pthread_test.cpp revision 220b99bdc1c5f51825ac2a87062bc05fe3e0d722
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include <gtest/gtest.h> 18 19#include "private/ScopeGuard.h" 20#include "BionicDeathTest.h" 21#include "ScopedSignalHandler.h" 22 23#include <errno.h> 24#include <inttypes.h> 25#include <limits.h> 26#include <malloc.h> 27#include <pthread.h> 28#include <signal.h> 29#include <stdio.h> 30#include <sys/mman.h> 31#include <sys/syscall.h> 32#include <time.h> 33#include <unistd.h> 34 35#include <atomic> 36#include <vector> 37 38TEST(pthread, pthread_key_create) { 39 pthread_key_t key; 40 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 41 ASSERT_EQ(0, pthread_key_delete(key)); 42 // Can't delete a key that's already been deleted. 43 ASSERT_EQ(EINVAL, pthread_key_delete(key)); 44} 45 46TEST(pthread, pthread_keys_max) { 47 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX. 48 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX); 49} 50 51TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) { 52 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX); 53 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX); 54} 55 56TEST(pthread, pthread_key_many_distinct) { 57 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX 58 // pthread keys, but We should be able to allocate at least this many keys. 59 int nkeys = PTHREAD_KEYS_MAX / 2; 60 std::vector<pthread_key_t> keys; 61 62 auto scope_guard = make_scope_guard([&keys]{ 63 for (auto key : keys) { 64 EXPECT_EQ(0, pthread_key_delete(key)); 65 } 66 }); 67 68 for (int i = 0; i < nkeys; ++i) { 69 pthread_key_t key; 70 // If this fails, it's likely that GLOBAL_INIT_THREAD_LOCAL_BUFFER_COUNT is 71 // wrong. 72 ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys; 73 keys.push_back(key); 74 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i))); 75 } 76 77 for (int i = keys.size() - 1; i >= 0; --i) { 78 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back())); 79 pthread_key_t key = keys.back(); 80 keys.pop_back(); 81 ASSERT_EQ(0, pthread_key_delete(key)); 82 } 83} 84 85TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) { 86 std::vector<pthread_key_t> keys; 87 int rv = 0; 88 89 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should 90 // be more than we are allowed to allocate now. 91 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) { 92 pthread_key_t key; 93 rv = pthread_key_create(&key, NULL); 94 if (rv == EAGAIN) { 95 break; 96 } 97 EXPECT_EQ(0, rv); 98 keys.push_back(key); 99 } 100 101 // Don't leak keys. 102 for (auto key : keys) { 103 EXPECT_EQ(0, pthread_key_delete(key)); 104 } 105 keys.clear(); 106 107 // We should have eventually reached the maximum number of keys and received 108 // EAGAIN. 109 ASSERT_EQ(EAGAIN, rv); 110} 111 112TEST(pthread, pthread_key_delete) { 113 void* expected = reinterpret_cast<void*>(1234); 114 pthread_key_t key; 115 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 116 ASSERT_EQ(0, pthread_setspecific(key, expected)); 117 ASSERT_EQ(expected, pthread_getspecific(key)); 118 ASSERT_EQ(0, pthread_key_delete(key)); 119 // After deletion, pthread_getspecific returns NULL. 120 ASSERT_EQ(NULL, pthread_getspecific(key)); 121 // And you can't use pthread_setspecific with the deleted key. 122 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected)); 123} 124 125TEST(pthread, pthread_key_fork) { 126 void* expected = reinterpret_cast<void*>(1234); 127 pthread_key_t key; 128 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 129 ASSERT_EQ(0, pthread_setspecific(key, expected)); 130 ASSERT_EQ(expected, pthread_getspecific(key)); 131 132 pid_t pid = fork(); 133 ASSERT_NE(-1, pid) << strerror(errno); 134 135 if (pid == 0) { 136 // The surviving thread inherits all the forking thread's TLS values... 137 ASSERT_EQ(expected, pthread_getspecific(key)); 138 _exit(99); 139 } 140 141 int status; 142 ASSERT_EQ(pid, waitpid(pid, &status, 0)); 143 ASSERT_TRUE(WIFEXITED(status)); 144 ASSERT_EQ(99, WEXITSTATUS(status)); 145 146 ASSERT_EQ(expected, pthread_getspecific(key)); 147 ASSERT_EQ(0, pthread_key_delete(key)); 148} 149 150static void* DirtyKeyFn(void* key) { 151 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key)); 152} 153 154TEST(pthread, pthread_key_dirty) { 155 pthread_key_t key; 156 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 157 158 size_t stack_size = 128 * 1024; 159 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); 160 ASSERT_NE(MAP_FAILED, stack); 161 memset(stack, 0xff, stack_size); 162 163 pthread_attr_t attr; 164 ASSERT_EQ(0, pthread_attr_init(&attr)); 165 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size)); 166 167 pthread_t t; 168 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key)); 169 170 void* result; 171 ASSERT_EQ(0, pthread_join(t, &result)); 172 ASSERT_EQ(nullptr, result); // Not ~0! 