pthread_test.cpp revision 6c238f2926e69a950f0671ae5519584c20d84196
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <gtest/gtest.h>
18
19#include "private/ScopeGuard.h"
20#include "BionicDeathTest.h"
21#include "ScopedSignalHandler.h"
22#include "gtest_ex.h"
23
24#include <errno.h>
25#include <inttypes.h>
26#include <limits.h>
27#include <malloc.h>
28#include <pthread.h>
29#include <signal.h>
30#include <sys/mman.h>
31#include <sys/syscall.h>
32#include <time.h>
33#include <unistd.h>
34
35
36TEST(pthread, pthread_key_create) {
37  pthread_key_t key;
38  ASSERT_EQ(0, pthread_key_create(&key, NULL));
39  ASSERT_EQ(0, pthread_key_delete(key));
40  // Can't delete a key that's already been deleted.
41  ASSERT_EQ(EINVAL, pthread_key_delete(key));
42}
43
44TEST(pthread, pthread_keys_max) {
45  // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
46  ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
47}
48
49TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
50  int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
51  ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
52}
53
54TEST(pthread, pthread_key_many_distinct) {
55  // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
56  // pthread keys, but We should be able to allocate at least this many keys.
57  int nkeys = PTHREAD_KEYS_MAX / 2;
58  std::vector<pthread_key_t> keys;
59
60  auto scope_guard = make_scope_guard([&keys]{
61    for (auto key : keys) {
62      EXPECT_EQ(0, pthread_key_delete(key));
63    }
64  });
65
66  for (int i = 0; i < nkeys; ++i) {
67    pthread_key_t key;
68    // If this fails, it's likely that GLOBAL_INIT_THREAD_LOCAL_BUFFER_COUNT is
69    // wrong.
70    ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
71    keys.push_back(key);
72    ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
73  }
74
75  for (int i = keys.size() - 1; i >= 0; --i) {
76    ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
77    pthread_key_t key = keys.back();
78    keys.pop_back();
79    ASSERT_EQ(0, pthread_key_delete(key));
80  }
81}
82
83TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
84  std::vector<pthread_key_t> keys;
85  int rv = 0;
86
87  // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
88  // be more than we are allowed to allocate now.
89  for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
90    pthread_key_t key;
91    rv = pthread_key_create(&key, NULL);
92    if (rv == EAGAIN) {
93      break;
94    }
95    EXPECT_EQ(0, rv);
96    keys.push_back(key);
97  }
98
99  // Don't leak keys.
100  for (auto key : keys) {
101    EXPECT_EQ(0, pthread_key_delete(key));
102  }
103  keys.clear();
104
105  // We should have eventually reached the maximum number of keys and received
106  // EAGAIN.
107  ASSERT_EQ(EAGAIN, rv);
108}
109
110TEST(pthread, pthread_key_delete) {
111  void* expected = reinterpret_cast<void*>(1234);
112  pthread_key_t key;
113  ASSERT_EQ(0, pthread_key_create(&key, NULL));
114  ASSERT_EQ(0, pthread_setspecific(key, expected));
115  ASSERT_EQ(expected, pthread_getspecific(key));
116  ASSERT_EQ(0, pthread_key_delete(key));
117  // After deletion, pthread_getspecific returns NULL.
118  ASSERT_EQ(NULL, pthread_getspecific(key));
119  // And you can't use pthread_setspecific with the deleted key.
120  ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
121}
122
123TEST(pthread, pthread_key_fork) {
124  void* expected = reinterpret_cast<void*>(1234);
125  pthread_key_t key;
126  ASSERT_EQ(0, pthread_key_create(&key, NULL));
127  ASSERT_EQ(0, pthread_setspecific(key, expected));
128  ASSERT_EQ(expected, pthread_getspecific(key));
129
130  pid_t pid = fork();
131  ASSERT_NE(-1, pid) << strerror(errno);
132
133  if (pid == 0) {
134    // The surviving thread inherits all the forking thread's TLS values...
