1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: jorg@google.com (Jorg Brown)
30//
31// This is an implementation designed to match the anticipated future TR2
32// implementation of the scoped_ptr class, and its closely-related brethren,
33// scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
34
35#ifndef CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
36#define CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
37
38#include <assert.h>
39#include <stdlib.h>
40#include <cstddef>
41#include <algorithm>
42
43namespace ceres {
44namespace internal {
45
46template <class C> class scoped_ptr;
47template <class C, class Free> class scoped_ptr_malloc;
48template <class C> class scoped_array;
49
50template <class C>
51scoped_ptr<C> make_scoped_ptr(C *);
52
53// A scoped_ptr<T> is like a T*, except that the destructor of
54// scoped_ptr<T> automatically deletes the pointer it holds (if
55// any). That is, scoped_ptr<T> owns the T object that it points
56// to. Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to
57// a T object. Also like T*, scoped_ptr<T> is thread-compatible, and
58// once you dereference it, you get the threadsafety guarantees of T.
59//
60// The size of a scoped_ptr is small: sizeof(scoped_ptr<C>) == sizeof(C*)
61template <class C>
62class scoped_ptr {
63 public:
64  // The element type
65  typedef C element_type;
66
67  // Constructor.  Defaults to intializing with NULL.
68  // There is no way to create an uninitialized scoped_ptr.
69  // The input parameter must be allocated with new.
70  explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
71
72  // Destructor.  If there is a C object, delete it.
73  // We don't need to test ptr_ == NULL because C++ does that for us.
74  ~scoped_ptr() {
75    enum { type_must_be_complete = sizeof(C) };
76    delete ptr_;
77  }
78
79  // Reset.  Deletes the current owned object, if any.
80  // Then takes ownership of a new object, if given.
81  // this->reset(this->get()) works.
82  void reset(C* p = NULL) {
83    if (p != ptr_) {
84      enum { type_must_be_complete = sizeof(C) };
85      delete ptr_;
86      ptr_ = p;
87    }
88  }
89
90  // Accessors to get the owned object.
91  // operator* and operator-> will assert() if there is no current object.
92  C& operator*() const {
93    assert(ptr_ != NULL);
94    return *ptr_;
95  }
96  C* operator->() const  {
97    assert(ptr_ != NULL);
98    return ptr_;
99  }
100  C* get() const { return ptr_; }
101
102  // Comparison operators.
103  // These return whether a scoped_ptr and a raw pointer refer to
104  // the same object, not just to two different but equal objects.
105  bool operator==(const C* p) const { return ptr_ == p; }
106  bool operator!=(const C* p) const { return ptr_ != p; }
107
108  // Swap two scoped pointers.
109  void swap(scoped_ptr& p2) {
110    C* tmp = ptr_;
111    ptr_ = p2.ptr_;
112    p2.ptr_ = tmp;
113  }
114
115  // Release a pointer.
116  // The return value is the current pointer held by this object.
117  // If this object holds a NULL pointer, the return value is NULL.
118  // After this operation, this object will hold a NULL pointer,
119  // and will not own the object any more.
120  C* release() {
121    C* retVal = ptr_;
122    ptr_ = NULL;
123    return retVal;
124  }
125
126 private:
127  C* ptr_;
128
129  // google3 friend class that can access copy ctor (although if it actually
130  // calls a copy ctor, there will be a problem) see below
131  friend scoped_ptr<C> make_scoped_ptr<C>(C *p);
132
133  // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
134  // make sense, and if C2 == C, it still doesn't make sense because you should
135  // never have the same object owned by two different scoped_ptrs.
136  template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
137  template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
138
139  // Disallow evil constructors
140  scoped_ptr(const scoped_ptr&);
141  void operator=(const scoped_ptr&);
142};
143
144// Free functions
145template <class C>
146inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
147  p1.swap(p2);
148}
149
150template <class C>
151inline bool operator==(const C* p1, const scoped_ptr<C>& p2) {
152  return p1 == p2.get();
153}
154
155template <class C>
156inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) {
157  return p1 == p2.get();
158}
159
160template <class C>
161inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) {
162  return p1 != p2.get();
163}
164
165template <class C>
166inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) {
167  return p1 != p2.get();
168}
169
170template <class C>
171scoped_ptr<C> make_scoped_ptr(C *p) {
172  // This does nothing but to return a scoped_ptr of the type that the passed
173  // pointer is of.  (This eliminates the need to specify the name of T when
174  // making a scoped_ptr that is used anonymously/temporarily.)  From an
175  // access control point of view, we construct an unnamed scoped_ptr here
176  // which we return and thus copy-construct.  Hence, we need to have access
177  // to scoped_ptr::scoped_ptr(scoped_ptr const &).  However, it is guaranteed
178  // that we never actually call the copy constructor, which is a good thing
179  // as we would call the temporary's object destructor (and thus delete p)
180  // if we actually did copy some object, here.
