thread.cc revision 815873ecc312b1d231acce71e1a16f42cdaf09f2
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "catch_finder.h"
36#include "class_linker.h"
37#include "class_linker-inl.h"
38#include "cutils/atomic.h"
39#include "cutils/atomic-inline.h"
40#include "debugger.h"
41#include "dex_file-inl.h"
42#include "entrypoints/entrypoint_utils.h"
43#include "gc_map.h"
44#include "gc/accounting/card_table-inl.h"
45#include "gc/heap.h"
46#include "gc/space/space.h"
47#include "invoke_arg_array_builder.h"
48#include "jni_internal.h"
49#include "mirror/art_field-inl.h"
50#include "mirror/art_method-inl.h"
51#include "mirror/class-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/object_array-inl.h"
54#include "mirror/stack_trace_element.h"
55#include "monitor.h"
56#include "object_utils.h"
57#include "reflection.h"
58#include "runtime.h"
59#include "scoped_thread_state_change.h"
60#include "ScopedLocalRef.h"
61#include "ScopedUtfChars.h"
62#include "sirt_ref.h"
63#include "stack.h"
64#include "stack_indirect_reference_table.h"
65#include "thread-inl.h"
66#include "thread_list.h"
67#include "utils.h"
68#include "verifier/dex_gc_map.h"
69#include "vmap_table.h"
70#include "well_known_classes.h"
71
72namespace art {
73
74bool Thread::is_started_ = false;
75pthread_key_t Thread::pthread_key_self_;
76ConditionVariable* Thread::resume_cond_ = nullptr;
77
78static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
79
80void Thread::InitCardTable() {
81  card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
82}
83
84#if !defined(__APPLE__)
85static void UnimplementedEntryPoint() {
86  UNIMPLEMENTED(FATAL);
87}
88#endif
89
90void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
91                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
92
93void Thread::InitTlsEntryPoints() {
94#if !defined(__APPLE__)  // The Mac GCC is too old to accept this code.
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(quick_entrypoints_));
98  for (uintptr_t* it = begin; it != end; ++it) {
99    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
100  }
101  begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
102  end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(portable_entrypoints_));
103  for (uintptr_t* it = begin; it != end; ++it) {
104    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
105  }
106#endif
107  InitEntryPoints(&interpreter_entrypoints_, &jni_entrypoints_, &portable_entrypoints_,
108                  &quick_entrypoints_);
109}
110
111void ResetQuickAllocEntryPoints(QuickEntryPoints* qpoints);
112
113void Thread::ResetQuickAllocEntryPointsForThread() {
114  ResetQuickAllocEntryPoints(&quick_entrypoints_);
115}
116
117void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
118  deoptimization_shadow_frame_ = sf;
119}
120
121void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
122  deoptimization_return_value_.SetJ(ret_val.GetJ());
123}
124
125ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
126  ShadowFrame* sf = deoptimization_shadow_frame_;
127  deoptimization_shadow_frame_ = nullptr;
128  ret_val->SetJ(deoptimization_return_value_.GetJ());
129  return sf;
130}
131
132void Thread::InitTid() {
133  tid_ = ::art::GetTid();
134}
135
136void Thread::InitAfterFork() {
137  // One thread (us) survived the fork, but we have a new tid so we need to
138  // update the value stashed in this Thread*.
139  InitTid();
140}
141
142void* Thread::CreateCallback(void* arg) {
143  Thread* self = reinterpret_cast<Thread*>(arg);
144  Runtime* runtime = Runtime::Current();
145  if (runtime == nullptr) {
146    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
147    return nullptr;
148  }
149  {
150    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
151    //       after self->Init().
152    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
153    // Check that if we got here we cannot be shutting down (as shutdown should never have started
154    // while threads are being born).
155    CHECK(!runtime->IsShuttingDownLocked());
156    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
157    Runtime::Current()->EndThreadBirth();
158  }
159  {
160    ScopedObjectAccess soa(self);
161
162    // Copy peer into self, deleting global reference when done.
163    CHECK(self->jpeer_ != nullptr);
164    self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_);
165    self->GetJniEnv()->DeleteGlobalRef(self->jpeer_);
166    self->jpeer_ = nullptr;
167
168    {
169      SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
170      self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
171    }
172    Dbg::PostThreadStart(self);
173
174    // Invoke the 'run' method of our java.lang.Thread.
175    mirror::Object* receiver = self->opeer_;
176    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
177    mirror::ArtMethod* m =
178        receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid));
179    JValue result;
180    ArgArray arg_array(nullptr, 0);
181    arg_array.Append(receiver);
182    m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, "V");
183  }
184  // Detach and delete self.
185  Runtime::Current()->GetThreadList()->Unregister(self);
186
187  return nullptr;
188}
189
190Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
191                                  mirror::Object* thread_peer) {
192  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
193  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
194  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
195  // to stop it from going away.
196  if (kIsDebugBuild) {
197    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
198    if (result != nullptr && !result->IsSuspended()) {
199      Locks::thread_list_lock_->AssertHeld(soa.Self());
200    }
201  }
202  return result;
203}
204
205Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
206  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
207}
208
209static size_t FixStackSize(size_t stack_size) {
210  // A stack size of zero means "use the default".
211  if (stack_size == 0) {
212    stack_size = Runtime::Current()->GetDefaultStackSize();
213  }
214
215  // Dalvik used the bionic pthread default stack size for native threads,
216  // so include that here to support apps that expect large native stacks.
217  stack_size += 1 * MB;
218
219  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
220  if (stack_size < PTHREAD_STACK_MIN) {
221    stack_size = PTHREAD_STACK_MIN;
222  }
223
224  // It's likely that callers are trying to ensure they have at least a certain amount of
225  // stack space, so we should add our reserved space on top of what they requested, rather
226  // than implicitly take it away from them.
227  stack_size += Thread::kStackOverflowReservedBytes;
228
229  // Some systems require the stack size to be a multiple of the system page size, so round up.
230  stack_size = RoundUp(stack_size, kPageSize);
231
232  return stack_size;
233}
234
235void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
236  CHECK(java_peer != nullptr);
237  Thread* self = static_cast<JNIEnvExt*>(env)->self;
238  Runtime* runtime = Runtime::Current();
239
240  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
241  bool thread_start_during_shutdown = false;
242  {
243    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
244    if (runtime->IsShuttingDownLocked()) {
245      thread_start_during_shutdown = true;
246    } else {
247      runtime->StartThreadBirth();
248    }
249  }
250  if (thread_start_during_shutdown) {
251    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
252    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
253    return;
254  }
255
256  Thread* child_thread = new Thread(is_daemon);
257  // Use global JNI ref to hold peer live while child thread starts.
258  child_thread->jpeer_ = env->NewGlobalRef(java_peer);
259  stack_size = FixStackSize(stack_size);
260
261  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
262  // assign it.
263  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
264                    reinterpret_cast<jlong>(child_thread));
265
266  pthread_t new_pthread;
267  pthread_attr_t attr;
268  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
269  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
270  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
271  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
272  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
273
274  if (pthread_create_result != 0) {
275    // pthread_create(3) failed, so clean up.
276    {
277      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
278      runtime->EndThreadBirth();
279    }
280    // Manually delete the global reference since Thread::Init will not have been run.
281    env->DeleteGlobalRef(child_thread->jpeer_);
282    child_thread->jpeer_ = nullptr;
283    delete child_thread;
284    child_thread = nullptr;
285    // TODO: remove from thread group?
286    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
287    {
288      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
289                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
290      ScopedObjectAccess soa(env);
291      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
292    }
293  }
294}
295
296void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
297  // This function does all the initialization that must be run by the native thread it applies to.
298  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
299  // we can handshake with the corresponding native thread when it's ready.) Check this native
300  // thread hasn't been through here already...
301  CHECK(Thread::Current() == nullptr);
302  SetUpAlternateSignalStack();
303  InitCpu();
304  InitTlsEntryPoints();
305  InitCardTable();
306  InitTid();
307  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
308  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
309  pthread_self_ = pthread_self();
310  CHECK(is_started_);
311  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
312  DCHECK_EQ(Thread::Current(), this);
313
314  thin_lock_thread_id_ = thread_list->AllocThreadId(this);
315  InitStackHwm();
316
317  jni_env_ = new JNIEnvExt(this, java_vm);
318  thread_list->Register(this);
319}
320
321Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
322                       bool create_peer) {
323  Thread* self;
324  Runtime* runtime = Runtime::Current();
325  if (runtime == nullptr) {
326    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
327    return nullptr;
328  }
329  {
330    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
331    if (runtime->IsShuttingDownLocked()) {
332      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
333      return nullptr;
334    } else {
335      Runtime::Current()->StartThreadBirth();
336      self = new Thread(as_daemon);
337      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
338      Runtime::Current()->EndThreadBirth();
339    }
340  }
341
342  CHECK_NE(self->GetState(), kRunnable);
343  self->SetState(kNative);
344
345  // If we're the main thread, ClassLinker won't be created until after we're attached,
346  // so that thread needs a two-stage attach. Regular threads don't need this hack.