173 174 ASSERT_EQ(0, munmap(stack, stack_size)); 175 ASSERT_EQ(0, pthread_key_delete(key)); 176} 177 178static void* IdFn(void* arg) { 179 return arg; 180} 181 182class SpinFunctionHelper { 183 public: 184 SpinFunctionHelper() { 185 SpinFunctionHelper::spin_flag_ = true; 186 } 187 ~SpinFunctionHelper() { 188 UnSpin(); 189 } 190 auto GetFunction() -> void* (*)(void*) { 191 return SpinFunctionHelper::SpinFn; 192 } 193 194 void UnSpin() { 195 SpinFunctionHelper::spin_flag_ = false; 196 } 197 198 private: 199 static void* SpinFn(void*) { 200 while (spin_flag_) {} 201 return NULL; 202 } 203 static volatile bool spin_flag_; 204}; 205 206// It doesn't matter if spin_flag_ is used in several tests, 207// because it is always set to false after each test. Each thread 208// loops on spin_flag_ can find it becomes false at some time. 209volatile bool SpinFunctionHelper::spin_flag_ = false; 210 211static void* JoinFn(void* arg) { 212 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL)); 213} 214 215static void AssertDetached(pthread_t t, bool is_detached) { 216 pthread_attr_t attr; 217 ASSERT_EQ(0, pthread_getattr_np(t, &attr)); 218 int detach_state; 219 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state)); 220 pthread_attr_destroy(&attr); 221 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED)); 222} 223 224static void MakeDeadThread(pthread_t& t) { 225 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL)); 226 ASSERT_EQ(0, pthread_join(t, NULL)); 227} 228 229TEST(pthread, pthread_create) { 230 void* expected_result = reinterpret_cast<void*>(123); 231 // Can we create a thread? 232 pthread_t t; 233 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result)); 234 // If we join, do we get the expected value back? 235 void* result; 236 ASSERT_EQ(0, pthread_join(t, &result)); 237 ASSERT_EQ(expected_result, result); 238} 239 240TEST(pthread, pthread_create_EAGAIN) { 241 pthread_attr_t attributes; 242 ASSERT_EQ(0, pthread_attr_init(&attributes)); 243 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1))); 244 245 pthread_t t; 246 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL)); 247} 248 249TEST(pthread, pthread_no_join_after_detach) { 250 SpinFunctionHelper spinhelper; 251 252 pthread_t t1; 253 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL)); 254 255 // After a pthread_detach... 256 ASSERT_EQ(0, pthread_detach(t1)); 257 AssertDetached(t1, true); 258 259 // ...pthread_join should fail. 260 ASSERT_EQ(EINVAL, pthread_join(t1, NULL)); 261} 262 263TEST(pthread, pthread_no_op_detach_after_join) { 264 SpinFunctionHelper spinhelper; 265 266 pthread_t t1; 267 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL)); 268 269 // If thread 2 is already waiting to join thread 1... 270 pthread_t t2; 271 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1))); 272 273 sleep(1); // (Give t2 a chance to call pthread_join.) 274 275#if defined(__BIONIC__) 276 ASSERT_EQ(EINVAL, pthread_detach(t1)); 277#else 278 ASSERT_EQ(0, pthread_detach(t1)); 279#endif 280 AssertDetached(t1, false); 281 282 spinhelper.UnSpin(); 283 284 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). 285 void* join_result; 286 ASSERT_EQ(0, pthread_join(t2, &join_result)); 287 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); 288} 289 290TEST(pthread, pthread_join_self) { 291 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL)); 292} 293 294struct TestBug37410 { 295 pthread_t main_thread; 296 pthread_mutex_t mutex; 297 298 static void main() { 299 TestBug37410 data; 300 data.main_thread = pthread_self(); 301 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL)); 302 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); 303 304 pthread_t t; 305 ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data))); 306 307 // Wait for the thread to be running... 308 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); 309 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex)); 310 311 // ...and exit. 312 pthread_exit(NULL); 313 } 314 315 private: 316 static void* thread_fn(void* arg) { 317 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg); 318 319 // Let the main thread know we're running. 320 pthread_mutex_unlock(&data->mutex); 321 322 // And wait for the main thread to exit. 323 pthread_join(data->main_thread, NULL); 324 325 return NULL; 326 } 327}; 328 329// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to 330// run this test (which exits normally) in its own process. 331 332class pthread_DeathTest : public BionicDeathTest {}; 333 334TEST_F(pthread_DeathTest, pthread_bug_37410) { 335 // http://code.google.com/p/android/issues/detail?id=37410 336 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), ""); 337} 338 339static void* SignalHandlerFn(void* arg) { 340 sigset_t wait_set; 341 sigfillset(&wait_set); 342 return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg))); 343} 344 345TEST(pthread, pthread_sigmask) { 346 // Check that SIGUSR1 isn't blocked. 347 sigset_t original_set; 348 sigemptyset(&original_set); 349 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set)); 350 ASSERT_FALSE(sigismember(&original_set, SIGUSR1)); 351 352 // Block SIGUSR1. 353 sigset_t set; 354 sigemptyset(&set); 355 sigaddset(&set, SIGUSR1); 356 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL)); 357 358 // Check that SIGUSR1 is blocked. 359 sigset_t final_set; 360 sigemptyset(&final_set); 361 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set)); 362 ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); 363 // ...and that sigprocmask agrees with pthread_sigmask. 364 sigemptyset(&final_set); 365 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set)); 366 ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); 367 368 // Spawn a thread that calls sigwait and tells us what it received. 369 pthread_t signal_thread; 370 int received_signal = -1; 371 ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal)); 372 373 // Send that thread SIGUSR1. 