135    ASSERT_EQ(expected, pthread_getspecific(key));
136    _exit(99);
137  }
138
139  int status;
140  ASSERT_EQ(pid, waitpid(pid, &status, 0));
141  ASSERT_TRUE(WIFEXITED(status));
142  ASSERT_EQ(99, WEXITSTATUS(status));
143
144  ASSERT_EQ(expected, pthread_getspecific(key));
145  ASSERT_EQ(0, pthread_key_delete(key));
146}
147
148static void* DirtyKeyFn(void* key) {
149  return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
150}
151
152TEST(pthread, pthread_key_dirty) {
153  pthread_key_t key;
154  ASSERT_EQ(0, pthread_key_create(&key, NULL));
155
156  size_t stack_size = 128 * 1024;
157  void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
158  ASSERT_NE(MAP_FAILED, stack);
159  memset(stack, 0xff, stack_size);
160
161  pthread_attr_t attr;
162  ASSERT_EQ(0, pthread_attr_init(&attr));
163  ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
164
165  pthread_t t;
166  ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
167
168  void* result;
169  ASSERT_EQ(0, pthread_join(t, &result));
170  ASSERT_EQ(nullptr, result); // Not ~0!
171
172  ASSERT_EQ(0, munmap(stack, stack_size));
173  ASSERT_EQ(0, pthread_key_delete(key));
174}
175
176static void* IdFn(void* arg) {
177  return arg;
178}
179
180class SpinFunctionHelper {
181 public:
182  SpinFunctionHelper() {
183    SpinFunctionHelper::spin_flag_ = true;
184  }
185  ~SpinFunctionHelper() {
186    UnSpin();
187  }
188  auto GetFunction() -> void* (*)(void*) {
189    return SpinFunctionHelper::SpinFn;
190  }
191
192  void UnSpin() {
193    SpinFunctionHelper::spin_flag_ = false;
194  }
195
196 private:
197  static void* SpinFn(void*) {
198    while (spin_flag_) {}
199    return NULL;
200  }
201  static volatile bool spin_flag_;
202};
203
204// It doesn't matter if spin_flag_ is used in several tests,
205// because it is always set to false after each test. Each thread
206// loops on spin_flag_ can find it becomes false at some time.
207volatile bool SpinFunctionHelper::spin_flag_ = false;
208
209static void* JoinFn(void* arg) {
210  return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
211}
212
213static void AssertDetached(pthread_t t, bool is_detached) {
214  pthread_attr_t attr;
215  ASSERT_EQ(0, pthread_getattr_np(t, &attr));
216  int detach_state;
217  ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
218  pthread_attr_destroy(&attr);
219  ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
220}
221
222static void MakeDeadThread(pthread_t& t) {
223  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
224  ASSERT_EQ(0, pthread_join(t, NULL));
225}
226
227TEST(pthread, pthread_create) {
228  void* expected_result = reinterpret_cast<void*>(123);
229  // Can we create a thread?
230  pthread_t t;
231  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
232  // If we join, do we get the expected value back?
233  void* result;
234  ASSERT_EQ(0, pthread_join(t, &result));
235  ASSERT_EQ(expected_result, result);
236}
237
238TEST(pthread, pthread_create_EAGAIN) {
239  pthread_attr_t attributes;
240  ASSERT_EQ(0, pthread_attr_init(&attributes));
241  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
242
243  pthread_t t;
244  ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
245}
246
247TEST(pthread, pthread_no_join_after_detach) {
248  SpinFunctionHelper spinhelper;
249
250  pthread_t t1;
251  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
252
253  // After a pthread_detach...
254  ASSERT_EQ(0, pthread_detach(t1));
255  AssertDetached(t1, true);
256
257  // ...pthread_join should fail.
258  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
259}
260
261TEST(pthread, pthread_no_op_detach_after_join) {
262  SpinFunctionHelper spinhelper;
263
264  pthread_t t1;
265  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
266
267  // If thread 2 is already waiting to join thread 1...
268  pthread_t t2;
269  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
270
271  sleep(1); // (Give t2 a chance to call pthread_join.)
272
273  // ...a call to pthread_detach on thread 1 will "succeed" (silently fail)...