347  // In the compiler, all threads need this hack, because no-one's going to be getting
348  // a native peer!
349  if (create_peer) {
350    self->CreatePeer(thread_name, as_daemon, thread_group);
351  } else {
352    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
353    if (thread_name != nullptr) {
354      self->name_->assign(thread_name);
355      ::art::SetThreadName(thread_name);
356    }
357  }
358
359  return self;
360}
361
362void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
363  Runtime* runtime = Runtime::Current();
364  CHECK(runtime->IsStarted());
365  JNIEnv* env = jni_env_;
366
367  if (thread_group == nullptr) {
368    thread_group = runtime->GetMainThreadGroup();
369  }
370  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
371  jint thread_priority = GetNativePriority();
372  jboolean thread_is_daemon = as_daemon;
373
374  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
375  if (peer.get() == nullptr) {
376    CHECK(IsExceptionPending());
377    return;
378  }
379  {
380    ScopedObjectAccess soa(this);
381    opeer_ = soa.Decode<mirror::Object*>(peer.get());
382  }
383  env->CallNonvirtualVoidMethod(peer.get(),
384                                WellKnownClasses::java_lang_Thread,
385                                WellKnownClasses::java_lang_Thread_init,
386                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
387  AssertNoPendingException();
388
389  Thread* self = this;
390  DCHECK_EQ(self, Thread::Current());
391  jni_env_->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
392                         reinterpret_cast<jlong>(self));
393
394  ScopedObjectAccess soa(self);
395  SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
396  if (peer_thread_name.get() == nullptr) {
397    // The Thread constructor should have set the Thread.name to a
398    // non-null value. However, because we can run without code
399    // available (in the compiler, in tests), we manually assign the
400    // fields the constructor should have set.
401    if (runtime->IsActiveTransaction()) {
402      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
403    } else {
404      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
405    }
406    peer_thread_name.reset(GetThreadName(soa));
407  }
408  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
409  if (peer_thread_name.get() != nullptr) {
410    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
411  }
412}
413
414template<bool kTransactionActive>
415void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
416                      jobject thread_name, jint thread_priority) {
417  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
418      SetBoolean<kTransactionActive>(opeer_, thread_is_daemon);
419  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
420      SetObject<kTransactionActive>(opeer_, soa.Decode<mirror::Object*>(thread_group));
421  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
422      SetObject<kTransactionActive>(opeer_, soa.Decode<mirror::Object*>(thread_name));
423  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
424      SetInt<kTransactionActive>(opeer_, thread_priority);
425}
426
427void Thread::SetThreadName(const char* name) {
428  name_->assign(name);
429  ::art::SetThreadName(name);
430  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
431}
432
433void Thread::InitStackHwm() {
434  void* stack_base;
435  size_t stack_size;
436  GetThreadStack(pthread_self_, &stack_base, &stack_size);
437
438  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
439  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
440
441  stack_begin_ = reinterpret_cast<byte*>(stack_base);
442  stack_size_ = stack_size;
443
444  if (stack_size_ <= kStackOverflowReservedBytes) {
445    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
446  }
447
448  // TODO: move this into the Linux GetThreadStack implementation.
449#if !defined(__APPLE__)
450  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
451  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
452  // will be broken because we'll die long before we get close to 2GB.
453  bool is_main_thread = (::art::GetTid() == getpid());
454  if (is_main_thread) {
455    rlimit stack_limit;
456    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
457      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
458    }
459    if (stack_limit.rlim_cur == RLIM_INFINITY) {
460      // Find the default stack size for new threads...
461      pthread_attr_t default_attributes;
462      size_t default_stack_size;
463      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
464      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
465                         "default stack size query");
466      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
467
468      // ...and use that as our limit.
469      size_t old_stack_size = stack_size_;
470      stack_size_ = default_stack_size;
471      stack_begin_ += (old_stack_size - stack_size_);
472      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
473                    << " to " << PrettySize(stack_size_)
474                    << " with base " << reinterpret_cast<void*>(stack_begin_);
475    }
476  }
477#endif
478
479  // Set stack_end_ to the bottom of the stack saving space of stack overflows
480  ResetDefaultStackEnd();
481
482  // Sanity check.
483  int stack_variable;
484  CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
485}
486
487void Thread::ShortDump(std::ostream& os) const {
488  os << "Thread[";
489  if (GetThreadId() != 0) {
490    // If we're in kStarting, we won't have a thin lock id or tid yet.
491    os << GetThreadId()
492             << ",tid=" << GetTid() << ',';
493  }
494  os << GetState()
495           << ",Thread*=" << this
496           << ",peer=" << opeer_
497           << ",\"" << *name_ << "\""
498           << "]";
499}
500
501void Thread::Dump(std::ostream& os) const {
502  DumpState(os);
503  DumpStack(os);
504}
505
506mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
507  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
508  return (opeer_ != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : nullptr;
509}
510
511void Thread::GetThreadName(std::string& name) const {
512  name.assign(*name_);
513}
514
515uint64_t Thread::GetCpuMicroTime() const {
516#if defined(HAVE_POSIX_CLOCKS)
517  clockid_t cpu_clock_id;
518  pthread_getcpuclockid(pthread_self_, &cpu_clock_id);
519  timespec now;
520  clock_gettime(cpu_clock_id, &now);
521  return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
522#else
523  UNIMPLEMENTED(WARNING);
524  return -1;
525#endif
526}
527
528void Thread::AtomicSetFlag(ThreadFlag flag) {
529  android_atomic_or(flag, &state_and_flags_.as_int);
530}
531
532void Thread::AtomicClearFlag(ThreadFlag flag) {
533  android_atomic_and(-1 ^ flag, &state_and_flags_.as_int);
534}
535
536// Attempt to rectify locks so that we dump thread list with required locks before exiting.
537static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
538  LOG(ERROR) << *thread << " suspend count already zero.";
539  Locks::thread_suspend_count_lock_->Unlock(self);
540  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
541    Locks::mutator_lock_->SharedTryLock(self);
542    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
543      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
544    }
545  }
546  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
547    Locks::thread_list_lock_->TryLock(self);
548    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
549      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
550    }
551  }
552  std::ostringstream ss;
553  Runtime::Current()->GetThreadList()->DumpLocked(ss);
554  LOG(FATAL) << ss.str();
555}
556
557void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
558  DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_)
559      << delta << " " << debug_suspend_count_ << " " << this;
560  DCHECK_GE(suspend_count_, debug_suspend_count_) << this;
561  Locks::thread_suspend_count_lock_->AssertHeld(self);
562  if (this != self && !IsSuspended()) {
563    Locks::thread_list_lock_->AssertHeld(self);
564  }
565  if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) {
566    UnsafeLogFatalForSuspendCount(self, this);
567    return;
568  }
569
570  suspend_count_ += delta;
571  if (for_debugger) {
572    debug_suspend_count_ += delta;
573  }
574
575  if (suspend_count_ == 0) {
576    AtomicClearFlag(kSuspendRequest);
577  } else {
578    AtomicSetFlag(kSuspendRequest);
579  }
580}
581
582void Thread::RunCheckpointFunction() {
583  Closure *checkpoints[kMaxCheckpoints];
584
585  // Grab the suspend_count lock and copy the current set of
586  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
587  // function will also grab this lock so we prevent a race between setting
588  // the kCheckpointRequest flag and clearing it.
589  {
590    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
591    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
592      checkpoints[i] = checkpoint_functions_[i];
593      checkpoint_functions_[i] = nullptr;
594    }
595    AtomicClearFlag(kCheckpointRequest);
596  }
597
598  // Outside the lock, run all the checkpoint functions that
599  // we collected.