374 pthread_kill(signal_thread, SIGUSR1); 375 376 // See what it got. 377 void* join_result; 378 ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); 379 ASSERT_EQ(SIGUSR1, received_signal); 380 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); 381 382 // Restore the original signal mask. 383 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL)); 384} 385 386TEST(pthread, pthread_setname_np__too_long) { 387 ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "this name is far too long for linux")); 388} 389 390TEST(pthread, pthread_setname_np__self) { 391 ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1")); 392} 393 394TEST(pthread, pthread_setname_np__other) { 395 SpinFunctionHelper spinhelper; 396 397 pthread_t t1; 398 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL)); 399 ASSERT_EQ(0, pthread_setname_np(t1, "short 2")); 400} 401 402TEST(pthread, pthread_setname_np__no_such_thread) { 403 pthread_t dead_thread; 404 MakeDeadThread(dead_thread); 405 406 // Call pthread_setname_np after thread has already exited. 407 ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3")); 408} 409 410TEST(pthread, pthread_kill__0) { 411 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves. 412 ASSERT_EQ(0, pthread_kill(pthread_self(), 0)); 413} 414 415TEST(pthread, pthread_kill__invalid_signal) { 416 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1)); 417} 418 419static void pthread_kill__in_signal_handler_helper(int signal_number) { 420 static int count = 0; 421 ASSERT_EQ(SIGALRM, signal_number); 422 if (++count == 1) { 423 // Can we call pthread_kill from a signal handler? 424 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); 425 } 426} 427 428TEST(pthread, pthread_kill__in_signal_handler) { 429 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper); 430 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); 431} 432 433TEST(pthread, pthread_detach__no_such_thread) { 434 pthread_t dead_thread; 435 MakeDeadThread(dead_thread); 436 437 ASSERT_EQ(ESRCH, pthread_detach(dead_thread)); 438} 439 440TEST(pthread, pthread_detach_no_leak) { 441 size_t initial_bytes = 0; 442 // Run this loop more than once since the first loop causes some memory 443 // to be allocated permenantly. Run an extra loop to help catch any subtle 444 // memory leaks. 445 for (size_t loop = 0; loop < 3; loop++) { 446 // Set the initial bytes on the second loop since the memory in use 447 // should have stabilized. 448 if (loop == 1) { 449 initial_bytes = mallinfo().uordblks; 450 } 451 452 pthread_attr_t attr; 453 ASSERT_EQ(0, pthread_attr_init(&attr)); 454 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)); 455 456 std::vector<pthread_t> threads; 457 for (size_t i = 0; i < 32; ++i) { 458 pthread_t t; 459 ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, NULL)); 460 threads.push_back(t); 461 } 462 463 sleep(1); 464 465 for (size_t i = 0; i < 32; ++i) { 466 ASSERT_EQ(0, pthread_detach(threads[i])) << i; 467 } 468 } 469 470 size_t final_bytes = mallinfo().uordblks; 471 int leaked_bytes = (final_bytes - initial_bytes); 472 473 ASSERT_EQ(0, leaked_bytes); 474} 475 476TEST(pthread, pthread_getcpuclockid__clock_gettime) { 477 SpinFunctionHelper spinhelper; 478 479 pthread_t t; 480 ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL)); 481 482 clockid_t c; 483 ASSERT_EQ(0, pthread_getcpuclockid(t, &c)); 484 timespec ts; 485 ASSERT_EQ(0, clock_gettime(c, &ts)); 486} 487 488TEST(pthread, pthread_getcpuclockid__no_such_thread) { 489 pthread_t dead_thread; 490 MakeDeadThread(dead_thread); 491 492 clockid_t c; 493 ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c)); 494} 495 496TEST(pthread, pthread_getschedparam__no_such_thread) { 497 pthread_t dead_thread; 498 MakeDeadThread(dead_thread); 499 500 int policy; 501 sched_param param; 502 ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m)); 503} 504 505TEST(pthread, pthread_setschedparam__no_such_thread) { 506 pthread_t dead_thread; 507 MakeDeadThread(dead_thread); 508 509 int policy = 0; 510 sched_param param; 511 ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m)); 512} 513 514TEST(pthread, pthread_join__no_such_thread) { 515 pthread_t dead_thread; 516 MakeDeadThread(dead_thread); 517 518 ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL)); 519} 520 521TEST(pthread, pthread_kill__no_such_thread) { 522 pthread_t dead_thread; 523 MakeDeadThread(dead_thread); 524 525 ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0)); 526} 527 528TEST(pthread, pthread_join__multijoin) { 529 SpinFunctionHelper spinhelper; 530 531 pthread_t t1; 532 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL)); 533 534 pthread_t t2; 535 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1))); 536 537 sleep(1); // (Give t2 a chance to call pthread_join.) 538 539 // Multiple joins to the same thread should fail. 540 ASSERT_EQ(EINVAL, pthread_join(t1, NULL)); 541 542 spinhelper.UnSpin(); 543 544 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). 545 void* join_result; 546 ASSERT_EQ(0, pthread_join(t2, &join_result)); 547 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); 548} 549 550TEST(pthread, pthread_join__race) { 551 // http://b/11693195 --- pthread_join could return before the thread had actually exited. 