274  ASSERT_EQ(0, pthread_detach(t1));
275  AssertDetached(t1, false);
276
277  spinhelper.UnSpin();
278
279  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
280  void* join_result;
281  ASSERT_EQ(0, pthread_join(t2, &join_result));
282  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
283}
284
285TEST(pthread, pthread_join_self) {
286  ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
287}
288
289struct TestBug37410 {
290  pthread_t main_thread;
291  pthread_mutex_t mutex;
292
293  static void main() {
294    TestBug37410 data;
295    data.main_thread = pthread_self();
296    ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
297    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
298
299    pthread_t t;
300    ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
301
302    // Wait for the thread to be running...
303    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
304    ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
305
306    // ...and exit.
307    pthread_exit(NULL);
308  }
309
310 private:
311  static void* thread_fn(void* arg) {
312    TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
313
314    // Let the main thread know we're running.
315    pthread_mutex_unlock(&data->mutex);
316
317    // And wait for the main thread to exit.
318    pthread_join(data->main_thread, NULL);
319
320    return NULL;
321  }
322};
323
324// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
325// run this test (which exits normally) in its own process.
326
327class pthread_DeathTest : public BionicDeathTest {};
328
329TEST_F(pthread_DeathTest, pthread_bug_37410) {
330  // http://code.google.com/p/android/issues/detail?id=37410
331  ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
332}
333
334static void* SignalHandlerFn(void* arg) {
335  sigset_t wait_set;
336  sigfillset(&wait_set);
337  return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
338}
339
340TEST(pthread, pthread_sigmask) {
341  // Check that SIGUSR1 isn't blocked.
342  sigset_t original_set;
343  sigemptyset(&original_set);
344  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
345  ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
346
347  // Block SIGUSR1.
348  sigset_t set;
349  sigemptyset(&set);
350  sigaddset(&set, SIGUSR1);
351  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
352
353  // Check that SIGUSR1 is blocked.
354  sigset_t final_set;
355  sigemptyset(&final_set);
356  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
357  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
358  // ...and that sigprocmask agrees with pthread_sigmask.
359  sigemptyset(&final_set);
360  ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
361  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
362
363  // Spawn a thread that calls sigwait and tells us what it received.
364  pthread_t signal_thread;
365  int received_signal = -1;
366  ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
367
368  // Send that thread SIGUSR1.
369  pthread_kill(signal_thread, SIGUSR1);
370
371  // See what it got.
372  void* join_result;
373  ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
374  ASSERT_EQ(SIGUSR1, received_signal);
375  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
376
377  // Restore the original signal mask.
378  ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
379}
380
381TEST(pthread, pthread_setname_np__too_long) {
382  ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "this name is far too long for linux"));
383}
384
385TEST(pthread, pthread_setname_np__self) {
386  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
387}
388
389TEST(pthread, pthread_setname_np__other) {
390  SpinFunctionHelper spinhelper;
391
392  pthread_t t1;
393  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
394  ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
395}
396
397TEST(pthread, pthread_setname_np__no_such_thread) {
398  pthread_t dead_thread;
399  MakeDeadThread(dead_thread);
400
401  // Call pthread_setname_np after thread has already exited.
402  ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
403}
404
405TEST(pthread, pthread_kill__0) {
406  // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
407  ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
408}
409
410TEST(pthread, pthread_kill__invalid_signal) {
411  ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
412}
413
414static void pthread_kill__in_signal_handler_helper(int signal_number) {
415  static int count = 0;
416  ASSERT_EQ(SIGALRM, signal_number);
417  if (++count == 1) {
418    // Can we call pthread_kill from a signal handler?
419    ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
420  }
421}
422
423TEST(pthread, pthread_kill__in_signal_handler) {
424  ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
425  ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
426}
427
428TEST(pthread, pthread_detach__no_such_thread) {
429  pthread_t dead_thread;
430  MakeDeadThread(dead_thread);
431
432  ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
433}
434
435TEST(pthread, pthread_detach__leak) {
436  size_t initial_bytes = 0;
437  // Run this loop more than once since the first loop causes some memory
438  // to be allocated permenantly. Run an extra loop to help catch any subtle
439  // memory leaks.
440  for (size_t loop = 0; loop < 3; loop++) {
441    // Set the initial bytes on the second loop since the memory in use
442    // should have stabilized.
