pthread_test.cpp revision c9a659c57b256001fd63f9825bde69e660c2655b
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include <gtest/gtest.h> 18 19#include <errno.h> 20#include <inttypes.h> 21#include <limits.h> 22#include <malloc.h> 23#include <pthread.h> 24#include <signal.h> 25#include <stdio.h> 26#include <sys/mman.h> 27#include <sys/syscall.h> 28#include <time.h> 29#include <unistd.h> 30#include <unwind.h> 31 32#include <atomic> 33#include <regex> 34#include <vector> 35 36#include <base/file.h> 37#include <base/stringprintf.h> 38 39#include "private/bionic_constants.h" 40#include "private/bionic_macros.h" 41#include "private/ScopeGuard.h" 42#include "BionicDeathTest.h" 43#include "ScopedSignalHandler.h" 44 45#include "utils.h" 46 47extern "C" pid_t gettid(); 48 49TEST(pthread, pthread_key_create) { 50 pthread_key_t key; 51 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 52 ASSERT_EQ(0, pthread_key_delete(key)); 53 // Can't delete a key that's already been deleted. 54 ASSERT_EQ(EINVAL, pthread_key_delete(key)); 55} 56 57TEST(pthread, pthread_keys_max) { 58 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX. 59 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX); 60} 61 62TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) { 63 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX); 64 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX); 65} 66 67TEST(pthread, pthread_key_many_distinct) { 68 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX 69 // pthread keys, but We should be able to allocate at least this many keys. 70 int nkeys = PTHREAD_KEYS_MAX / 2; 71 std::vector<pthread_key_t> keys; 72 73 auto scope_guard = make_scope_guard([&keys]{ 74 for (const auto& key : keys) { 75 EXPECT_EQ(0, pthread_key_delete(key)); 76 } 77 }); 78 79 for (int i = 0; i < nkeys; ++i) { 80 pthread_key_t key; 81 // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong. 82 ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys; 83 keys.push_back(key); 84 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i))); 85 } 86 87 for (int i = keys.size() - 1; i >= 0; --i) { 88 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back())); 89 pthread_key_t key = keys.back(); 90 keys.pop_back(); 91 ASSERT_EQ(0, pthread_key_delete(key)); 92 } 93} 94 95TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) { 96 std::vector<pthread_key_t> keys; 97 int rv = 0; 98 99 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should 100 // be more than we are allowed to allocate now. 101 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) { 102 pthread_key_t key; 103 rv = pthread_key_create(&key, NULL); 104 if (rv == EAGAIN) { 105 break; 106 } 107 EXPECT_EQ(0, rv); 108 keys.push_back(key); 109 } 110 111 // Don't leak keys. 112 for (const auto& key : keys) { 113 EXPECT_EQ(0, pthread_key_delete(key)); 114 } 115 keys.clear(); 116 117 // We should have eventually reached the maximum number of keys and received 118 // EAGAIN. 119 ASSERT_EQ(EAGAIN, rv); 120} 121 122TEST(pthread, pthread_key_delete) { 123 void* expected = reinterpret_cast<void*>(1234); 124 pthread_key_t key; 125 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 126 ASSERT_EQ(0, pthread_setspecific(key, expected)); 127 ASSERT_EQ(expected, pthread_getspecific(key)); 128 ASSERT_EQ(0, pthread_key_delete(key)); 129 // After deletion, pthread_getspecific returns NULL. 130 ASSERT_EQ(NULL, pthread_getspecific(key)); 131 // And you can't use pthread_setspecific with the deleted key. 132 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected)); 133} 134 135TEST(pthread, pthread_key_fork) { 136 void* expected = reinterpret_cast<void*>(1234); 137 pthread_key_t key; 138 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 139 ASSERT_EQ(0, pthread_setspecific(key, expected)); 140 ASSERT_EQ(expected, pthread_getspecific(key)); 141 142 pid_t pid = fork(); 143 ASSERT_NE(-1, pid) << strerror(errno); 144 145 if (pid == 0) { 146 // The surviving thread inherits all the forking thread's TLS values... 147 ASSERT_EQ(expected, pthread_getspecific(key)); 148 _exit(99); 149 } 150 151 int status; 152 ASSERT_EQ(pid, waitpid(pid, &status, 0)); 153 ASSERT_TRUE(WIFEXITED(status)); 154 ASSERT_EQ(99, WEXITSTATUS(status)); 155 156 ASSERT_EQ(expected, pthread_getspecific(key)); 157 ASSERT_EQ(0, pthread_key_delete(key)); 158} 159 160static void* DirtyKeyFn(void* key) { 161 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key)); 162} 163 164TEST(pthread, pthread_key_dirty) { 165 pthread_key_t key; 166 ASSERT_EQ(0, pthread_key_create(&key, NULL)); 167 168 size_t stack_size = 128 * 1024; 169 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); 170 ASSERT_NE(MAP_FAILED, stack); 171 memset(stack, 0xff, stack_size); 172 173 pthread_attr_t attr; 174 ASSERT_EQ(0, pthread_attr_init(&attr)); 175 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size)); 176 177 pthread_t t; 178 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key)); 179 180 void* result; 181 ASSERT_EQ(0, pthread_join(t, &result)); 182 ASSERT_EQ(nullptr, result); // Not ~0! 183 184 ASSERT_EQ(0, munmap(stack, stack_size)); 185 ASSERT_EQ(0, pthread_key_delete(key)); 186} 187 188TEST(pthread, static_pthread_key_used_before_creation) { 189#if defined(__BIONIC__) 190 // See http://b/19625804. The bug is about a static/global pthread key being used before creation. 191 // So here tests if the static/global default value 0 can be detected as invalid key. 192 static pthread_key_t key; 193 ASSERT_EQ(nullptr, pthread_getspecific(key)); 194 ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr)); 195 ASSERT_EQ(EINVAL, pthread_key_delete(key)); 196#else 197 GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n"; 198#endif 199} 200 201static void* IdFn(void* arg) { 202 return arg; 203} 204 205class SpinFunctionHelper { 206 public: 207 SpinFunctionHelper() { 208 SpinFunctionHelper::spin_flag_ = true; 209 } 210 ~SpinFunctionHelper() { 211 UnSpin(); 212 } 213 auto GetFunction() -> void* (*)(void*) { 214 return SpinFunctionHelper::SpinFn; 215 } 216 217 void UnSpin() { 218 SpinFunctionHelper::spin_flag_ = false; 219 } 220 221 private: 222 static void* SpinFn(void*) { 223 while (spin_flag_) {} 224 return NULL; 225 } 226 static volatile bool spin_flag_; 227}; 228 229// It doesn't matter if spin_flag_ is used in several tests, 230// because it is always set to false after each test. Each thread 231// loops on spin_flag_ can find it becomes false at some time. 232volatile bool SpinFunctionHelper::spin_flag_ = false; 233 234static void* JoinFn(void* arg) { 235 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL)); 236} 237 238static void AssertDetached(pthread_t t, bool is_detached) { 239 pthread_attr_t attr; 240 ASSERT_EQ(0, pthread_getattr_np(t, &attr)); 241 int detach_state; 242 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state)); 243 pthread_attr_destroy(&attr); 244 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED)); 245} 246 247static void MakeDeadThread(pthread_t& t) { 248 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL)); 249 ASSERT_EQ(0, pthread_join(t, NULL)); 250} 251 252TEST(pthread, pthread_create) { 253 void* expected_result = reinterpret_cast<void*>(123); 254 // Can we create a thread? 255 pthread_t t; 256 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result)); 257 // If we join, do we get the expected value back? 258 void* result; 259 ASSERT_EQ(0, pthread_join(t, &result)); 260 ASSERT_EQ(expected_result, result); 261} 262 263TEST(pthread, pthread_create_EAGAIN) { 264 pthread_attr_t attributes; 265 ASSERT_EQ(0, pthread_attr_init(&attributes)); 266 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1))); 267 268 pthread_t t; 269 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL)); 270} 271 272TEST(pthread, pthread_no_join_after_detach) { 273 SpinFunctionHelper spinhelper; 274 275 pthread_t t1; 276 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL)); 277 278 // After a pthread_detach... 279 ASSERT_EQ(0, pthread_detach(t1)); 280 AssertDetached(t1, true); 281 282 // ...pthread_join should fail. 283 ASSERT_EQ(EINVAL, pthread_join(t1, NULL)); 284} 285 286TEST(pthread, pthread_no_op_detach_after_join) { 287 SpinFunctionHelper spinhelper; 288 289 pthread_t t1; 290 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL)); 291 292 // If thread 2 is already waiting to join thread 1... 