552 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread. 553 for (size_t i = 0; i < 1024; ++i) { 554 size_t stack_size = 64*1024; 555 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); 556 557 pthread_attr_t a; 558 pthread_attr_init(&a); 559 pthread_attr_setstack(&a, stack, stack_size); 560 561 pthread_t t; 562 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL)); 563 ASSERT_EQ(0, pthread_join(t, NULL)); 564 ASSERT_EQ(0, munmap(stack, stack_size)); 565 } 566} 567 568static void* GetActualGuardSizeFn(void* arg) { 569 pthread_attr_t attributes; 570 pthread_getattr_np(pthread_self(), &attributes); 571 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg)); 572 return NULL; 573} 574 575static size_t GetActualGuardSize(const pthread_attr_t& attributes) { 576 size_t result; 577 pthread_t t; 578 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result); 579 pthread_join(t, NULL); 580 return result; 581} 582 583static void* GetActualStackSizeFn(void* arg) { 584 pthread_attr_t attributes; 585 pthread_getattr_np(pthread_self(), &attributes); 586 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg)); 587 return NULL; 588} 589 590static size_t GetActualStackSize(const pthread_attr_t& attributes) { 591 size_t result; 592 pthread_t t; 593 pthread_create(&t, &attributes, GetActualStackSizeFn, &result); 594 pthread_join(t, NULL); 595 return result; 596} 597 598TEST(pthread, pthread_attr_setguardsize) { 599 pthread_attr_t attributes; 600 ASSERT_EQ(0, pthread_attr_init(&attributes)); 601 602 // Get the default guard size. 603 size_t default_guard_size; 604 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size)); 605 606 // No such thing as too small: will be rounded up to one page by pthread_create. 607 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128)); 608 size_t guard_size; 609 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 610 ASSERT_EQ(128U, guard_size); 611 ASSERT_EQ(4096U, GetActualGuardSize(attributes)); 612 613 // Large enough and a multiple of the page size. 614 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024)); 615 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 616 ASSERT_EQ(32*1024U, guard_size); 617 618 // Large enough but not a multiple of the page size; will be rounded up by pthread_create. 619 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1)); 620 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 621 ASSERT_EQ(32*1024U + 1, guard_size); 622} 623 624TEST(pthread, pthread_attr_setstacksize) { 625 pthread_attr_t attributes; 626 ASSERT_EQ(0, pthread_attr_init(&attributes)); 627 628 // Get the default stack size. 629 size_t default_stack_size; 630 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size)); 631 632 // Too small. 633 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128)); 634 size_t stack_size; 635 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); 636 ASSERT_EQ(default_stack_size, stack_size); 637 ASSERT_GE(GetActualStackSize(attributes), default_stack_size); 638 639 // Large enough and a multiple of the page size; may be rounded up by pthread_create. 640 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024)); 641 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); 642 ASSERT_EQ(32*1024U, stack_size); 643 ASSERT_GE(GetActualStackSize(attributes), 32*1024U); 644 645 // Large enough but not aligned; will be rounded up by pthread_create. 646 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1)); 647 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); 648 ASSERT_EQ(32*1024U + 1, stack_size); 649#if defined(__BIONIC__) 650 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1); 651#else // __BIONIC__ 652 // glibc rounds down, in violation of POSIX. They document this in their BUGS section. 653 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); 654#endif // __BIONIC__ 655} 656 657TEST(pthread, pthread_rwlock_smoke) { 658 pthread_rwlock_t l; 659 ASSERT_EQ(0, pthread_rwlock_init(&l, NULL)); 660 661 // Single read lock 662 ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); 663 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 664 665 // Multiple read lock 666 ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); 667 ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); 668 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 669 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 670 671 // Write lock 672 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 673 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 674 675 // Try writer lock 676 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l)); 677 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); 678 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l)); 679 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 680 681 // Try reader lock 682 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); 683 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); 684 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); 685 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 686 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 687 688 // Try writer lock after unlock 689 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 690 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 691 692#ifdef __BIONIC__ 693 // EDEADLK in "read after write" 694 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 695 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l)); 696 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 697 698 // EDEADLK in "write after write" 699 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 700 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l)); 701 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 702#endif 703 704 ASSERT_EQ(0, pthread_rwlock_destroy(&l)); 705} 706 707struct RwlockWakeupHelperArg { 708 pthread_rwlock_t lock; 709 enum Progress { 710 LOCK_INITIALIZED, 711 LOCK_WAITING, 712 LOCK_RELEASED, 713 LOCK_ACCESSED 714 }; 715 std::atomic<Progress> progress; 716}; 717 