443    if (loop == 1) {
444      initial_bytes = mallinfo().uordblks;
445    }
446
447    pthread_attr_t attr;
448    ASSERT_EQ(0, pthread_attr_init(&attr));
449    ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
450
451    std::vector<pthread_t> threads;
452    for (size_t i = 0; i < 32; ++i) {
453      pthread_t t;
454      ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, NULL));
455      threads.push_back(t);
456    }
457
458    sleep(1);
459
460    for (size_t i = 0; i < 32; ++i) {
461      ASSERT_EQ(0, pthread_detach(threads[i])) << i;
462    }
463  }
464
465  size_t final_bytes = mallinfo().uordblks;
466  int leaked_bytes = (final_bytes - initial_bytes);
467
468  // User code (like this test) doesn't know how large pthread_internal_t is.
469  // We can be pretty sure it's more than 128 bytes.
470  ASSERT_LT(leaked_bytes, 32 /*threads*/ * 128 /*bytes*/);
471}
472
473TEST(pthread, pthread_getcpuclockid__clock_gettime) {
474  SpinFunctionHelper spinhelper;
475
476  pthread_t t;
477  ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
478
479  clockid_t c;
480  ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
481  timespec ts;
482  ASSERT_EQ(0, clock_gettime(c, &ts));
483}
484
485TEST(pthread, pthread_getcpuclockid__no_such_thread) {
486  pthread_t dead_thread;
487  MakeDeadThread(dead_thread);
488
489  clockid_t c;
490  ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
491}
492
493TEST(pthread, pthread_getschedparam__no_such_thread) {
494  pthread_t dead_thread;
495  MakeDeadThread(dead_thread);
496
497  int policy;
498  sched_param param;
499  ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, &param));
500}
501
502TEST(pthread, pthread_setschedparam__no_such_thread) {
503  pthread_t dead_thread;
504  MakeDeadThread(dead_thread);
505
506  int policy = 0;
507  sched_param param;
508  ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, &param));
509}
510
511TEST(pthread, pthread_join__no_such_thread) {
512  pthread_t dead_thread;
513  MakeDeadThread(dead_thread);
514
515  ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
516}
517
518TEST(pthread, pthread_kill__no_such_thread) {
519  pthread_t dead_thread;
520  MakeDeadThread(dead_thread);
521
522  ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
523}
524
525TEST(pthread, pthread_join__multijoin) {
526  SpinFunctionHelper spinhelper;
527
528  pthread_t t1;
529  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
530
531  pthread_t t2;
532  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
533
534  sleep(1); // (Give t2 a chance to call pthread_join.)
535
536  // Multiple joins to the same thread should fail.
537  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
538
539  spinhelper.UnSpin();
540
541  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
542  void* join_result;
543  ASSERT_EQ(0, pthread_join(t2, &join_result));
544  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
545}
546
547TEST(pthread, pthread_join__race) {
548  // http://b/11693195 --- pthread_join could return before the thread had actually exited.
549  // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
550  for (size_t i = 0; i < 1024; ++i) {
551    size_t stack_size = 64*1024;
552    void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
553
554    pthread_attr_t a;
555    pthread_attr_init(&a);
556    pthread_attr_setstack(&a, stack, stack_size);
557
558    pthread_t t;
559    ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
560    ASSERT_EQ(0, pthread_join(t, NULL));
561    ASSERT_EQ(0, munmap(stack, stack_size));
562  }
563}
564
565static void* GetActualGuardSizeFn(void* arg) {
566  pthread_attr_t attributes;
567  pthread_getattr_np(pthread_self(), &attributes);
568  pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
569  return NULL;
570}
571
572static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
573  size_t result;
574  pthread_t t;
575  pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
576  pthread_join(t, NULL);
577  return result;
578}
579
580static void* GetActualStackSizeFn(void* arg) {
581  pthread_attr_t attributes;
582  pthread_getattr_np(pthread_self(), &attributes);
583  pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
584  return NULL;
585}
586
587static size_t GetActualStackSize(const pthread_attr_t& attributes) {
588  size_t result;
589  pthread_t t;
590  pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
591  pthread_join(t, NULL);
592  return result;
593}
594
595TEST(pthread, pthread_attr_setguardsize) {
596  pthread_attr_t attributes;
597  ASSERT_EQ(0, pthread_attr_init(&attributes));
598
599  // Get the default guard size.
600  size_t default_guard_size;
601  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
602
603  // No such thing as too small: will be rounded up to one page by pthread_create.
