utils.cc revision 7b20533d064dcc4670e581d8a843aa3d84d0ae02
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "utils.h"
18
19#include <inttypes.h>
20#include <pthread.h>
21#include <sys/stat.h>
22#include <sys/syscall.h>
23#include <sys/types.h>
24#include <sys/wait.h>
25
26#include <unistd.h>
27
28#include "UniquePtr.h"
29#include "base/stl_util.h"
30#include "base/unix_file/fd_file.h"
31#include "dex_file-inl.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class-inl.h"
35#include "mirror/class_loader.h"
36#include "mirror/object-inl.h"
37#include "mirror/object_array-inl.h"
38#include "mirror/string.h"
39#include "object_utils.h"
40#include "os.h"
41#include "scoped_thread_state_change.h"
42#include "utf-inl.h"
43
44#if !defined(HAVE_POSIX_CLOCKS)
45#include <sys/time.h>
46#endif
47
48#if defined(HAVE_PRCTL)
49#include <sys/prctl.h>
50#endif
51
52#if defined(__APPLE__)
53#include "AvailabilityMacros.h"  // For MAC_OS_X_VERSION_MAX_ALLOWED
54#include <sys/syscall.h>
55#endif
56
57#include <backtrace/Backtrace.h>  // For DumpNativeStack.
58
59#if defined(__linux__)
60#include <linux/unistd.h>
61#endif
62
63namespace art {
64
65pid_t GetTid() {
66#if defined(__APPLE__)
67  uint64_t owner;
68  CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__);  // Requires Mac OS 10.6
69  return owner;
70#else
71  // Neither bionic nor glibc exposes gettid(2).
72  return syscall(__NR_gettid);
73#endif
74}
75
76std::string GetThreadName(pid_t tid) {
77  std::string result;
78  if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
79    result.resize(result.size() - 1);  // Lose the trailing '\n'.
80  } else {
81    result = "<unknown>";
82  }
83  return result;
84}
85
86void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size) {
87#if defined(__APPLE__)
88  *stack_size = pthread_get_stacksize_np(thread);
89  void* stack_addr = pthread_get_stackaddr_np(thread);
90
91  // Check whether stack_addr is the base or end of the stack.
92  // (On Mac OS 10.7, it's the end.)
93  int stack_variable;
94  if (stack_addr > &stack_variable) {
95    *stack_base = reinterpret_cast<byte*>(stack_addr) - *stack_size;
96  } else {
97    *stack_base = stack_addr;
98  }
99#else
100  pthread_attr_t attributes;
101  CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
102  CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
103  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
104#endif
105}
106
107bool ReadFileToString(const std::string& file_name, std::string* result) {
108  UniquePtr<File> file(new File);
109  if (!file->Open(file_name, O_RDONLY)) {
110    return false;
111  }
112
113  std::vector<char> buf(8 * KB);
114  while (true) {
115    int64_t n = TEMP_FAILURE_RETRY(read(file->Fd(), &buf[0], buf.size()));
116    if (n == -1) {
117      return false;
118    }
119    if (n == 0) {
120      return true;
121    }
122    result->append(&buf[0], n);
123  }
124}
125
126std::string GetIsoDate() {
127  time_t now = time(NULL);
128  tm tmbuf;
129  tm* ptm = localtime_r(&now, &tmbuf);
130  return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
131      ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
132      ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
133}
134
135uint64_t MilliTime() {
136#if defined(HAVE_POSIX_CLOCKS)
137  timespec now;
138  clock_gettime(CLOCK_MONOTONIC, &now);
139  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000);
140#else
141  timeval now;
142  gettimeofday(&now, NULL);
143  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000);
144#endif
145}
146
147uint64_t MicroTime() {
148#if defined(HAVE_POSIX_CLOCKS)
149  timespec now;
150  clock_gettime(CLOCK_MONOTONIC, &now);
151  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
152#else
153  timeval now;
154  gettimeofday(&now, NULL);
155  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_usec;
156#endif
157}
158
159uint64_t NanoTime() {
160#if defined(HAVE_POSIX_CLOCKS)
161  timespec now;
162  clock_gettime(CLOCK_MONOTONIC, &now);
163  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
164#else
165  timeval now;
166  gettimeofday(&now, NULL);
167  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000);
168#endif
169}
170
171uint64_t ThreadCpuNanoTime() {
172#if defined(HAVE_POSIX_CLOCKS)
173  timespec now;
174  clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
175  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
176#else
177  UNIMPLEMENTED(WARNING);
178  return -1;
179#endif
180}
181
182void NanoSleep(uint64_t ns) {
183  timespec tm;
184  tm.tv_sec = 0;
185  tm.tv_nsec = ns;
186  nanosleep(&tm, NULL);
187}
188
189void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
190  int64_t endSec;
191
192  if (absolute) {
193#if !defined(__APPLE__)
194    clock_gettime(clock, ts);
195#else
196    UNUSED(clock);
197    timeval tv;
198    gettimeofday(&tv, NULL);
199    ts->tv_sec = tv.tv_sec;
200    ts->tv_nsec = tv.tv_usec * 1000;
201#endif
202  } else {
203    ts->tv_sec = 0;
204    ts->tv_nsec = 0;
205  }
206  endSec = ts->tv_sec + ms / 1000;
207  if (UNLIKELY(endSec >= 0x7fffffff)) {
208    std::ostringstream ss;
209    LOG(INFO) << "Note: end time exceeds epoch: " << ss.str();
210    endSec = 0x7ffffffe;
211  }
212  ts->tv_sec = endSec;
213  ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
214
215  // Catch rollover.