600  bool found_checkpoint = false;
601  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
602    if (checkpoints[i] != nullptr) {
603      ATRACE_BEGIN("Checkpoint function");
604      checkpoints[i]->Run(this);
605      ATRACE_END();
606      found_checkpoint = true;
607    }
608  }
609  CHECK(found_checkpoint);
610}
611
612bool Thread::RequestCheckpoint(Closure* function) {
613  union StateAndFlags old_state_and_flags;
614  old_state_and_flags.as_int = state_and_flags_.as_int;
615  if (old_state_and_flags.as_struct.state != kRunnable) {
616    return false;  // Fail, thread is suspended and so can't run a checkpoint.
617  }
618
619  uint32_t available_checkpoint = kMaxCheckpoints;
620  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
621    if (checkpoint_functions_[i] == nullptr) {
622      available_checkpoint = i;
623      break;
624    }
625  }
626  if (available_checkpoint == kMaxCheckpoints) {
627    // No checkpoint functions available, we can't run a checkpoint
628    return false;
629  }
630  checkpoint_functions_[available_checkpoint] = function;
631
632  // Checkpoint function installed now install flag bit.
633  // We must be runnable to request a checkpoint.
634  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
635  union StateAndFlags new_state_and_flags;
636  new_state_and_flags.as_int = old_state_and_flags.as_int;
637  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
638  int succeeded = android_atomic_acquire_cas(old_state_and_flags.as_int, new_state_and_flags.as_int,
639                                         &state_and_flags_.as_int);
640  if (UNLIKELY(succeeded != 0)) {
641    // The thread changed state before the checkpoint was installed.
642    CHECK_EQ(checkpoint_functions_[available_checkpoint], function);
643    checkpoint_functions_[available_checkpoint] = nullptr;
644  } else {
645    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
646  }
647  return succeeded == 0;
648}
649
650void Thread::FullSuspendCheck() {
651  VLOG(threads) << this << " self-suspending";
652  ATRACE_BEGIN("Full suspend check");
653  // Make thread appear suspended to other threads, release mutator_lock_.
654  TransitionFromRunnableToSuspended(kSuspended);
655  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
656  TransitionFromSuspendedToRunnable();
657  ATRACE_END();
658  VLOG(threads) << this << " self-reviving";
659}
660
661void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
662  std::string group_name;
663  int priority;
664  bool is_daemon = false;
665  Thread* self = Thread::Current();
666
667  if (self != nullptr && thread != nullptr && thread->opeer_ != nullptr) {
668    ScopedObjectAccessUnchecked soa(self);
669    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_);
670    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_);
671
672    mirror::Object* thread_group =
673        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_);
674
675    if (thread_group != nullptr) {
676      mirror::ArtField* group_name_field =
677          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
678      mirror::String* group_name_string =
679          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
680      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
681    }
682  } else {
683    priority = GetNativePriority();
684  }
685
686  std::string scheduler_group_name(GetSchedulerGroupName(tid));
687  if (scheduler_group_name.empty()) {
688    scheduler_group_name = "default";
689  }
690
691  if (thread != nullptr) {
692    os << '"' << *thread->name_ << '"';
693    if (is_daemon) {
694      os << " daemon";
695    }
696    os << " prio=" << priority
697       << " tid=" << thread->GetThreadId()
698       << " " << thread->GetState();
699    if (thread->IsStillStarting()) {
700      os << " (still starting up)";
701    }
702    os << "\n";
703  } else {
704    os << '"' << ::art::GetThreadName(tid) << '"'
705       << " prio=" << priority
706       << " (not attached)\n";
707  }
708
709  if (thread != nullptr) {
710    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
711    os << "  | group=\"" << group_name << "\""
712       << " sCount=" << thread->suspend_count_
713       << " dsCount=" << thread->debug_suspend_count_
714       << " obj=" << reinterpret_cast<void*>(thread->opeer_)
715       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
716  }
717
718  os << "  | sysTid=" << tid
719     << " nice=" << getpriority(PRIO_PROCESS, tid)
720     << " cgrp=" << scheduler_group_name;
721  if (thread != nullptr) {
722    int policy;
723    sched_param sp;
724    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__);
725    os << " sched=" << policy << "/" << sp.sched_priority
726       << " handle=" << reinterpret_cast<void*>(thread->pthread_self_);
727  }
728  os << "\n";
729
730  // Grab the scheduler stats for this thread.
731  std::string scheduler_stats;
732  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
733    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
734  } else {
735    scheduler_stats = "0 0 0";
736  }
737
738  char native_thread_state = '?';
739  int utime = 0;
740  int stime = 0;
741  int task_cpu = 0;
742  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
743
744  os << "  | state=" << native_thread_state
745     << " schedstat=( " << scheduler_stats << " )"
746     << " utm=" << utime
747     << " stm=" << stime
748     << " core=" << task_cpu
749     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
750  if (thread != nullptr) {
751    os << "  | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
752       << " stackSize=" << PrettySize(thread->stack_size_) << "\n";
753  }
754}
755
756void Thread::DumpState(std::ostream& os) const {
757  Thread::DumpState(os, this, GetTid());
758}
759
760struct StackDumpVisitor : public StackVisitor {
761  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
762      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
763      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
764        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
765  }
766
767  virtual ~StackDumpVisitor() {
768    if (frame_count == 0) {
769      os << "  (no managed stack frames)\n";
770    }
771  }
772
773  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
774    mirror::ArtMethod* m = GetMethod();
775    if (m->IsRuntimeMethod()) {
776      return true;
777    }
778    const int kMaxRepetition = 3;
779    mirror::Class* c = m->GetDeclaringClass();
780    mirror::DexCache* dex_cache = c->GetDexCache();
781    int line_number = -1;
782    if (dex_cache != nullptr) {  // be tolerant of bad input
783      const DexFile& dex_file = *dex_cache->GetDexFile();
784      line_number = dex_file.GetLineNumFromPC(m, GetDexPc());
785    }
786    if (line_number == last_line_number && last_method == m) {
787      ++repetition_count;
788    } else {
789      if (repetition_count >= kMaxRepetition) {
790        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
791      }
792      repetition_count = 0;
793      last_line_number = line_number;
794      last_method = m;
795    }
796    if (repetition_count < kMaxRepetition) {
797      os << "  at " << PrettyMethod(m, false);
798      if (m->IsNative()) {
799        os << "(Native method)";
800      } else {
801        mh.ChangeMethod(m);
802        const char* source_file(mh.GetDeclaringClassSourceFile());
803        os << "(" << (source_file != nullptr ? source_file : "unavailable")
804           << ":" << line_number << ")";
805      }
806      os << "\n";
807      if (frame_count == 0) {
808        Monitor::DescribeWait(os, thread);
809      }
810      if (can_allocate) {
811        Monitor::VisitLocks(this, DumpLockedObject, &os);
812      }
813    }
814
815    ++frame_count;
816    return true;
817  }
818
819  static void DumpLockedObject(mirror::Object* o, void* context)
820      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
821    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
822    os << "  - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n";
823  }
824
825  std::ostream& os;
826  const Thread* thread;
827  const bool can_allocate;
828  MethodHelper mh;
829  mirror::ArtMethod* last_method;
830  int last_line_number;
831  int repetition_count;
832  int frame_count;
833};
834
835static bool ShouldShowNativeStack(const Thread* thread)
836    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
837  ThreadState state = thread->GetState();
838
839  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
840  if (state > kWaiting && state < kStarting) {
841    return true;
842  }
843
844  // In an Object.wait variant or Thread.sleep? That's not interesting.
845  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
846    return false;
847  }
848
849  // In some other native method? That's interesting.
850  // We don't just check kNative because native methods will be in state kSuspended if they're
851  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
852  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
853  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
854  return current_method != nullptr && current_method->IsNative();
855}
856
857void Thread::DumpStack(std::ostream& os) const {
858  // TODO: we call this code when dying but may not have suspended the thread ourself. The
859  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
860  //       the race with the thread_suspend_count_lock_).
861  // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack.
862  bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild;
863  if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
864    // If we're currently in native code, dump that stack before dumping the managed stack.
865    if (dump_for_abort || ShouldShowNativeStack(this)) {
866      DumpKernelStack(os, GetTid(), "  kernel: ", false);
867      DumpNativeStack(os, GetTid(), "  native: ", false);
868    }
869    UniquePtr<Context> context(Context::Create());
870    StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_);
871    dumper.WalkStack();
872  } else {
873    os << "Not able to dump stack of thread that isn't suspended";
874  }
875}
876
877void Thread::ThreadExitCallback(void* arg) {
878  Thread* self = reinterpret_cast<Thread*>(arg);
879  if (self->thread_exit_check_count_ == 0) {
880    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self;
881    CHECK(is_started_);
882    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
883    self->thread_exit_check_count_ = 1;
884  } else {
885    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
886  }
887}
888
889void Thread::Startup() {
890  CHECK(!is_started_);
891  is_started_ = true;
892  {
893    // MutexLock to keep annotalysis happy.