604  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
605  size_t guard_size;
606  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
607  ASSERT_EQ(128U, guard_size);
608  ASSERT_EQ(4096U, GetActualGuardSize(attributes));
609
610  // Large enough and a multiple of the page size.
611  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
612  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
613  ASSERT_EQ(32*1024U, guard_size);
614
615  // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
616  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
617  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
618  ASSERT_EQ(32*1024U + 1, guard_size);
619}
620
621TEST(pthread, pthread_attr_setstacksize) {
622  pthread_attr_t attributes;
623  ASSERT_EQ(0, pthread_attr_init(&attributes));
624
625  // Get the default stack size.
626  size_t default_stack_size;
627  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
628
629  // Too small.
630  ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
631  size_t stack_size;
632  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
633  ASSERT_EQ(default_stack_size, stack_size);
634  ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
635
636  // Large enough and a multiple of the page size.
637  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
638  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
639  ASSERT_EQ(32*1024U, stack_size);
640  ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
641
642  // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
643  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
644  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
645  ASSERT_EQ(32*1024U + 1, stack_size);
646#if defined(__BIONIC__)
647  // Bionic rounds up, which is what POSIX allows.
648  ASSERT_EQ(GetActualStackSize(attributes), (32 + 4)*1024U);
649#else // __BIONIC__
650  // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
651  ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
652#endif // __BIONIC__
653}
654
655TEST(pthread, pthread_rwlock_smoke) {
656  pthread_rwlock_t l;
657  ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
658
659  // Single read lock
660  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
661  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
662
663  // Multiple read lock
664  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
665  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
666  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
667  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
668
669  // Write lock
670  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
671  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
672
673  // Try writer lock
674  ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
675  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
676  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
677  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
678
679  // Try reader lock
680  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
681  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
682  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
683  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
684  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
685
686  // Try writer lock after unlock
687  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
688  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
689
690#ifdef __BIONIC__
691  // EDEADLK in "read after write"
692  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
693  ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
694  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
695
696  // EDEADLK in "write after write"
697  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
698  ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
699  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
700#endif
701
702  ASSERT_EQ(0, pthread_rwlock_destroy(&l));
703}
704
705static int g_once_fn_call_count = 0;
706static void OnceFn() {
707  ++g_once_fn_call_count;
708}
709
710TEST(pthread, pthread_once_smoke) {
711  pthread_once_t once_control = PTHREAD_ONCE_INIT;
712  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
713  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
714  ASSERT_EQ(1, g_once_fn_call_count);
715}
716
717static std::string pthread_once_1934122_result = "";
718
719static void Routine2() {
720  pthread_once_1934122_result += "2";
721}
722
723static void Routine1() {
724  pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
725  pthread_once_1934122_result += "1";
726  pthread_once(&once_control_2, &Routine2);
727}
728
729TEST(pthread, pthread_once_1934122) {
730  // Very old versions of Android couldn't call pthread_once from a
731  // pthread_once init routine. http://b/1934122.
732  pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
733  ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
734  ASSERT_EQ("12", pthread_once_1934122_result);
735}
736
737static int g_atfork_prepare_calls = 0;
738static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 1; }
739static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 2; }
740static int g_atfork_parent_calls = 0;
741static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 1; }
742static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 2; }
743static int g_atfork_child_calls = 0;
744static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 1; }
745static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 2; }
746
747TEST(pthread, pthread_atfork_smoke) {
748  test_isolated([] {
749    ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
750    ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
751
752    int pid = fork();
753    ASSERT_NE(-1, pid) << strerror(errno);
754
755    // Child and parent calls are made in the order they were registered.
756    if (pid == 0) {
757      ASSERT_EQ(0x12, g_atfork_child_calls);
758      _exit(0);
759    }
760    ASSERT_EQ(0x12, g_atfork_parent_calls);
761
762    // Prepare calls are made in the reverse order.