718static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) { 719 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); 720 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; 721 722 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock)); 723 ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock)); 724 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress); 725 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock)); 726 727 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED; 728} 729 730TEST(pthread, pthread_rwlock_reader_wakeup_writer) { 731 RwlockWakeupHelperArg wakeup_arg; 732 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL)); 733 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); 734 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; 735 736 pthread_t thread; 737 ASSERT_EQ(0, pthread_create(&thread, NULL, 738 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg)); 739 while (wakeup_arg.progress != RwlockWakeupHelperArg::LOCK_WAITING) { 740 usleep(5000); 741 } 742 usleep(5000); 743 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; 744 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); 745 746 ASSERT_EQ(0, pthread_join(thread, NULL)); 747 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); 748 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); 749} 750 751static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) { 752 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); 753 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; 754 755 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock)); 756 ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock)); 757 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress); 758 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock)); 759 760 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED; 761} 762 763TEST(pthread, pthread_rwlock_writer_wakeup_reader) { 764 RwlockWakeupHelperArg wakeup_arg; 765 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL)); 766 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); 767 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; 768 769 pthread_t thread; 770 ASSERT_EQ(0, pthread_create(&thread, NULL, 771 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg)); 772 while (wakeup_arg.progress != RwlockWakeupHelperArg::LOCK_WAITING) { 773 usleep(5000); 774 } 775 usleep(5000); 776 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; 777 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); 778 779 ASSERT_EQ(0, pthread_join(thread, NULL)); 780 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); 781 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); 782} 783 784static int g_once_fn_call_count = 0; 785static void OnceFn() { 786 ++g_once_fn_call_count; 787} 788 789TEST(pthread, pthread_once_smoke) { 790 pthread_once_t once_control = PTHREAD_ONCE_INIT; 791 ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); 792 ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); 793 ASSERT_EQ(1, g_once_fn_call_count); 794} 795 796static std::string pthread_once_1934122_result = ""; 797 798static void Routine2() { 799 pthread_once_1934122_result += "2"; 800} 801 802static void Routine1() { 803 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT; 804 pthread_once_1934122_result += "1"; 805 pthread_once(&once_control_2, &Routine2); 806} 807 808TEST(pthread, pthread_once_1934122) { 809 // Very old versions of Android couldn't call pthread_once from a 810 // pthread_once init routine. http://b/1934122. 811 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT; 812 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1)); 813 ASSERT_EQ("12", pthread_once_1934122_result); 814} 815 816static int g_atfork_prepare_calls = 0; 817static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 1; } 818static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 2; } 819static int g_atfork_parent_calls = 0; 820static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 1; } 821static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 2; } 822static int g_atfork_child_calls = 0; 823static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 1; } 824static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 2; } 825 826TEST(pthread, pthread_atfork_smoke) { 827 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); 828 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); 829 830 int pid = fork(); 831 ASSERT_NE(-1, pid) << strerror(errno); 832 833 // Child and parent calls are made in the order they were registered. 834 if (pid == 0) { 835 ASSERT_EQ(0x12, g_atfork_child_calls); 836 _exit(0); 837 } 838 ASSERT_EQ(0x12, g_atfork_parent_calls); 839 840 // Prepare calls are made in the reverse order. 