216  if (ts->tv_nsec >= 1000000000L) {
217    ts->tv_sec++;
218    ts->tv_nsec -= 1000000000L;
219  }
220}
221
222std::string PrettyDescriptor(mirror::String* java_descriptor) {
223  if (java_descriptor == NULL) {
224    return "null";
225  }
226  return PrettyDescriptor(java_descriptor->ToModifiedUtf8());
227}
228
229std::string PrettyDescriptor(mirror::Class* klass) {
230  if (klass == NULL) {
231    return "null";
232  }
233  return PrettyDescriptor(ClassHelper(klass).GetDescriptor());
234}
235
236std::string PrettyDescriptor(const std::string& descriptor) {
237  // Count the number of '['s to get the dimensionality.
238  const char* c = descriptor.c_str();
239  size_t dim = 0;
240  while (*c == '[') {
241    dim++;
242    c++;
243  }
244
245  // Reference or primitive?
246  if (*c == 'L') {
247    // "[[La/b/C;" -> "a.b.C[][]".
248    c++;  // Skip the 'L'.
249  } else {
250    // "[[B" -> "byte[][]".
251    // To make life easier, we make primitives look like unqualified
252    // reference types.
253    switch (*c) {
254    case 'B': c = "byte;"; break;
255    case 'C': c = "char;"; break;
256    case 'D': c = "double;"; break;
257    case 'F': c = "float;"; break;
258    case 'I': c = "int;"; break;
259    case 'J': c = "long;"; break;
260    case 'S': c = "short;"; break;
261    case 'Z': c = "boolean;"; break;
262    case 'V': c = "void;"; break;  // Used when decoding return types.
263    default: return descriptor;
264    }
265  }
266
267  // At this point, 'c' is a string of the form "fully/qualified/Type;"
268  // or "primitive;". Rewrite the type with '.' instead of '/':
269  std::string result;
270  const char* p = c;
271  while (*p != ';') {
272    char ch = *p++;
273    if (ch == '/') {
274      ch = '.';
275    }
276    result.push_back(ch);
277  }
278  // ...and replace the semicolon with 'dim' "[]" pairs:
279  while (dim--) {
280    result += "[]";
281  }
282  return result;
283}
284
285std::string PrettyDescriptor(Primitive::Type type) {
286  std::string descriptor_string(Primitive::Descriptor(type));
287  return PrettyDescriptor(descriptor_string);
288}
289
290std::string PrettyField(mirror::ArtField* f, bool with_type) {
291  if (f == NULL) {
292    return "null";
293  }
294  FieldHelper fh(f);
295  std::string result;
296  if (with_type) {
297    result += PrettyDescriptor(fh.GetTypeDescriptor());
298    result += ' ';
299  }
300  result += PrettyDescriptor(fh.GetDeclaringClassDescriptor());
301  result += '.';
302  result += fh.GetName();
303  return result;
304}
305
306std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
307  if (field_idx >= dex_file.NumFieldIds()) {
308    return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
309  }
310  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
311  std::string result;
312  if (with_type) {
313    result += dex_file.GetFieldTypeDescriptor(field_id);
314    result += ' ';
315  }
316  result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
317  result += '.';
318  result += dex_file.GetFieldName(field_id);
319  return result;
320}
321
322std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
323  if (type_idx >= dex_file.NumTypeIds()) {
324    return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
325  }
326  const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
327  return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
328}
329
330std::string PrettyArguments(const char* signature) {
331  std::string result;
332  result += '(';
333  CHECK_EQ(*signature, '(');
334  ++signature;  // Skip the '('.
335  while (*signature != ')') {
336    size_t argument_length = 0;
337    while (signature[argument_length] == '[') {
338      ++argument_length;
339    }
340    if (signature[argument_length] == 'L') {
341      argument_length = (strchr(signature, ';') - signature + 1);
342    } else {
343      ++argument_length;
344    }
345    std::string argument_descriptor(signature, argument_length);
346    result += PrettyDescriptor(argument_descriptor);
347    if (signature[argument_length] != ')') {
348      result += ", ";
349    }
350    signature += argument_length;
351  }
352  CHECK_EQ(*signature, ')');
353  ++signature;  // Skip the ')'.