763    ASSERT_EQ(0x21, g_atfork_prepare_calls);
764  });
765}
766
767TEST(pthread, pthread_attr_getscope) {
768  pthread_attr_t attr;
769  ASSERT_EQ(0, pthread_attr_init(&attr));
770
771  int scope;
772  ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
773  ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
774}
775
776TEST(pthread, pthread_condattr_init) {
777  pthread_condattr_t attr;
778  pthread_condattr_init(&attr);
779
780  clockid_t clock;
781  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
782  ASSERT_EQ(CLOCK_REALTIME, clock);
783
784  int pshared;
785  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
786  ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
787}
788
789TEST(pthread, pthread_condattr_setclock) {
790  pthread_condattr_t attr;
791  pthread_condattr_init(&attr);
792
793  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
794  clockid_t clock;
795  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
796  ASSERT_EQ(CLOCK_REALTIME, clock);
797
798  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
799  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
800  ASSERT_EQ(CLOCK_MONOTONIC, clock);
801
802  ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
803}
804
805TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
806#if defined(__BIONIC__) // This tests a bionic implementation detail.
807  pthread_condattr_t attr;
808  pthread_condattr_init(&attr);
809
810  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
811  ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
812
813  pthread_cond_t cond_var;
814  ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
815
816  ASSERT_EQ(0, pthread_cond_signal(&cond_var));
817  ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
818
819  attr = static_cast<pthread_condattr_t>(cond_var.value);
820  clockid_t clock;
821  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
822  ASSERT_EQ(CLOCK_MONOTONIC, clock);
823  int pshared;
824  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
825  ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
826#else // __BIONIC__
827  GTEST_LOG_(INFO) << "This test does nothing.\n";
828#endif // __BIONIC__
829}
830
831TEST(pthread, pthread_mutex_timedlock) {
832  pthread_mutex_t m;
833  ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
834
835  // If the mutex is already locked, pthread_mutex_timedlock should time out.
836  ASSERT_EQ(0, pthread_mutex_lock(&m));
837
838  timespec ts;
839  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
840  ts.tv_nsec += 1;
841  ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
842
843  // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
844  ASSERT_EQ(0, pthread_mutex_unlock(&m));
845
846  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
847  ts.tv_nsec += 1;
848  ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
849
850  ASSERT_EQ(0, pthread_mutex_unlock(&m));
851  ASSERT_EQ(0, pthread_mutex_destroy(&m));
852}
853
854TEST(pthread, pthread_attr_getstack__main_thread) {
855  // This test is only meaningful for the main thread, so make sure we're running on it!
856  ASSERT_EQ(getpid(), syscall(__NR_gettid));
857
858  // Get the main thread's attributes.
859  pthread_attr_t attributes;
860  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
861
862  // Check that we correctly report that the main thread has no guard page.
863  size_t guard_size;
864  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
865  ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
866
867  // Get the stack base and the stack size (both ways).
868  void* stack_base;
869  size_t stack_size;
870  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
871  size_t stack_size2;
872  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
873
874  // The two methods of asking for the stack size should agree.
875  EXPECT_EQ(stack_size, stack_size2);
876
877  // What does /proc/self/maps' [stack] line say?
878  void* maps_stack_hi = NULL;
879  FILE* fp = fopen("/proc/self/maps", "r");
880  ASSERT_TRUE(fp != NULL);
881  char line[BUFSIZ];
882  while (fgets(line, sizeof(line), fp) != NULL) {
883    uintptr_t lo, hi;
884    char name[10];
885    sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name);
886    if (strcmp(name, "[stack]") == 0) {
887      maps_stack_hi = reinterpret_cast<void*>(hi);
888      break;
889    }
890  }
891  fclose(fp);
892
893  // The stack size should correspond to RLIMIT_STACK.
894  rlimit rl;
895  ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
896  uint64_t original_rlim_cur = rl.rlim_cur;
897#if defined(__BIONIC__)
898  if (rl.rlim_cur == RLIM_INFINITY) {
899    rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
900  }
901#endif
902  EXPECT_EQ(rl.rlim_cur, stack_size);
903
904  auto guard = make_scope_guard([&rl, original_rlim_cur]() {
905    rl.rlim_cur = original_rlim_cur;
906    ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
907  });
908
909  // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
910  // Remember that the stack grows down (and is mapped in on demand), so the low address of the
911  // region isn't very interesting.
912  EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
913
914  //
915  // What if RLIMIT_STACK is smaller than the stack's current extent?
916  //
917  rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
918  rl.rlim_max = RLIM_INFINITY;
919  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
920
921  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
922  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
923  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
924
925  EXPECT_EQ(stack_size, stack_size2);
926  ASSERT_EQ(1024U, stack_size);
927
928  //
929  // What if RLIMIT_STACK isn't a whole number of pages?