894    //
895    // Note we use nullptr for the thread because Thread::Current can
896    // return garbage since (is_started_ == true) and
897    // Thread::pthread_key_self_ is not yet initialized.
898    // This was seen on glibc.
899    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
900    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
901                                         *Locks::thread_suspend_count_lock_);
902  }
903
904  // Allocate a TLS slot.
905  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
906
907  // Double-check the TLS slot allocation.
908  if (pthread_getspecific(pthread_key_self_) != nullptr) {
909    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
910  }
911}
912
913void Thread::FinishStartup() {
914  Runtime* runtime = Runtime::Current();
915  CHECK(runtime->IsStarted());
916
917  // Finish attaching the main thread.
918  ScopedObjectAccess soa(Thread::Current());
919  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
920
921  Runtime::Current()->GetClassLinker()->RunRootClinits();
922}
923
924void Thread::Shutdown() {
925  CHECK(is_started_);
926  is_started_ = false;
927  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
928  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
929  if (resume_cond_ != nullptr) {
930    delete resume_cond_;
931    resume_cond_ = nullptr;
932  }
933}
934
935Thread::Thread(bool daemon)
936    : suspend_count_(0),
937      card_table_(nullptr),
938      exception_(nullptr),
939      stack_end_(nullptr),
940      managed_stack_(),
941      jni_env_(nullptr),
942      self_(nullptr),
943      opeer_(nullptr),
944      jpeer_(nullptr),
945      stack_begin_(nullptr),
946      stack_size_(0),
947      thin_lock_thread_id_(0),
948      stack_trace_sample_(nullptr),
949      trace_clock_base_(0),
950      tid_(0),
951      wait_mutex_(new Mutex("a thread wait mutex")),
952      wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)),
953      wait_monitor_(nullptr),
954      interrupted_(false),
955      wait_next_(nullptr),
956      monitor_enter_object_(nullptr),
957      top_sirt_(nullptr),
958      runtime_(nullptr),
959      class_loader_override_(nullptr),
960      long_jump_context_(nullptr),
961      throwing_OutOfMemoryError_(false),
962      debug_suspend_count_(0),
963      debug_invoke_req_(new DebugInvokeReq),
964      single_step_control_(new SingleStepControl),
965      deoptimization_shadow_frame_(nullptr),
966      instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>),
967      name_(new std::string(kThreadNameDuringStartup)),
968      daemon_(daemon),
969      pthread_self_(0),
970      no_thread_suspension_(0),
971      last_no_thread_suspension_cause_(nullptr),
972      thread_exit_check_count_(0),
973      thread_local_start_(nullptr),
974      thread_local_pos_(nullptr),
975      thread_local_end_(nullptr),
976      thread_local_objects_(0),
977      thread_local_alloc_stack_top_(nullptr),
978      thread_local_alloc_stack_end_(nullptr) {
979  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
980  state_and_flags_.as_struct.flags = 0;
981  state_and_flags_.as_struct.state = kNative;
982  memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
983  memset(rosalloc_runs_, 0, sizeof(rosalloc_runs_));
984  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
985    checkpoint_functions_[i] = nullptr;
986  }
987}
988
989bool Thread::IsStillStarting() const {
990  // You might think you can check whether the state is kStarting, but for much of thread startup,
991  // the thread is in kNative; it might also be in kVmWait.
992  // You might think you can check whether the peer is nullptr, but the peer is actually created and
993  // assigned fairly early on, and needs to be.
994  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
995  // this thread _ever_ entered kRunnable".
996  return (jpeer_ == nullptr && opeer_ == nullptr) || (*name_ == kThreadNameDuringStartup);
997}
998
999void Thread::AssertNoPendingException() const {
1000  if (UNLIKELY(IsExceptionPending())) {
1001    ScopedObjectAccess soa(Thread::Current());
1002    mirror::Throwable* exception = GetException(nullptr);
1003    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1004  }
1005}
1006
1007static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1008                               RootType /*root_type*/)
1009    NO_THREAD_SAFETY_ANALYSIS {
1010  Thread* self = reinterpret_cast<Thread*>(arg);
1011  mirror::Object* entered_monitor = *object;
1012  if (self->HoldsLock(entered_monitor)) {
1013    LOG(WARNING) << "Calling MonitorExit on object "
1014                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1015                 << " left locked by native thread "
1016                 << *Thread::Current() << " which is detaching";
1017    entered_monitor->MonitorExit(self);
1018  }
1019}
1020
1021void Thread::Destroy() {
1022  Thread* self = this;
1023  DCHECK_EQ(self, Thread::Current());
1024
1025  if (opeer_ != nullptr) {
1026    ScopedObjectAccess soa(self);
1027    // We may need to call user-supplied managed code, do this before final clean-up.
1028    HandleUncaughtExceptions(soa);
1029    RemoveFromThreadGroup(soa);
1030
1031    // this.nativePeer = 0;
1032    if (Runtime::Current()->IsActiveTransaction()) {
1033      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetLong<true>(opeer_, 0);
1034    } else {
1035      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetLong<false>(opeer_, 0);
1036    }
1037    Dbg::PostThreadDeath(self);
1038
1039    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1040    // who is waiting.
1041    mirror::Object* lock =
1042        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_);
1043    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1044    if (lock != nullptr) {
1045      SirtRef<mirror::Object> sirt_obj(self, lock);
1046      ObjectLock<mirror::Object> locker(self, &sirt_obj);
1047      locker.Notify();
1048    }
1049  }
1050
1051  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1052  if (jni_env_ != nullptr) {
1053    jni_env_->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1054  }
1055}
1056
1057Thread::~Thread() {
1058  if (jni_env_ != nullptr && jpeer_ != nullptr) {
1059    // If pthread_create fails we don't have a jni env here.
1060    jni_env_->DeleteGlobalRef(jpeer_);
1061    jpeer_ = nullptr;
1062  }
1063  opeer_ = nullptr;
1064
1065  bool initialized = (jni_env_ != nullptr);  // Did Thread::Init run?
1066  if (initialized) {
1067    delete jni_env_;
1068    jni_env_ = nullptr;
1069  }
1070  CHECK_NE(GetState(), kRunnable);
1071  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1072  CHECK(checkpoint_functions_[0] == nullptr);
1073  CHECK(checkpoint_functions_[1] == nullptr);
1074  CHECK(checkpoint_functions_[2] == nullptr);
1075
1076  // We may be deleting a still born thread.
1077  SetStateUnsafe(kTerminated);
1078
1079  delete wait_cond_;
1080  delete wait_mutex_;
1081
1082  if (long_jump_context_ != nullptr) {
1083    delete long_jump_context_;
1084  }
1085
1086  if (initialized) {
1087    CleanupCpu();
1088  }
1089
1090  delete debug_invoke_req_;
1091  delete single_step_control_;
1092  delete instrumentation_stack_;
1093  delete name_;
1094  delete stack_trace_sample_;
1095
1096  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1097
1098  TearDownAlternateSignalStack();
1099}
1100
1101void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1102  if (!IsExceptionPending()) {
1103    return;
1104  }
1105  ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_));
1106  ScopedThreadStateChange tsc(this, kNative);
1107
1108  // Get and clear the exception.
1109  ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred());
1110  jni_env_->ExceptionClear();
1111
1112  // If the thread has its own handler, use that.
1113  ScopedLocalRef<jobject> handler(jni_env_,
1114                                  jni_env_->GetObjectField(peer.get(),
1115                                                           WellKnownClasses::java_lang_Thread_uncaughtHandler));
1116  if (handler.get() == nullptr) {
1117    // Otherwise use the thread group's default handler.
1118    handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group));
1119  }
1120
1121  // Call the handler.
1122  jni_env_->CallVoidMethod(handler.get(),
1123                           WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1124                           peer.get(), exception.get());
1125
1126  // If the handler threw, clear that exception too.
1127  jni_env_->ExceptionClear();
1128}
1129
1130void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1131  // this.group.removeThread(this);
1132  // group can be null if we're in the compiler or a test.
