const {
1638    // Reference cookie and padding
1639    *sp -= 8;
1640  }
1641
1642  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1643  // Returns the new bottom. Note: this may be unaligned.
1644  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1645      SHARED_REQUIRES(Locks::mutator_lock_) {
1646    // First, fix up the layout of the callee-save frame.
1647    // We have to squeeze in the HandleScope, and relocate the method pointer.
1648    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1649
1650    // The bottom of the callee-save frame is now where the method is, *m.
1651    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1652
1653    // Add space for cookie.
1654    LayoutCookie(&sp8);
1655
1656    return sp8;
1657  }
1658
1659  // WARNING: After this, *sp won't be pointing to the method anymore!
1660  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1661                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1662                         uint32_t** start_fpr)
1663      SHARED_REQUIRES(Locks::mutator_lock_) {
1664    Walk(shorty, shorty_len);
1665
1666    // JNI part.
1667    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1668
1669    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1670
1671    // Return the new bottom.
1672    return sp8;
1673  }
1674
1675  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1676
1677  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1678  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1679      SHARED_REQUIRES(Locks::mutator_lock_);
1680
1681 private:
1682  uint32_t num_handle_scope_references_;
1683};
1684
1685uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1686  num_handle_scope_references_++;
1687  return reinterpret_cast<uintptr_t>(nullptr);
1688}
1689
1690void ComputeGenericJniFrameSize::WalkHeader(
1691    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1692  // JNIEnv
1693  sm->AdvancePointer(nullptr);
1694
1695  // Class object or this as first argument
1696  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1697}
1698
1699// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1700// the template requirements of BuildGenericJniFrameStateMachine.
1701class FillNativeCall {
1702 public:
1703  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1704      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1705
1706  virtual ~FillNativeCall() {}
1707
1708  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1709    cur_gpr_reg_ = gpr_regs;
1710    cur_fpr_reg_ = fpr_regs;
1711    cur_stack_arg_ = stack_args;
1712  }
1713
1714  void PushGpr(uintptr_t val) {
1715    *cur_gpr_reg_ = val;
1716    cur_gpr_reg_++;
1717  }
1718
1719  void PushFpr4(float val) {
1720    *cur_fpr_reg_ = val;
1721    cur_fpr_reg_++;
1722  }
1723
1724  void PushFpr8(uint64_t val) {
1725    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1726    *tmp = val;
1727    cur_fpr_reg_ += 2;
1728  }
1729
1730  void PushStack(uintptr_t val) {
1731    *cur_stack_arg_ = val;
1732    cur_stack_arg_++;
1733  }
1734
1735  virtual uintptr_t PushHandle(mirror::Object*) SHARED_REQUIRES(Locks::mutator_lock_) {
1736    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1737    UNREACHABLE();
1738  }
1739
1740 private:
1741  uintptr_t* cur_gpr_reg_;
1742  uint32_t* cur_fpr_reg_;
1743  uintptr_t* cur_stack_arg_;
1744};
1745
1746// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1747// of transitioning into native code.
1748class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1749 public:
1750  BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1751                              ArtMethod*** sp)
1752     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1753       jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1754    ComputeGenericJniFrameSize fsc;
1755    uintptr_t* start_gpr_reg;
1756    uint32_t* start_fpr_reg;
1757    uintptr_t* start_stack_arg;
1758    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1759                                             &handle_scope_,
1760                                             &start_stack_arg,
1761                                             &start_gpr_reg, &start_fpr_reg);
1762
1763    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1764
1765    // jni environment is always first argument
1766    sm_.AdvancePointer(self->GetJniEnv());
1767
1768    if (is_static) {
1769      sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1770    }
1771  }
1772
1773  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
1774
1775  void FinalizeHandleScope(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_);
1776
1777  StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1778      SHARED_REQUIRES(Locks::mutator_lock_) {
1779    return handle_scope_->GetHandle(0).GetReference();
1780  }
1781
1782  jobject GetFirstHandleScopeJObject() const SHARED_REQUIRES(Locks::mutator_lock_) {
1783    return handle_scope_->GetHandle(0).ToJObject();
1784  }
1785
1786  void* GetBottomOfUsedArea() const {
1787    return bottom_of_used_area_;
1788  }
1789
1790 private:
1791  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1792  class FillJniCall FINAL : public FillNativeCall {
1793   public:
1794    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1795                HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1796                                             handle_scope_(handle_scope), cur_entry_(0) {}
1797
1798    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
1799
1800    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1801      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1802      handle_scope_ = scope;
1803      cur_entry_ = 0U;
1804    }
1805
1806    void ResetRemainingScopeSlots() SHARED_REQUIRES(Locks::mutator_lock_) {
1807      // Initialize padding entries.
