quick_trampoline_entrypoints.cc revision 796d63050a18f263b93ea34951a61deaecab3422
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "callee_save_frame.h"
19#include "common_throws.h"
20#include "dex_file-inl.h"
21#include "dex_instruction-inl.h"
22#include "entrypoints/entrypoint_utils-inl.h"
23#include "entrypoints/runtime_asm_entrypoints.h"
24#include "gc/accounting/card_table-inl.h"
25#include "interpreter/interpreter.h"
26#include "linear_alloc.h"
27#include "method_reference.h"
28#include "mirror/class-inl.h"
29#include "mirror/dex_cache-inl.h"
30#include "mirror/method.h"
31#include "mirror/object-inl.h"
32#include "mirror/object_array-inl.h"
33#include "oat_quick_method_header.h"
34#include "quick_exception_handler.h"
35#include "runtime.h"
36#include "scoped_thread_state_change.h"
37#include "stack.h"
38#include "debugger.h"
39
40namespace art {
41
42// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
43class QuickArgumentVisitor {
44  // Number of bytes for each out register in the caller method's frame.
45  static constexpr size_t kBytesStackArgLocation = 4;
46  // Frame size in bytes of a callee-save frame for RefsAndArgs.
47  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
48      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
49#if defined(__arm__)
50  // The callee save frame is pointed to by SP.
51  // | argN       |  |
52  // | ...        |  |
53  // | arg4       |  |
54  // | arg3 spill |  |  Caller's frame
55  // | arg2 spill |  |
56  // | arg1 spill |  |
57  // | Method*    | ---
58  // | LR         |
59  // | ...        |    4x6 bytes callee saves
60  // | R3         |
61  // | R2         |
62  // | R1         |
63  // | S15        |
64  // | :          |
65  // | S0         |
66  // |            |    4x2 bytes padding
67  // | Method*    |  <- sp
68  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
69  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
70  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
71  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
72  static constexpr bool kQuickSkipOddFpRegisters = false;
73  static constexpr size_t kNumQuickGprArgs = 3;
74  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
75  static constexpr bool kGprFprLockstep = false;
76  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
77      arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
78  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
79      arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
80  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
81      arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
82  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
83    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
84  }
85#elif defined(__aarch64__)
86  // The callee save frame is pointed to by SP.
87  // | argN       |  |
88  // | ...        |  |
89  // | arg4       |  |
90  // | arg3 spill |  |  Caller's frame
91  // | arg2 spill |  |
92  // | arg1 spill |  |
93  // | Method*    | ---
94  // | LR         |
95  // | X29        |
96  // |  :         |
97  // | X20        |
98  // | X7         |
99  // | :          |
100  // | X1         |
101  // | D7         |
102  // |  :         |
103  // | D0         |
104  // |            |    padding
105  // | Method*    |  <- sp
106  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
107  static constexpr bool kAlignPairRegister = false;
108  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
109  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
110  static constexpr bool kQuickSkipOddFpRegisters = false;
111  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
112  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
113  static constexpr bool kGprFprLockstep = false;
114  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
115      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
116  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
117      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
118  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
119      arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
120  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
121    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
122  }
123#elif defined(__mips__) && !defined(__LP64__)
124  // The callee save frame is pointed to by SP.
125  // | argN       |  |
126  // | ...        |  |
127  // | arg4       |  |
128  // | arg3 spill |  |  Caller's frame
129  // | arg2 spill |  |
130  // | arg1 spill |  |
131  // | Method*    | ---
132  // | RA         |
133  // | ...        |    callee saves
134  // | A3         |    arg3
135  // | A2         |    arg2
136  // | A1         |    arg1
137  // | F15        |
138  // | F14        |    f_arg1
139  // | F13        |
140  // | F12        |    f_arg0
141  // |            |    padding
142  // | A0/Method* |  <- sp
143  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
144  static constexpr bool kAlignPairRegister = true;
145  static constexpr bool kQuickSoftFloatAbi = false;
146  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
147  static constexpr bool kQuickSkipOddFpRegisters = true;
148  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
149  static constexpr size_t kNumQuickFprArgs = 4;  // 2 arguments passed in FPRs. Floats can be passed
150                                                 // only in even numbered registers and each double
151                                                 // occupies two registers.
152  static constexpr bool kGprFprLockstep = false;
153  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
154  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 32;  // Offset of first GPR arg.
155  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 76;  // Offset of return address.
156  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
157    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
158  }
159#elif defined(__mips__) && defined(__LP64__)
160  // The callee save frame is pointed to by SP.
161  // | argN       |  |
162  // | ...        |  |
163  // | arg4       |  |
164  // | arg3 spill |  |  Caller's frame
165  // | arg2 spill |  |
166  // | arg1 spill |  |
167  // | Method*    | ---
168  // | RA         |
169  // | ...        |    callee saves
170  // | A7         |    arg7
171  // | A6         |    arg6
172  // | A5         |    arg5
173  // | A4         |    arg4
174  // | A3         |    arg3
175  // | A2         |    arg2
176  // | A1         |    arg1
177  // | F19        |    f_arg7
178  // | F18        |    f_arg6
179  // | F17        |    f_arg5
180  // | F16        |    f_arg4
181  // | F15        |    f_arg3
182  // | F14        |    f_arg2
183  // | F13        |    f_arg1
184  // | F12        |    f_arg0
185  // |            |    padding
186  // | A0/Method* |  <- sp
187  // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
188  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
189  static constexpr bool kAlignPairRegister = false;
190  static constexpr bool kQuickSoftFloatAbi = false;
191  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
192  static constexpr bool kQuickSkipOddFpRegisters = false;
193  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
194  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
195  static constexpr bool kGprFprLockstep = true;
196
197  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
198  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
199  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
200  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
201    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
202  }
203#elif defined(__i386__)
204  // The callee save frame is pointed to by SP.
205  // | argN        |  |
206  // | ...         |  |
207  // | arg4        |  |
208  // | arg3 spill  |  |  Caller's frame
209  // | arg2 spill  |  |
210  // | arg1 spill  |  |
211  // | Method*     | ---
212  // | Return      |
213  // | EBP,ESI,EDI |    callee saves
214  // | EBX         |    arg3
215  // | EDX         |    arg2
216  // | ECX         |    arg1
217  // | XMM3        |    float arg 4
218  // | XMM2        |    float arg 3
219  // | XMM1        |    float arg 2
220  // | XMM0        |    float arg 1
221  // | EAX/Method* |  <- sp
222  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
223  static constexpr bool kAlignPairRegister = false;
224  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
225  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
226  static constexpr bool kQuickSkipOddFpRegisters = false;
227  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
228  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
229  static constexpr bool kGprFprLockstep = false;
230  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
231  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
232  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
233  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
234    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
235  }
236#elif defined(__x86_64__)
237  // The callee save frame is pointed to by SP.
238  // | argN            |  |
239  // | ...             |  |
240  // | reg. arg spills |  |  Caller's frame
241  // | Method*         | ---
242  // | Return          |
243  // | R15             |    callee save
244  // | R14             |    callee save
245  // | R13             |    callee save
246  // | R12             |    callee save
247  // | R9              |    arg5
248  // | R8              |    arg4
249  // | RSI/R6          |    arg1
250  // | RBP/R5          |    callee save
251  // | RBX/R3          |    callee save
252  // | RDX/R2          |    arg2
253  // | RCX/R1          |    arg3
254  // | XMM7            |    float arg 8
255  // | XMM6            |    float arg 7
256  // | XMM5            |    float arg 6
257  // | XMM4            |    float arg 5
258  // | XMM3            |    float arg 4
259  // | XMM2            |    float arg 3
260  // | XMM1            |    float arg 2
261  // | XMM0            |    float arg 1
262  // | Padding         |
263  // | RDI/Method*     |  <- sp
264  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
265  static constexpr bool kAlignPairRegister = false;
266  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
267  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
268  static constexpr bool kQuickSkipOddFpRegisters = false;
269  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
270  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
271  static constexpr bool kGprFprLockstep = false;
272  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
273  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
274  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
275  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
276    switch (gpr_index) {
277      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
278      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
279      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
280      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
281      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
282      default:
283      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
284      return 0;
285    }
286  }
287#else
288#error "Unsupported architecture"
289#endif
290
291 public:
292  // Special handling for proxy methods. Proxy methods are instance methods so the
293  // 'this' object is the 1st argument. They also have the same frame layout as the
294  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
295  // 1st GPR.