354  result += ')';
355  return result;
356}
357
358std::string PrettyReturnType(const char* signature) {
359  const char* return_type = strchr(signature, ')');
360  CHECK(return_type != NULL);
361  ++return_type;  // Skip ')'.
362  return PrettyDescriptor(return_type);
363}
364
365std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature) {
366  if (m == nullptr) {
367    return "null";
368  }
369  MethodHelper mh(m);
370  std::string result(PrettyDescriptor(mh.GetDeclaringClassDescriptor()));
371  result += '.';
372  result += mh.GetName();
373  if (UNLIKELY(m->IsFastNative())) {
374    result += "!";
375  }
376  if (with_signature) {
377    const Signature signature = mh.GetSignature();
378    std::string sig_as_string(signature.ToString());
379    if (signature == Signature::NoSignature()) {
380      return result + sig_as_string;
381    }
382    result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
383        PrettyArguments(sig_as_string.c_str());
384  }
385  return result;
386}
387
388std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
389  if (method_idx >= dex_file.NumMethodIds()) {
390    return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
391  }
392  const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
393  std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
394  result += '.';
395  result += dex_file.GetMethodName(method_id);
396  if (with_signature) {
397    const Signature signature = dex_file.GetMethodSignature(method_id);
398    std::string sig_as_string(signature.ToString());
399    if (signature == Signature::NoSignature()) {
400      return result + sig_as_string;
401    }
402    result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
403        PrettyArguments(sig_as_string.c_str());
404  }
405  return result;
406}
407
408std::string PrettyTypeOf(mirror::Object* obj) {
409  if (obj == NULL) {
410    return "null";
411  }
412  if (obj->GetClass() == NULL) {
413    return "(raw)";
414  }
415  ClassHelper kh(obj->GetClass());
416  std::string result(PrettyDescriptor(kh.GetDescriptor()));
417  if (obj->IsClass()) {
418    kh.ChangeClass(obj->AsClass());
419    result += "<" + PrettyDescriptor(kh.GetDescriptor()) + ">";
420  }
421  return result;
422}
423
424std::string PrettyClass(mirror::Class* c) {
425  if (c == NULL) {
426    return "null";
427  }
428  std::string result;
429  result += "java.lang.Class<";
430  result += PrettyDescriptor(c);
431  result += ">";
432  return result;
433}
434
435std::string PrettyClassAndClassLoader(mirror::Class* c) {
436  if (c == NULL) {
437    return "null";
438  }
439  std::string result;
440  result += "java.lang.Class<";
441  result += PrettyDescriptor(c);
442  result += ",";
443  result += PrettyTypeOf(c->GetClassLoader());
444  // TODO: add an identifying hash value for the loader
445  result += ">";
446  return result;
447}
448
449std::string PrettySize(int64_t byte_count) {
450  // The byte thresholds at which we display amounts.  A byte count is displayed
451  // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
452  static const int64_t kUnitThresholds[] = {
453    0,              // B up to...
454    3*1024,         // KB up to...
455    2*1024*1024,    // MB up to...
456    1024*1024*1024  // GB from here.
457  };
458  static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB };
459  static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
460  const char* negative_str = "";
461  if (byte_count < 0) {
462    negative_str = "-";
463    byte_count = -byte_count;
464  }
465  int i = arraysize(kUnitThresholds);
466  while (--i > 0) {
467    if (byte_count >= kUnitThresholds[i]) {
468      break;
469    }
470  }
471  return StringPrintf("%s%" PRId64 "%s",
472                      negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]);
473}
474
475std::string PrettyDuration(uint64_t nano_duration) {
476  if (nano_duration == 0) {
477    return "0";
478  } else {
479    return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration));
480  }
481}
482
483TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
484  const uint64_t one_sec = 1000 * 1000 * 1000;
485  const uint64_t one_ms  = 1000 * 1000;
486  const uint64_t one_us  = 1000;
487  if (nano_duration >= one_sec) {
488    return kTimeUnitSecond;
489  } else if (nano_duration >= one_ms) {
490    return kTimeUnitMillisecond;
491  } else if (nano_duration >= one_us) {
492    return kTimeUnitMicrosecond;