293 pthread_t t2; 294 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1))); 295 296 sleep(1); // (Give t2 a chance to call pthread_join.) 297 298#if defined(__BIONIC__) 299 ASSERT_EQ(EINVAL, pthread_detach(t1)); 300#else 301 ASSERT_EQ(0, pthread_detach(t1)); 302#endif 303 AssertDetached(t1, false); 304 305 spinhelper.UnSpin(); 306 307 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). 308 void* join_result; 309 ASSERT_EQ(0, pthread_join(t2, &join_result)); 310 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); 311} 312 313TEST(pthread, pthread_join_self) { 314 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL)); 315} 316 317struct TestBug37410 { 318 pthread_t main_thread; 319 pthread_mutex_t mutex; 320 321 static void main() { 322 TestBug37410 data; 323 data.main_thread = pthread_self(); 324 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL)); 325 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); 326 327 pthread_t t; 328 ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data))); 329 330 // Wait for the thread to be running... 331 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); 332 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex)); 333 334 // ...and exit. 335 pthread_exit(NULL); 336 } 337 338 private: 339 static void* thread_fn(void* arg) { 340 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg); 341 342 // Let the main thread know we're running. 343 pthread_mutex_unlock(&data->mutex); 344 345 // And wait for the main thread to exit. 346 pthread_join(data->main_thread, NULL); 347 348 return NULL; 349 } 350}; 351 352// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to 353// run this test (which exits normally) in its own process. 354 355class pthread_DeathTest : public BionicDeathTest {}; 356 357TEST_F(pthread_DeathTest, pthread_bug_37410) { 358 // http://code.google.com/p/android/issues/detail?id=37410 359 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), ""); 360} 361 362static void* SignalHandlerFn(void* arg) { 363 sigset_t wait_set; 364 sigfillset(&wait_set); 365 return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg))); 366} 367 368TEST(pthread, pthread_sigmask) { 369 // Check that SIGUSR1 isn't blocked. 370 sigset_t original_set; 371 sigemptyset(&original_set); 372 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set)); 373 ASSERT_FALSE(sigismember(&original_set, SIGUSR1)); 374 375 // Block SIGUSR1. 376 sigset_t set; 377 sigemptyset(&set); 378 sigaddset(&set, SIGUSR1); 379 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL)); 380 381 // Check that SIGUSR1 is blocked. 382 sigset_t final_set; 383 sigemptyset(&final_set); 384 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set)); 385 ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); 386 // ...and that sigprocmask agrees with pthread_sigmask. 387 sigemptyset(&final_set); 388 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set)); 389 ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); 390 391 // Spawn a thread that calls sigwait and tells us what it received. 392 pthread_t signal_thread; 393 int received_signal = -1; 394 ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal)); 395 396 // Send that thread SIGUSR1. 397 pthread_kill(signal_thread, SIGUSR1); 398 399 // See what it got. 400 void* join_result; 401 ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); 402 ASSERT_EQ(SIGUSR1, received_signal); 403 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); 404 405 // Restore the original signal mask. 406 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL)); 407} 408 409TEST(pthread, pthread_setname_np__too_long) { 410 // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL. 411 ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345")); 412 ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456")); 413} 414 415TEST(pthread, pthread_setname_np__self) { 416 ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1")); 417} 418 419TEST(pthread, pthread_setname_np__other) { 420 SpinFunctionHelper spinhelper; 421 422 pthread_t t1; 423 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL)); 424 ASSERT_EQ(0, pthread_setname_np(t1, "short 2")); 425} 426 427TEST(pthread, pthread_setname_np__no_such_thread) { 428 pthread_t dead_thread; 429 MakeDeadThread(dead_thread); 430 431 // Call pthread_setname_np after thread has already exited. 432 ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3")); 433} 434 435TEST(pthread, pthread_kill__0) { 436 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves. 437 ASSERT_EQ(0, pthread_kill(pthread_self(), 0)); 438} 439 440TEST(pthread, pthread_kill__invalid_signal) { 441 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1)); 442} 443 444static void pthread_kill__in_signal_handler_helper(int signal_number) { 445 static int count = 0; 446 ASSERT_EQ(SIGALRM, signal_number); 447 if (++count == 1) { 448 // Can we call pthread_kill from a signal handler? 449 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); 450 } 451} 452 453TEST(pthread, pthread_kill__in_signal_handler) { 454 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper); 455 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); 456} 457 458TEST(pthread, pthread_detach__no_such_thread) { 459 pthread_t dead_thread; 460 MakeDeadThread(dead_thread); 461 462 ASSERT_EQ(ESRCH, pthread_detach(dead_thread)); 463} 464 465TEST(pthread, pthread_getcpuclockid__clock_gettime) { 466 SpinFunctionHelper spinhelper; 467 468 pthread_t t; 469 ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL)); 470 471 clockid_t c; 472 ASSERT_EQ(0, pthread_getcpuclockid(t, &c)); 473 timespec ts; 474 ASSERT_EQ(0, clock_gettime(c, &ts)); 475} 476 477TEST(pthread, pthread_getcpuclockid__no_such_thread) { 478 pthread_t dead_thread; 479 MakeDeadThread(dead_thread); 480 481 clockid_t c; 482 ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c)); 483} 484 485TEST(pthread, pthread_getschedparam__no_such_thread) { 486 pthread_t dead_thread; 487 MakeDeadThread(dead_thread); 488 489 int policy; 490 sched_param param; 491 ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m)); 492} 493 494TEST(pthread, pthread_setschedparam__no_such_thread) { 495 pthread_t dead_thread; 496 MakeDeadThread(dead_thread); 497 498 int policy = 0; 499 sched_param param; 500 ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m)); 501} 502 503TEST(pthread, pthread_join__no_such_thread) { 504 pthread_t dead_thread; 505 MakeDeadThread(dead_thread); 506 507 ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL)); 508} 509 510TEST(pthread, pthread_kill__no_such_thread) { 511 pthread_t dead_thread; 512 MakeDeadThread(dead_thread); 513 514 ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0)); 515} 516 517TEST(pthread, pthread_join__multijoin) { 518 SpinFunctionHelper spinhelper; 519 520 pthread_t t1; 521 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL)); 522 523 pthread_t t2; 524 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1))); 525 526 sleep(1); // (Give t2 a chance to call pthread_join.) 527 528 // Multiple joins to the same thread should fail. 529 ASSERT_EQ(EINVAL, pthread_join(t1, NULL)); 530 531 spinhelper.UnSpin(); 532 533 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). 534 void* join_result; 535 ASSERT_EQ(0, pthread_join(t2, &join_result)); 536 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); 537} 538 539TEST(pthread, pthread_join__race) { 540 // http://b/11693195 --- pthread_join could return before the thread had actually exited. 