296  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
297      SHARED_REQUIRES(Locks::mutator_lock_) {
298    CHECK((*sp)->IsProxyMethod());
299    CHECK_GT(kNumQuickGprArgs, 0u);
300    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
301    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
302        GprIndexToGprOffset(kThisGprIndex);
303    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
304    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
305  }
306
307  static ArtMethod* GetCallingMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
308    DCHECK((*sp)->IsCalleeSaveMethod());
309    return GetCalleeSaveMethodCaller(sp, Runtime::kRefsAndArgs);
310  }
311
312  static ArtMethod* GetOuterMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
313    DCHECK((*sp)->IsCalleeSaveMethod());
314    uint8_t* previous_sp =
315        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
316    return *reinterpret_cast<ArtMethod**>(previous_sp);
317  }
318
319  static uint32_t GetCallingDexPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
320    DCHECK((*sp)->IsCalleeSaveMethod());
321    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
322    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
323        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
324    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
325    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
326    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
327
328    if (current_code->IsOptimized()) {
329      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
330      StackMapEncoding encoding = code_info.ExtractEncoding();
331      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
332      DCHECK(stack_map.IsValid());
333      if (stack_map.HasInlineInfo(encoding)) {
334        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
335        return inline_info.GetDexPcAtDepth(inline_info.GetDepth() - 1);
336      } else {
337        return stack_map.GetDexPc(encoding);
338      }
339    } else {
340      return current_code->ToDexPc(*caller_sp, outer_pc);
341    }
342  }
343
344  // For the given quick ref and args quick frame, return the caller's PC.
345  static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
346    DCHECK((*sp)->IsCalleeSaveMethod());
347    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
348    return *reinterpret_cast<uintptr_t*>(lr);
349  }
350
351  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
352                       uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) :
353          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
354          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
355          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
356          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
357              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
358          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
359          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
360    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
361                  "Number of Quick FPR arguments unexpected");
362    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
363                  "Double alignment unexpected");
364    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
365    // next register is even.
366    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
367                  "Number of Quick FPR arguments not even");
368    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
369  }
370
371  virtual ~QuickArgumentVisitor() {}
372
373  virtual void Visit() = 0;
374
375  Primitive::Type GetParamPrimitiveType() const {
376    return cur_type_;
377  }
378
379  uint8_t* GetParamAddress() const {
380    if (!kQuickSoftFloatAbi) {
381      Primitive::Type type = GetParamPrimitiveType();
382      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
383        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
384          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
385            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
386          }
387        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
388          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
389        }
390        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
391      }
392    }
393    if (gpr_index_ < kNumQuickGprArgs) {
394      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
395    }
396    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
397  }
398
399  bool IsSplitLongOrDouble() const {
400    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
401        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
402      return is_split_long_or_double_;
403    } else {
404      return false;  // An optimization for when GPR and FPRs are 64bit.
405    }
406  }
407
408  bool IsParamAReference() const {
409    return GetParamPrimitiveType() == Primitive::kPrimNot;
410  }
411
412  bool IsParamALongOrDouble() const {
413    Primitive::Type type = GetParamPrimitiveType();
414    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
415  }
416
417  uint64_t ReadSplitLongParam() const {
418    // The splitted long is always available through the stack.
419    return *reinterpret_cast<uint64_t*>(stack_args_
420        + stack_index_ * kBytesStackArgLocation);
421  }
422
423  void IncGprIndex() {
424    gpr_index_++;
425    if (kGprFprLockstep) {
426      fpr_index_++;
427    }
428  }
429
430  void IncFprIndex() {
431    fpr_index_++;
432    if (kGprFprLockstep) {
433      gpr_index_++;
434    }
435  }
436
437  void VisitArguments() SHARED_REQUIRES(Locks::mutator_lock_) {
438    // (a) 'stack_args_' should point to the first method's argument
439    // (b) whatever the argument type it is, the 'stack_index_' should
440    //     be moved forward along with every visiting.
441    gpr_index_ = 0;
442    fpr_index_ = 0;
443    if (kQuickDoubleRegAlignedFloatBackFilled) {
444      fpr_double_index_ = 0;
445    }
446    stack_index_ = 0;
447    if (!is_static_) {  // Handle this.
448      cur_type_ = Primitive::kPrimNot;
449      is_split_long_or_double_ = false;
450      Visit();
451      stack_index_++;
452      if (kNumQuickGprArgs > 0) {
453        IncGprIndex();
454      }
455    }
456    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
457      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
458      switch (cur_type_) {
459        case Primitive::kPrimNot:
460        case Primitive::kPrimBoolean:
461        case Primitive::kPrimByte:
462        case Primitive::kPrimChar:
463        case Primitive::kPrimShort:
464        case Primitive::kPrimInt:
465          is_split_long_or_double_ = false;
466          Visit();
467          stack_index_++;
468          if (gpr_index_ < kNumQuickGprArgs) {
469            IncGprIndex();
470          }
471          break;
472        case Primitive::kPrimFloat:
473          is_split_long_or_double_ = false;
474          Visit();
475          stack_index_++;
476          if (kQuickSoftFloatAbi) {
477            if (gpr_index_ < kNumQuickGprArgs) {
478              IncGprIndex();
479            }
480          } else {
481            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
482              IncFprIndex();
483              if (kQuickDoubleRegAlignedFloatBackFilled) {
484                // Double should not overlap with float.
485                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
486                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
487                // Float should not overlap with double.
488                if (fpr_index_ % 2 == 0) {
489                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
490                }
491              } else if (kQuickSkipOddFpRegisters) {
492                IncFprIndex();
493              }
494            }
495          }
496          break;
497        case Primitive::kPrimDouble:
498        case Primitive::kPrimLong:
499          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
500            if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
501              // Currently, this is only for ARM and MIPS, where the first available parameter
502              // register is R1 (on ARM) or A1 (on MIPS). So we skip it, and use R2 (on ARM) or
503              // A2 (on MIPS) instead.
504              IncGprIndex();
505            }
506            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
507                ((gpr_index_ + 1) == kNumQuickGprArgs);
508            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
509              // We don't want to split this. Pass over this register.
510              gpr_index_++;
511              is_split_long_or_double_ = false;
512            }
513            Visit();
514            if (kBytesStackArgLocation == 4) {
515              stack_index_+= 2;
516            } else {
517              CHECK_EQ(kBytesStackArgLocation, 8U);
518              stack_index_++;
519            }
520            if (gpr_index_ < kNumQuickGprArgs) {
521              IncGprIndex();
522              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
523                if (gpr_index_ < kNumQuickGprArgs) {
524                  IncGprIndex();
525                }
526              }
527            }
528          } else {
529            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
530                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
531            Visit();
532            if (kBytesStackArgLocation == 4) {
533              stack_index_+= 2;
534            } else {
535              CHECK_EQ(kBytesStackArgLocation, 8U);
536              stack_index_++;
537            }
538            if (kQuickDoubleRegAlignedFloatBackFilled) {
539              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
540                fpr_double_index_ += 2;
541                // Float should not overlap with double.
542                if (fpr_index_ % 2 == 0) {
543                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
544                }
545              }
546            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
547              IncFprIndex();
548              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
549                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
550                  IncFprIndex();
551                }
552              }
553            }
554          }
555          break;
556        default:
557          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
558      }
559    }
560  }
561
562 protected:
563  const bool is_static_;
564  const char* const shorty_;
565  const uint32_t shorty_len_;
566
567 private:
568  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
569  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
570  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
571  uint32_t gpr_index_;  // Index into spilled GPRs.
572  // Index into spilled FPRs.
573  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
574  // holds a higher register number.
575  uint32_t fpr_index_;
576  // Index into spilled FPRs for aligned double.
577  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
578  // terms of singles, may be behind fpr_index.
579  uint32_t fpr_double_index_;
580  uint32_t stack_index_;  // Index into arguments on the stack.
581  // The current type of argument during VisitArguments.
582  Primitive::Type cur_type_;
583  // Does a 64bit parameter straddle the register and stack arguments?
584  bool is_split_long_or_double_;
585};
586
587// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
588// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
589extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
590    SHARED_REQUIRES(Locks::mutator_lock_) {
591  return QuickArgumentVisitor::GetProxyThisObject(sp);
592}
593
594// Visits arguments on the stack placing them into the shadow frame.
595class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
596 public:
597  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
598                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
599      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
600
601  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
602
603 private:
604  ShadowFrame* const sf_;
605  uint32_t cur_reg_;
606
607  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
608};
609
610void BuildQuickShadowFrameVisitor::Visit() {
611  Primitive::Type type = GetParamPrimitiveType();
612  switch (type) {
613    case Primitive::kPrimLong:  // Fall-through.