841 ASSERT_EQ(0x21, g_atfork_prepare_calls); 842} 843 844TEST(pthread, pthread_attr_getscope) { 845 pthread_attr_t attr; 846 ASSERT_EQ(0, pthread_attr_init(&attr)); 847 848 int scope; 849 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope)); 850 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope); 851} 852 853TEST(pthread, pthread_condattr_init) { 854 pthread_condattr_t attr; 855 pthread_condattr_init(&attr); 856 857 clockid_t clock; 858 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 859 ASSERT_EQ(CLOCK_REALTIME, clock); 860 861 int pshared; 862 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); 863 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); 864} 865 866TEST(pthread, pthread_condattr_setclock) { 867 pthread_condattr_t attr; 868 pthread_condattr_init(&attr); 869 870 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME)); 871 clockid_t clock; 872 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 873 ASSERT_EQ(CLOCK_REALTIME, clock); 874 875 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); 876 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 877 ASSERT_EQ(CLOCK_MONOTONIC, clock); 878 879 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID)); 880} 881 882TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) { 883#if defined(__BIONIC__) 884 pthread_condattr_t attr; 885 pthread_condattr_init(&attr); 886 887 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); 888 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); 889 890 pthread_cond_t cond_var; 891 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr)); 892 893 ASSERT_EQ(0, pthread_cond_signal(&cond_var)); 894 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var)); 895 896 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private)); 897 clockid_t clock; 898 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 899 ASSERT_EQ(CLOCK_MONOTONIC, clock); 900 int pshared; 901 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); 902 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); 903#else // !defined(__BIONIC__) 904 GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n"; 905#endif // !defined(__BIONIC__) 906} 907 908class pthread_CondWakeupTest : public ::testing::Test { 909 protected: 910 pthread_mutex_t mutex; 911 pthread_cond_t cond; 912 913 enum Progress { 914 INITIALIZED, 915 WAITING, 916 SIGNALED, 917 FINISHED, 918 }; 919 std::atomic<Progress> progress; 920 pthread_t thread; 921 922 protected: 923 virtual void SetUp() { 924 ASSERT_EQ(0, pthread_mutex_init(&mutex, NULL)); 925 ASSERT_EQ(0, pthread_cond_init(&cond, NULL)); 926 progress = INITIALIZED; 927 ASSERT_EQ(0, 928 pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this)); 929 } 930 931 virtual void TearDown() { 932 ASSERT_EQ(0, pthread_join(thread, NULL)); 933 ASSERT_EQ(FINISHED, progress); 934 ASSERT_EQ(0, pthread_cond_destroy(&cond)); 935 ASSERT_EQ(0, pthread_mutex_destroy(&mutex)); 936 } 937 938 void SleepUntilProgress(Progress expected_progress) { 939 while (progress != expected_progress) { 940 usleep(5000); 941 } 942 usleep(5000); 943 } 944 945 private: 946 static void WaitThreadFn(pthread_CondWakeupTest* test) { 947 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex)); 948 test->progress = WAITING; 949 while (test->progress == WAITING) { 950 ASSERT_EQ(0, pthread_cond_wait(&test->cond, &test->mutex)); 951 } 952 ASSERT_EQ(SIGNALED, test->progress); 953 test->progress = FINISHED; 954 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex)); 955 } 956}; 957 958TEST_F(pthread_CondWakeupTest, signal) { 959 SleepUntilProgress(WAITING); 960 progress = SIGNALED; 961 pthread_cond_signal(&cond); 962} 963 964TEST_F(pthread_CondWakeupTest, broadcast) { 965 SleepUntilProgress(WAITING); 966 progress = SIGNALED; 967 pthread_cond_broadcast(&cond); 968} 969 970TEST(pthread, pthread_mutex_timedlock) { 971 pthread_mutex_t m; 972 ASSERT_EQ(0, pthread_mutex_init(&m, NULL)); 973 974 // If the mutex is already locked, pthread_mutex_timedlock should time out. 975 ASSERT_EQ(0, pthread_mutex_lock(&m)); 976 977 timespec ts; 978 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 979 ts.tv_nsec += 1; 980 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts)); 981 982 // If the mutex is unlocked, pthread_mutex_timedlock should succeed. 983 ASSERT_EQ(0, pthread_mutex_unlock(&m)); 984 985 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 986 ts.tv_nsec += 1; 987 ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts)); 988 989 ASSERT_EQ(0, pthread_mutex_unlock(&m)); 990 ASSERT_EQ(0, pthread_mutex_destroy(&m)); 991} 992 993TEST(pthread, pthread_attr_getstack__main_thread) { 994 // This test is only meaningful for the main thread, so make sure we're running on it! 995 ASSERT_EQ(getpid(), syscall(__NR_gettid)); 996 997 // Get the main thread's attributes. 998 pthread_attr_t attributes; 999 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); 1000 1001 // Check that we correctly report that the main thread has no guard page. 1002 size_t guard_size; 1003 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 1004 ASSERT_EQ(0U, guard_size); // The main thread has no guard page. 1005 1006 // Get the stack base and the stack size (both ways). 1007 void* stack_base; 1008 size_t stack_size; 1009 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); 1010 size_t stack_size2; 1011 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); 1012 1013 // The two methods of asking for the stack size should agree. 1014 EXPECT_EQ(stack_size, stack_size2); 1015 1016 // What does /proc/self/maps' [stack] line say? 1017 void* maps_stack_hi = NULL; 1018 FILE* fp = fopen("/proc/self/maps", "r"); 1019 ASSERT_TRUE(fp != NULL); 1020 char line[BUFSIZ]; 1021 while (fgets(line, sizeof(line), fp) != NULL) { 1022 uintptr_t lo, hi; 1023 char name[10]; 1024 sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name); 1025 if (strcmp(name, "[stack]") == 0) { 1026 maps_stack_hi = reinterpret_cast<void*>(hi); 1027 break; 1028 } 1029 } 1030 fclose(fp); 1031 1032 // The stack size should correspond to RLIMIT_STACK. 