1//===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with C++ code generation of classes
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGBlocks.h"
15#include "CGCXXABI.h"
16#include "CGDebugInfo.h"
17#include "CGRecordLayout.h"
18#include "CodeGenFunction.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Basic/TargetBuiltins.h"
25#include "clang/CodeGen/CGFunctionInfo.h"
26#include "clang/Frontend/CodeGenOptions.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Metadata.h"
29
30using namespace clang;
31using namespace CodeGen;
32
33/// Return the best known alignment for an unknown pointer to a
34/// particular class.
35CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
36  if (!RD->isCompleteDefinition())
37    return CharUnits::One(); // Hopefully won't be used anywhere.
38
39  auto &layout = getContext().getASTRecordLayout(RD);
40
41  // If the class is final, then we know that the pointer points to an
42  // object of that type and can use the full alignment.
43  if (RD->hasAttr<FinalAttr>()) {
44    return layout.getAlignment();
45
46  // Otherwise, we have to assume it could be a subclass.
47  } else {
48    return layout.getNonVirtualAlignment();
49  }
50}
51
52/// Return the best known alignment for a pointer to a virtual base,
53/// given the alignment of a pointer to the derived class.
54CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
55                                           const CXXRecordDecl *derivedClass,
56                                           const CXXRecordDecl *vbaseClass) {
57  // The basic idea here is that an underaligned derived pointer might
58  // indicate an underaligned base pointer.
59
60  assert(vbaseClass->isCompleteDefinition());
61  auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
62  CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
63
64  return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
65                                   expectedVBaseAlign);
66}
67
68CharUnits
69CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
70                                         const CXXRecordDecl *baseDecl,
71                                         CharUnits expectedTargetAlign) {
72  // If the base is an incomplete type (which is, alas, possible with
73  // member pointers), be pessimistic.
74  if (!baseDecl->isCompleteDefinition())
75    return std::min(actualBaseAlign, expectedTargetAlign);
76
77  auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
78  CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
79
80  // If the class is properly aligned, assume the target offset is, too.
81  //
82  // This actually isn't necessarily the right thing to do --- if the
83  // class is a complete object, but it's only properly aligned for a
84  // base subobject, then the alignments of things relative to it are
85  // probably off as well.  (Note that this requires the alignment of
86  // the target to be greater than the NV alignment of the derived
87  // class.)
88  //
89  // However, our approach to this kind of under-alignment can only
90  // ever be best effort; after all, we're never going to propagate
91  // alignments through variables or parameters.  Note, in particular,
92  // that constructing a polymorphic type in an address that's less
93  // than pointer-aligned will generally trap in the constructor,
94  // unless we someday add some sort of attribute to change the
95  // assumed alignment of 'this'.  So our goal here is pretty much
96  // just to allow the user to explicitly say that a pointer is
97  // under-aligned and then safely access its fields and v-tables.
98  if (actualBaseAlign >= expectedBaseAlign) {
99    return expectedTargetAlign;
100  }
101
102  // Otherwise, we might be offset by an arbitrary multiple of the
103  // actual alignment.  The correct adjustment is to take the min of
104  // the two alignments.
105  return std::min(actualBaseAlign, expectedTargetAlign);
106}
107
108Address CodeGenFunction::LoadCXXThisAddress() {
109  assert(CurFuncDecl && "loading 'this' without a func declaration?");
110  assert(isa<CXXMethodDecl>(CurFuncDecl));
111
112  // Lazily compute CXXThisAlignment.
113  if (CXXThisAlignment.isZero()) {
114    // Just use the best known alignment for the parent.
115    // TODO: if we're currently emitting a complete-object ctor/dtor,
116    // we can always use the complete-object alignment.
117    auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
118    CXXThisAlignment = CGM.getClassPointerAlignment(RD);
119  }
120
121  return Address(LoadCXXThis(), CXXThisAlignment);
122}
123
124/// Emit the address of a field using a member data pointer.
125///
126/// \param E Only used for emergency diagnostics
127Address
128CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
129                                                 llvm::Value *memberPtr,
130                                      const MemberPointerType *memberPtrType,
131                                                 AlignmentSource *alignSource) {
132  // Ask the ABI to compute the actual address.