614    case Primitive::kPrimDouble:
615      if (IsSplitLongOrDouble()) {
616        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
617      } else {
618        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
619      }
620      ++cur_reg_;
621      break;
622    case Primitive::kPrimNot: {
623        StackReference<mirror::Object>* stack_ref =
624            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
625        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
626      }
627      break;
628    case Primitive::kPrimBoolean:  // Fall-through.
629    case Primitive::kPrimByte:     // Fall-through.
630    case Primitive::kPrimChar:     // Fall-through.
631    case Primitive::kPrimShort:    // Fall-through.
632    case Primitive::kPrimInt:      // Fall-through.
633    case Primitive::kPrimFloat:
634      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
635      break;
636    case Primitive::kPrimVoid:
637      LOG(FATAL) << "UNREACHABLE";
638      UNREACHABLE();
639  }
640  ++cur_reg_;
641}
642
643extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
644    SHARED_REQUIRES(Locks::mutator_lock_) {
645  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
646  // frame.
647  ScopedQuickEntrypointChecks sqec(self);
648
649  if (UNLIKELY(!method->IsInvokable())) {
650    method->ThrowInvocationTimeError();
651    return 0;
652  }
653
654  JValue tmp_value;
655  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
656      StackedShadowFrameType::kSingleFrameDeoptimizationShadowFrame, false);
657  ManagedStack fragment;
658
659  DCHECK(!method->IsNative()) << PrettyMethod(method);
660  uint32_t shorty_len = 0;
661  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*));
662  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
663  DCHECK(code_item != nullptr) << PrettyMethod(method);
664  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
665
666  JValue result;
667
668  if (deopt_frame != nullptr) {
669    // Coming from single-frame deopt.
670
671    if (kIsDebugBuild) {
672      // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
673      // of the call-stack) corresponds to the called method.
674      ShadowFrame* linked = deopt_frame;
675      while (linked->GetLink() != nullptr) {
676        linked = linked->GetLink();
677      }
678      CHECK_EQ(method, linked->GetMethod()) << PrettyMethod(method) << " "
679          << PrettyMethod(linked->GetMethod());
680    }
681
682    if (VLOG_IS_ON(deopt)) {
683      // Print out the stack to verify that it was a single-frame deopt.
684      LOG(INFO) << "Continue-ing from deopt. Stack is:";
685      QuickExceptionHandler::DumpFramesWithType(self, true);
686    }
687
688    mirror::Throwable* pending_exception = nullptr;
689    bool from_code = false;
690    self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
691    CHECK(from_code);
692
693    // Push a transition back into managed code onto the linked list in thread.
694    self->PushManagedStackFragment(&fragment);
695
696    // Ensure that the stack is still in order.
697    if (kIsDebugBuild) {
698      class DummyStackVisitor : public StackVisitor {
699       public:
700        explicit DummyStackVisitor(Thread* self_in) SHARED_REQUIRES(Locks::mutator_lock_)
701            : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
702
703        bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
704          // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
705          // logic. Just always say we want to continue.
706          return true;
707        }
708      };
709      DummyStackVisitor dsv(self);
710      dsv.WalkStack();
711    }
712
713    // Restore the exception that was pending before deoptimization then interpret the
714    // deoptimized frames.
715    if (pending_exception != nullptr) {
716      self->SetException(pending_exception);
717    }
718    interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
719  } else {
720    const char* old_cause = self->StartAssertNoThreadSuspension(
721        "Building interpreter shadow frame");
722    uint16_t num_regs = code_item->registers_size_;
723    // No last shadow coming from quick.
724    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
725        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
726    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
727    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
728    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
729                                                      shadow_frame, first_arg_reg);
730    shadow_frame_builder.VisitArguments();
731    const bool needs_initialization =
732        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
733    // Push a transition back into managed code onto the linked list in thread.
734    self->PushManagedStackFragment(&fragment);
735    self->PushShadowFrame(shadow_frame);
736    self->EndAssertNoThreadSuspension(old_cause);
737
738    if (needs_initialization) {
739      // Ensure static method's class is initialized.
740      StackHandleScope<1> hs(self);
741      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
742      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
743        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
744        self->PopManagedStackFragment(fragment);
745        return 0;
746      }
747    }
748
749    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
750  }
751
752  // Pop transition.
753  self->PopManagedStackFragment(fragment);
754
755  // Request a stack deoptimization if needed
756  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
757  if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
758    // Push the context of the deoptimization stack so we can restore the return value and the
759    // exception before executing the deoptimized frames.
760    self->PushDeoptimizationContext(
761        result, shorty[0] == 'L', /* from_code */ false, self->GetException());
762
763    // Set special exception to cause deoptimization.
764    self->SetException(Thread::GetDeoptimizationException());
765  }
766
767  // No need to restore the args since the method has already been run by the interpreter.
768  return result.GetJ();
769}
770
771// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
772// to jobjects.
773class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
774 public:
775  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
776                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
777      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
778
779  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
780
781  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
782
783 private:
784  ScopedObjectAccessUnchecked* const soa_;
785  std::vector<jvalue>* const args_;
786  // References which we must update when exiting in case the GC moved the objects.
787  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
788
789  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
790};
791
792void BuildQuickArgumentVisitor::Visit() {
793  jvalue val;
794  Primitive::Type type = GetParamPrimitiveType();
795  switch (type) {
796    case Primitive::kPrimNot: {
797      StackReference<mirror::Object>* stack_ref =
798          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
799      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
800      references_.push_back(std::make_pair(val.l, stack_ref));
801      break;
802    }
803    case Primitive::kPrimLong:  // Fall-through.
804    case Primitive::kPrimDouble:
805      if (IsSplitLongOrDouble()) {
806        val.j = ReadSplitLongParam();
807      } else {
808        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
809      }
810      break;
811    case Primitive::kPrimBoolean:  // Fall-through.
812    case Primitive::kPrimByte:     // Fall-through.
813    case Primitive::kPrimChar:     // Fall-through.
814    case Primitive::kPrimShort:    // Fall-through.
815    case Primitive::kPrimInt:      // Fall-through.
816    case Primitive::kPrimFloat:
817      val.i = *reinterpret_cast<jint*>(GetParamAddress());
818      break;
819    case Primitive::kPrimVoid:
820      LOG(FATAL) << "UNREACHABLE";
821      UNREACHABLE();
822  }
823  args_->push_back(val);
824}
825
826void BuildQuickArgumentVisitor::FixupReferences() {
827  // Fixup any references which may have changed.
828  for (const auto& pair : references_) {
829    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
830    soa_->Env()->DeleteLocalRef(pair.first);
831  }
832}
833
834// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
835// which is responsible for recording callee save registers. We explicitly place into jobjects the
836// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
837// field within the proxy object, which will box the primitive arguments and deal with error cases.
838extern "C" uint64_t artQuickProxyInvokeHandler(
839    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
840    SHARED_REQUIRES(Locks::mutator_lock_) {
841  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
842  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
843  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
844  const char* old_cause =
845      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
846  // Register the top of the managed stack, making stack crawlable.
847  DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
848  self->VerifyStack();
849  // Start new JNI local reference state.
850  JNIEnvExt* env = self->GetJniEnv();
851  ScopedObjectAccessUnchecked soa(env);
852  ScopedJniEnvLocalRefState env_state(env);
853  // Create local ref. copies of proxy method and the receiver.
854  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
855
856  // Placing arguments into args vector and remove the receiver.
857  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*));
858  CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
859                                       << PrettyMethod(non_proxy_method);
860  std::vector<jvalue> args;
861  uint32_t shorty_len = 0;
862  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
863  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
864
865  local_ref_visitor.VisitArguments();
866  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
867  args.erase(args.begin());
868
869  // Convert proxy method into expected interface method.
870  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*));
871  DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
872  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
873  self->EndAssertNoThreadSuspension(old_cause);
874  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
875      mirror::Method::CreateFromArtMethod(soa.Self(), interface_method));
876
877  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
878  // that performs allocations.
879  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
880  // Restore references which might have moved.
881  local_ref_visitor.FixupReferences();
882  return result.GetJ();
883}
884
885// Read object references held in arguments from quick frames and place in a JNI local references,
886// so they don't get garbage collected.
887class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
888 public:
889  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
890                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
891      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
892
893  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
894
895  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
896
897 private:
898  ScopedObjectAccessUnchecked* const soa_;
899  // References which we must update when exiting in case the GC moved the objects.