493  } else {
494    return kTimeUnitNanosecond;
495  }
496}
497
498uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
499  const uint64_t one_sec = 1000 * 1000 * 1000;
500  const uint64_t one_ms  = 1000 * 1000;
501  const uint64_t one_us  = 1000;
502
503  switch (time_unit) {
504    case kTimeUnitSecond:
505      return one_sec;
506    case kTimeUnitMillisecond:
507      return one_ms;
508    case kTimeUnitMicrosecond:
509      return one_us;
510    case kTimeUnitNanosecond:
511      return 1;
512  }
513  return 0;
514}
515
516std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit) {
517  const char* unit = NULL;
518  uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
519  uint32_t zero_fill = 1;
520  switch (time_unit) {
521    case kTimeUnitSecond:
522      unit = "s";
523      zero_fill = 9;
524      break;
525    case kTimeUnitMillisecond:
526      unit = "ms";
527      zero_fill = 6;
528      break;
529    case kTimeUnitMicrosecond:
530      unit = "us";
531      zero_fill = 3;
532      break;
533    case kTimeUnitNanosecond:
534      unit = "ns";
535      zero_fill = 0;
536      break;
537  }
538
539  uint64_t whole_part = nano_duration / divisor;
540  uint64_t fractional_part = nano_duration % divisor;
541  if (fractional_part == 0) {
542    return StringPrintf("%" PRIu64 "%s", whole_part, unit);
543  } else {
544    while ((fractional_part % 1000) == 0) {
545      zero_fill -= 3;
546      fractional_part /= 1000;
547    }
548    if (zero_fill == 3) {
549      return StringPrintf("%" PRIu64 ".%03" PRIu64 "%s", whole_part, fractional_part, unit);
550    } else if (zero_fill == 6) {
551      return StringPrintf("%" PRIu64 ".%06" PRIu64 "%s", whole_part, fractional_part, unit);
552    } else {
553      return StringPrintf("%" PRIu64 ".%09" PRIu64 "%s", whole_part, fractional_part, unit);
554    }
555  }
556}
557
558std::string PrintableString(const std::string& utf) {
559  std::string result;
560  result += '"';
561  const char* p = utf.c_str();
562  size_t char_count = CountModifiedUtf8Chars(p);
563  for (size_t i = 0; i < char_count; ++i) {
564    uint16_t ch = GetUtf16FromUtf8(&p);
565    if (ch == '\\') {
566      result += "\\\\";
567    } else if (ch == '\n') {
568      result += "\\n";
569    } else if (ch == '\r') {
570      result += "\\r";
571    } else if (ch == '\t') {
572      result += "\\t";
573    } else if (NeedsEscaping(ch)) {
574      StringAppendF(&result, "\\u%04x", ch);
575    } else {
576      result += ch;
577    }
578  }
579  result += '"';
580  return result;
581}
582
583// See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
584std::string MangleForJni(const std::string& s) {
585  std::string result;
586  size_t char_count = CountModifiedUtf8Chars(s.c_str());
587  const char* cp = &s[0];
588  for (size_t i = 0; i < char_count; ++i) {
589    uint16_t ch = GetUtf16FromUtf8(&cp);
590    if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
591      result.push_back(ch);
592    } else if (ch == '.' || ch == '/') {
593      result += "_";
594    } else if (ch == '_') {
595      result += "_1";
596    } else if (ch == ';') {
597      result += "_2";
598    } else if (ch == '[') {
599      result += "_3";
600    } else {
601      StringAppendF(&result, "_0%04x", ch);
602    }
603  }
604  return result;
605}
606
607std::string DotToDescriptor(const char* class_name) {
608  std::string descriptor(class_name);
609  std::replace(descriptor.begin(), descriptor.end(), '.', '/');
610  if (descriptor.length() > 0 && descriptor[0] != '[') {
611    descriptor = "L" + descriptor + ";";
612  }
613  return descriptor;
614}
615
616std::string DescriptorToDot(const char* descriptor) {
617  size_t length = strlen(descriptor);
618  if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
619    std::string result(descriptor + 1, length - 2);
620    std::replace(result.begin(), result.end(), '/', '.');
621    return result;
622  }
623  return descriptor;
624}
625
626std::string DescriptorToName(const char* descriptor) {
627  size_t length = strlen(descriptor);
628  if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
629    std::string result(descriptor + 1, length - 2);
630    return result;
631  }
632  return descriptor;
633}
634
635std::string JniShortName(mirror::ArtMethod* m) {
636  MethodHelper mh(m);
637  std::string class_name(mh.GetDeclaringClassDescriptor());
638  // Remove the leading 'L' and trailing ';'...