133  llvm::Value *ptr =
134    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
135                                                 memberPtr, memberPtrType);
136
137  QualType memberType = memberPtrType->getPointeeType();
138  CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
139  memberAlign =
140    CGM.getDynamicOffsetAlignment(base.getAlignment(),
141                            memberPtrType->getClass()->getAsCXXRecordDecl(),
142                                  memberAlign);
143  return Address(ptr, memberAlign);
144}
145
146CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
147    const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
148    CastExpr::path_const_iterator End) {
149  CharUnits Offset = CharUnits::Zero();
150
151  const ASTContext &Context = getContext();
152  const CXXRecordDecl *RD = DerivedClass;
153
154  for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
155    const CXXBaseSpecifier *Base = *I;
156    assert(!Base->isVirtual() && "Should not see virtual bases here!");
157
158    // Get the layout.
159    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
160
161    const CXXRecordDecl *BaseDecl =
162      cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
163
164    // Add the offset.
165    Offset += Layout.getBaseClassOffset(BaseDecl);
166
167    RD = BaseDecl;
168  }
169
170  return Offset;
171}
172
173llvm::Constant *
174CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
175                                   CastExpr::path_const_iterator PathBegin,
176                                   CastExpr::path_const_iterator PathEnd) {
177  assert(PathBegin != PathEnd && "Base path should not be empty!");
178
179  CharUnits Offset =
180      computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
181  if (Offset.isZero())
182    return nullptr;
183
184  llvm::Type *PtrDiffTy =
185  Types.ConvertType(getContext().getPointerDiffType());
186
187  return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
188}
189
190/// Gets the address of a direct base class within a complete object.
191/// This should only be used for (1) non-virtual bases or (2) virtual bases
192/// when the type is known to be complete (e.g. in complete destructors).
193///
194/// The object pointed to by 'This' is assumed to be non-null.
195Address
196CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
197                                                   const CXXRecordDecl *Derived,
198                                                   const CXXRecordDecl *Base,
199                                                   bool BaseIsVirtual) {
200  // 'this' must be a pointer (in some address space) to Derived.
201  assert(This.getElementType() == ConvertType(Derived));
202
203  // Compute the offset of the virtual base.
204  CharUnits Offset;
205  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
206  if (BaseIsVirtual)
207    Offset = Layout.getVBaseClassOffset(Base);
208  else
209    Offset = Layout.getBaseClassOffset(Base);
210
211  // Shift and cast down to the base type.
212  // TODO: for complete types, this should be possible with a GEP.
213  Address V = This;
214  if (!Offset.isZero()) {
215    V = Builder.CreateElementBitCast(V, Int8Ty);
216    V = Builder.CreateConstInBoundsByteGEP(V, Offset);
217  }
218  V = Builder.CreateElementBitCast(V, ConvertType(Base));
219
220  return V;
221}
222
223static Address
224ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
225                                CharUnits nonVirtualOffset,
226                                llvm::Value *virtualOffset,
227                                const CXXRecordDecl *derivedClass,
228                                const CXXRecordDecl *nearestVBase) {
229  // Assert that we have something to do.
230  assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
231
232  // Compute the offset from the static and dynamic components.
233  llvm::Value *baseOffset;
234  if (!nonVirtualOffset.isZero()) {
235    baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
236                                        nonVirtualOffset.getQuantity());
237    if (virtualOffset) {
238      baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
239    }
240  } else {
241    baseOffset = virtualOffset;
242  }
243
244  // Apply the base offset.
245  llvm::Value *ptr = addr.getPointer();
246  ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
247  ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
248
249  // If we have a virtual component, the alignment of the result will
250  // be relative only to the known alignment of that vbase.
251  CharUnits alignment;
252  if (virtualOffset) {
253    assert(nearestVBase && "virtual offset without vbase?");
254    alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
255                                          derivedClass, nearestVBase);
256  } else {
257    alignment = addr.getAlignment();
258  }
259  alignment = alignment.alignmentAtOffset(nonVirtualOffset);
260
261  return Address(ptr, alignment);
262}
263
264Address CodeGenFunction::GetAddressOfBaseClass(
265    Address Value, const CXXRecordDecl *Derived,
266    CastExpr::path_const_iterator PathBegin,
267    CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
268    SourceLocation Loc) {
269  assert(PathBegin != PathEnd && "Base path should not be empty!");
270
271  CastExpr::path_const_iterator Start = PathBegin;
272  const CXXRecordDecl *VBase = nullptr;
273
274  // Sema has done some convenient canonicalization here: if the
275  // access path involved any virtual steps, the conversion path will
276  // *start* with a step down to the correct virtual base subobject,
277  // and hence will not require any further steps.