900  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
901
902  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
903};
904
905void RememberForGcArgumentVisitor::Visit() {
906  if (IsParamAReference()) {
907    StackReference<mirror::Object>* stack_ref =
908        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
909    jobject reference =
910        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
911    references_.push_back(std::make_pair(reference, stack_ref));
912  }
913}
914
915void RememberForGcArgumentVisitor::FixupReferences() {
916  // Fixup any references which may have changed.
917  for (const auto& pair : references_) {
918    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
919    soa_->Env()->DeleteLocalRef(pair.first);
920  }
921}
922
923// Lazily resolve a method for quick. Called by stub code.
924extern "C" const void* artQuickResolutionTrampoline(
925    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
926    SHARED_REQUIRES(Locks::mutator_lock_) {
927  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
928  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
929  // does not have the same stack layout as the callee-save method).
930  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
931  // Start new JNI local reference state
932  JNIEnvExt* env = self->GetJniEnv();
933  ScopedObjectAccessUnchecked soa(env);
934  ScopedJniEnvLocalRefState env_state(env);
935  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
936
937  // Compute details about the called method (avoid GCs)
938  ClassLinker* linker = Runtime::Current()->GetClassLinker();
939  InvokeType invoke_type;
940  MethodReference called_method(nullptr, 0);
941  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
942  ArtMethod* caller = nullptr;
943  if (!called_method_known_on_entry) {
944    caller = QuickArgumentVisitor::GetCallingMethod(sp);
945    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
946    const DexFile::CodeItem* code;
947    called_method.dex_file = caller->GetDexFile();
948    code = caller->GetCodeItem();
949    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
950    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
951    Instruction::Code instr_code = instr->Opcode();
952    bool is_range;
953    switch (instr_code) {
954      case Instruction::INVOKE_DIRECT:
955        invoke_type = kDirect;
956        is_range = false;
957        break;
958      case Instruction::INVOKE_DIRECT_RANGE:
959        invoke_type = kDirect;
960        is_range = true;
961        break;
962      case Instruction::INVOKE_STATIC:
963        invoke_type = kStatic;
964        is_range = false;
965        break;
966      case Instruction::INVOKE_STATIC_RANGE:
967        invoke_type = kStatic;
968        is_range = true;
969        break;
970      case Instruction::INVOKE_SUPER:
971        invoke_type = kSuper;
972        is_range = false;
973        break;
974      case Instruction::INVOKE_SUPER_RANGE:
975        invoke_type = kSuper;
976        is_range = true;
977        break;
978      case Instruction::INVOKE_VIRTUAL:
979        invoke_type = kVirtual;
980        is_range = false;
981        break;
982      case Instruction::INVOKE_VIRTUAL_RANGE:
983        invoke_type = kVirtual;
984        is_range = true;
985        break;
986      case Instruction::INVOKE_INTERFACE:
987        invoke_type = kInterface;
988        is_range = false;
989        break;
990      case Instruction::INVOKE_INTERFACE_RANGE:
991        invoke_type = kInterface;
992        is_range = true;
993        break;
994      default:
995        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
996        UNREACHABLE();
997    }
998    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
999  } else {
1000    invoke_type = kStatic;
1001    called_method.dex_file = called->GetDexFile();
1002    called_method.dex_method_index = called->GetDexMethodIndex();
1003  }
1004  uint32_t shorty_len;
1005  const char* shorty =
1006      called_method.dex_file->GetMethodShorty(
1007          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1008  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1009  visitor.VisitArguments();
1010  self->EndAssertNoThreadSuspension(old_cause);
1011  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1012  // Resolve method filling in dex cache.
1013  if (!called_method_known_on_entry) {
1014    StackHandleScope<1> hs(self);
1015    mirror::Object* dummy = nullptr;
1016    HandleWrapper<mirror::Object> h_receiver(
1017        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1018    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1019    called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1020        self, called_method.dex_method_index, caller, invoke_type);
1021  }
1022  const void* code = nullptr;
1023  if (LIKELY(!self->IsExceptionPending())) {
1024    // Incompatible class change should have been handled in resolve method.
1025    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1026        << PrettyMethod(called) << " " << invoke_type;
1027    if (virtual_or_interface || invoke_type == kSuper) {
1028      // Refine called method based on receiver for kVirtual/kInterface, and
1029      // caller for kSuper.
1030      ArtMethod* orig_called = called;
1031      if (invoke_type == kVirtual) {
1032        CHECK(receiver != nullptr) << invoke_type;
1033        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
1034      } else if (invoke_type == kInterface) {
1035        CHECK(receiver != nullptr) << invoke_type;
1036        called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
1037      } else {
1038        DCHECK_EQ(invoke_type, kSuper);
1039        CHECK(caller != nullptr) << invoke_type;
1040        // TODO Maybe put this into a mirror::Class function.
1041        mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1042            self, called_method.dex_method_index, caller);
1043        if (ref_class->IsInterface()) {
1044          called = ref_class->FindVirtualMethodForInterfaceSuper(called, sizeof(void*));
1045        } else {
1046          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1047              called->GetMethodIndex(), sizeof(void*));
1048        }
1049      }
1050
1051      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
1052                               << PrettyTypeOf(receiver) << " "
1053                               << invoke_type << " " << orig_called->GetVtableIndex();
1054
1055      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1056      // of the sharpened method avoiding dirtying the dex cache if possible.
1057      // Note, called_method.dex_method_index references the dex method before the
1058      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1059      // about the name and signature.
1060      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1061      if (!called->HasSameDexCacheResolvedMethods(caller, sizeof(void*))) {
1062        // Calling from one dex file to another, need to compute the method index appropriate to
1063        // the caller's dex file. Since we get here only if the original called was a runtime
1064        // method, we've got the correct dex_file and a dex_method_idx from above.
1065        DCHECK(!called_method_known_on_entry);
1066        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1067        const DexFile* caller_dex_file = called_method.dex_file;
1068        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1069        update_dex_cache_method_index =
1070            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1071                                                     caller_method_name_and_sig_index);
1072      }
1073      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1074          (caller->GetDexCacheResolvedMethod(
1075              update_dex_cache_method_index, sizeof(void*)) != called)) {
1076        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
1077      }
1078    } else if (invoke_type == kStatic) {
1079      const auto called_dex_method_idx = called->GetDexMethodIndex();
1080      // For static invokes, we may dispatch to the static method in the superclass but resolve
1081      // using the subclass. To prevent getting slow paths on each invoke, we force set the
1082      // resolved method for the super class dex method index if we are in the same dex file.
1083      // b/19175856
1084      if (called->GetDexFile() == called_method.dex_file &&
1085          called_method.dex_method_index != called_dex_method_idx) {
1086        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
1087      }
1088    }
1089
1090    // Ensure that the called method's class is initialized.
1091    StackHandleScope<1> hs(soa.Self());
1092    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1093    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1094    if (LIKELY(called_class->IsInitialized())) {
1095      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1096        // If we are single-stepping or the called method is deoptimized (by a
1097        // breakpoint, for example), then we have to execute the called method
1098        // with the interpreter.
1099        code = GetQuickToInterpreterBridge();
1100      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1101        // If the caller is deoptimized (by a breakpoint, for example), we have to
1102        // continue its execution with interpreter when returning from the called
1103        // method. Because we do not want to execute the called method with the
1104        // interpreter, we wrap its execution into the instrumentation stubs.
1105        // When the called method returns, it will execute the instrumentation
1106        // exit hook that will determine the need of the interpreter with a call
1107        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1108        // it is needed.
1109        code = GetQuickInstrumentationEntryPoint();
1110      } else {
1111        code = called->GetEntryPointFromQuickCompiledCode();
1112      }
1113    } else if (called_class->IsInitializing()) {
1114      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1115        // If we are single-stepping or the called method is deoptimized (by a
1116        // breakpoint, for example), then we have to execute the called method
1117        // with the interpreter.
1118        code = GetQuickToInterpreterBridge();
1119      } else if (invoke_type == kStatic) {
1120        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1121        // until class is initialized to stop races between threads).
1122        code = linker->GetQuickOatCodeFor(called);
1123      } else {
1124        // No trampoline for non-static methods.
1125        code = called->GetEntryPointFromQuickCompiledCode();
1126      }
1127    } else {
1128      DCHECK(called_class->IsErroneous());
1129    }
1130  }
1131  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1132  // Fixup any locally saved objects may have moved during a GC.
1133  visitor.FixupReferences();
1134  // Place called method in callee-save frame to be placed as first argument to quick method.
1135  *sp = called;
1136
1137  return code;
1138}
1139
1140/*
1141 * This class uses a couple of observations to unite the different calling conventions through
1142 * a few constants.
1143 *
1144 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1145 *    possible alignment.