1133  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_);
1134  if (ogroup != nullptr) {
1135    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1136    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_));
1137    ScopedThreadStateChange tsc(soa.Self(), kNative);
1138    jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread,
1139                             peer.get());
1140  }
1141}
1142
1143size_t Thread::NumSirtReferences() {
1144  size_t count = 0;
1145  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1146    count += cur->NumberOfReferences();
1147  }
1148  return count;
1149}
1150
1151bool Thread::SirtContains(jobject obj) const {
1152  StackReference<mirror::Object>* sirt_entry =
1153      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1154  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1155    if (cur->Contains(sirt_entry)) {
1156      return true;
1157    }
1158  }
1159  // JNI code invoked from portable code uses shadow frames rather than the SIRT.
1160  return managed_stack_.ShadowFramesContain(sirt_entry);
1161}
1162
1163void Thread::SirtVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1164  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1165    size_t num_refs = cur->NumberOfReferences();
1166    for (size_t j = 0; j < num_refs; ++j) {
1167      mirror::Object* object = cur->GetReference(j);
1168      if (object != nullptr) {
1169        mirror::Object* old_obj = object;
1170        visitor(&object, arg, thread_id, kRootNativeStack);
1171        if (old_obj != object) {
1172          cur->SetReference(j, object);
1173        }
1174      }
1175    }
1176  }
1177}
1178
1179mirror::Object* Thread::DecodeJObject(jobject obj) const {
1180  Locks::mutator_lock_->AssertSharedHeld(this);
1181  if (obj == nullptr) {
1182    return nullptr;
1183  }
1184  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1185  IndirectRefKind kind = GetIndirectRefKind(ref);
1186  mirror::Object* result;
1187  // The "kinds" below are sorted by the frequency we expect to encounter them.
1188  if (kind == kLocal) {
1189    IndirectReferenceTable& locals = jni_env_->locals;
1190    result = const_cast<mirror::Object*>(locals.Get(ref));
1191  } else if (kind == kSirtOrInvalid) {
1192    // TODO: make stack indirect reference table lookup more efficient.
1193    // Check if this is a local reference in the SIRT.
1194    if (LIKELY(SirtContains(obj))) {
1195      // Read from SIRT.
1196      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1197    } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
1198      // Assume an invalid local reference is actually a direct pointer.
1199      result = reinterpret_cast<mirror::Object*>(obj);
1200    } else {
1201      result = kInvalidIndirectRefObject;
1202    }
1203  } else if (kind == kGlobal) {
1204    JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1205    IndirectReferenceTable& globals = vm->globals;
1206    ReaderMutexLock mu(const_cast<Thread*>(this), vm->globals_lock);
1207    result = const_cast<mirror::Object*>(globals.Get(ref));
1208  } else {
1209    DCHECK_EQ(kind, kWeakGlobal);
1210    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1211    if (result == kClearedJniWeakGlobal) {
1212      // This is a special case where it's okay to return nullptr.
1213      return nullptr;
1214    }
1215  }
1216
1217  if (UNLIKELY(result == nullptr)) {
1218    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1219  } else {
1220    if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) {
1221      Runtime::Current()->GetHeap()->VerifyObject(result);
1222    }
1223  }
1224  return result;
1225}
1226
1227// Implements java.lang.Thread.interrupted.
1228bool Thread::Interrupted() {
1229  MutexLock mu(Thread::Current(), *wait_mutex_);
1230  bool interrupted = interrupted_;
1231  interrupted_ = false;
1232  return interrupted;
1233}
1234
1235// Implements java.lang.Thread.isInterrupted.
1236bool Thread::IsInterrupted() {
1237  MutexLock mu(Thread::Current(), *wait_mutex_);
1238  return interrupted_;
1239}
1240
1241void Thread::Interrupt() {
1242  Thread* self = Thread::Current();
1243  MutexLock mu(self, *wait_mutex_);
1244  if (interrupted_) {
1245    return;
1246  }
1247  interrupted_ = true;
1248  NotifyLocked(self);
1249}
1250
1251void Thread::Notify() {
1252  Thread* self = Thread::Current();
1253  MutexLock mu(self, *wait_mutex_);
1254  NotifyLocked(self);
1255}
1256
1257void Thread::NotifyLocked(Thread* self) {
1258  if (wait_monitor_ != nullptr) {
1259    wait_cond_->Signal(self);
1260  }
1261}
1262
1263class CountStackDepthVisitor : public StackVisitor {
1264 public:
1265  explicit CountStackDepthVisitor(Thread* thread)
1266      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1267      : StackVisitor(thread, nullptr),
1268        depth_(0), skip_depth_(0), skipping_(true) {}
1269
1270  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1271    // We want to skip frames up to and including the exception's constructor.
1272    // Note we also skip the frame if it doesn't have a method (namely the callee
1273    // save frame)
1274    mirror::ArtMethod* m = GetMethod();
1275    if (skipping_ && !m->IsRuntimeMethod() &&
1276        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1277      skipping_ = false;
1278    }
1279    if (!skipping_) {
1280      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1281        ++depth_;
1282      }
1283    } else {
1284      ++skip_depth_;
1285    }
1286    return true;
1287  }
1288
1289  int GetDepth() const {
1290    return depth_;
1291  }
1292
1293  int GetSkipDepth() const {
1294    return skip_depth_;
1295  }
1296
1297 private:
1298  uint32_t depth_;
1299  uint32_t skip_depth_;
1300  bool skipping_;
1301};
1302
1303class BuildInternalStackTraceVisitor : public StackVisitor {
1304 public:
1305  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1306      : StackVisitor(thread, nullptr), self_(self),
1307        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1308
1309  bool Init(int depth)
1310      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1311    // Allocate method trace with an extra slot that will hold the PC trace
1312    SirtRef<mirror::ObjectArray<mirror::Object> >
1313        method_trace(self_,
1314                     Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
1315                                                                                            depth + 1));
1316    if (method_trace.get() == nullptr) {
1317      return false;
1318    }
1319    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1320    if (dex_pc_trace == nullptr) {
1321      return false;
1322    }
1323    // Save PC trace in last element of method trace, also places it into the
1324    // object graph.
1325    // We are called from native: use non-transactional mode.
1326    method_trace->Set<false>(depth, dex_pc_trace);
1327    // Set the Object*s and assert that no thread suspension is now possible.
1328    const char* last_no_suspend_cause =
1329        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1330    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1331    method_trace_ = method_trace.get();
1332    dex_pc_trace_ = dex_pc_trace;
1333    return true;
1334  }
1335
1336  virtual ~BuildInternalStackTraceVisitor() {
1337    if (method_trace_ != nullptr) {
1338      self_->EndAssertNoThreadSuspension(nullptr);
1339    }
1340  }
1341
1342  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1343    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1344      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1345    }
1346    if (skip_depth_ > 0) {
1347      skip_depth_--;
1348      return true;
1349    }
1350    mirror::ArtMethod* m = GetMethod();
1351    if (m->IsRuntimeMethod()) {
1352      return true;  // Ignore runtime frames (in particular callee save).
1353    }
1354    // TODO dedup this code.
1355    if (Runtime::Current()->IsActiveTransaction()) {
1356      method_trace_->Set<true>(count_, m);
1357      dex_pc_trace_->Set<true>(count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1358    } else {
1359      method_trace_->Set<false>(count_, m);
1360      dex_pc_trace_->Set<false>(count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1361    }
1362    ++count_;
1363    return true;
1364  }
1365
1366  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1367    return method_trace_;
1368  }
1369
1370 private:
1371  Thread* const self_;
1372  // How many more frames to skip.
1373  int32_t skip_depth_;
1374  // Current position down stack trace.
1375  uint32_t count_;
1376  // Array of dex PC values.
1377  mirror::IntArray* dex_pc_trace_;
1378  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1379  mirror::ObjectArray<mirror::Object>* method_trace_;
1380};
1381
1382jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
1383  // Compute depth of stack
1384  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1385  count_visitor.WalkStack();
1386  int32_t depth = count_visitor.GetDepth();
1387  int32_t skip_depth = count_visitor.GetSkipDepth();
1388
1389  // Build internal stack trace.
1390  BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this),
1391                                                     skip_depth);
1392  if (!build_trace_visitor.Init(depth)) {
1393    return nullptr;  // Allocation failed.