278  if ((*Start)->isVirtual()) {
279    VBase =
280      cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
281    ++Start;
282  }
283
284  // Compute the static offset of the ultimate destination within its
285  // allocating subobject (the virtual base, if there is one, or else
286  // the "complete" object that we see).
287  CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
288      VBase ? VBase : Derived, Start, PathEnd);
289
290  // If there's a virtual step, we can sometimes "devirtualize" it.
291  // For now, that's limited to when the derived type is final.
292  // TODO: "devirtualize" this for accesses to known-complete objects.
293  if (VBase && Derived->hasAttr<FinalAttr>()) {
294    const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
295    CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
296    NonVirtualOffset += vBaseOffset;
297    VBase = nullptr; // we no longer have a virtual step
298  }
299
300  // Get the base pointer type.
301  llvm::Type *BasePtrTy =
302    ConvertType((PathEnd[-1])->getType())->getPointerTo();
303
304  QualType DerivedTy = getContext().getRecordType(Derived);
305  CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
306
307  // If the static offset is zero and we don't have a virtual step,
308  // just do a bitcast; null checks are unnecessary.
309  if (NonVirtualOffset.isZero() && !VBase) {
310    if (sanitizePerformTypeCheck()) {
311      EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
312                    DerivedTy, DerivedAlign, !NullCheckValue);
313    }
314    return Builder.CreateBitCast(Value, BasePtrTy);
315  }
316
317  llvm::BasicBlock *origBB = nullptr;
318  llvm::BasicBlock *endBB = nullptr;
319
320  // Skip over the offset (and the vtable load) if we're supposed to
321  // null-check the pointer.
322  if (NullCheckValue) {
323    origBB = Builder.GetInsertBlock();
324    llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
325    endBB = createBasicBlock("cast.end");
326
327    llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
328    Builder.CreateCondBr(isNull, endBB, notNullBB);
329    EmitBlock(notNullBB);
330  }
331
332  if (sanitizePerformTypeCheck()) {
333    EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
334                  Value.getPointer(), DerivedTy, DerivedAlign, true);
335  }
336
337  // Compute the virtual offset.
338  llvm::Value *VirtualOffset = nullptr;
339  if (VBase) {
340    VirtualOffset =
341      CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
342  }
343
344  // Apply both offsets.
345  Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
346                                          VirtualOffset, Derived, VBase);
347
348  // Cast to the destination type.
349  Value = Builder.CreateBitCast(Value, BasePtrTy);
350
351  // Build a phi if we needed a null check.
352  if (NullCheckValue) {
353    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
354    Builder.CreateBr(endBB);
355    EmitBlock(endBB);
356
357    llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
358    PHI->addIncoming(Value.getPointer(), notNullBB);
359    PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
360    Value = Address(PHI, Value.getAlignment());
361  }
362
363  return Value;
364}
365
366Address
367CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
368                                          const CXXRecordDecl *Derived,
369                                        CastExpr::path_const_iterator PathBegin,
370                                          CastExpr::path_const_iterator PathEnd,
371                                          bool NullCheckValue) {
372  assert(PathBegin != PathEnd && "Base path should not be empty!");
373
374  QualType DerivedTy =
375    getContext().getCanonicalType(getContext().getTagDeclType(Derived));
376  llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
377
378  llvm::Value *NonVirtualOffset =
379    CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
380
381  if (!NonVirtualOffset) {
382    // No offset, we can just cast back.
383    return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
384  }
385
386  llvm::BasicBlock *CastNull = nullptr;
387  llvm::BasicBlock *CastNotNull = nullptr;
388  llvm::BasicBlock *CastEnd = nullptr;
389
390  if (NullCheckValue) {
391    CastNull = createBasicBlock("cast.null");
392    CastNotNull = createBasicBlock("cast.notnull");
393    CastEnd = createBasicBlock("cast.end");
394
395    llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
396    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
397    EmitBlock(CastNotNull);
398  }
399
400  // Apply the offset.
401  llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
402  Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
403                            "sub.ptr");
404
405  // Just cast.
406  Value = Builder.CreateBitCast(Value, DerivedPtrTy);
407
408  // Produce a PHI if we had a null-check.
409  if (NullCheckValue) {
410    Builder.CreateBr(CastEnd);
411    EmitBlock(CastNull);
412    Builder.CreateBr(CastEnd);
413    EmitBlock(CastEnd);
414
415    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
416    PHI->addIncoming(Value, CastNotNull);
417    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
418    Value = PHI;
419  }
420
421  return Address(Value, CGM.getClassPointerAlignment(Derived));
422}
423
424llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
425                                              bool ForVirtualBase,
426                                              bool Delegating) {
427  if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
428    // This constructor/destructor does not need a VTT parameter.