541 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread. 542 for (size_t i = 0; i < 1024; ++i) { 543 size_t stack_size = 64*1024; 544 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); 545 546 pthread_attr_t a; 547 pthread_attr_init(&a); 548 pthread_attr_setstack(&a, stack, stack_size); 549 550 pthread_t t; 551 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL)); 552 ASSERT_EQ(0, pthread_join(t, NULL)); 553 ASSERT_EQ(0, munmap(stack, stack_size)); 554 } 555} 556 557static void* GetActualGuardSizeFn(void* arg) { 558 pthread_attr_t attributes; 559 pthread_getattr_np(pthread_self(), &attributes); 560 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg)); 561 return NULL; 562} 563 564static size_t GetActualGuardSize(const pthread_attr_t& attributes) { 565 size_t result; 566 pthread_t t; 567 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result); 568 pthread_join(t, NULL); 569 return result; 570} 571 572static void* GetActualStackSizeFn(void* arg) { 573 pthread_attr_t attributes; 574 pthread_getattr_np(pthread_self(), &attributes); 575 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg)); 576 return NULL; 577} 578 579static size_t GetActualStackSize(const pthread_attr_t& attributes) { 580 size_t result; 581 pthread_t t; 582 pthread_create(&t, &attributes, GetActualStackSizeFn, &result); 583 pthread_join(t, NULL); 584 return result; 585} 586 587TEST(pthread, pthread_attr_setguardsize) { 588 pthread_attr_t attributes; 589 ASSERT_EQ(0, pthread_attr_init(&attributes)); 590 591 // Get the default guard size. 592 size_t default_guard_size; 593 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size)); 594 595 // No such thing as too small: will be rounded up to one page by pthread_create. 596 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128)); 597 size_t guard_size; 598 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 599 ASSERT_EQ(128U, guard_size); 600 ASSERT_EQ(4096U, GetActualGuardSize(attributes)); 601 602 // Large enough and a multiple of the page size. 603 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024)); 604 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 605 ASSERT_EQ(32*1024U, guard_size); 606 607 // Large enough but not a multiple of the page size; will be rounded up by pthread_create. 608 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1)); 609 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 610 ASSERT_EQ(32*1024U + 1, guard_size); 611} 612 613TEST(pthread, pthread_attr_setstacksize) { 614 pthread_attr_t attributes; 615 ASSERT_EQ(0, pthread_attr_init(&attributes)); 616 617 // Get the default stack size. 618 size_t default_stack_size; 619 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size)); 620 621 // Too small. 622 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128)); 623 size_t stack_size; 624 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); 625 ASSERT_EQ(default_stack_size, stack_size); 626 ASSERT_GE(GetActualStackSize(attributes), default_stack_size); 627 628 // Large enough and a multiple of the page size; may be rounded up by pthread_create. 629 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024)); 630 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); 631 ASSERT_EQ(32*1024U, stack_size); 632 ASSERT_GE(GetActualStackSize(attributes), 32*1024U); 633 634 // Large enough but not aligned; will be rounded up by pthread_create. 635 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1)); 636 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); 637 ASSERT_EQ(32*1024U + 1, stack_size); 638#if defined(__BIONIC__) 639 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1); 640#else // __BIONIC__ 641 // glibc rounds down, in violation of POSIX. They document this in their BUGS section. 642 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); 643#endif // __BIONIC__ 644} 645 646TEST(pthread, pthread_rwlockattr_smoke) { 647 pthread_rwlockattr_t attr; 648 ASSERT_EQ(0, pthread_rwlockattr_init(&attr)); 649 650 int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED}; 651 for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) { 652 ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i])); 653 int pshared; 654 ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared)); 655 ASSERT_EQ(pshared_value_array[i], pshared); 656 } 657 658 int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP, 659 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP}; 660 for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) { 661 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i])); 662 int kind; 663 ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind)); 664 ASSERT_EQ(kind_array[i], kind); 665 } 666 667 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr)); 668} 669 670TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) { 671 pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER; 672 pthread_rwlock_t lock2; 673 ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL)); 674 ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1))); 675} 676 677TEST(pthread, pthread_rwlock_smoke) { 678 pthread_rwlock_t l; 679 ASSERT_EQ(0, pthread_rwlock_init(&l, NULL)); 680 681 // Single read lock 682 ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); 683 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 684 685 // Multiple read lock 686 ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); 687 ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); 688 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 689 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 690 691 // Write lock 692 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 693 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 694 695 // Try writer lock 696 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l)); 697 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); 698 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l)); 699 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 700 701 // Try reader lock 702 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); 703 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); 704 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); 705 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 706 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 707 708 // Try writer lock after unlock 709 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 710 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 711 712 // EDEADLK in "read after write" 713 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 714 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l)); 715 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 716 717 // EDEADLK in "write after write" 718 ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); 719 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l)); 720 ASSERT_EQ(0, pthread_rwlock_unlock(&l)); 721 722 ASSERT_EQ(0, pthread_rwlock_destroy(&l)); 723} 724 725static void WaitUntilThreadSleep(std::atomic<pid_t>& tid) { 726 while (tid == 0) { 727 usleep(1000); 728 } 729 std::string filename = android::base::StringPrintf("/proc/%d/stat", tid.load()); 730 std::regex regex {R"(\s+S\s+)"}; 731 732 while (true) { 733 std::string content; 734 ASSERT_TRUE(android::base::ReadFileToString(filename, &content)); 735 if (std::regex_search(content, regex)) { 736 break; 737 } 738 usleep(1000); 739 } 740} 741 742struct RwlockWakeupHelperArg { 743 pthread_rwlock_t lock; 744 enum Progress { 745 LOCK_INITIALIZED, 746 LOCK_WAITING, 747 LOCK_RELEASED, 748 LOCK_ACCESSED, 749 LOCK_TIMEDOUT, 750 }; 751 std::atomic<Progress> progress; 752 std::atomic<pid_t> tid; 753 std::function<int (pthread_rwlock_t*)> trylock_function; 754 std::function<int (pthread_rwlock_t*)> lock_function; 755 std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function; 756}; 757 758static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) { 759 arg->tid = gettid(); 760 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); 761 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; 762 763 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock)); 764 ASSERT_EQ(0, arg->lock_function(&arg->lock)); 765 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress); 766 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock)); 767 768 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED; 769} 770 771static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) { 772 RwlockWakeupHelperArg wakeup_arg; 773 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL)); 774 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); 775 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; 776 wakeup_arg.tid = 0; 777 wakeup_arg.trylock_function = pthread_rwlock_trywrlock; 