639  CHECK_EQ(class_name[0], 'L') << class_name;
640  CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
641  class_name.erase(0, 1);
642  class_name.erase(class_name.size() - 1, 1);
643
644  std::string method_name(mh.GetName());
645
646  std::string short_name;
647  short_name += "Java_";
648  short_name += MangleForJni(class_name);
649  short_name += "_";
650  short_name += MangleForJni(method_name);
651  return short_name;
652}
653
654std::string JniLongName(mirror::ArtMethod* m) {
655  std::string long_name;
656  long_name += JniShortName(m);
657  long_name += "__";
658
659  std::string signature(MethodHelper(m).GetSignature().ToString());
660  signature.erase(0, 1);
661  signature.erase(signature.begin() + signature.find(')'), signature.end());
662
663  long_name += MangleForJni(signature);
664
665  return long_name;
666}
667
668// Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
669uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
670  0x00000000,  // 00..1f low control characters; nothing valid
671  0x03ff2010,  // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
672  0x87fffffe,  // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
673  0x07fffffe   // 60..7f lowercase etc.; valid: 'a'..'z'
674};
675
676// Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
677bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
678  /*
679   * It's a multibyte encoded character. Decode it and analyze. We
680   * accept anything that isn't (a) an improperly encoded low value,
681   * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
682   * control character, or (e) a high space, layout, or special
683   * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
684   * U+fff0..U+ffff). This is all specified in the dex format
685   * document.
686   */
687
688  uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr);
689
690  // Perform follow-up tests based on the high 8 bits.
691  switch (utf16 >> 8) {
692  case 0x00:
693    // It's only valid if it's above the ISO-8859-1 high space (0xa0).
694    return (utf16 > 0x00a0);
695  case 0xd8:
696  case 0xd9:
697  case 0xda:
698  case 0xdb:
699    // It's a leading surrogate. Check to see that a trailing
700    // surrogate follows.
701    utf16 = GetUtf16FromUtf8(pUtf8Ptr);
702    return (utf16 >= 0xdc00) && (utf16 <= 0xdfff);
703  case 0xdc:
704  case 0xdd:
705  case 0xde:
706  case 0xdf:
707    // It's a trailing surrogate, which is not valid at this point.
708    return false;
709  case 0x20:
710  case 0xff:
711    // It's in the range that has spaces, controls, and specials.
712    switch (utf16 & 0xfff8) {
713    case 0x2000:
714    case 0x2008:
715    case 0x2028:
716    case 0xfff0:
717    case 0xfff8:
718      return false;
719    }
720    break;
721  }
722  return true;
723}
724
725/* Return whether the pointed-at modified-UTF-8 encoded character is
726 * valid as part of a member name, updating the pointer to point past
727 * the consumed character. This will consume two encoded UTF-16 code
728 * points if the character is encoded as a surrogate pair. Also, if
729 * this function returns false, then the given pointer may only have
730 * been partially advanced.
731 */
732static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
733  uint8_t c = (uint8_t) **pUtf8Ptr;
734  if (LIKELY(c <= 0x7f)) {
735    // It's low-ascii, so check the table.
736    uint32_t wordIdx = c >> 5;
737    uint32_t bitIdx = c & 0x1f;
738    (*pUtf8Ptr)++;
739    return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
740  }
741
742  // It's a multibyte encoded character. Call a non-inline function
743  // for the heavy lifting.
744  return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
745}
746
747bool IsValidMemberName(const char* s) {
748  bool angle_name = false;
749
750  switch (*s) {
751    case '\0':
752      // The empty string is not a valid name.
753      return false;
754    case '<':
755      angle_name = true;
756      s++;
757      break;
758  }
759
760  while (true) {
761    switch (*s) {
762      case '\0':
763        return !angle_name;
764      case '>':
765        return angle_name && s[1] == '\0';
766    }
767
768    if (!IsValidPartOfMemberNameUtf8(&s)) {
769      return false;
770    }
771  }
772}
773
774enum ClassNameType { kName, kDescriptor };
775static bool IsValidClassName(const char* s, ClassNameType type, char separator) {
776  int arrayCount = 0;
777  while (*s == '[') {
778    arrayCount++;
779    s++;
780  }
781
782  if (arrayCount > 255) {
783    // Arrays may have no more than 255 dimensions.
784    return false;
785  }
786
787  if (arrayCount != 0) {
788    /*
789     * If we're looking at an array of some sort, then it doesn't
790     * matter if what is being asked for is a class name; the
791     * format looks the same as a type descriptor in that case, so
792     * treat it as such.
793     */
794    type = kDescriptor;
795  }
796
797  if (type == kDescriptor) {
798    /*
799     * We are looking for a descriptor. Either validate it as a
800     * single-character primitive type, or continue on to check the
801     * embedded class name (bracketed by "L" and ";").
802     */
803    switch (*(s++)) {
804    case 'B':
805    case 'C':
806    case 'D':
807    case 'F':
808    case 'I':
809    case 'J':
810    case 'S':
811    case 'Z':
812      // These are all single-character descriptors for primitive types.
813      return (*s == '\0');
814    case 'V':
815      // Non-array void is valid, but you can't have an array of void.
816      return (arrayCount == 0) && (*s == '\0');
817    case 'L':
818      // Class name: Break out and continue below.
819      break;
820    default:
821      // Oddball descriptor character.
822      return false;
823    }
824  }
825
826  /*
827   * We just consumed the 'L' that introduces a class name as part
828   * of a type descriptor, or we are looking for an unadorned class
829   * name.