429    return nullptr;
430  }
431
432  const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
433  const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
434
435  llvm::Value *VTT;
436
437  uint64_t SubVTTIndex;
438
439  if (Delegating) {
440    // If this is a delegating constructor call, just load the VTT.
441    return LoadCXXVTT();
442  } else if (RD == Base) {
443    // If the record matches the base, this is the complete ctor/dtor
444    // variant calling the base variant in a class with virtual bases.
445    assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
446           "doing no-op VTT offset in base dtor/ctor?");
447    assert(!ForVirtualBase && "Can't have same class as virtual base!");
448    SubVTTIndex = 0;
449  } else {
450    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
451    CharUnits BaseOffset = ForVirtualBase ?
452      Layout.getVBaseClassOffset(Base) :
453      Layout.getBaseClassOffset(Base);
454
455    SubVTTIndex =
456      CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
457    assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
458  }
459
460  if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
461    // A VTT parameter was passed to the constructor, use it.
462    VTT = LoadCXXVTT();
463    VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
464  } else {
465    // We're the complete constructor, so get the VTT by name.
466    VTT = CGM.getVTables().GetAddrOfVTT(RD);
467    VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
468  }
469
470  return VTT;
471}
472
473namespace {
474  /// Call the destructor for a direct base class.
475  struct CallBaseDtor final : EHScopeStack::Cleanup {
476    const CXXRecordDecl *BaseClass;
477    bool BaseIsVirtual;
478    CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
479      : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
480
481    void Emit(CodeGenFunction &CGF, Flags flags) override {
482      const CXXRecordDecl *DerivedClass =
483        cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
484
485      const CXXDestructorDecl *D = BaseClass->getDestructor();
486      Address Addr =
487        CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
488                                                  DerivedClass, BaseClass,
489                                                  BaseIsVirtual);
490      CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
491                                /*Delegating=*/false, Addr);
492    }
493  };
494
495  /// A visitor which checks whether an initializer uses 'this' in a
496  /// way which requires the vtable to be properly set.
497  struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
498    typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
499
500    bool UsesThis;
501
502    DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
503
504    // Black-list all explicit and implicit references to 'this'.
505    //
506    // Do we need to worry about external references to 'this' derived
507    // from arbitrary code?  If so, then anything which runs arbitrary
508    // external code might potentially access the vtable.
509    void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
510  };
511} // end anonymous namespace
512
513static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
514  DynamicThisUseChecker Checker(C);
515  Checker.Visit(Init);
516  return Checker.UsesThis;
517}
518
519static void EmitBaseInitializer(CodeGenFunction &CGF,
520                                const CXXRecordDecl *ClassDecl,
521                                CXXCtorInitializer *BaseInit,
522                                CXXCtorType CtorType) {
523  assert(BaseInit->isBaseInitializer() &&
524         "Must have base initializer!");
525
526  Address ThisPtr = CGF.LoadCXXThisAddress();
527
528  const Type *BaseType = BaseInit->getBaseClass();
529  CXXRecordDecl *BaseClassDecl =
530    cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
531
532  bool isBaseVirtual = BaseInit->isBaseVirtual();
533
534  // The base constructor doesn't construct virtual bases.
535  if (CtorType == Ctor_Base && isBaseVirtual)
536    return;
537
538  // If the initializer for the base (other than the constructor
539  // itself) accesses 'this' in any way, we need to initialize the
540  // vtables.
541  if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
542    CGF.InitializeVTablePointers(ClassDecl);
543
544  // We can pretend to be a complete class because it only matters for
545  // virtual bases, and we only do virtual bases for complete ctors.
546  Address V =
547    CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
548                                              BaseClassDecl,
549                                              isBaseVirtual);
550  AggValueSlot AggSlot =
551    AggValueSlot::forAddr(V, Qualifiers(),
552                          AggValueSlot::IsDestructed,
553                          AggValueSlot::DoesNotNeedGCBarriers,
554                          AggValueSlot::IsNotAliased);
555
556  CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
557
558  if (CGF.CGM.getLangOpts().Exceptions &&
559      !BaseClassDecl->hasTrivialDestructor())
560    CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
561                                          isBaseVirtual);
562}
563
564static void EmitAggMemberInitializer(CodeGenFunction &CGF,
565                                     LValue LHS,
566                                     Expr *Init,
567                                     Address ArrayIndexVar,
568                                     QualType T,
569                                     ArrayRef<VarDecl *> ArrayIndexes,
570                                     unsigned Index) {
571  if (Index == ArrayIndexes.size()) {
572    LValue LV = LHS;
573
574    if (ArrayIndexVar.isValid()) {
575      // If we have an array index variable, load it and use it as an offset.