1033 rlimit rl; 1034 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl)); 1035 uint64_t original_rlim_cur = rl.rlim_cur; 1036#if defined(__BIONIC__) 1037 if (rl.rlim_cur == RLIM_INFINITY) { 1038 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB. 1039 } 1040#endif 1041 EXPECT_EQ(rl.rlim_cur, stack_size); 1042 1043 auto guard = make_scope_guard([&rl, original_rlim_cur]() { 1044 rl.rlim_cur = original_rlim_cur; 1045 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); 1046 }); 1047 1048 // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size. 1049 // Remember that the stack grows down (and is mapped in on demand), so the low address of the 1050 // region isn't very interesting. 1051 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size); 1052 1053 // 1054 // What if RLIMIT_STACK is smaller than the stack's current extent? 1055 // 1056 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already. 1057 rl.rlim_max = RLIM_INFINITY; 1058 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); 1059 1060 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); 1061 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); 1062 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); 1063 1064 EXPECT_EQ(stack_size, stack_size2); 1065 ASSERT_EQ(1024U, stack_size); 1066 1067 // 1068 // What if RLIMIT_STACK isn't a whole number of pages? 1069 // 1070 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages. 1071 rl.rlim_max = RLIM_INFINITY; 1072 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); 1073 1074 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); 1075 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); 1076 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); 1077 1078 EXPECT_EQ(stack_size, stack_size2); 1079 ASSERT_EQ(6666U, stack_size); 1080} 1081 1082static void pthread_attr_getstack_18908062_helper(void*) { 1083 char local_variable; 1084 pthread_attr_t attributes; 1085 pthread_getattr_np(pthread_self(), &attributes); 1086 void* stack_base; 1087 size_t stack_size; 1088 pthread_attr_getstack(&attributes, &stack_base, &stack_size); 1089 1090 // Test whether &local_variable is in [stack_base, stack_base + stack_size). 1091 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable); 1092 ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size); 1093} 1094 1095// Check whether something on stack is in the range of 1096// [stack_base, stack_base + stack_size). see b/18908062. 1097TEST(pthread, pthread_attr_getstack_18908062) { 1098 pthread_t t; 1099 ASSERT_EQ(0, pthread_create(&t, NULL, 1100 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper), 1101 NULL)); 1102 pthread_join(t, NULL); 1103} 1104 1105#if defined(__BIONIC__) 1106static void* pthread_gettid_np_helper(void* arg) { 1107 *reinterpret_cast<pid_t*>(arg) = gettid(); 1108 return NULL; 1109} 1110#endif 1111 1112TEST(pthread, pthread_gettid_np) { 1113#if defined(__BIONIC__) 1114 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self())); 1115 1116 pid_t t_gettid_result; 1117 pthread_t t; 1118 pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result); 1119 1120 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t); 1121 1122 pthread_join(t, NULL); 1123 1124 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result); 1125#else 1126 GTEST_LOG_(INFO) << "This test does nothing.\n"; 1127#endif 1128} 1129 1130static size_t cleanup_counter = 0; 1131 1132static void AbortCleanupRoutine(void*) { 1133 abort(); 1134} 1135 1136static void CountCleanupRoutine(void*) { 1137 ++cleanup_counter; 1138} 1139 1140static void PthreadCleanupTester() { 1141 pthread_cleanup_push(CountCleanupRoutine, NULL); 1142 pthread_cleanup_push(CountCleanupRoutine, NULL); 1143 pthread_cleanup_push(AbortCleanupRoutine, NULL); 1144 1145 pthread_cleanup_pop(0); // Pop the abort without executing it. 1146 pthread_cleanup_pop(1); // Pop one count while executing it. 1147 ASSERT_EQ(1U, cleanup_counter); 1148 // Exit while the other count is still on the cleanup stack. 1149 pthread_exit(NULL); 1150 1151 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced. 1152 pthread_cleanup_pop(0); 1153} 1154 1155static void* PthreadCleanupStartRoutine(void*) { 1156 PthreadCleanupTester(); 1157 return NULL; 1158} 1159 1160TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) { 1161 pthread_t t; 1162 ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL)); 1163 pthread_join(t, NULL); 1164 ASSERT_EQ(2U, cleanup_counter); 1165} 1166 1167TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) { 1168 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT); 1169} 1170 1171TEST(pthread, pthread_mutexattr_gettype) { 1172 pthread_mutexattr_t attr; 1173 ASSERT_EQ(0, pthread_mutexattr_init(&attr)); 1174 1175 int attr_type; 1176 1177 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); 1178 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); 1179 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type); 1180 1181 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)); 1182 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); 1183 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type); 1184 1185 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)); 1186 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); 1187 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type); 1188 1189 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); 1190} 1191 1192static void CreateMutex(pthread_mutex_t& mutex, int mutex_type) { 1193 pthread_mutexattr_t attr; 1194 ASSERT_EQ(0, pthread_mutexattr_init(&attr)); 1195 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type)); 1196 ASSERT_EQ(0, pthread_mutex_init(&mutex, &attr)); 1197 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); 1198} 1199 1200TEST(pthread, pthread_mutex_lock_NORMAL) { 