1808      size_t expected_slots = handle_scope_->NumberOfReferences();
1809      while (cur_entry_ < expected_slots) {
1810        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1811      }
1812      DCHECK_NE(cur_entry_, 0U);
1813    }
1814
1815   private:
1816    HandleScope* handle_scope_;
1817    size_t cur_entry_;
1818  };
1819
1820  HandleScope* handle_scope_;
1821  FillJniCall jni_call_;
1822  void* bottom_of_used_area_;
1823
1824  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1825
1826  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1827};
1828
1829uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1830  uintptr_t tmp;
1831  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1832  h.Assign(ref);
1833  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1834  cur_entry_++;
1835  return tmp;
1836}
1837
1838void BuildGenericJniFrameVisitor::Visit() {
1839  Primitive::Type type = GetParamPrimitiveType();
1840  switch (type) {
1841    case Primitive::kPrimLong: {
1842      jlong long_arg;
1843      if (IsSplitLongOrDouble()) {
1844        long_arg = ReadSplitLongParam();
1845      } else {
1846        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1847      }
1848      sm_.AdvanceLong(long_arg);
1849      break;
1850    }
1851    case Primitive::kPrimDouble: {
1852      uint64_t double_arg;
1853      if (IsSplitLongOrDouble()) {
1854        // Read into union so that we don't case to a double.
1855        double_arg = ReadSplitLongParam();
1856      } else {
1857        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1858      }
1859      sm_.AdvanceDouble(double_arg);
1860      break;
1861    }
1862    case Primitive::kPrimNot: {
1863      StackReference<mirror::Object>* stack_ref =
1864          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1865      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1866      break;
1867    }
1868    case Primitive::kPrimFloat:
1869      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1870      break;
1871    case Primitive::kPrimBoolean:  // Fall-through.
1872    case Primitive::kPrimByte:     // Fall-through.
1873    case Primitive::kPrimChar:     // Fall-through.
1874    case Primitive::kPrimShort:    // Fall-through.
1875    case Primitive::kPrimInt:      // Fall-through.
1876      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1877      break;
1878    case Primitive::kPrimVoid:
1879      LOG(FATAL) << "UNREACHABLE";
1880      UNREACHABLE();
1881  }
1882}
1883
1884void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1885  // Clear out rest of the scope.
1886  jni_call_.ResetRemainingScopeSlots();
1887  // Install HandleScope.
1888  self->PushHandleScope(handle_scope_);
1889}
1890
1891#if defined(__arm__) || defined(__aarch64__)
1892extern "C" void* artFindNativeMethod();
1893#else
1894extern "C" void* artFindNativeMethod(Thread* self);
1895#endif
1896
1897uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1898  if (lock != nullptr) {
1899    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1900  } else {
1901    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1902  }
1903}
1904
1905void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1906  if (lock != nullptr) {
1907    JniMethodEndSynchronized(cookie, lock, self);
1908  } else {
1909    JniMethodEnd(cookie, self);
1910  }
1911}
1912
1913/*
1914 * Initializes an alloca region assumed to be directly below sp for a native call:
1915 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1916 * The final element on the stack is a pointer to the native code.
1917 *
1918 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1919 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1920 *
1921 * The return of this function denotes:
1922 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1923 * 2) An error, if the value is negative.