1146 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1147 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1148 *    when we have to split things
1149 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1150 *    and we can use Int handling directly.
1151 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1152 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1153 *    extension should be compatible with Aarch64, which mandates copying the available bits
1154 *    into LSB and leaving the rest unspecified.
1155 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1156 *    the stack.
1157 * 6) There is only little endian.
1158 *
1159 *
1160 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1161 * follows:
1162 *
1163 * void PushGpr(uintptr_t):   Add a value for the next GPR
1164 *
1165 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1166 *                            padding, that is, think the architecture is 32b and aligns 64b.
1167 *
1168 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1169 *                            split this if necessary. The current state will have aligned, if
1170 *                            necessary.
1171 *
1172 * void PushStack(uintptr_t): Push a value to the stack.
1173 *
1174 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1175 *                                          as this might be important for null initialization.
1176 *                                          Must return the jobject, that is, the reference to the
1177 *                                          entry in the HandleScope (nullptr if necessary).
1178 *
1179 */
1180template<class T> class BuildNativeCallFrameStateMachine {
1181 public:
1182#if defined(__arm__)
1183  // TODO: These are all dummy values!
1184  static constexpr bool kNativeSoftFloatAbi = true;
1185  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1186  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1187
1188  static constexpr size_t kRegistersNeededForLong = 2;
1189  static constexpr size_t kRegistersNeededForDouble = 2;
1190  static constexpr bool kMultiRegistersAligned = true;
1191  static constexpr bool kMultiFPRegistersWidened = false;
1192  static constexpr bool kMultiGPRegistersWidened = false;
1193  static constexpr bool kAlignLongOnStack = true;
1194  static constexpr bool kAlignDoubleOnStack = true;
1195#elif defined(__aarch64__)
1196  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1197  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1198  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1199
1200  static constexpr size_t kRegistersNeededForLong = 1;
1201  static constexpr size_t kRegistersNeededForDouble = 1;
1202  static constexpr bool kMultiRegistersAligned = false;
1203  static constexpr bool kMultiFPRegistersWidened = false;
1204  static constexpr bool kMultiGPRegistersWidened = false;
1205  static constexpr bool kAlignLongOnStack = false;
1206  static constexpr bool kAlignDoubleOnStack = false;
1207#elif defined(__mips__) && !defined(__LP64__)
1208  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1209  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1210  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1211
1212  static constexpr size_t kRegistersNeededForLong = 2;
1213  static constexpr size_t kRegistersNeededForDouble = 2;
1214  static constexpr bool kMultiRegistersAligned = true;
1215  static constexpr bool kMultiFPRegistersWidened = true;
1216  static constexpr bool kMultiGPRegistersWidened = false;
1217  static constexpr bool kAlignLongOnStack = true;
1218  static constexpr bool kAlignDoubleOnStack = true;
1219#elif defined(__mips__) && defined(__LP64__)
1220  // Let the code prepare GPRs only and we will load the FPRs with same data.
1221  static constexpr bool kNativeSoftFloatAbi = true;
1222  static constexpr size_t kNumNativeGprArgs = 8;
1223  static constexpr size_t kNumNativeFprArgs = 0;
1224
1225  static constexpr size_t kRegistersNeededForLong = 1;
1226  static constexpr size_t kRegistersNeededForDouble = 1;
1227  static constexpr bool kMultiRegistersAligned = false;
1228  static constexpr bool kMultiFPRegistersWidened = false;
1229  static constexpr bool kMultiGPRegistersWidened = true;
1230  static constexpr bool kAlignLongOnStack = false;
1231  static constexpr bool kAlignDoubleOnStack = false;
1232#elif defined(__i386__)
1233  // TODO: Check these!
1234  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1235  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1236  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1237
1238  static constexpr size_t kRegistersNeededForLong = 2;
1239  static constexpr size_t kRegistersNeededForDouble = 2;
1240  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1241  static constexpr bool kMultiFPRegistersWidened = false;
1242  static constexpr bool kMultiGPRegistersWidened = false;
1243  static constexpr bool kAlignLongOnStack = false;
1244  static constexpr bool kAlignDoubleOnStack = false;
1245#elif defined(__x86_64__)
1246  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1247  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1248  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1249
1250  static constexpr size_t kRegistersNeededForLong = 1;
1251  static constexpr size_t kRegistersNeededForDouble = 1;
1252  static constexpr bool kMultiRegistersAligned = false;
1253  static constexpr bool kMultiFPRegistersWidened = false;
1254  static constexpr bool kMultiGPRegistersWidened = false;
1255  static constexpr bool kAlignLongOnStack = false;
1256  static constexpr bool kAlignDoubleOnStack = false;
1257#else
1258#error "Unsupported architecture"
1259#endif
1260
1261 public:
1262  explicit BuildNativeCallFrameStateMachine(T* delegate)
1263      : gpr_index_(kNumNativeGprArgs),
1264        fpr_index_(kNumNativeFprArgs),
1265        stack_entries_(0),
1266        delegate_(delegate) {
1267    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1268    // the next register is even; counting down is just to make the compiler happy...
1269    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1270    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1271  }
1272
1273  virtual ~BuildNativeCallFrameStateMachine() {}
1274
1275  bool HavePointerGpr() const {
1276    return gpr_index_ > 0;
1277  }
1278
1279  void AdvancePointer(const void* val) {
1280    if (HavePointerGpr()) {
1281      gpr_index_--;
1282      PushGpr(reinterpret_cast<uintptr_t>(val));
1283    } else {
1284      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1285      PushStack(reinterpret_cast<uintptr_t>(val));
1286      gpr_index_ = 0;
1287    }
1288  }
1289
1290  bool HaveHandleScopeGpr() const {
1291    return gpr_index_ > 0;
1292  }
1293
1294  void AdvanceHandleScope(mirror::Object* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
1295    uintptr_t handle = PushHandle(ptr);
1296    if (HaveHandleScopeGpr()) {
1297      gpr_index_--;
1298      PushGpr(handle);
1299    } else {
1300      stack_entries_++;
1301      PushStack(handle);
1302      gpr_index_ = 0;
1303    }
1304  }
1305
1306  bool HaveIntGpr() const {
1307    return gpr_index_ > 0;
1308  }
1309
1310  void AdvanceInt(uint32_t val) {
1311    if (HaveIntGpr()) {
1312      gpr_index_--;
1313      if (kMultiGPRegistersWidened) {
1314        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1315        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1316      } else {
1317        PushGpr(val);
1318      }
1319    } else {
1320      stack_entries_++;
1321      if (kMultiGPRegistersWidened) {
1322        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1323        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1324      } else {
1325        PushStack(val);
1326      }
1327      gpr_index_ = 0;
1328    }
1329  }
1330
1331  bool HaveLongGpr() const {
1332    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1333  }
1334
1335  bool LongGprNeedsPadding() const {
1336    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1337        kAlignLongOnStack &&                  // and when it needs alignment
1338        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1339  }
1340
1341  bool LongStackNeedsPadding() const {
1342    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1343        kAlignLongOnStack &&                  // and when it needs 8B alignment
1344        (stack_entries_ & 1) == 1;            // counter is odd
1345  }
1346
1347  void AdvanceLong(uint64_t val) {
1348    if (HaveLongGpr()) {
1349      if (LongGprNeedsPadding()) {
1350        PushGpr(0);
1351        gpr_index_--;
1352      }
1353      if (kRegistersNeededForLong == 1) {
1354        PushGpr(static_cast<uintptr_t>(val));
1355      } else {
1356        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1357        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1358      }
1359      gpr_index_ -= kRegistersNeededForLong;
1360    } else {
1361      if (LongStackNeedsPadding()) {
1362        PushStack(0);
1363        stack_entries_++;
1364      }
1365      if (kRegistersNeededForLong == 1) {
1366        PushStack(static_cast<uintptr_t>(val));
1367        stack_entries_++;
1368      } else {
1369        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1370        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1371        stack_entries_ += 2;
1372      }
1373      gpr_index_ = 0;
1374    }
1375  }
1376
1377  bool HaveFloatFpr() const {
1378    return fpr_index_ > 0;
1379  }
1380
1381  void AdvanceFloat(float val) {
1382    if (kNativeSoftFloatAbi) {
1383      AdvanceInt(bit_cast<uint32_t, float>(val));
1384    } else {
1385      if (HaveFloatFpr()) {
1386        fpr_index_--;
1387        if (kRegistersNeededForDouble == 1) {
1388          if (kMultiFPRegistersWidened) {
1389            PushFpr8(bit_cast<uint64_t, double>(val));
1390          } else {
1391            // No widening, just use the bits.