778 wakeup_arg.lock_function = lock_function; 779 780 pthread_t thread; 781 ASSERT_EQ(0, pthread_create(&thread, NULL, 782 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg)); 783 WaitUntilThreadSleep(wakeup_arg.tid); 784 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); 785 786 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; 787 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); 788 789 ASSERT_EQ(0, pthread_join(thread, NULL)); 790 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); 791 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); 792} 793 794TEST(pthread, pthread_rwlock_reader_wakeup_writer) { 795 test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock); 796} 797 798TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) { 799 timespec ts; 800 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 801 ts.tv_sec += 1; 802 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) { 803 return pthread_rwlock_timedwrlock(lock, &ts); 804 }); 805} 806 807static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) { 808 RwlockWakeupHelperArg wakeup_arg; 809 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL)); 810 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); 811 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; 812 wakeup_arg.tid = 0; 813 wakeup_arg.trylock_function = pthread_rwlock_tryrdlock; 814 wakeup_arg.lock_function = lock_function; 815 816 pthread_t thread; 817 ASSERT_EQ(0, pthread_create(&thread, NULL, 818 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg)); 819 WaitUntilThreadSleep(wakeup_arg.tid); 820 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); 821 822 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; 823 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); 824 825 ASSERT_EQ(0, pthread_join(thread, NULL)); 826 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); 827 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); 828} 829 830TEST(pthread, pthread_rwlock_writer_wakeup_reader) { 831 test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock); 832} 833 834TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) { 835 timespec ts; 836 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 837 ts.tv_sec += 1; 838 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) { 839 return pthread_rwlock_timedrdlock(lock, &ts); 840 }); 841} 842 843static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) { 844 arg->tid = gettid(); 845 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); 846 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; 847 848 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock)); 849 850 timespec ts; 851 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 852 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); 853 ts.tv_nsec = -1; 854 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts)); 855 ts.tv_nsec = NS_PER_S; 856 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts)); 857 ts.tv_nsec = NS_PER_S - 1; 858 ts.tv_sec = -1; 859 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); 860 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 861 ts.tv_sec += 1; 862 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); 863 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress); 864 arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT; 865} 866 867TEST(pthread, pthread_rwlock_timedrdlock_timeout) { 868 RwlockWakeupHelperArg wakeup_arg; 869 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); 870 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); 871 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; 872 wakeup_arg.tid = 0; 873 wakeup_arg.trylock_function = pthread_rwlock_tryrdlock; 874 wakeup_arg.timed_lock_function = pthread_rwlock_timedrdlock; 875 876 pthread_t thread; 877 ASSERT_EQ(0, pthread_create(&thread, nullptr, 878 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg)); 879 WaitUntilThreadSleep(wakeup_arg.tid); 880 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); 881 882 ASSERT_EQ(0, pthread_join(thread, nullptr)); 883 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress); 884 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); 885 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); 886} 887 888TEST(pthread, pthread_rwlock_timedwrlock_timeout) { 889 RwlockWakeupHelperArg wakeup_arg; 890 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); 891 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); 892 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; 893 wakeup_arg.tid = 0; 894 wakeup_arg.trylock_function = pthread_rwlock_trywrlock; 895 wakeup_arg.timed_lock_function = pthread_rwlock_timedwrlock; 896 897 pthread_t thread; 898 ASSERT_EQ(0, pthread_create(&thread, nullptr, 899 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg)); 900 WaitUntilThreadSleep(wakeup_arg.tid); 901 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); 902 903 ASSERT_EQ(0, pthread_join(thread, nullptr)); 904 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress); 905 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); 906 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); 907} 908 909class RwlockKindTestHelper { 910 private: 911 struct ThreadArg { 912 RwlockKindTestHelper* helper; 913 std::atomic<pid_t>& tid; 914 915 ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid) 916 : helper(helper), tid(tid) { } 917 }; 918 919 public: 920 pthread_rwlock_t lock; 921 922 public: 923 RwlockKindTestHelper(int kind_type) { 924 InitRwlock(kind_type); 925 } 926 927 ~RwlockKindTestHelper() { 928 DestroyRwlock(); 929 } 930 931 void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) { 932 tid = 0; 933 ThreadArg* arg = new ThreadArg(this, tid); 934 ASSERT_EQ(0, pthread_create(&thread, NULL, 935 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg)); 936 } 937 938 void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) { 939 tid = 0; 940 ThreadArg* arg = new ThreadArg(this, tid); 941 ASSERT_EQ(0, pthread_create(&thread, NULL, 942 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg)); 943 } 944 945 private: 946 void InitRwlock(int kind_type) { 947 pthread_rwlockattr_t attr; 948 ASSERT_EQ(0, pthread_rwlockattr_init(&attr)); 949 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type)); 950 ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr)); 951 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr)); 952 } 953 954 void DestroyRwlock() { 955 ASSERT_EQ(0, pthread_rwlock_destroy(&lock)); 956 } 957 958 static void WriterThreadFn(ThreadArg* arg) { 959 arg->tid = gettid(); 960 961 RwlockKindTestHelper* helper = arg->helper; 962 ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock)); 963 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock)); 964 delete arg; 965 } 966 967 static void ReaderThreadFn(ThreadArg* arg) { 968 arg->tid = gettid(); 969 970 RwlockKindTestHelper* helper = arg->helper; 971 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock)); 972 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock)); 973 delete arg; 974 } 975}; 976 977TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) { 978 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP); 979 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock)); 980 981 pthread_t writer_thread; 982 std::atomic<pid_t> writer_tid; 983 helper.CreateWriterThread(writer_thread, writer_tid); 984 WaitUntilThreadSleep(writer_tid); 985 986 pthread_t reader_thread; 987 std::atomic<pid_t> reader_tid; 988 helper.CreateReaderThread(reader_thread, reader_tid); 989 ASSERT_EQ(0, pthread_join(reader_thread, NULL)); 990 991 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock)); 992 ASSERT_EQ(0, pthread_join(writer_thread, NULL)); 993} 994 995TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) { 996 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP); 997 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock)); 998 999 pthread_t writer_thread; 1000 std::atomic<pid_t> writer_tid; 1001 helper.CreateWriterThread(writer_thread, writer_tid); 1002 WaitUntilThreadSleep(writer_tid); 1003 1004 pthread_t reader_thread; 1005 std::atomic<pid_t> reader_tid; 1006 helper.CreateReaderThread(reader_thread, reader_tid); 1007 WaitUntilThreadSleep(reader_tid); 1008 1009 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock)); 1010 ASSERT_EQ(0, pthread_join(writer_thread, NULL)); 1011 ASSERT_EQ(0, pthread_join(reader_thread, NULL)); 1012} 1013 1014static int g_once_fn_call_count = 0; 1015static void OnceFn() { 1016 ++g_once_fn_call_count; 1017} 1018 1019TEST(pthread, pthread_once_smoke) { 1020 pthread_once_t once_control = PTHREAD_ONCE_INIT; 1021 ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); 1022 ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); 1023 ASSERT_EQ(1, g_once_fn_call_count); 1024} 1025 1026static std::string pthread_once_1934122_result = ""; 1027 1028static void Routine2() { 1029 pthread_once_1934122_result += "2"; 1030} 1031 1032static void Routine1() { 1033 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT; 1034 pthread_once_1934122_result += "1"; 1035 pthread_once(&once_control_2, &Routine2); 1036} 1037 1038TEST(pthread, pthread_once_1934122) { 1039 // Very old versions of Android couldn't call pthread_once from a 1040 // pthread_once init routine. http://b/1934122. 