1924 */
1925extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
1926    SHARED_REQUIRES(Locks::mutator_lock_) {
1927  ArtMethod* called = *sp;
1928  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1929  uint32_t shorty_len = 0;
1930  const char* shorty = called->GetShorty(&shorty_len);
1931
1932  // Run the visitor and update sp.
1933  BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1934  visitor.VisitArguments();
1935  visitor.FinalizeHandleScope(self);
1936
1937  // Fix up managed-stack things in Thread.
1938  self->SetTopOfStack(sp);
1939
1940  self->VerifyStack();
1941
1942  // Start JNI, save the cookie.
1943  uint32_t cookie;
1944  if (called->IsSynchronized()) {
1945    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1946    if (self->IsExceptionPending()) {
1947      self->PopHandleScope();
1948      // A negative value denotes an error.
1949      return GetTwoWordFailureValue();
1950    }
1951  } else {
1952    cookie = JniMethodStart(self);
1953  }
1954  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1955  *(sp32 - 1) = cookie;
1956
1957  // Retrieve the stored native code.
1958  void* nativeCode = called->GetEntryPointFromJni();
1959
1960  // There are two cases for the content of nativeCode:
1961  // 1) Pointer to the native function.
1962  // 2) Pointer to the trampoline for native code binding.
1963  // In the second case, we need to execute the binding and continue with the actual native function
1964  // pointer.
1965  DCHECK(nativeCode != nullptr);
1966  if (nativeCode == GetJniDlsymLookupStub()) {
1967#if defined(__arm__) || defined(__aarch64__)
1968    nativeCode = artFindNativeMethod();
1969#else
1970    nativeCode = artFindNativeMethod(self);
1971#endif
1972
1973    if (nativeCode == nullptr) {
1974      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1975
1976      // End JNI, as the assembly will move to deliver the exception.
1977      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1978      if (shorty[0] == 'L') {
1979        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1980      } else {
1981        artQuickGenericJniEndJNINonRef(self, cookie, lock);
1982      }
1983
1984      return GetTwoWordFailureValue();
1985    }
1986    // Note that the native code pointer will be automatically set by artFindNativeMethod().
1987  }
1988
1989  // Return native code addr(lo) and bottom of alloca address(hi).
1990  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
1991                                reinterpret_cast<uintptr_t>(nativeCode));
1992}
1993
1994// Defined in quick_jni_entrypoints.cc.
1995extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
1996                                    jvalue result, uint64_t result_f, ArtMethod* called,
1997                                    HandleScope* handle_scope);
1998/*
1999 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2000 * unlocking.
2001 */
2002extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2003                                                    jvalue result,
2004                                                    uint64_t result_f) {
2005  // We're here just back from a native call. We don't have the shared mutator lock at this point
2006  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2007  // anything that requires a mutator lock before that would cause problems as GC may have the
2008  // exclusive mutator lock and may be moving objects, etc.
2009  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2010  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2011  ArtMethod* called = *sp;
2012  uint32_t cookie = *(sp32 - 1);
2013  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2014  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2015}
2016
2017// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2018// for the method pointer.
2019//
2020// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2021// to hold the mutator lock (see SHARED_REQUIRES(Locks::mutator_lock_) annotations).
2022
2023template<InvokeType type, bool access_check>
2024static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self,
2025                                     ArtMethod** sp) {
2026  ScopedQuickEntrypointChecks sqec(self);
2027  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
2028  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2029  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2030  if (UNLIKELY(method == nullptr)) {
2031    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2032    uint32_t shorty_len;
2033    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2034    {
2035      // Remember the args in case a GC happens in FindMethodFromCode.
2036      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2037      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2038      visitor.VisitArguments();
2039      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method,
2040                                                      self);
2041      visitor.FixupReferences();
2042    }
2043
2044    if (UNLIKELY(method == nullptr)) {
2045      CHECK(self->IsExceptionPending());
2046      return GetTwoWordFailureValue();  // Failure.