1392            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1393          }
1394        } else {
1395          PushFpr4(val);
1396        }
1397      } else {
1398        stack_entries_++;
1399        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1400          // Need to widen before storing: Note the "double" in the template instantiation.
1401          // Note: We need to jump through those hoops to make the compiler happy.
1402          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1403          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1404        } else {
1405          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1406        }
1407        fpr_index_ = 0;
1408      }
1409    }
1410  }
1411
1412  bool HaveDoubleFpr() const {
1413    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1414  }
1415
1416  bool DoubleFprNeedsPadding() const {
1417    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1418        kAlignDoubleOnStack &&                  // and when it needs alignment
1419        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1420  }
1421
1422  bool DoubleStackNeedsPadding() const {
1423    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1424        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1425        (stack_entries_ & 1) == 1;              // counter is odd
1426  }
1427
1428  void AdvanceDouble(uint64_t val) {
1429    if (kNativeSoftFloatAbi) {
1430      AdvanceLong(val);
1431    } else {
1432      if (HaveDoubleFpr()) {
1433        if (DoubleFprNeedsPadding()) {
1434          PushFpr4(0);
1435          fpr_index_--;
1436        }
1437        PushFpr8(val);
1438        fpr_index_ -= kRegistersNeededForDouble;
1439      } else {
1440        if (DoubleStackNeedsPadding()) {
1441          PushStack(0);
1442          stack_entries_++;
1443        }
1444        if (kRegistersNeededForDouble == 1) {
1445          PushStack(static_cast<uintptr_t>(val));
1446          stack_entries_++;
1447        } else {
1448          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1449          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1450          stack_entries_ += 2;
1451        }
1452        fpr_index_ = 0;
1453      }
1454    }
1455  }
1456
1457  uint32_t GetStackEntries() const {
1458    return stack_entries_;
1459  }
1460
1461  uint32_t GetNumberOfUsedGprs() const {
1462    return kNumNativeGprArgs - gpr_index_;
1463  }
1464
1465  uint32_t GetNumberOfUsedFprs() const {
1466    return kNumNativeFprArgs - fpr_index_;
1467  }
1468
1469 private:
1470  void PushGpr(uintptr_t val) {
1471    delegate_->PushGpr(val);
1472  }
1473  void PushFpr4(float val) {
1474    delegate_->PushFpr4(val);
1475  }
1476  void PushFpr8(uint64_t val) {
1477    delegate_->PushFpr8(val);
1478  }
1479  void PushStack(uintptr_t val) {
1480    delegate_->PushStack(val);
1481  }
1482  uintptr_t PushHandle(mirror::Object* ref) SHARED_REQUIRES(Locks::mutator_lock_) {
1483    return delegate_->PushHandle(ref);
1484  }
1485
1486  uint32_t gpr_index_;      // Number of free GPRs
1487  uint32_t fpr_index_;      // Number of free FPRs
1488  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1489                            // extended
1490  T* const delegate_;             // What Push implementation gets called
1491};
1492
1493// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1494// in subclasses.
1495//
1496// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1497// them with handles.
1498class ComputeNativeCallFrameSize {
1499 public:
1500  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1501
1502  virtual ~ComputeNativeCallFrameSize() {}
1503
1504  uint32_t GetStackSize() const {
1505    return num_stack_entries_ * sizeof(uintptr_t);
1506  }
1507
1508  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1509    sp8 -= GetStackSize();
1510    // Align by kStackAlignment.
1511    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1512    return sp8;
1513  }
1514
1515  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1516      const {
1517    // Assumption is OK right now, as we have soft-float arm
1518    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1519    sp8 -= fregs * sizeof(uintptr_t);
1520    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1521    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1522    sp8 -= iregs * sizeof(uintptr_t);
1523    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1524    return sp8;
1525  }
1526
1527  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1528                            uint32_t** start_fpr) const {
1529    // Native call stack.
1530    sp8 = LayoutCallStack(sp8);
1531    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1532
1533    // Put fprs and gprs below.
1534    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1535
1536    // Return the new bottom.
1537    return sp8;
1538  }
1539
1540  virtual void WalkHeader(
1541      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1542      SHARED_REQUIRES(Locks::mutator_lock_) {
1543  }
1544
1545  void Walk(const char* shorty, uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) {
1546    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1547
1548    WalkHeader(&sm);
1549
1550    for (uint32_t i = 1; i < shorty_len; ++i) {
1551      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1552      switch (cur_type_) {
1553        case Primitive::kPrimNot:
1554          // TODO: fix abuse of mirror types.
1555          sm.AdvanceHandleScope(
1556              reinterpret_cast<mirror::Object*>(0x12345678));
1557          break;
1558
1559        case Primitive::kPrimBoolean:
1560        case Primitive::kPrimByte:
1561        case Primitive::kPrimChar:
1562        case Primitive::kPrimShort:
1563        case Primitive::kPrimInt:
1564          sm.AdvanceInt(0);
1565          break;
1566        case Primitive::kPrimFloat:
1567          sm.AdvanceFloat(0);
1568          break;
1569        case Primitive::kPrimDouble:
1570          sm.AdvanceDouble(0);
1571          break;
1572        case Primitive::kPrimLong:
1573          sm.AdvanceLong(0);
1574          break;
1575        default:
1576          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1577          UNREACHABLE();
1578      }
1579    }
1580
1581    num_stack_entries_ = sm.GetStackEntries();
1582  }
1583
1584  void PushGpr(uintptr_t /* val */) {
1585    // not optimizing registers, yet
1586  }
1587
1588  void PushFpr4(float /* val */) {
1589    // not optimizing registers, yet
1590  }
1591
1592  void PushFpr8(uint64_t /* val */) {
1593    // not optimizing registers, yet
1594  }
1595
1596  void PushStack(uintptr_t /* val */) {
1597    // counting is already done in the superclass
1598  }
1599
1600  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1601    return reinterpret_cast<uintptr_t>(nullptr);
1602  }
1603
1604 protected:
1605  uint32_t num_stack_entries_;
1606};
1607
1608class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1609 public:
1610  ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1611
1612  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1613  // is at *m = sp. Will update to point to the bottom of the save frame.
1614  //
1615  // Note: assumes ComputeAll() has been run before.
1616  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1617      SHARED_REQUIRES(Locks::mutator_lock_) {
1618    ArtMethod* method = **m;
1619
1620    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
1621
1622    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1623
1624    // First, fix up the layout of the callee-save frame.
1625    // We have to squeeze in the HandleScope, and relocate the method pointer.
1626
1627    // "Free" the slot for the method.
1628    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1629
1630    // Under the callee saves put handle scope and new method stack reference.
1631    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1632    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1633
1634    sp8 -= scope_and_method;
1635    // Align by kStackAlignment.
1636    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1637
1638    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1639    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1640                                        num_handle_scope_references_);
1641
1642    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1643    uint8_t* method_pointer = sp8;
1644    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1645    *new_method_ref = method;
1646    *m = new_method_ref;
1647  }
1648
1649  // Adds space for the cookie. Note: may leave stack unaligned.
1650  void LayoutCookie(uint8_t** sp) const {
1651    // Reference cookie and padding
1652    *sp -= 8;
1653  }
1654
1655  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1656  // Returns the new bottom. Note: this may be unaligned.
1657  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1658      SHARED_REQUIRES(Locks::mutator_lock_) {
1659    // First, fix up the layout of the callee-save frame.
1660    // We have to squeeze in the HandleScope, and relocate the method pointer.
1661    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1662
1663    // The bottom of the callee-save frame is now where the method is, *m.
1664    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1665
1666    // Add space for cookie.
1667    LayoutCookie(&sp8);
1668
1669    return sp8;
1670  }
1671
1672  // WARNING: After this, *sp won't be pointing to the method anymore!
1673  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1674                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1675                         uint32_t** start_fpr)
1676      SHARED_REQUIRES(Locks::mutator_lock_) {
1677    Walk(shorty, shorty_len);
1678
1679    // JNI part.
1680    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1681
1682    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1683
1684    // Return the new bottom.
1685    return sp8;
1686  }
1687
1688  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1689
1690  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1691  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1692      SHARED_REQUIRES(Locks::mutator_lock_);
1693
1694 private:
1695  uint32_t num_handle_scope_references_;
1696};
1697
1698uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1699  num_handle_scope_references_++;
1700  return reinterpret_cast<uintptr_t>(nullptr);
1701}
1702
1703void ComputeGenericJniFrameSize::WalkHeader(
1704    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1705  // JNIEnv
1706  sm->AdvancePointer(nullptr);
1707
1708  // Class object or this as first argument
1709  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1710}
1711
1712// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1713// the template requirements of BuildGenericJniFrameStateMachine.