1394  }
1395  build_trace_visitor.WalkStack();
1396  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1397  if (kIsDebugBuild) {
1398    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1399      CHECK(trace->Get(i) != nullptr);
1400    }
1401  }
1402  return soa.AddLocalReference<jobjectArray>(trace);
1403}
1404
1405jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
1406    jobjectArray output_array, int* stack_depth) {
1407  // Transition into runnable state to work on Object*/Array*
1408  ScopedObjectAccess soa(env);
1409  // Decode the internal stack trace into the depth, method trace and PC trace
1410  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1411
1412  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1413
1414  jobjectArray result;
1415
1416  if (output_array != nullptr) {
1417    // Reuse the array we were given.
1418    result = output_array;
1419    // ...adjusting the number of frames we'll write to not exceed the array length.
1420    const int32_t traces_length =
1421        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1422    depth = std::min(depth, traces_length);
1423  } else {
1424    // Create java_trace array and place in local reference table
1425    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1426        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1427    if (java_traces == nullptr) {
1428      return nullptr;
1429    }
1430    result = soa.AddLocalReference<jobjectArray>(java_traces);
1431  }
1432
1433  if (stack_depth != nullptr) {
1434    *stack_depth = depth;
1435  }
1436
1437  for (int32_t i = 0; i < depth; ++i) {
1438    mirror::ObjectArray<mirror::Object>* method_trace =
1439          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1440    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1441    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1442    MethodHelper mh(method);
1443    int32_t line_number;
1444    SirtRef<mirror::String> class_name_object(soa.Self(), nullptr);
1445    SirtRef<mirror::String> source_name_object(soa.Self(), nullptr);
1446    if (method->IsProxyMethod()) {
1447      line_number = -1;
1448      class_name_object.reset(method->GetDeclaringClass()->GetName());
1449      // source_name_object intentionally left null for proxy methods
1450    } else {
1451      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1452      uint32_t dex_pc = pc_trace->Get(i);
1453      line_number = mh.GetLineNumFromDexPC(dex_pc);
1454      // Allocate element, potentially triggering GC
1455      // TODO: reuse class_name_object via Class::name_?
1456      const char* descriptor = mh.GetDeclaringClassDescriptor();
1457      CHECK(descriptor != nullptr);
1458      std::string class_name(PrettyDescriptor(descriptor));
1459      class_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1460      if (class_name_object.get() == nullptr) {
1461        return nullptr;
1462      }
1463      const char* source_file = mh.GetDeclaringClassSourceFile();
1464      if (source_file != nullptr) {
1465        source_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1466        if (source_name_object.get() == nullptr) {
1467          return nullptr;
1468        }
1469      }
1470    }
1471    const char* method_name = mh.GetName();
1472    CHECK(method_name != nullptr);
1473    SirtRef<mirror::String> method_name_object(soa.Self(),
1474                                               mirror::String::AllocFromModifiedUtf8(soa.Self(),
1475                                                                                     method_name));
1476    if (method_name_object.get() == nullptr) {
1477      return nullptr;
1478    }
1479    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1480        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1481    if (obj == nullptr) {
1482      return nullptr;
1483    }
1484    // We are called from native: use non-transactional mode.
1485    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1486  }
1487  return result;
1488}
1489
1490void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1491                                const char* exception_class_descriptor, const char* fmt, ...) {
1492  va_list args;
1493  va_start(args, fmt);
1494  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1495                     fmt, args);
1496  va_end(args);
1497}
1498
1499void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1500                                const char* exception_class_descriptor,
1501                                const char* fmt, va_list ap) {
1502  std::string msg;
1503  StringAppendV(&msg, fmt, ap);
1504  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1505}
1506
1507void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1508                               const char* msg) {
1509  AssertNoPendingException();  // Callers should either clear or call ThrowNewWrappedException.
1510  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1511}
1512
1513void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1514                                      const char* exception_class_descriptor,
1515                                      const char* msg) {
1516  DCHECK_EQ(this, Thread::Current());
1517  // Ensure we don't forget arguments over object allocation.
1518  SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
1519  SirtRef<mirror::ArtMethod> saved_throw_method(this, throw_location.GetMethod());
1520  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1521  SirtRef<mirror::Throwable> cause(this, GetException(nullptr));
1522  ClearException();
1523  Runtime* runtime = Runtime::Current();
1524
1525  mirror::ClassLoader* cl = nullptr;
1526  if (saved_throw_method.get() != nullptr) {
1527    cl = saved_throw_method.get()->GetDeclaringClass()->GetClassLoader();
1528  }
1529  SirtRef<mirror::ClassLoader> class_loader(this, cl);
1530  SirtRef<mirror::Class>
1531      exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor,
1532                                                                 class_loader));
1533  if (UNLIKELY(exception_class.get() == nullptr)) {
1534    CHECK(IsExceptionPending());
1535    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1536    return;
1537  }
1538
1539  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1540    DCHECK(IsExceptionPending());
1541    return;
1542  }
1543  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1544  SirtRef<mirror::Throwable> exception(this,
1545                                down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
1546
1547  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1548  if (exception.get() == nullptr) {
1549    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1550                                         throw_location.GetDexPc());
1551    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1552    return;
1553  }
1554
1555  // Choose an appropriate constructor and set up the arguments.
1556  const char* signature;
1557  const char* shorty;
1558  SirtRef<mirror::String> msg_string(this, nullptr);
1559  if (msg != nullptr) {
1560    // Ensure we remember this and the method over the String allocation.
1561    msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg));
1562    if (UNLIKELY(msg_string.get() == nullptr)) {
1563      CHECK(IsExceptionPending());  // OOME.
1564      return;
1565    }
1566    if (cause.get() == nullptr) {
1567      shorty = "VL";
1568      signature = "(Ljava/lang/String;)V";
1569    } else {
1570      shorty = "VLL";
1571      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1572    }
1573  } else {
1574    if (cause.get() == nullptr) {
1575      shorty = "V";
1576      signature = "()V";
1577    } else {
1578      shorty = "VL";
1579      signature = "(Ljava/lang/Throwable;)V";
1580    }
1581  }
1582  mirror::ArtMethod* exception_init_method =
1583      exception_class->FindDeclaredDirectMethod("<init>", signature);
1584
1585  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1586      << PrettyDescriptor(exception_class_descriptor);
1587
1588  if (UNLIKELY(!runtime->IsStarted())) {
1589    // Something is trying to throw an exception without a started runtime, which is the common
1590    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1591    // the exception fields directly.