1041 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT; 1042 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1)); 1043 ASSERT_EQ("12", pthread_once_1934122_result); 1044} 1045 1046static int g_atfork_prepare_calls = 0; 1047static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; } 1048static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; } 1049static int g_atfork_parent_calls = 0; 1050static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; } 1051static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; } 1052static int g_atfork_child_calls = 0; 1053static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; } 1054static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; } 1055 1056TEST(pthread, pthread_atfork_smoke) { 1057 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); 1058 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); 1059 1060 int pid = fork(); 1061 ASSERT_NE(-1, pid) << strerror(errno); 1062 1063 // Child and parent calls are made in the order they were registered. 1064 if (pid == 0) { 1065 ASSERT_EQ(12, g_atfork_child_calls); 1066 _exit(0); 1067 } 1068 ASSERT_EQ(12, g_atfork_parent_calls); 1069 1070 // Prepare calls are made in the reverse order. 1071 ASSERT_EQ(21, g_atfork_prepare_calls); 1072 int status; 1073 ASSERT_EQ(pid, waitpid(pid, &status, 0)); 1074} 1075 1076TEST(pthread, pthread_attr_getscope) { 1077 pthread_attr_t attr; 1078 ASSERT_EQ(0, pthread_attr_init(&attr)); 1079 1080 int scope; 1081 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope)); 1082 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope); 1083} 1084 1085TEST(pthread, pthread_condattr_init) { 1086 pthread_condattr_t attr; 1087 pthread_condattr_init(&attr); 1088 1089 clockid_t clock; 1090 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 1091 ASSERT_EQ(CLOCK_REALTIME, clock); 1092 1093 int pshared; 1094 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); 1095 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); 1096} 1097 1098TEST(pthread, pthread_condattr_setclock) { 1099 pthread_condattr_t attr; 1100 pthread_condattr_init(&attr); 1101 1102 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME)); 1103 clockid_t clock; 1104 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 1105 ASSERT_EQ(CLOCK_REALTIME, clock); 1106 1107 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); 1108 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 1109 ASSERT_EQ(CLOCK_MONOTONIC, clock); 1110 1111 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID)); 1112} 1113 1114TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) { 1115#if defined(__BIONIC__) 1116 pthread_condattr_t attr; 1117 pthread_condattr_init(&attr); 1118 1119 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); 1120 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); 1121 1122 pthread_cond_t cond_var; 1123 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr)); 1124 1125 ASSERT_EQ(0, pthread_cond_signal(&cond_var)); 1126 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var)); 1127 1128 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private)); 1129 clockid_t clock; 1130 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); 1131 ASSERT_EQ(CLOCK_MONOTONIC, clock); 1132 int pshared; 1133 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); 1134 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); 1135#else // !defined(__BIONIC__) 1136 GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n"; 1137#endif // !defined(__BIONIC__) 1138} 1139 1140class pthread_CondWakeupTest : public ::testing::Test { 1141 protected: 1142 pthread_mutex_t mutex; 1143 pthread_cond_t cond; 1144 1145 enum Progress { 1146 INITIALIZED, 1147 WAITING, 1148 SIGNALED, 1149 FINISHED, 1150 }; 1151 std::atomic<Progress> progress; 1152 pthread_t thread; 1153 std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function; 1154 1155 protected: 1156 void SetUp() override { 1157 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr)); 1158 } 1159 1160 void InitCond(clockid_t clock=CLOCK_REALTIME) { 1161 pthread_condattr_t attr; 1162 ASSERT_EQ(0, pthread_condattr_init(&attr)); 1163 ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock)); 1164 ASSERT_EQ(0, pthread_cond_init(&cond, &attr)); 1165 ASSERT_EQ(0, pthread_condattr_destroy(&attr)); 1166 } 1167 1168 void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) { 1169 progress = INITIALIZED; 1170 this->wait_function = wait_function; 1171 ASSERT_EQ(0, pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this)); 1172 while (progress != WAITING) { 1173 usleep(5000); 1174 } 1175 usleep(5000); 1176 } 1177 1178 void TearDown() override { 1179 ASSERT_EQ(0, pthread_join(thread, nullptr)); 1180 ASSERT_EQ(FINISHED, progress); 1181 ASSERT_EQ(0, pthread_cond_destroy(&cond)); 1182 ASSERT_EQ(0, pthread_mutex_destroy(&mutex)); 1183 } 1184 1185 private: 1186 static void WaitThreadFn(pthread_CondWakeupTest* test) { 1187 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex)); 1188 test->progress = WAITING; 1189 while (test->progress == WAITING) { 1190 ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex)); 1191 } 1192 ASSERT_EQ(SIGNALED, test->progress); 1193 test->progress = FINISHED; 1194 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex)); 1195 } 1196}; 1197 1198TEST_F(pthread_CondWakeupTest, signal_wait) { 1199 InitCond(); 1200 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) { 1201 return pthread_cond_wait(cond, mutex); 1202 }); 1203 progress = SIGNALED; 1204 ASSERT_EQ(0, pthread_cond_signal(&cond)); 1205} 1206 1207TEST_F(pthread_CondWakeupTest, broadcast_wait) { 1208 InitCond(); 1209 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) { 1210 return pthread_cond_wait(cond, mutex); 1211 }); 1212 progress = SIGNALED; 1213 ASSERT_EQ(0, pthread_cond_broadcast(&cond)); 1214} 1215 1216TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) { 1217 InitCond(CLOCK_REALTIME); 1218 timespec ts; 1219 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 1220 ts.tv_sec += 1; 1221 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) { 1222 return pthread_cond_timedwait(cond, mutex, &ts); 1223 }); 1224 progress = SIGNALED; 1225 ASSERT_EQ(0, pthread_cond_signal(&cond)); 1226} 1227 1228TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) { 1229 InitCond(CLOCK_MONOTONIC); 1230 timespec ts; 1231 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); 1232 ts.tv_sec += 1; 1233 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) { 1234 return pthread_cond_timedwait(cond, mutex, &ts); 1235 }); 1236 progress = SIGNALED; 1237 ASSERT_EQ(0, pthread_cond_signal(&cond)); 1238} 1239 1240TEST(pthread, pthread_cond_timedwait_timeout) { 1241 pthread_mutex_t mutex; 1242 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr)); 1243 pthread_cond_t cond; 1244 ASSERT_EQ(0, pthread_cond_init(&cond, nullptr)); 1245 ASSERT_EQ(0, pthread_mutex_lock(&mutex)); 1246 timespec ts; 1247 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 1248 ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts)); 1249 ts.tv_nsec = -1; 1250 ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts)); 1251 ts.tv_nsec = NS_PER_S; 1252 ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts)); 1253 ts.tv_nsec = NS_PER_S - 1; 1254 ts.tv_sec = -1; 1255 ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts)); 1256 ASSERT_EQ(0, pthread_mutex_unlock(&mutex)); 1257} 1258 1259TEST(pthread, pthread_attr_getstack__main_thread) { 1260 // This test is only meaningful for the main thread, so make sure we're running on it! 1261 ASSERT_EQ(getpid(), syscall(__NR_gettid)); 1262 1263 // Get the main thread's attributes. 