1714class FillNativeCall {
1715 public:
1716  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1717      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1718
1719  virtual ~FillNativeCall() {}
1720
1721  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1722    cur_gpr_reg_ = gpr_regs;
1723    cur_fpr_reg_ = fpr_regs;
1724    cur_stack_arg_ = stack_args;
1725  }
1726
1727  void PushGpr(uintptr_t val) {
1728    *cur_gpr_reg_ = val;
1729    cur_gpr_reg_++;
1730  }
1731
1732  void PushFpr4(float val) {
1733    *cur_fpr_reg_ = val;
1734    cur_fpr_reg_++;
1735  }
1736
1737  void PushFpr8(uint64_t val) {
1738    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1739    *tmp = val;
1740    cur_fpr_reg_ += 2;
1741  }
1742
1743  void PushStack(uintptr_t val) {
1744    *cur_stack_arg_ = val;
1745    cur_stack_arg_++;
1746  }
1747
1748  virtual uintptr_t PushHandle(mirror::Object*) SHARED_REQUIRES(Locks::mutator_lock_) {
1749    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1750    UNREACHABLE();
1751  }
1752
1753 private:
1754  uintptr_t* cur_gpr_reg_;
1755  uint32_t* cur_fpr_reg_;
1756  uintptr_t* cur_stack_arg_;
1757};
1758
1759// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1760// of transitioning into native code.
1761class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1762 public:
1763  BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1764                              ArtMethod*** sp)
1765     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1766       jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1767    ComputeGenericJniFrameSize fsc;
1768    uintptr_t* start_gpr_reg;
1769    uint32_t* start_fpr_reg;
1770    uintptr_t* start_stack_arg;
1771    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1772                                             &handle_scope_,
1773                                             &start_stack_arg,
1774                                             &start_gpr_reg, &start_fpr_reg);
1775
1776    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1777
1778    // jni environment is always first argument
1779    sm_.AdvancePointer(self->GetJniEnv());
1780
1781    if (is_static) {
1782      sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1783    }
1784  }
1785
1786  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
1787
1788  void FinalizeHandleScope(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_);
1789
1790  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1791    return handle_scope_->GetHandle(0).GetReference();
1792  }
1793
1794  jobject GetFirstHandleScopeJObject() const SHARED_REQUIRES(Locks::mutator_lock_) {
1795    return handle_scope_->GetHandle(0).ToJObject();
1796  }
1797
1798  void* GetBottomOfUsedArea() const {
1799    return bottom_of_used_area_;
1800  }
1801
1802 private:
1803  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1804  class FillJniCall FINAL : public FillNativeCall {
1805   public:
1806    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1807                HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1808                                             handle_scope_(handle_scope), cur_entry_(0) {}
1809
1810    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
1811
1812    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1813      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1814      handle_scope_ = scope;
1815      cur_entry_ = 0U;
1816    }
1817
1818    void ResetRemainingScopeSlots() SHARED_REQUIRES(Locks::mutator_lock_) {
1819      // Initialize padding entries.
1820      size_t expected_slots = handle_scope_->NumberOfReferences();
1821      while (cur_entry_ < expected_slots) {
1822        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1823      }
1824      DCHECK_NE(cur_entry_, 0U);
1825    }
1826
1827   private:
1828    HandleScope* handle_scope_;
1829    size_t cur_entry_;
1830  };
1831
1832  HandleScope* handle_scope_;
1833  FillJniCall jni_call_;
1834  void* bottom_of_used_area_;
1835
1836  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1837
1838  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1839};
1840
1841uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1842  uintptr_t tmp;
1843  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1844  h.Assign(ref);
1845  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1846  cur_entry_++;
1847  return tmp;
1848}
1849
1850void BuildGenericJniFrameVisitor::Visit() {
1851  Primitive::Type type = GetParamPrimitiveType();
1852  switch (type) {
1853    case Primitive::kPrimLong: {
1854      jlong long_arg;
1855      if (IsSplitLongOrDouble()) {
1856        long_arg = ReadSplitLongParam();
1857      } else {
1858        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1859      }
1860      sm_.AdvanceLong(long_arg);
1861      break;
1862    }
1863    case Primitive::kPrimDouble: {
1864      uint64_t double_arg;
1865      if (IsSplitLongOrDouble()) {
1866        // Read into union so that we don't case to a double.
1867        double_arg = ReadSplitLongParam();
1868      } else {
1869        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1870      }
1871      sm_.AdvanceDouble(double_arg);
1872      break;
1873    }
1874    case Primitive::kPrimNot: {
1875      StackReference<mirror::Object>* stack_ref =
1876          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1877      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1878      break;
1879    }
1880    case Primitive::kPrimFloat:
1881      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1882      break;
1883    case Primitive::kPrimBoolean:  // Fall-through.
1884    case Primitive::kPrimByte:     // Fall-through.
1885    case Primitive::kPrimChar:     // Fall-through.
1886    case Primitive::kPrimShort:    // Fall-through.
1887    case Primitive::kPrimInt:      // Fall-through.
1888      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1889      break;
1890    case Primitive::kPrimVoid:
1891      LOG(FATAL) << "UNREACHABLE";
1892      UNREACHABLE();
1893  }
1894}
1895
1896void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1897  // Clear out rest of the scope.
1898  jni_call_.ResetRemainingScopeSlots();
1899  // Install HandleScope.
1900  self->PushHandleScope(handle_scope_);
1901}
1902
1903#if defined(__arm__) || defined(__aarch64__)
1904extern "C" void* artFindNativeMethod();
1905#else
1906extern "C" void* artFindNativeMethod(Thread* self);
1907#endif
1908
1909uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1910  if (lock != nullptr) {
1911    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1912  } else {
1913    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1914  }
1915}
1916
1917void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1918  if (lock != nullptr) {
1919    JniMethodEndSynchronized(cookie, lock, self);
1920  } else {
1921    JniMethodEnd(cookie, self);
1922  }
1923}
1924
1925/*
1926 * Initializes an alloca region assumed to be directly below sp for a native call:
1927 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1928 * The final element on the stack is a pointer to the native code.
1929 *
1930 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1931 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1932 *
1933 * The return of this function denotes:
1934 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1935 * 2) An error, if the value is negative.
1936 */
1937extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
1938    SHARED_REQUIRES(Locks::mutator_lock_) {
1939  ArtMethod* called = *sp;
1940  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1941  uint32_t shorty_len = 0;
1942  const char* shorty = called->GetShorty(&shorty_len);
1943
1944  // Run the visitor and update sp.
1945  BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1946  visitor.VisitArguments();
1947  visitor.FinalizeHandleScope(self);
1948
1949  // Fix up managed-stack things in Thread.
1950  self->SetTopOfStack(sp);
1951
1952  self->VerifyStack();
1953
1954  // Start JNI, save the cookie.
1955  uint32_t cookie;
1956  if (called->IsSynchronized()) {
1957    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1958    if (self->IsExceptionPending()) {
1959      self->PopHandleScope();
1960      // A negative value denotes an error.
1961      return GetTwoWordFailureValue();
1962    }
1963  } else {
1964    cookie = JniMethodStart(self);
1965  }
1966  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1967  *(sp32 - 1) = cookie;
1968
1969  // Retrieve the stored native code.
1970  void* nativeCode = called->GetEntryPointFromJni();
1971
1972  // There are two cases for the content of nativeCode:
1973  // 1) Pointer to the native function.
1974  // 2) Pointer to the trampoline for native code binding.
1975  // In the second case, we need to execute the binding and continue with the actual native function
1976  // pointer.
1977  DCHECK(nativeCode != nullptr);
1978  if (nativeCode == GetJniDlsymLookupStub()) {
1979#if defined(__arm__) || defined(__aarch64__)
1980    nativeCode = artFindNativeMethod();
1981#else
1982    nativeCode = artFindNativeMethod(self);
1983#endif
1984
1985    if (nativeCode == nullptr) {
1986      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1987
1988      // End JNI, as the assembly will move to deliver the exception.
1989      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1990      if (shorty[0] == 'L') {
1991        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1992      } else {
1993        artQuickGenericJniEndJNINonRef(self, cookie, lock);
1994      }
1995
1996      return GetTwoWordFailureValue();
1997    }
1998    // Note that the native code pointer will be automatically set by artFindNativeMethod().
1999  }
2000
2001  // Return native code addr(lo) and bottom of alloca address(hi).