1201 pthread_mutex_t lock; 1202 CreateMutex(lock, PTHREAD_MUTEX_NORMAL); 1203 1204 ASSERT_EQ(0, pthread_mutex_lock(&lock)); 1205 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1206 ASSERT_EQ(0, pthread_mutex_destroy(&lock)); 1207} 1208 1209TEST(pthread, pthread_mutex_lock_ERRORCHECK) { 1210 pthread_mutex_t lock; 1211 CreateMutex(lock, PTHREAD_MUTEX_ERRORCHECK); 1212 1213 ASSERT_EQ(0, pthread_mutex_lock(&lock)); 1214 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&lock)); 1215 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1216 ASSERT_EQ(0, pthread_mutex_trylock(&lock)); 1217 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&lock)); 1218 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1219 ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock)); 1220 ASSERT_EQ(0, pthread_mutex_destroy(&lock)); 1221} 1222 1223TEST(pthread, pthread_mutex_lock_RECURSIVE) { 1224 pthread_mutex_t lock; 1225 CreateMutex(lock, PTHREAD_MUTEX_RECURSIVE); 1226 1227 ASSERT_EQ(0, pthread_mutex_lock(&lock)); 1228 ASSERT_EQ(0, pthread_mutex_lock(&lock)); 1229 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1230 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1231 ASSERT_EQ(0, pthread_mutex_trylock(&lock)); 1232 ASSERT_EQ(0, pthread_mutex_unlock(&lock)); 1233 ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock)); 1234 ASSERT_EQ(0, pthread_mutex_destroy(&lock)); 1235} 1236 1237class MutexWakeupHelper { 1238 private: 1239 pthread_mutex_t mutex; 1240 enum Progress { 1241 LOCK_INITIALIZED, 1242 LOCK_WAITING, 1243 LOCK_RELEASED, 1244 LOCK_ACCESSED 1245 }; 1246 std::atomic<Progress> progress; 1247 1248 static void thread_fn(MutexWakeupHelper* helper) { 1249 ASSERT_EQ(LOCK_INITIALIZED, helper->progress); 1250 helper->progress = LOCK_WAITING; 1251 1252 ASSERT_EQ(0, pthread_mutex_lock(&helper->mutex)); 1253 ASSERT_EQ(LOCK_RELEASED, helper->progress); 1254 ASSERT_EQ(0, pthread_mutex_unlock(&helper->mutex)); 1255 1256 helper->progress = LOCK_ACCESSED; 1257 } 1258 1259 public: 1260 void test(int mutex_type) { 1261 CreateMutex(mutex, mutex_type); 1262 ASSERT_EQ(0, pthread_mutex_lock(&mutex)); 1263 progress = LOCK_INITIALIZED; 1264 1265 pthread_t thread; 1266 ASSERT_EQ(0, pthread_create(&thread, NULL, 1267 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this)); 1268 1269 while (progress != LOCK_WAITING) { 1270 usleep(5000); 1271 } 1272 usleep(5000); 1273 progress = LOCK_RELEASED; 1274 ASSERT_EQ(0, pthread_mutex_unlock(&mutex)); 1275 1276 ASSERT_EQ(0, pthread_join(thread, NULL)); 1277 ASSERT_EQ(LOCK_ACCESSED, progress); 1278 ASSERT_EQ(0, pthread_mutex_destroy(&mutex)); 1279 } 1280}; 1281 1282TEST(pthread, pthread_mutex_NORMAL_wakeup) { 1283 MutexWakeupHelper helper; 1284 helper.test(PTHREAD_MUTEX_NORMAL); 1285} 1286 1287TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) { 1288 MutexWakeupHelper helper; 1289 helper.test(PTHREAD_MUTEX_ERRORCHECK); 1290} 1291 1292TEST(pthread, pthread_mutex_RECURSIVE_wakeup) { 1293 MutexWakeupHelper helper; 1294 helper.test(PTHREAD_MUTEX_RECURSIVE); 1295} 1296 1297TEST(pthread, pthread_mutex_owner_tid_limit) { 1298 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r"); 1299 ASSERT_TRUE(fp != NULL); 1300 long pid_max; 1301 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max)); 1302 fclose(fp); 1303 // Current pthread_mutex uses 16 bits to represent owner tid. 1304 // Change the implementation if we need to support higher value than 65535. 1305 ASSERT_LE(pid_max, 65536); 1306} 1307 1308class StrictAlignmentAllocator { 1309 public: 1310 void* allocate(size_t size, size_t alignment) { 1311 char* p = new char[size + alignment * 2]; 1312 allocated_array.push_back(p); 1313 while (!is_strict_aligned(p, alignment)) { 1314 ++p; 1315 } 1316 return p; 1317 } 1318 1319 ~StrictAlignmentAllocator() { 1320 for (auto& p : allocated_array) { 1321 delete [] p; 1322 } 1323 } 1324 1325 private: 1326 bool is_strict_aligned(char* p, size_t alignment) { 1327 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment; 1328 } 1329 1330 std::vector<char*> allocated_array; 1331}; 1332 1333TEST(pthread, pthread_types_allow_four_bytes_alignment) { 1334#if defined(__BIONIC__) 1335 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types. 1336 StrictAlignmentAllocator allocator; 1337 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>( 1338 allocator.allocate(sizeof(pthread_mutex_t), 4)); 1339 ASSERT_EQ(0, pthread_mutex_init(mutex, NULL)); 1340 ASSERT_EQ(0, pthread_mutex_lock(mutex)); 1341 ASSERT_EQ(0, pthread_mutex_unlock(mutex)); 1342 ASSERT_EQ(0, pthread_mutex_destroy(mutex)); 1343 1344 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>( 1345 allocator.allocate(sizeof(pthread_cond_t), 4)); 1346 ASSERT_EQ(0, pthread_cond_init(cond, NULL)); 1347 ASSERT_EQ(0, pthread_cond_signal(cond)); 1348 ASSERT_EQ(0, pthread_cond_broadcast(cond)); 1349 ASSERT_EQ(0, pthread_cond_destroy(cond)); 1350 1351 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>( 1352 allocator.allocate(sizeof(pthread_rwlock_t), 4)); 1353 ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL)); 1354 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock)); 1355 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); 1356 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock)); 1357 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); 1358 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock)); 1359 1360#else 1361 GTEST_LOG_(INFO) << "This test tests bionic implementation details."; 1362#endif 1363} 1364