830   */
831
832  bool sepOrFirst = true;  // first character or just encountered a separator.
833  for (;;) {
834    uint8_t c = (uint8_t) *s;
835    switch (c) {
836    case '\0':
837      /*
838       * Premature end for a type descriptor, but valid for
839       * a class name as long as we haven't encountered an
840       * empty component (including the degenerate case of
841       * the empty string "").
842       */
843      return (type == kName) && !sepOrFirst;
844    case ';':
845      /*
846       * Invalid character for a class name, but the
847       * legitimate end of a type descriptor. In the latter
848       * case, make sure that this is the end of the string
849       * and that it doesn't end with an empty component
850       * (including the degenerate case of "L;").
851       */
852      return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
853    case '/':
854    case '.':
855      if (c != separator) {
856        // The wrong separator character.
857        return false;
858      }
859      if (sepOrFirst) {
860        // Separator at start or two separators in a row.
861        return false;
862      }
863      sepOrFirst = true;
864      s++;
865      break;
866    default:
867      if (!IsValidPartOfMemberNameUtf8(&s)) {
868        return false;
869      }
870      sepOrFirst = false;
871      break;
872    }
873  }
874}
875
876bool IsValidBinaryClassName(const char* s) {
877  return IsValidClassName(s, kName, '.');
878}
879
880bool IsValidJniClassName(const char* s) {
881  return IsValidClassName(s, kName, '/');
882}
883
884bool IsValidDescriptor(const char* s) {
885  return IsValidClassName(s, kDescriptor, '/');
886}
887
888void Split(const std::string& s, char separator, std::vector<std::string>& result) {
889  const char* p = s.data();
890  const char* end = p + s.size();
891  while (p != end) {
892    if (*p == separator) {
893      ++p;
894    } else {
895      const char* start = p;
896      while (++p != end && *p != separator) {
897        // Skip to the next occurrence of the separator.
898      }
899      result.push_back(std::string(start, p - start));
900    }
901  }
902}
903
904std::string Trim(std::string s) {
905  std::string result;
906  unsigned int start_index = 0;
907  unsigned int end_index = s.size() - 1;
908
909  // Skip initial whitespace.
910  while (start_index < s.size()) {
911    if (!isspace(s[start_index])) {
912      break;
913    }
914    start_index++;
915  }
916
917  // Skip terminating whitespace.
918  while (end_index >= start_index) {
919    if (!isspace(s[end_index])) {
920      break;
921    }
922    end_index--;
923  }
924
925  // All spaces, no beef.
926  if (end_index < start_index) {
927    return "";
928  }
929  // Start_index is the first non-space, end_index is the last one.
930  return s.substr(start_index, end_index - start_index + 1);
931}
932
933template <typename StringT>
934std::string Join(std::vector<StringT>& strings, char separator) {
935  if (strings.empty()) {
936    return "";
937  }
938
939  std::string result(strings[0]);
940  for (size_t i = 1; i < strings.size(); ++i) {
941    result += separator;
942    result += strings[i];
943  }
944  return result;
945}
946
947// Explicit instantiations.
948template std::string Join<std::string>(std::vector<std::string>& strings, char separator);
949template std::string Join<const char*>(std::vector<const char*>& strings, char separator);
950template std::string Join<char*>(std::vector<char*>& strings, char separator);
951
952bool StartsWith(const std::string& s, const char* prefix) {
953  return s.compare(0, strlen(prefix), prefix) == 0;
954}
955
956bool EndsWith(const std::string& s, const char* suffix) {
957  size_t suffix_length = strlen(suffix);
958  size_t string_length = s.size();
959  if (suffix_length > string_length) {
960    return false;
961  }
962  size_t offset = string_length - suffix_length;
963  return s.compare(offset, suffix_length, suffix) == 0;
964}
965
966void SetThreadName(const char* thread_name) {
967  int hasAt = 0;
968  int hasDot = 0;
969  const char* s = thread_name;
970  while (*s) {
971    if (*s == '.') {
972      hasDot = 1;
973    } else if (*s == '@') {
974      hasAt = 1;
975    }
976    s++;
977  }
978  int len = s - thread_name;
979  if (len < 15 || hasAt || !hasDot) {
980    s = thread_name;
981  } else {
982    s = thread_name + len - 15;
983  }
984#if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
985  // pthread_setname_np fails rather than truncating long strings.
986  char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
987  strncpy(buf, s, sizeof(buf)-1);
988  buf[sizeof(buf)-1] = '\0';
989  errno = pthread_setname_np(pthread_self(), buf);
990  if (errno != 0) {
991    PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
992  }
993#elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
994  pthread_setname_np(thread_name);
995#elif defined(HAVE_PRCTL)
996  prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);  // NOLINT (unsigned long)
997#else
998  UNIMPLEMENTED(WARNING) << thread_name;
999#endif
1000}
1001
1002void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
1003  *utime = *stime = *task_cpu = 0;
1004  std::string stats;
1005  if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
1006    return;
1007  }
1008  // Skip the command, which may contain spaces.