181  return scoped_ptr<C>(p);
182}
183
184// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
185// with new [] and the destructor deletes objects with delete [].
186//
187// As with scoped_ptr<C>, a scoped_array<C> either points to an object
188// or is NULL.  A scoped_array<C> owns the object that it points to.
189// scoped_array<T> is thread-compatible, and once you index into it,
190// the returned objects have only the threadsafety guarantees of T.
191//
192// Size: sizeof(scoped_array<C>) == sizeof(C*)
193template <class C>
194class scoped_array {
195 public:
196  // The element type
197  typedef C element_type;
198
199  // Constructor.  Defaults to intializing with NULL.
200  // There is no way to create an uninitialized scoped_array.
201  // The input parameter must be allocated with new [].
202  explicit scoped_array(C* p = NULL) : array_(p) { }
203
204  // Destructor.  If there is a C object, delete it.
205  // We don't need to test ptr_ == NULL because C++ does that for us.
206  ~scoped_array() {
207    enum { type_must_be_complete = sizeof(C) };
208    delete[] array_;
209  }
210
211  // Reset. Deletes the current owned object, if any.
212  // Then takes ownership of a new object, if given.
213  // this->reset(this->get()) works.
214  void reset(C* p = NULL) {
215    if (p != array_) {
216      enum { type_must_be_complete = sizeof(C) };
217      delete[] array_;
218      array_ = p;
219    }
220  }
221
222  // Get one element of the current object.
223  // Will assert() if there is no current object, or index i is negative.
224  C& operator[](std::ptrdiff_t i) const {
225    assert(i >= 0);
226    assert(array_ != NULL);
227    return array_[i];
228  }
229
230  // Get a pointer to the zeroth element of the current object.
231  // If there is no current object, return NULL.
232  C* get() const {
233    return array_;
234  }
235
236  // Comparison operators.
237  // These return whether a scoped_array and a raw pointer refer to
238  // the same array, not just to two different but equal arrays.
239  bool operator==(const C* p) const { return array_ == p; }
240  bool operator!=(const C* p) const { return array_ != p; }
241
242  // Swap two scoped arrays.
243  void swap(scoped_array& p2) {
244    C* tmp = array_;
245    array_ = p2.array_;
246    p2.array_ = tmp;
247  }
248
249  // Release an array.
250  // The return value is the current pointer held by this object.
251  // If this object holds a NULL pointer, the return value is NULL.
252  // After this operation, this object will hold a NULL pointer,
253  // and will not own the object any more.
254  C* release() {
255    C* retVal = array_;
256    array_ = NULL;
257    return retVal;
258  }
259
260 private:
261  C* array_;
262
263  // Forbid comparison of different scoped_array types.
264  template <class C2> bool operator==(scoped_array<C2> const& p2) const;
265  template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
266
267  // Disallow evil constructors
268  scoped_array(const scoped_array&);
269  void operator=(const scoped_array&);
270};
271
272// Free functions
273template <class C>
274inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
275  p1.swap(p2);
276}
277
278template <class C>
279inline bool operator==(const C* p1, const scoped_array<C>& p2) {
280  return p1 == p2.get();
281}
282
283template <class C>
284inline bool operator==(const C* p1, const scoped_array<const C>& p2) {
285  return p1 == p2.get();
286}
287
288template <class C>
289inline bool operator!=(const C* p1, const scoped_array<C>& p2) {
290  return p1 != p2.get();
291}
292
293template <class C>
294inline bool operator!=(const C* p1, const scoped_array<const C>& p2) {
295  return p1 != p2.get();
296}
297
298// This class wraps the c library function free() in a class that can be
299// passed as a template argument to scoped_ptr_malloc below.
300class ScopedPtrMallocFree {
301 public:
302  inline void operator()(void* x) const {
303    free(x);
304  }
305};
306
307}  // namespace internal
308}  // namespace ceres
309
310#endif  // CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
311