2002  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2003                                reinterpret_cast<uintptr_t>(nativeCode));
2004}
2005
2006// Defined in quick_jni_entrypoints.cc.
2007extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2008                                    jvalue result, uint64_t result_f, ArtMethod* called,
2009                                    HandleScope* handle_scope);
2010/*
2011 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2012 * unlocking.
2013 */
2014extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2015                                                    jvalue result,
2016                                                    uint64_t result_f) {
2017  // We're here just back from a native call. We don't have the shared mutator lock at this point
2018  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2019  // anything that requires a mutator lock before that would cause problems as GC may have the
2020  // exclusive mutator lock and may be moving objects, etc.
2021  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2022  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2023  ArtMethod* called = *sp;
2024  uint32_t cookie = *(sp32 - 1);
2025  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2026  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2027}
2028
2029// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2030// for the method pointer.
2031//
2032// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2033// to hold the mutator lock (see SHARED_REQUIRES(Locks::mutator_lock_) annotations).
2034
2035template<InvokeType type, bool access_check>
2036static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self,
2037                                     ArtMethod** sp) {
2038  ScopedQuickEntrypointChecks sqec(self);
2039  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
2040  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2041  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2042  if (UNLIKELY(method == nullptr)) {
2043    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2044    uint32_t shorty_len;
2045    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2046    {
2047      // Remember the args in case a GC happens in FindMethodFromCode.
2048      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2049      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2050      visitor.VisitArguments();
2051      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method,
2052                                                      self);
2053      visitor.FixupReferences();
2054    }
2055
2056    if (UNLIKELY(method == nullptr)) {
2057      CHECK(self->IsExceptionPending());
2058      return GetTwoWordFailureValue();  // Failure.
2059    }
2060  }
2061  DCHECK(!self->IsExceptionPending());
2062  const void* code = method->GetEntryPointFromQuickCompiledCode();
2063
2064  // When we return, the caller will branch to this address, so it had better not be 0!
2065  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2066                          << " location: "
2067                          << method->GetDexFile()->GetLocation();
2068
2069  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2070                                reinterpret_cast<uintptr_t>(method));
2071}
2072
2073// Explicit artInvokeCommon template function declarations to please analysis tool.
2074#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2075  template SHARED_REQUIRES(Locks::mutator_lock_)                                          \
2076  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2077      uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2078
2079EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2080EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2081EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2082EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2083EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2084EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2085EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2086EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2087EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2088EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2089#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2090
2091// See comments in runtime_support_asm.S
2092extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2093    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2094    SHARED_REQUIRES(Locks::mutator_lock_) {
2095  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2096}
2097
2098extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2099    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2100    SHARED_REQUIRES(Locks::mutator_lock_) {
2101  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2102}
2103
2104extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2105    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2106    SHARED_REQUIRES(Locks::mutator_lock_) {
2107  return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp);
2108}
2109
2110extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2111    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2112    SHARED_REQUIRES(Locks::mutator_lock_) {
2113  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2114}
2115
2116extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2117    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2118    SHARED_REQUIRES(Locks::mutator_lock_) {
2119  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2120}
2121
2122// Determine target of interface dispatch. This object is known non-null. First argument
2123// is there for consistency but should not be used, as some architectures overwrite it
2124// in the assembly trampoline.
2125extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,
2126                                                      mirror::Object* this_object,
2127                                                      Thread* self,
2128                                                      ArtMethod** sp)
2129    SHARED_REQUIRES(Locks::mutator_lock_) {
2130  ScopedQuickEntrypointChecks sqec(self);
2131  StackHandleScope<1> hs(self);
2132  Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2133
2134  // The optimizing compiler currently does not inline methods that have an interface
2135  // invocation. We use the outer method directly to avoid fetching a stack map, which is
2136  // more expensive.
2137  ArtMethod* caller_method = QuickArgumentVisitor::GetOuterMethod(sp);
2138  DCHECK_EQ(caller_method, QuickArgumentVisitor::GetCallingMethod(sp));
2139
2140  // Fetch the dex_method_idx of the target interface method from the caller.
2141  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2142
2143  const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2144  CHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2145  const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2146  Instruction::Code instr_code = instr->Opcode();
2147  CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2148        instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2149      << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2150  uint32_t dex_method_idx;
2151  if (instr_code == Instruction::INVOKE_INTERFACE) {
2152    dex_method_idx = instr->VRegB_35c();
2153  } else {
2154    CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2155    dex_method_idx = instr->VRegB_3rc();
2156  }
2157
2158  ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2159      dex_method_idx, sizeof(void*));
2160  DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method);
2161  ArtMethod* method = nullptr;
2162
2163  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2164    // If the dex cache already resolved the interface method, look whether we have
2165    // a match in the ImtConflictTable.
2166    uint32_t imt_index = interface_method->GetDexMethodIndex();
2167    ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry(
2168        imt_index % mirror::Class::kImtSize, sizeof(void*));
2169    DCHECK(conflict_method->IsRuntimeMethod()) << PrettyMethod(conflict_method);
2170    ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*));
2171    method = current_table->Lookup(interface_method);
2172    if (method != nullptr) {
2173      return GetTwoWordSuccessValue(
2174          reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2175          reinterpret_cast<uintptr_t>(method));
2176    }
2177
2178    // No match, use the IfTable.
2179    method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*));
2180    if (UNLIKELY(method == nullptr)) {
2181      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2182          interface_method, this_object, caller_method);
2183      return GetTwoWordFailureValue();  // Failure.
2184    }
2185  } else {
2186    // The dex cache did not resolve the method, look it up in the dex file
2187    // of the caller,
2188    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2189    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2190        ->GetDexFile();
2191    uint32_t shorty_len;
2192    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2193                                                   &shorty_len);
2194    {
2195      // Remember the args in case a GC happens in FindMethodFromCode.
2196      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2197      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2198      visitor.VisitArguments();
2199      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method,
2200                                                     self);
2201      visitor.FixupReferences();
2202    }
2203
2204    if (UNLIKELY(method == nullptr)) {
2205      CHECK(self->IsExceptionPending());
2206      return GetTwoWordFailureValue();  // Failure.
2207    }
2208    interface_method = caller_method->GetDexCacheResolvedMethod(dex_method_idx, sizeof(void*));
2209    DCHECK(!interface_method->IsRuntimeMethod());
2210  }
2211
2212  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2213  // We create a new table with the new pair { interface_method, method }.
2214  uint32_t imt_index = interface_method->GetDexMethodIndex();
2215  ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry(
2216      imt_index % mirror::Class::kImtSize, sizeof(void*));
2217  ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*));
2218  Runtime* runtime = Runtime::Current();
2219  LinearAlloc* linear_alloc = (cls->GetClassLoader() == nullptr)
2220      ? runtime->GetLinearAlloc()
2221      : cls->GetClassLoader()->GetAllocator();
2222  bool is_new_entry = (conflict_method == runtime->GetImtConflictMethod());
2223
2224  // Create a new entry if the existing one is the shared conflict method.
2225  ArtMethod* new_conflict_method = is_new_entry
2226      ? runtime->CreateImtConflictMethod(linear_alloc)
2227      : conflict_method;
2228
2229  // Allocate a new table. Note that we will leak this table at the next conflict,
2230  // but that's a tradeoff compared to making the table fixed size.
2231  void* data = linear_alloc->Alloc(
2232      self, ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table));
2233  CHECK(data != nullptr) << "Out of memory";
2234  ImtConflictTable* new_table = new (data) ImtConflictTable(
2235      current_table, interface_method, method);
2236
2237  // Do a fence to ensure threads see the data in the table before it is assigned
2238  // to the conlict method.
2239  // Note that there is a race in the presence of multiple threads and we may leak
2240  // memory from the LinearAlloc, but that's a tradeoff compared to using
2241  // atomic operations.
2242  QuasiAtomic::ThreadFenceRelease();
2243  new_conflict_method->SetImtConflictTable(new_table);
2244  if (is_new_entry) {
2245    // Update the IMT if we create a new conflict method. No fence needed here, as the
2246    // data is consistent.
2247    cls->SetEmbeddedImTableEntry(imt_index % mirror::Class::kImtSize,
2248                                 new_conflict_method,
2249                                 sizeof(void*));
2250  }
2251
2252  const void* code = method->GetEntryPointFromQuickCompiledCode();
2253
2254  // When we return, the caller will branch to this address, so it had better not be 0!
2255  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2256                          << " location: " << method->GetDexFile()->GetLocation();
2257
2258  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2259                                reinterpret_cast<uintptr_t>(method));
2260}
2261
2262}  // namespace art
2263