1592    if (msg != nullptr) {
1593      exception->SetDetailMessage(msg_string.get());
1594    }
1595    if (cause.get() != nullptr) {
1596      exception->SetCause(cause.get());
1597    }
1598    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1599                                         throw_location.GetDexPc());
1600    SetException(gc_safe_throw_location, exception.get());
1601  } else {
1602    ArgArray args(shorty, strlen(shorty));
1603    args.Append(exception.get());
1604    if (msg != nullptr) {
1605      args.Append(msg_string.get());
1606    }
1607    if (cause.get() != nullptr) {
1608      args.Append(cause.get());
1609    }
1610    JValue result;
1611    exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, shorty);
1612    if (LIKELY(!IsExceptionPending())) {
1613      ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1614                                           throw_location.GetDexPc());
1615      SetException(gc_safe_throw_location, exception.get());
1616    }
1617  }
1618}
1619
1620void Thread::ThrowOutOfMemoryError(const char* msg) {
1621  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1622      msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
1623  ThrowLocation throw_location = GetCurrentLocationForThrow();
1624  if (!throwing_OutOfMemoryError_) {
1625    throwing_OutOfMemoryError_ = true;
1626    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1627    throwing_OutOfMemoryError_ = false;
1628  } else {
1629    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1630    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1631  }
1632}
1633
1634Thread* Thread::CurrentFromGdb() {
1635  return Thread::Current();
1636}
1637
1638void Thread::DumpFromGdb() const {
1639  std::ostringstream ss;
1640  Dump(ss);
1641  std::string str(ss.str());
1642  // log to stderr for debugging command line processes
1643  std::cerr << str;
1644#ifdef HAVE_ANDROID_OS
1645  // log to logcat for debugging frameworks processes
1646  LOG(INFO) << str;
1647#endif
1648}
1649
1650struct EntryPointInfo {
1651  uint32_t offset;
1652  const char* name;
1653};
1654#define INTERPRETER_ENTRY_POINT_INFO(x) { INTERPRETER_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1655#define JNI_ENTRY_POINT_INFO(x)         { JNI_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1656#define PORTABLE_ENTRY_POINT_INFO(x)    { PORTABLE_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1657#define QUICK_ENTRY_POINT_INFO(x)       { QUICK_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1658static const EntryPointInfo gThreadEntryPointInfo[] = {
1659  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge),
1660  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge),
1661  JNI_ENTRY_POINT_INFO(pDlsymLookup),
1662  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline),
1663  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline),
1664  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge),
1665  QUICK_ENTRY_POINT_INFO(pAllocArray),
1666  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved),
1667  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck),
1668  QUICK_ENTRY_POINT_INFO(pAllocObject),
1669  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved),
1670  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized),
1671  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck),
1672  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray),
1673  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck),
1674  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial),
1675  QUICK_ENTRY_POINT_INFO(pCheckCast),
1676  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage),
1677  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess),
1678  QUICK_ENTRY_POINT_INFO(pInitializeType),
1679  QUICK_ENTRY_POINT_INFO(pResolveString),
1680  QUICK_ENTRY_POINT_INFO(pSet32Instance),
1681  QUICK_ENTRY_POINT_INFO(pSet32Static),
1682  QUICK_ENTRY_POINT_INFO(pSet64Instance),
1683  QUICK_ENTRY_POINT_INFO(pSet64Static),
1684  QUICK_ENTRY_POINT_INFO(pSetObjInstance),
1685  QUICK_ENTRY_POINT_INFO(pSetObjStatic),
1686  QUICK_ENTRY_POINT_INFO(pGet32Instance),
1687  QUICK_ENTRY_POINT_INFO(pGet32Static),
1688  QUICK_ENTRY_POINT_INFO(pGet64Instance),
1689  QUICK_ENTRY_POINT_INFO(pGet64Static),
1690  QUICK_ENTRY_POINT_INFO(pGetObjInstance),
1691  QUICK_ENTRY_POINT_INFO(pGetObjStatic),
1692  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck),
1693  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck),
1694  QUICK_ENTRY_POINT_INFO(pAputObject),
1695  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData),
1696  QUICK_ENTRY_POINT_INFO(pJniMethodStart),
1697  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized),
1698  QUICK_ENTRY_POINT_INFO(pJniMethodEnd),
1699  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized),
1700  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference),
1701  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized),
1702  QUICK_ENTRY_POINT_INFO(pLockObject),
1703  QUICK_ENTRY_POINT_INFO(pUnlockObject),
1704  QUICK_ENTRY_POINT_INFO(pCmpgDouble),
1705  QUICK_ENTRY_POINT_INFO(pCmpgFloat),
1706  QUICK_ENTRY_POINT_INFO(pCmplDouble),
1707  QUICK_ENTRY_POINT_INFO(pCmplFloat),
1708  QUICK_ENTRY_POINT_INFO(pFmod),
1709  QUICK_ENTRY_POINT_INFO(pSqrt),
1710  QUICK_ENTRY_POINT_INFO(pL2d),
1711  QUICK_ENTRY_POINT_INFO(pFmodf),
1712  QUICK_ENTRY_POINT_INFO(pL2f),
1713  QUICK_ENTRY_POINT_INFO(pD2iz),
1714  QUICK_ENTRY_POINT_INFO(pF2iz),
1715  QUICK_ENTRY_POINT_INFO(pIdivmod),
1716  QUICK_ENTRY_POINT_INFO(pD2l),
1717  QUICK_ENTRY_POINT_INFO(pF2l),
1718  QUICK_ENTRY_POINT_INFO(pLdiv),
1719  QUICK_ENTRY_POINT_INFO(pLmod),
1720  QUICK_ENTRY_POINT_INFO(pLmul),
1721  QUICK_ENTRY_POINT_INFO(pShlLong),
1722  QUICK_ENTRY_POINT_INFO(pShrLong),
1723  QUICK_ENTRY_POINT_INFO(pUshrLong),
1724  QUICK_ENTRY_POINT_INFO(pIndexOf),
1725  QUICK_ENTRY_POINT_INFO(pMemcmp16),
1726  QUICK_ENTRY_POINT_INFO(pStringCompareTo),
1727  QUICK_ENTRY_POINT_INFO(pMemcpy),
1728  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline),
1729  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline),
1730  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge),
1731  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
1732  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
1733  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
1734  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
1735  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
1736  QUICK_ENTRY_POINT_INFO(pCheckSuspend),
1737  QUICK_ENTRY_POINT_INFO(pTestSuspend),
1738  QUICK_ENTRY_POINT_INFO(pDeliverException),
1739  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds),
1740  QUICK_ENTRY_POINT_INFO(pThrowDivZero),
1741  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod),
1742  QUICK_ENTRY_POINT_INFO(pThrowNullPointer),
1743  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow),
1744};
1745#undef QUICK_ENTRY_POINT_INFO
1746
1747void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
1748  CHECK_EQ(size_of_pointers, 4U);  // TODO: support 64-bit targets.
1749
1750#define DO_THREAD_OFFSET(x) \
1751    if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \
1752      os << # x; \
1753      return; \
1754    }
1755  DO_THREAD_OFFSET(state_and_flags_);
1756  DO_THREAD_OFFSET(card_table_);
1757  DO_THREAD_OFFSET(exception_);
1758  DO_THREAD_OFFSET(opeer_);
1759  DO_THREAD_OFFSET(jni_env_);
1760  DO_THREAD_OFFSET(self_);
1761  DO_THREAD_OFFSET(stack_end_);
1762  DO_THREAD_OFFSET(suspend_count_);
1763  DO_THREAD_OFFSET(thin_lock_thread_id_);
1764  // DO_THREAD_OFFSET(top_of_managed_stack_);
1765  // DO_THREAD_OFFSET(top_of_managed_stack_pc_);
1766  DO_THREAD_OFFSET(top_sirt_);
1767#undef DO_THREAD_OFFSET
1768
1769  size_t entry_point_count = arraysize(gThreadEntryPointInfo);
1770  CHECK_EQ(entry_point_count * size_of_pointers,
1771           sizeof(InterpreterEntryPoints) + sizeof(JniEntryPoints) + sizeof(PortableEntryPoints) +
1772           sizeof(QuickEntryPoints));
1773  uint32_t expected_offset = OFFSETOF_MEMBER(Thread, interpreter_entrypoints_);
1774  for (size_t i = 0; i < entry_point_count; ++i) {
1775    CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name;
1776    expected_offset += size_of_pointers;
1777    if (gThreadEntryPointInfo[i].offset == offset) {
1778      os << gThreadEntryPointInfo[i].name;
1779      return;
1780    }
1781  }
1782  os << offset;
1783}
1784
1785void Thread::QuickDeliverException() {
1786  // Get exception from thread.
1787  ThrowLocation throw_location;
1788  mirror::Throwable* exception = GetException(&throw_location);
1789  CHECK(exception != nullptr);
1790  // Don't leave exception visible while we try to find the handler, which may cause class
1791  // resolution.
1792  ClearException();
1793  bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1));
1794  if (kDebugExceptionDelivery) {
1795    if (!is_deoptimization) {
1796      mirror::String* msg = exception->GetDetailMessage();
1797      std::string str_msg(msg != nullptr ? msg->ToModifiedUtf8() : "");
1798      DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1799                << ": " << str_msg << "\n");
1800    } else {
1801      DumpStack(LOG(INFO) << "Deoptimizing: ");
1802    }
1803  }
1804  CatchFinder catch_finder(this, throw_location, exception, is_deoptimization);
1805  catch_finder.FindCatch();
1806  catch_finder.UpdateInstrumentationStack();
1807  catch_finder.DoLongJump();
1808  LOG(FATAL) << "UNREACHABLE";
1809}
1810
1811Context* Thread::GetLongJumpContext() {
1812  Context* result = long_jump_context_;
1813  if (result == nullptr) {
1814    result = Context::Create();
1815  } else {
1816    long_jump_context_ = nullptr;  // Avoid context being shared.
1817    result->Reset();
1818  }
1819  return result;
1820}
1821
1822struct CurrentMethodVisitor : public StackVisitor {
1823  CurrentMethodVisitor(Thread* thread, Context* context)
1824      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1825      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0) {}
1826  virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1827    mirror::ArtMethod* m = GetMethod();
1828    if (m->IsRuntimeMethod()) {
1829      // Continue if this is a runtime method.