1264 pthread_attr_t attributes; 1265 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); 1266 1267 // Check that we correctly report that the main thread has no guard page. 1268 size_t guard_size; 1269 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); 1270 ASSERT_EQ(0U, guard_size); // The main thread has no guard page. 1271 1272 // Get the stack base and the stack size (both ways). 1273 void* stack_base; 1274 size_t stack_size; 1275 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); 1276 size_t stack_size2; 1277 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); 1278 1279 // The two methods of asking for the stack size should agree. 1280 EXPECT_EQ(stack_size, stack_size2); 1281 1282#if defined(__BIONIC__) 1283 // What does /proc/self/maps' [stack] line say? 1284 void* maps_stack_hi = NULL; 1285 std::vector<map_record> maps; 1286 ASSERT_TRUE(Maps::parse_maps(&maps)); 1287 for (const auto& map : maps) { 1288 if (map.pathname == "[stack]") { 1289 maps_stack_hi = reinterpret_cast<void*>(map.addr_end); 1290 break; 1291 } 1292 } 1293 1294 // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size. 1295 // Remember that the stack grows down (and is mapped in on demand), so the low address of the 1296 // region isn't very interesting. 1297 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size); 1298 1299 // The stack size should correspond to RLIMIT_STACK. 1300 rlimit rl; 1301 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl)); 1302 uint64_t original_rlim_cur = rl.rlim_cur; 1303 if (rl.rlim_cur == RLIM_INFINITY) { 1304 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB. 1305 } 1306 EXPECT_EQ(rl.rlim_cur, stack_size); 1307 1308 auto guard = make_scope_guard([&rl, original_rlim_cur]() { 1309 rl.rlim_cur = original_rlim_cur; 1310 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); 1311 }); 1312 1313 // 1314 // What if RLIMIT_STACK is smaller than the stack's current extent? 1315 // 1316 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already. 1317 rl.rlim_max = RLIM_INFINITY; 1318 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); 1319 1320 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); 1321 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); 1322 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); 1323 1324 EXPECT_EQ(stack_size, stack_size2); 1325 ASSERT_EQ(1024U, stack_size); 1326 1327 // 1328 // What if RLIMIT_STACK isn't a whole number of pages? 1329 // 1330 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages. 1331 rl.rlim_max = RLIM_INFINITY; 1332 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); 1333 1334 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); 1335 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); 1336 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); 1337 1338 EXPECT_EQ(stack_size, stack_size2); 1339 ASSERT_EQ(6666U, stack_size); 1340#endif 1341} 1342 1343struct GetStackSignalHandlerArg { 1344 volatile bool done; 1345 void* signal_handler_sp; 1346 void* main_stack_base; 1347 size_t main_stack_size; 1348}; 1349 1350static GetStackSignalHandlerArg getstack_signal_handler_arg; 1351 1352static void getstack_signal_handler(int sig) { 1353 ASSERT_EQ(SIGUSR1, sig); 1354 // Use sleep() to make current thread be switched out by the kernel to provoke the error. 1355 sleep(1); 1356 pthread_attr_t attr; 1357 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr)); 1358 void* stack_base; 1359 size_t stack_size; 1360 ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size)); 1361 getstack_signal_handler_arg.signal_handler_sp = &attr; 1362 getstack_signal_handler_arg.main_stack_base = stack_base; 1363 getstack_signal_handler_arg.main_stack_size = stack_size; 1364 getstack_signal_handler_arg.done = true; 1365} 1366 1367// The previous code obtained the main thread's stack by reading the entry in 1368// /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel 1369// relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel 1370// switches a process while the main thread is in an alternate stack, then the kernel will label 1371// the wrong map with [stack]. This test verifies that when the above situation happens, the main 1372// thread's stack is found correctly. 1373TEST(pthread, pthread_attr_getstack_in_signal_handler) { 1374 const size_t sig_stack_size = 16 * 1024; 1375 void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 1376 -1, 0); 1377 ASSERT_NE(MAP_FAILED, sig_stack); 1378 stack_t ss; 1379 ss.ss_sp = sig_stack; 1380 ss.ss_size = sig_stack_size; 1381 ss.ss_flags = 0; 1382 stack_t oss; 1383 ASSERT_EQ(0, sigaltstack(&ss, &oss)); 1384 1385 ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK); 1386 getstack_signal_handler_arg.done = false; 1387 kill(getpid(), SIGUSR1); 1388 ASSERT_EQ(true, getstack_signal_handler_arg.done); 1389 1390 // Verify if the stack used by the signal handler is the alternate stack just registered. 1391 ASSERT_LE(sig_stack, getstack_signal_handler_arg.signal_handler_sp); 1392 ASSERT_GE(reinterpret_cast<char*>(sig_stack) + sig_stack_size, 1393 getstack_signal_handler_arg.signal_handler_sp); 1394 1395 // Verify if the main thread's stack got in the signal handler is correct. 1396 ASSERT_LE(getstack_signal_handler_arg.main_stack_base, &ss); 1397 ASSERT_GE(reinterpret_cast<char*>(getstack_signal_handler_arg.main_stack_base) + 1398 getstack_signal_handler_arg.main_stack_size, reinterpret_cast<void*>(&ss)); 1399 1400 ASSERT_EQ(0, sigaltstack(&oss, nullptr)); 1401 ASSERT_EQ(0, munmap(sig_stack, sig_stack_size)); 1402} 1403 1404static void pthread_attr_getstack_18908062_helper(void*) { 1405 char local_variable; 1406 pthread_attr_t attributes; 1407 pthread_getattr_np(pthread_self(), &attributes); 1408 void* stack_base; 1409 size_t stack_size; 1410 pthread_attr_getstack(&attributes, &stack_base, &stack_size); 1411 1412 // Test whether &local_variable is in [stack_base, stack_base + stack_size). 1413 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable); 1414 ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size); 1415} 1416 1417// Check whether something on stack is in the range of 1418// [stack_base, stack_base + stack_size). see b/18908062. 1419TEST(pthread, pthread_attr_getstack_18908062) { 1420 pthread_t t; 1421 ASSERT_EQ(0, pthread_create(&t, NULL, 1422 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper), 1423 NULL)); 1424 pthread_join(t, NULL); 1425} 1426 1427#if defined(__BIONIC__) 1428static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER; 1429 1430static void* pthread_gettid_np_helper(void* arg) { 1431 *reinterpret_cast<pid_t*>(arg) = gettid(); 1432 1433 // Wait for our parent to call pthread_gettid_np on us before exiting. 1434 pthread_mutex_lock(&pthread_gettid_np_mutex); 1435 pthread_mutex_unlock(&pthread_gettid_np_mutex); 1436 return NULL; 1437} 1438#endif 1439 1440TEST(pthread, pthread_gettid_np) { 1441#if defined(__BIONIC__) 1442 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self())); 1443 1444 // Ensure the other thread doesn't exit until after we've called 1445 // pthread_gettid_np on it. 1446 pthread_mutex_lock(&pthread_gettid_np_mutex); 1447 1448 pid_t t_gettid_result; 1449 pthread_t t; 1450 pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result); 1451 1452 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t); 1453 1454 // Release the other thread and wait for it to exit. 1455 pthread_mutex_unlock(&pthread_gettid_np_mutex); 1456 pthread_join(t, NULL); 1457 1458 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result); 1459#else 1460 GTEST_LOG_(INFO) << "This test does nothing.