930  //
931  rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
932  rl.rlim_max = RLIM_INFINITY;
933  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
934
935  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
936  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
937  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
938
939  EXPECT_EQ(stack_size, stack_size2);
940  ASSERT_EQ(6666U, stack_size);
941}
942
943#if defined(__BIONIC__)
944static void* pthread_gettid_np_helper(void* arg) {
945  *reinterpret_cast<pid_t*>(arg) = gettid();
946  return NULL;
947}
948#endif
949
950TEST(pthread, pthread_gettid_np) {
951#if defined(__BIONIC__)
952  ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
953
954  pid_t t_gettid_result;
955  pthread_t t;
956  pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
957
958  pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
959
960  pthread_join(t, NULL);
961
962  ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
963#else
964  GTEST_LOG_(INFO) << "This test does nothing.\n";
965#endif
966}
967
968static size_t cleanup_counter = 0;
969
970static void AbortCleanupRoutine(void*) {
971  abort();
972}
973
974static void CountCleanupRoutine(void*) {
975  ++cleanup_counter;
976}
977
978static void PthreadCleanupTester() {
979  pthread_cleanup_push(CountCleanupRoutine, NULL);
980  pthread_cleanup_push(CountCleanupRoutine, NULL);
981  pthread_cleanup_push(AbortCleanupRoutine, NULL);
982
983  pthread_cleanup_pop(0); // Pop the abort without executing it.
984  pthread_cleanup_pop(1); // Pop one count while executing it.
985  ASSERT_EQ(1U, cleanup_counter);
986  // Exit while the other count is still on the cleanup stack.
987  pthread_exit(NULL);
988
989  // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
990  pthread_cleanup_pop(0);
991}
992
993static void* PthreadCleanupStartRoutine(void*) {
994  PthreadCleanupTester();
995  return NULL;
996}
997
998TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
999  pthread_t t;
1000  ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1001  pthread_join(t, NULL);
1002  ASSERT_EQ(2U, cleanup_counter);
1003}
1004
1005TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1006  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1007}
1008
1009TEST(pthread, pthread_mutexattr_gettype) {
1010  pthread_mutexattr_t attr;
1011  ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1012
1013  int attr_type;
1014
1015  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1016  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1017  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1018
1019  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1020  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1021  ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1022
1023  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1024  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1025  ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1026}
1027
1028TEST(pthread, pthread_mutex_lock_NORMAL) {
1029  pthread_mutexattr_t attr;
1030  ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1031  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1032
1033  pthread_mutex_t lock;
1034  ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1035
1036  ASSERT_EQ(0, pthread_mutex_lock(&lock));
1037  ASSERT_EQ(0, pthread_mutex_unlock(&lock));
1038  ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1039}
1040
1041TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1042  pthread_mutexattr_t attr;
1043  ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1044  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1045
1046  pthread_mutex_t lock;
1047  ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1048
1049  ASSERT_EQ(0, pthread_mutex_lock(&lock));
1050  ASSERT_EQ(EDEADLK, pthread_mutex_lock(&lock));
1051  ASSERT_EQ(0, pthread_mutex_unlock(&lock));
1052  ASSERT_EQ(0, pthread_mutex_trylock(&lock));
1053  ASSERT_EQ(EBUSY, pthread_mutex_trylock(&lock));
1054  ASSERT_EQ(0, pthread_mutex_unlock(&lock));
1055  ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock));
1056  ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1057}
1058
1059TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1060  pthread_mutexattr_t attr;
1061  ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1062  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1063
1064  pthread_mutex_t lock;
1065  ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1066
1067  ASSERT_EQ(0, pthread_mutex_lock(&lock));
1068  ASSERT_EQ(0, pthread_mutex_lock(&lock));
1069  ASSERT_EQ(0, pthread_mutex_unlock(&lock));
1070  ASSERT_EQ(0, pthread_mutex_unlock(&lock));
1071  ASSERT_EQ(0, pthread_mutex_trylock(&lock));
1072  ASSERT_EQ(0, pthread_mutex_unlock(&lock));
1073  ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock));
1074  ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1075}
1076