1830      return true;
1831    }
1832    if (context_ != nullptr) {
1833      this_object_ = GetThisObject();
1834    }
1835    method_ = m;
1836    dex_pc_ = GetDexPc();
1837    return false;
1838  }
1839  mirror::Object* this_object_;
1840  mirror::ArtMethod* method_;
1841  uint32_t dex_pc_;
1842};
1843
1844mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1845  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr);
1846  visitor.WalkStack(false);
1847  if (dex_pc != nullptr) {
1848    *dex_pc = visitor.dex_pc_;
1849  }
1850  return visitor.method_;
1851}
1852
1853ThrowLocation Thread::GetCurrentLocationForThrow() {
1854  Context* context = GetLongJumpContext();
1855  CurrentMethodVisitor visitor(this, context);
1856  visitor.WalkStack(false);
1857  ReleaseLongJumpContext(context);
1858  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1859}
1860
1861bool Thread::HoldsLock(mirror::Object* object) {
1862  if (object == nullptr) {
1863    return false;
1864  }
1865  return object->GetLockOwnerThreadId() == thin_lock_thread_id_;
1866}
1867
1868// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1869template <typename RootVisitor>
1870class ReferenceMapVisitor : public StackVisitor {
1871 public:
1872  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1873      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1874      : StackVisitor(thread, context), visitor_(visitor) {}
1875
1876  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1877    if (false) {
1878      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1879          << StringPrintf("@ PC:%04x", GetDexPc());
1880    }
1881    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1882    if (shadow_frame != nullptr) {
1883      mirror::ArtMethod* m = shadow_frame->GetMethod();
1884      size_t num_regs = shadow_frame->NumberOfVRegs();
1885      if (m->IsNative() || shadow_frame->HasReferenceArray()) {
1886        // SIRT for JNI or References for interpreter.
1887        for (size_t reg = 0; reg < num_regs; ++reg) {
1888          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1889          if (ref != nullptr) {
1890            mirror::Object* new_ref = ref;
1891            visitor_(&new_ref, reg, this);
1892            if (new_ref != ref) {
1893             shadow_frame->SetVRegReference(reg, new_ref);
1894            }
1895          }
1896        }
1897      } else {
1898        // Java method.
1899        // Portable path use DexGcMap and store in Method.native_gc_map_.
1900        const uint8_t* gc_map = m->GetNativeGcMap();
1901        CHECK(gc_map != nullptr) << PrettyMethod(m);
1902        verifier::DexPcToReferenceMap dex_gc_map(gc_map);
1903        uint32_t dex_pc = GetDexPc();
1904        const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
1905        DCHECK(reg_bitmap != nullptr);
1906        num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
1907        for (size_t reg = 0; reg < num_regs; ++reg) {
1908          if (TestBitmap(reg, reg_bitmap)) {
1909            mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1910            if (ref != nullptr) {
1911              mirror::Object* new_ref = ref;
1912              visitor_(&new_ref, reg, this);
1913              if (new_ref != ref) {
1914               shadow_frame->SetVRegReference(reg, new_ref);
1915              }
1916            }
1917          }
1918        }
1919      }
1920    } else {
1921      mirror::ArtMethod* m = GetMethod();
1922      // Process register map (which native and runtime methods don't have)
1923      if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
1924        const uint8_t* native_gc_map = m->GetNativeGcMap();
1925        CHECK(native_gc_map != nullptr) << PrettyMethod(m);
1926        mh_.ChangeMethod(m);
1927        const DexFile::CodeItem* code_item = mh_.GetCodeItem();
1928        DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
1929        NativePcOffsetToReferenceMap map(native_gc_map);
1930        size_t num_regs = std::min(map.RegWidth() * 8,
1931                                   static_cast<size_t>(code_item->registers_size_));
1932        if (num_regs > 0) {
1933          const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
1934          DCHECK(reg_bitmap != nullptr);
1935          const VmapTable vmap_table(m->GetVmapTable());
1936          uint32_t core_spills = m->GetCoreSpillMask();
1937          uint32_t fp_spills = m->GetFpSpillMask();
1938          size_t frame_size = m->GetFrameSizeInBytes();
1939          // For all dex registers in the bitmap
1940          mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
1941          DCHECK(cur_quick_frame != nullptr);
1942          for (size_t reg = 0; reg < num_regs; ++reg) {
1943            // Does this register hold a reference?
1944            if (TestBitmap(reg, reg_bitmap)) {
1945              uint32_t vmap_offset;
1946              if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
1947                int vmap_reg = vmap_table.ComputeRegister(core_spills, vmap_offset, kReferenceVReg);
1948                // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
1949                mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
1950                if (*ref_addr != nullptr) {
1951                  visitor_(ref_addr, reg, this);
1952                }
1953              } else {
1954                StackReference<mirror::Object>* ref_addr =
1955                    reinterpret_cast<StackReference<mirror::Object>*>(
1956                        GetVRegAddr(cur_quick_frame, code_item, core_spills, fp_spills, frame_size,
1957                                    reg));
1958                mirror::Object* ref = ref_addr->AsMirrorPtr();
1959                if (ref != nullptr) {
1960                  mirror::Object* new_ref = ref;
1961                  visitor_(&new_ref, reg, this);
1962                  if (ref != new_ref) {
1963                    ref_addr->Assign(new_ref);
1964                  }
1965                }
1966              }
1967            }
1968          }
1969        }
1970      }
1971    }
1972    return true;
1973  }
1974
1975 private:
1976  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
1977    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
1978  }
1979
1980  // Visitor for when we visit a root.
1981  const RootVisitor& visitor_;
1982
1983  // A method helper we keep around to avoid dex file/cache re-computations.
1984  MethodHelper mh_;
1985};
1986
1987class RootCallbackVisitor {
1988 public:
1989  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
1990     : callback_(callback), arg_(arg), tid_(tid) {}
1991
1992  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
1993    callback_(obj, arg_, tid_, kRootJavaFrame);
1994  }
1995
1996 private:
1997  RootCallback* const callback_;
1998  void* const arg_;
1999  const uint32_t tid_;
2000};
2001
2002void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2003  if (kIsDebugBuild) {
2004    Runtime::Current()->GetHeap()->VerifyObject(class_loader_override);
2005  }
2006  class_loader_override_ = class_loader_override;
2007}
2008
2009void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2010  uint32_t thread_id = GetThreadId();
2011  if (opeer_ != nullptr) {
2012    visitor(&opeer_, arg, thread_id, kRootThreadObject);
2013  }
2014  if (exception_ != nullptr) {
2015    visitor(reinterpret_cast<mirror::Object**>(&exception_), arg, thread_id, kRootNativeStack);
2016  }
2017  throw_location_.VisitRoots(visitor, arg);
2018  if (class_loader_override_ != nullptr) {
2019    visitor(reinterpret_cast<mirror::Object**>(&class_loader_override_), arg, thread_id,
2020            kRootNativeStack);
2021  }
2022  jni_env_->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2023  jni_env_->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2024  SirtVisitRoots(visitor, arg, thread_id);
2025  // Visit roots on this thread's stack
2026  Context* context = GetLongJumpContext();
2027  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2028  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2029  mapper.WalkStack();
2030  ReleaseLongJumpContext(context);
2031  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2032    if (frame.this_object_ != nullptr) {
2033      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2034    }
2035    DCHECK(frame.method_ != nullptr);
2036    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2037  }
2038}
2039
2040static void VerifyRoot(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2041                       RootType /*root_type*/) {
2042  DCHECK(root != nullptr);
2043  DCHECK(arg != nullptr);
2044  reinterpret_cast<gc::Heap*>(arg)->VerifyObject(*root);
2045}
2046
2047void Thread::VerifyStackImpl() {
2048  UniquePtr<Context> context(Context::Create());
2049  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2050  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2051  mapper.WalkStack();
2052}
2053
2054// Set the stack end to that to be used during a stack overflow
2055void Thread::SetStackEndForStackOverflow() {
2056  // During stack overflow we allow use of the full stack.
2057  if (stack_end_ == stack_begin_) {
2058    // However, we seem to have already extended to use the full stack.
2059    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2060               << kStackOverflowReservedBytes << ")?";
2061    DumpStack(LOG(ERROR));
2062    LOG(FATAL) << "Recursive stack overflow.";
2063  }
2064
2065  stack_end_ = stack_begin_;
2066}
2067
2068void Thread::SetTlab(byte* start, byte* end) {
2069  DCHECK_LE(start, end);
2070  thread_local_start_ = start;
2071  thread_local_pos_  = thread_local_start_;
2072  thread_local_end_ = end;
2073  thread_local_objects_ = 0;
2074}
2075
2076std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2077  thread.ShortDump(os);
2078  return os;
2079}
2080
2081}  // namespace art
2082