\n"; 1461#endif 1462} 1463 1464static size_t cleanup_counter = 0; 1465 1466static void AbortCleanupRoutine(void*) { 1467 abort(); 1468} 1469 1470static void CountCleanupRoutine(void*) { 1471 ++cleanup_counter; 1472} 1473 1474static void PthreadCleanupTester() { 1475 pthread_cleanup_push(CountCleanupRoutine, NULL); 1476 pthread_cleanup_push(CountCleanupRoutine, NULL); 1477 pthread_cleanup_push(AbortCleanupRoutine, NULL); 1478 1479 pthread_cleanup_pop(0); // Pop the abort without executing it. 1480 pthread_cleanup_pop(1); // Pop one count while executing it. 1481 ASSERT_EQ(1U, cleanup_counter); 1482 // Exit while the other count is still on the cleanup stack. 1483 pthread_exit(NULL); 1484 1485 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced. 1486 pthread_cleanup_pop(0); 1487} 1488 1489static void* PthreadCleanupStartRoutine(void*) { 1490 PthreadCleanupTester(); 1491 return NULL; 1492} 1493 1494TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) { 1495 pthread_t t; 1496 ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL)); 1497 pthread_join(t, NULL); 1498 ASSERT_EQ(2U, cleanup_counter); 1499} 1500 1501TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) { 1502 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT); 1503} 1504 1505TEST(pthread, pthread_mutexattr_gettype) { 1506 pthread_mutexattr_t attr; 1507 ASSERT_EQ(0, pthread_mutexattr_init(&attr)); 1508 1509 int attr_type; 1510 1511 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); 1512 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); 1513 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type); 1514 1515 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)); 1516 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); 1517 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type); 1518 1519 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)); 1520 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); 1521 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type); 1522 1523 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); 1524} 1525 1526struct PthreadMutex { 1527 pthread_mutex_t lock; 1528 1529 PthreadMutex(int mutex_type) { 1530 init(mutex_type); 1531 } 1532 1533 ~PthreadMutex() { 1534 destroy(); 1535 } 1536 1537 private: 1538 void init(int mutex_type) { 1539 pthread_mutexattr_t attr; 1540 ASSERT_EQ(0, pthread_mutexattr_init(&attr)); 1541 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type)); 1542 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); 1543 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); 1544 } 1545 1546 void destroy() { 1547 ASSERT_EQ(0, pthread_mutex_destroy(&lock)); 1548 } 1549 1550 DISALLOW_COPY_AND_ASSIGN(PthreadMutex); 1551}; 1552 1553TEST(pthread, pthread_mutex_lock_NORMAL) { 1554 PthreadMutex m(PTHREAD_MUTEX_NORMAL); 1555 1556 ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); 1557 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); 1558} 1559 1560TEST(pthread, pthread_mutex_lock_ERRORCHECK) { 1561 PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK); 1562 1563 ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); 1564 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock)); 1565 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); 1566 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); 1567 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock)); 1568 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); 1569 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock)); 1570} 1571 1572TEST(pthread, pthread_mutex_lock_RECURSIVE) { 1573 PthreadMutex m(PTHREAD_MUTEX_RECURSIVE); 1574 1575 ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); 1576 ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); 1577 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); 1578 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); 1579 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); 1580 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); 1581 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock)); 1582} 1583 1584TEST(pthread, pthread_mutex_init_same_as_static_initializers) { 1585 pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER; 1586 PthreadMutex m1(PTHREAD_MUTEX_NORMAL); 1587 ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t))); 1588 pthread_mutex_destroy(&lock_normal); 1589 1590 pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP; 1591 PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK); 1592 ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t))); 1593 pthread_mutex_destroy(&lock_errorcheck); 1594 1595 pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; 1596 PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE); 1597 ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t))); 1598 ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive)); 1599} 1600class MutexWakeupHelper { 1601 private: 1602 PthreadMutex m; 1603 enum Progress { 1604 LOCK_INITIALIZED, 1605 LOCK_WAITING, 1606 LOCK_RELEASED, 1607 LOCK_ACCESSED 1608 }; 1609 std::atomic<Progress> progress; 1610 std::atomic<pid_t> tid; 1611 1612 static void thread_fn(MutexWakeupHelper* helper) { 1613 helper->tid = gettid(); 1614 ASSERT_EQ(LOCK_INITIALIZED, helper->progress); 1615 helper->progress = LOCK_WAITING; 1616 1617 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock)); 1618 ASSERT_EQ(LOCK_RELEASED, helper->progress); 1619 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock)); 1620 1621 helper->progress = LOCK_ACCESSED; 1622 } 1623 1624 public: 1625 MutexWakeupHelper(int mutex_type) : m(mutex_type) { 1626 } 1627 1628 void test() { 1629 ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); 1630 progress = LOCK_INITIALIZED; 1631 tid = 0; 1632 1633 pthread_t thread; 1634 ASSERT_EQ(0, pthread_create(&thread, NULL, 1635 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this)); 1636 1637 WaitUntilThreadSleep(tid); 1638 ASSERT_EQ(LOCK_WAITING, progress); 1639 1640 progress = LOCK_RELEASED; 1641 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); 1642 1643 ASSERT_EQ(0, pthread_join(thread, NULL)); 1644 ASSERT_EQ(LOCK_ACCESSED, progress); 1645 } 1646}; 1647 1648TEST(pthread, pthread_mutex_NORMAL_wakeup) { 1649 MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL); 1650 helper.test(); 1651} 1652 1653TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) { 1654 MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK); 1655 helper.test(); 1656} 1657 1658TEST(pthread, pthread_mutex_RECURSIVE_wakeup) { 1659 MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE); 1660 helper.test(); 1661} 1662 1663TEST(pthread, pthread_mutex_owner_tid_limit) { 1664#if defined(__BIONIC__) && !defined(__LP64__) 1665 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r"); 1666 ASSERT_TRUE(fp != NULL); 1667 long pid_max; 1668 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max)); 1669 fclose(fp); 1670 // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid. 1671 ASSERT_LE(pid_max, 65536); 1672#else 1673 GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n"; 1674#endif 1675} 1676 1677TEST(pthread, pthread_mutex_timedlock) { 1678 pthread_mutex_t m; 1679 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr)); 1680 1681 // If the mutex is already locked, pthread_mutex_timedlock should time out. 1682 ASSERT_EQ(0, pthread_mutex_lock(&m)); 1683 1684 timespec ts; 1685 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 1686 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts)); 1687 ts.tv_nsec = -1; 1688 ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts)); 1689 ts.tv_nsec = NS_PER_S; 1690 ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts)); 1691 ts.tv_nsec = NS_PER_S - 1; 1692 ts.tv_sec = -1; 1693 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts)); 1694 1695 // If the mutex is unlocked, pthread_mutex_timedlock should succeed. 