1009  stats = stats.substr(stats.find(')') + 2);
1010  // Extract the three fields we care about.
1011  std::vector<std::string> fields;
1012  Split(stats, ' ', fields);
1013  *state = fields[0][0];
1014  *utime = strtoull(fields[11].c_str(), NULL, 10);
1015  *stime = strtoull(fields[12].c_str(), NULL, 10);
1016  *task_cpu = strtoull(fields[36].c_str(), NULL, 10);
1017}
1018
1019std::string GetSchedulerGroupName(pid_t tid) {
1020  // /proc/<pid>/cgroup looks like this:
1021  // 2:devices:/
1022  // 1:cpuacct,cpu:/
1023  // We want the third field from the line whose second field contains the "cpu" token.
1024  std::string cgroup_file;
1025  if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1026    return "";
1027  }
1028  std::vector<std::string> cgroup_lines;
1029  Split(cgroup_file, '\n', cgroup_lines);
1030  for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1031    std::vector<std::string> cgroup_fields;
1032    Split(cgroup_lines[i], ':', cgroup_fields);
1033    std::vector<std::string> cgroups;
1034    Split(cgroup_fields[1], ',', cgroups);
1035    for (size_t i = 0; i < cgroups.size(); ++i) {
1036      if (cgroups[i] == "cpu") {
1037        return cgroup_fields[2].substr(1);  // Skip the leading slash.
1038      }
1039    }
1040  }
1041  return "";
1042}
1043
1044void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix,
1045    mirror::ArtMethod* current_method) {
1046  // We may be called from contexts where current_method is not null, so we must assert this.
1047  if (current_method != nullptr) {
1048    Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1049  }
1050  UniquePtr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid));
1051  if (!backtrace->Unwind(0)) {
1052    os << prefix << "(backtrace::Unwind failed for thread " << tid << ")\n";
1053    return;
1054  } else if (backtrace->NumFrames() == 0) {
1055    os << prefix << "(no native stack frames for thread " << tid << ")\n";
1056    return;
1057  }
1058
1059  for (Backtrace::const_iterator it = backtrace->begin();
1060       it != backtrace->end(); ++it) {
1061    // We produce output like this:
1062    // ]    #00 pc 000075bb8  /system/lib/libc.so (unwind_backtrace_thread+536)
1063    // In order for parsing tools to continue to function, the stack dump
1064    // format must at least adhere to this format:
1065    //  #XX pc <RELATIVE_ADDR>  <FULL_PATH_TO_SHARED_LIBRARY> ...
1066    // The parsers require a single space before and after pc, and two spaces
1067    // after the <RELATIVE_ADDR>. There can be any prefix data before the
1068    // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix.
1069    os << prefix << StringPrintf("#%02zu pc ", it->num);
1070    if (!it->map) {
1071      os << StringPrintf("%08" PRIxPTR "  ???", it->pc);
1072    } else {
1073      os << StringPrintf("%08" PRIxPTR "  ", it->pc - it->map->start)
1074         << it->map->name << " (";
1075      if (!it->func_name.empty()) {
1076        os << it->func_name;
1077        if (it->func_offset != 0) {
1078          os << "+" << it->func_offset;
1079        }
1080      } else if (current_method != nullptr && current_method->IsWithinQuickCode(it->pc)) {
1081        const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode();
1082        os << JniLongName(current_method) << "+"
1083           << (it->pc - reinterpret_cast<uintptr_t>(start_of_code));
1084      } else {
1085        os << "???";
1086      }
1087      os << ")";
1088    }
1089    os << "\n";
1090  }
1091}
1092
1093#if defined(__APPLE__)
1094
1095// TODO: is there any way to get the kernel stack on Mac OS?
1096void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
1097
1098#else
1099
1100void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
1101  if (tid == GetTid()) {
1102    // There's no point showing that we're reading our stack out of /proc!
1103    return;
1104  }
1105
1106  std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
1107  std::string kernel_stack;
1108  if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
1109    os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
1110    return;
1111  }
1112
1113  std::vector<std::string> kernel_stack_frames;
1114  Split(kernel_stack, '\n', kernel_stack_frames);
1115  // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
1116  // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
1117  kernel_stack_frames.pop_back();
1118  for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
1119    // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110"
1120    // into "futex_wait_queue_me+0xcd/0x110".