2047    }
2048  }
2049  DCHECK(!self->IsExceptionPending());
2050  const void* code = method->GetEntryPointFromQuickCompiledCode();
2051
2052  // When we return, the caller will branch to this address, so it had better not be 0!
2053  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2054                          << " location: "
2055                          << method->GetDexFile()->GetLocation();
2056
2057  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2058                                reinterpret_cast<uintptr_t>(method));
2059}
2060
2061// Explicit artInvokeCommon template function declarations to please analysis tool.
2062#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2063  template SHARED_REQUIRES(Locks::mutator_lock_)                                          \
2064  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2065      uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2066
2067EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2068EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2069EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2070EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2071EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2072EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2073EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2074EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2075EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2076EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2077#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2078
2079// See comments in runtime_support_asm.S
2080extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2081    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2082    SHARED_REQUIRES(Locks::mutator_lock_) {
2083  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2084}
2085
2086extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2087    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2088    SHARED_REQUIRES(Locks::mutator_lock_) {
2089  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2090}
2091
2092extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2093    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2094    SHARED_REQUIRES(Locks::mutator_lock_) {
2095  return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp);
2096}
2097
2098extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2099    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2100    SHARED_REQUIRES(Locks::mutator_lock_) {
2101  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2102}
2103
2104extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2105    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2106    SHARED_REQUIRES(Locks::mutator_lock_) {
2107  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2108}
2109
2110// Determine target of interface dispatch. This object is known non-null.
2111extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t dex_method_idx,
2112                                                      mirror::Object* this_object,
2113                                                      Thread* self, ArtMethod** sp)
2114    SHARED_REQUIRES(Locks::mutator_lock_) {
2115  ScopedQuickEntrypointChecks sqec(self);
2116  // The optimizing compiler currently does not inline methods that have an interface
2117  // invocation. We use the outer method directly to avoid fetching a stack map, which is
2118  // more expensive.
2119  ArtMethod* caller_method = QuickArgumentVisitor::GetOuterMethod(sp);
2120  DCHECK_EQ(caller_method, QuickArgumentVisitor::GetCallingMethod(sp));
2121  ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2122      dex_method_idx, sizeof(void*));
2123  DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method);
2124  ArtMethod* method;
2125  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2126    method = this_object->GetClass()->FindVirtualMethodForInterface(
2127        interface_method, sizeof(void*));
2128    if (UNLIKELY(method == nullptr)) {
2129      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2130          interface_method, this_object, caller_method);
2131      return GetTwoWordFailureValue();  // Failure.
2132    }
2133  } else {
2134    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2135    if (kIsDebugBuild) {
2136      uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2137      const DexFile::CodeItem* code = caller_method->GetCodeItem();
2138      CHECK_LT(dex_pc, code->insns_size_in_code_units_);
2139      const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
2140      Instruction::Code instr_code = instr->Opcode();
2141      CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2142            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2143          << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2144      if (instr_code == Instruction::INVOKE_INTERFACE) {
2145        CHECK_EQ(dex_method_idx, instr->VRegB_35c());
2146      } else {
2147        CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2148        CHECK_EQ(dex_method_idx, instr->VRegB_3rc());
2149      }
2150    }
2151
2152    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2153        ->GetDexFile();
2154    uint32_t shorty_len;
2155    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2156                                                   &shorty_len);
2157    {
2158      // Remember the args in case a GC happens in FindMethodFromCode.
2159      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2160      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2161      visitor.VisitArguments();
2162      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method,
2163                                                     self);
2164      visitor.FixupReferences();
2165    }
2166
2167    if (UNLIKELY(method == nullptr)) {
2168      CHECK(self->IsExceptionPending());
2169      return GetTwoWordFailureValue();  // Failure.
2170    }
2171  }
2172  const void* code = method->GetEntryPointFromQuickCompiledCode();
2173
2174  // When we return, the caller will branch to this address, so it had better not be 0!
2175  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2176                          << " location: " << method->GetDexFile()->GetLocation();
2177
2178  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2179                                reinterpret_cast<uintptr_t>(method));
2180}
2181
2182}  // namespace art
2183