1696 ASSERT_EQ(0, pthread_mutex_unlock(&m)); 1697 1698 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); 1699 ts.tv_sec += 1; 1700 ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts)); 1701 1702 ASSERT_EQ(0, pthread_mutex_unlock(&m)); 1703 ASSERT_EQ(0, pthread_mutex_destroy(&m)); 1704} 1705 1706class StrictAlignmentAllocator { 1707 public: 1708 void* allocate(size_t size, size_t alignment) { 1709 char* p = new char[size + alignment * 2]; 1710 allocated_array.push_back(p); 1711 while (!is_strict_aligned(p, alignment)) { 1712 ++p; 1713 } 1714 return p; 1715 } 1716 1717 ~StrictAlignmentAllocator() { 1718 for (const auto& p : allocated_array) { 1719 delete[] p; 1720 } 1721 } 1722 1723 private: 1724 bool is_strict_aligned(char* p, size_t alignment) { 1725 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment; 1726 } 1727 1728 std::vector<char*> allocated_array; 1729}; 1730 1731TEST(pthread, pthread_types_allow_four_bytes_alignment) { 1732#if defined(__BIONIC__) 1733 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types. 1734 StrictAlignmentAllocator allocator; 1735 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>( 1736 allocator.allocate(sizeof(pthread_mutex_t), 4)); 1737 ASSERT_EQ(0, pthread_mutex_init(mutex, NULL)); 1738 ASSERT_EQ(0, pthread_mutex_lock(mutex)); 1739 ASSERT_EQ(0, pthread_mutex_unlock(mutex)); 1740 ASSERT_EQ(0, pthread_mutex_destroy(mutex)); 1741 1742 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>( 1743 allocator.allocate(sizeof(pthread_cond_t), 4)); 1744 ASSERT_EQ(0, pthread_cond_init(cond, NULL)); 1745 ASSERT_EQ(0, pthread_cond_signal(cond)); 1746 ASSERT_EQ(0, pthread_cond_broadcast(cond)); 1747 ASSERT_EQ(0, pthread_cond_destroy(cond)); 1748 1749 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>( 1750 allocator.allocate(sizeof(pthread_rwlock_t), 4)); 1751 ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL)); 1752 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock)); 1753 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); 1754 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock)); 1755 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); 1756 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock)); 1757 1758#else 1759 GTEST_LOG_(INFO) << "This test tests bionic implementation details."; 1760#endif 1761} 1762 1763TEST(pthread, pthread_mutex_lock_null_32) { 1764#if defined(__BIONIC__) && !defined(__LP64__) 1765 ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL)); 1766#else 1767 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices."; 1768#endif 1769} 1770 1771TEST(pthread, pthread_mutex_unlock_null_32) { 1772#if defined(__BIONIC__) && !defined(__LP64__) 1773 ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL)); 1774#else 1775 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices."; 1776#endif 1777} 1778 1779TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) { 1780#if defined(__BIONIC__) && defined(__LP64__) 1781 pthread_mutex_t* null_value = nullptr; 1782 ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), ""); 1783#else 1784 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices."; 1785#endif 1786} 1787 1788TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) { 1789#if defined(__BIONIC__) && defined(__LP64__) 1790 pthread_mutex_t* null_value = nullptr; 1791 ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), ""); 1792#else 1793 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices."; 1794#endif 1795} 1796 1797extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg); 1798 1799static volatile bool signal_handler_on_altstack_done; 1800 1801static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) { 1802 ASSERT_EQ(SIGUSR1, signo); 1803 // Check if we have enough stack space for unwinding. 1804 int count = 0; 1805 _Unwind_Backtrace(FrameCounter, &count); 1806 ASSERT_GT(count, 0); 1807 // Check if we have enough stack space for logging. 1808 std::string s(2048, '*'); 1809 GTEST_LOG_(INFO) << s; 1810 signal_handler_on_altstack_done = true; 1811} 1812 1813TEST(pthread, big_enough_signal_stack_for_64bit_arch) { 1814 signal_handler_on_altstack_done = false; 1815 ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK); 1816 kill(getpid(), SIGUSR1); 1817 ASSERT_TRUE(signal_handler_on_altstack_done); 1818} 1819 1820TEST(pthread, pthread_barrierattr_smoke) { 1821 pthread_barrierattr_t attr; 1822 ASSERT_EQ(0, pthread_barrierattr_init(&attr)); 1823 int pshared; 1824 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared)); 1825 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); 1826 ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); 1827 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared)); 1828 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); 1829 ASSERT_EQ(0, pthread_barrierattr_destroy(&attr)); 1830} 1831 1832struct BarrierTestHelperArg { 1833 std::atomic<pid_t> tid; 1834 pthread_barrier_t* barrier; 1835 size_t iteration_count; 1836}; 1837 1838static void BarrierTestHelper(BarrierTestHelperArg* arg) { 1839 arg->tid = gettid(); 1840 for (size_t i = 0; i < arg->iteration_count; ++i) { 1841 ASSERT_EQ(0, pthread_barrier_wait(arg->barrier)); 1842 } 1843} 1844 1845TEST(pthread, pthread_barrier_smoke) { 1846 const size_t BARRIER_ITERATION_COUNT = 10; 1847 const size_t BARRIER_THREAD_COUNT = 10; 1848 pthread_barrier_t barrier; 1849 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, BARRIER_THREAD_COUNT + 1)); 1850 std::vector<pthread_t> threads(BARRIER_THREAD_COUNT); 1851 std::vector<BarrierTestHelperArg> args(threads.size()); 1852 for (size_t i = 0; i < threads.size(); ++i) { 1853 args[i].tid = 0; 1854 args[i].barrier = &barrier; 1855 args[i].iteration_count = BARRIER_ITERATION_COUNT; 1856 ASSERT_EQ(0, pthread_create(&threads[i], nullptr, 1857 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i])); 1858 } 1859 for (size_t iteration = 0; iteration < BARRIER_ITERATION_COUNT; ++iteration) { 1860 for (size_t i = 0; i < threads.size(); ++i) { 1861 WaitUntilThreadSleep(args[i].tid); 1862 } 1863 ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier)); 1864 } 1865 for (size_t i = 0; i < threads.size(); ++i) { 1866 ASSERT_EQ(0, pthread_join(threads[i], nullptr)); 1867 } 1868 ASSERT_EQ(0, pthread_barrier_destroy(&barrier)); 1869} 1870 1871TEST(pthread, pthread_barrier_destroy) { 1872 pthread_barrier_t barrier; 1873 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2)); 1874 pthread_t thread; 1875 BarrierTestHelperArg arg; 1876 arg.tid = 0; 1877 arg.barrier = &barrier; 1878 arg.iteration_count = 1; 1879 ASSERT_EQ(0, pthread_create(&thread, nullptr, 1880 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &arg)); 1881 WaitUntilThreadSleep(arg.tid); 1882 ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier)); 1883 ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier)); 1884 // Verify if the barrier can be destroyed directly after pthread_barrier_wait(). 1885 ASSERT_EQ(0, pthread_barrier_destroy(&barrier)); 1886 ASSERT_EQ(0, pthread_join(thread, nullptr)); 1887#if defined(__BIONIC__) 1888 ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier)); 1889#endif 1890} 1891 1892struct BarrierOrderingTestHelperArg { 1893 pthread_barrier_t* barrier; 1894 size_t* array; 1895 size_t array_length; 1896 size_t id; 1897}; 1898 1899void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) { 1900 const size_t ITERATION_COUNT = 10000; 1901 for (size_t i = 1; i <= ITERATION_COUNT; ++i) { 1902 arg->array[arg->id] = i; 1903 int result = pthread_barrier_wait(arg->barrier); 1904 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD); 1905 for (size_t j = 0; j < arg->array_length; ++j) { 1906 ASSERT_EQ(i, arg->array[j]); 1907 } 1908 result = pthread_barrier_wait(arg->barrier); 1909 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD); 1910 } 1911} 1912 1913TEST(pthread, pthread_barrier_check_ordering) { 1914 const size_t THREAD_COUNT = 4; 1915 pthread_barrier_t barrier; 1916 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT)); 1917 size_t array[THREAD_COUNT]; 1918 std::vector<pthread_t> threads(THREAD_COUNT); 1919 std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT); 1920 for (size_t i = 0; i < THREAD_COUNT; ++i) { 1921 args[i].barrier = &barrier; 1922 args[i].array = array; 1923 args[i].array_length = THREAD_COUNT; 1924 args[i].id = i; 1925 ASSERT_EQ(0, pthread_create(&threads[i], nullptr, 1926 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper), 1927 &args[i])); 1928 } 1929 for (size_t i = 0; i < THREAD_COUNT; ++i) { 1930 ASSERT_EQ(0, pthread_join(threads[i], nullptr)); 1931 } 1932} 1933