1121    const char* text = kernel_stack_frames[i].c_str();
1122    const char* close_bracket = strchr(text, ']');
1123    if (close_bracket != NULL) {
1124      text = close_bracket + 2;
1125    }
1126    os << prefix;
1127    if (include_count) {
1128      os << StringPrintf("#%02zd ", i);
1129    }
1130    os << text << "\n";
1131  }
1132}
1133
1134#endif
1135
1136const char* GetAndroidRoot() {
1137  const char* android_root = getenv("ANDROID_ROOT");
1138  if (android_root == NULL) {
1139    if (OS::DirectoryExists("/system")) {
1140      android_root = "/system";
1141    } else {
1142      LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
1143      return "";
1144    }
1145  }
1146  if (!OS::DirectoryExists(android_root)) {
1147    LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
1148    return "";
1149  }
1150  return android_root;
1151}
1152
1153const char* GetAndroidData() {
1154  const char* android_data = getenv("ANDROID_DATA");
1155  if (android_data == NULL) {
1156    if (OS::DirectoryExists("/data")) {
1157      android_data = "/data";
1158    } else {
1159      LOG(FATAL) << "ANDROID_DATA not set and /data does not exist";
1160      return "";
1161    }
1162  }
1163  if (!OS::DirectoryExists(android_data)) {
1164    LOG(FATAL) << "Failed to find ANDROID_DATA directory " << android_data;
1165    return "";
1166  }
1167  return android_data;
1168}
1169
1170std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) {
1171  CHECK(subdir != nullptr);
1172  const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", GetAndroidData()));
1173  const std::string dalvik_cache = dalvik_cache_root + subdir;
1174  if (create_if_absent && !OS::DirectoryExists(dalvik_cache.c_str())) {
1175    if (StartsWith(dalvik_cache_root, "/tmp/")) {
1176      int result = mkdir(dalvik_cache_root.c_str(), 0700);
1177      if (result != 0 && errno != EEXIST) {
1178        PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache_root;
1179        return "";
1180      }
1181      result = mkdir(dalvik_cache.c_str(), 0700);
1182      if (result != 0) {
1183        PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
1184        return "";
1185      }
1186    } else {
1187      LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache;
1188      return "";
1189    }
1190  }
1191  return dalvik_cache;
1192}
1193
1194std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) {
1195  if (location[0] != '/') {
1196    LOG(FATAL) << "Expected path in location to be absolute: "<< location;
1197  }
1198  std::string cache_file(&location[1]);  // skip leading slash
1199  if (!EndsWith(location, ".dex") && !EndsWith(location, ".art")) {
1200    cache_file += "/";
1201    cache_file += DexFile::kClassesDex;
1202  }
1203  std::replace(cache_file.begin(), cache_file.end(), '/', '@');
1204  return StringPrintf("%s/%s", cache_location, cache_file.c_str());
1205}
1206
1207bool IsZipMagic(uint32_t magic) {
1208  return (('P' == ((magic >> 0) & 0xff)) &&
1209          ('K' == ((magic >> 8) & 0xff)));
1210}
1211
1212bool IsDexMagic(uint32_t magic) {
1213  return DexFile::IsMagicValid(reinterpret_cast<const byte*>(&magic));
1214}
1215
1216bool IsOatMagic(uint32_t magic) {
1217  return (memcmp(reinterpret_cast<const byte*>(magic),
1218                 OatHeader::kOatMagic,
1219                 sizeof(OatHeader::kOatMagic)) == 0);
1220}
1221
1222bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {
1223  const std::string command_line(Join(arg_vector, ' '));
1224
1225  CHECK_GE(arg_vector.size(), 1U) << command_line;
1226
1227  // Convert the args to char pointers.
1228  const char* program = arg_vector[0].c_str();
1229  std::vector<char*> args;
1230  for (size_t i = 0; i < arg_vector.size(); ++i) {
1231    const std::string& arg = arg_vector[i];
1232    char* arg_str = const_cast<char*>(arg.c_str());
1233    CHECK(arg_str != nullptr) << i;
1234    args.push_back(arg_str);
1235  }
1236  args.push_back(NULL);
1237
1238  // fork and exec
1239  pid_t pid = fork();
1240  if (pid == 0) {
1241    // no allocation allowed between fork and exec
1242
1243    // change process groups, so we don't get reaped by ProcessManager
1244    setpgid(0, 0);
1245
1246    execv(program, &args[0]);
1247
1248    PLOG(ERROR) << "Failed to execv(" << command_line << ")";
1249    exit(1);
1250  } else {
1251    if (pid == -1) {
1252      *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s",
1253                                command_line.c_str(), strerror(errno));
1254      return false;
1255    }
1256
1257    // wait for subprocess to finish
1258    int status;
1259    pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
1260    if (got_pid != pid) {
1261      *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: "
1262                                "wanted %d, got %d: %s",
1263                                command_line.c_str(), pid, got_pid, strerror(errno));
1264      return false;
1265    }
1266    if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
1267      *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",
1268                                command_line.c_str());
1269      return false;
1270    }
1271  }
1272  return true;
1273}
1274
1275}  // namespace art
1276