576      // Then, increment the value.
577      llvm::Value *Dest = LHS.getPointer();
578      llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
579      Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
580      llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
581      Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
582      CGF.Builder.CreateStore(Next, ArrayIndexVar);
583
584      // Update the LValue.
585      CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T);
586      CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize);
587      LV.setAddress(Address(Dest, Align));
588    }
589
590    switch (CGF.getEvaluationKind(T)) {
591    case TEK_Scalar:
592      CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
593      break;
594    case TEK_Complex:
595      CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
596      break;
597    case TEK_Aggregate: {
598      AggValueSlot Slot =
599        AggValueSlot::forLValue(LV,
600                                AggValueSlot::IsDestructed,
601                                AggValueSlot::DoesNotNeedGCBarriers,
602                                AggValueSlot::IsNotAliased);
603
604      CGF.EmitAggExpr(Init, Slot);
605      break;
606    }
607    }
608
609    return;
610  }
611
612  const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
613  assert(Array && "Array initialization without the array type?");
614  Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
615
616  // Initialize this index variable to zero.
617  llvm::Value* Zero
618    = llvm::Constant::getNullValue(IndexVar.getElementType());
619  CGF.Builder.CreateStore(Zero, IndexVar);
620
621  // Start the loop with a block that tests the condition.
622  llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
623  llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
624
625  CGF.EmitBlock(CondBlock);
626
627  llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
628  // Generate: if (loop-index < number-of-elements) fall to the loop body,
629  // otherwise, go to the block after the for-loop.
630  uint64_t NumElements = Array->getSize().getZExtValue();
631  llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
632  llvm::Value *NumElementsPtr =
633    llvm::ConstantInt::get(Counter->getType(), NumElements);
634  llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
635                                                  "isless");
636
637  // If the condition is true, execute the body.
638  CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
639
640  CGF.EmitBlock(ForBody);
641  llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
642
643  // Inside the loop body recurse to emit the inner loop or, eventually, the
644  // constructor call.
645  EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
646                           Array->getElementType(), ArrayIndexes, Index + 1);
647
648  CGF.EmitBlock(ContinueBlock);
649
650  // Emit the increment of the loop counter.
651  llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
652  Counter = CGF.Builder.CreateLoad(IndexVar);
653  NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
654  CGF.Builder.CreateStore(NextVal, IndexVar);
655
656  // Finally, branch back up to the condition for the next iteration.
657  CGF.EmitBranch(CondBlock);
658
659  // Emit the fall-through block.
660  CGF.EmitBlock(AfterFor, true);
661}
662
663static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
664  auto *CD = dyn_cast<CXXConstructorDecl>(D);
665  if (!(CD && CD->isCopyOrMoveConstructor()) &&
666      !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
667    return false;
668
669  // We can emit a memcpy for a trivial copy or move constructor/assignment.
670  if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
671    return true;
672
673  // We *must* emit a memcpy for a defaulted union copy or move op.
674  if (D->getParent()->isUnion() && D->isDefaulted())
675    return true;
676
677  return false;
678}
679
680static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
681                                                CXXCtorInitializer *MemberInit,
682                                                LValue &LHS) {
683  FieldDecl *Field = MemberInit->getAnyMember();
684  if (MemberInit->isIndirectMemberInitializer()) {
685    // If we are initializing an anonymous union field, drill down to the field.
686    IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
687    for (const auto *I : IndirectField->chain())
688      LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
689  } else {
690    LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
691  }
692}
693
694static void EmitMemberInitializer(CodeGenFunction &CGF,
695                                  const CXXRecordDecl *ClassDecl,
696                                  CXXCtorInitializer *MemberInit,
697                                  const CXXConstructorDecl *Constructor,
698                                  FunctionArgList &Args) {
699  ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
700  assert(MemberInit->isAnyMemberInitializer() &&
701         "Must have member initializer!");
702  assert(MemberInit->getInit() && "Must have initializer!");
703
704  // non-static data member initializers.
705  FieldDecl *Field = MemberInit->getAnyMember();
706  QualType FieldType = Field->getType();
707
708  llvm::Value *ThisPtr = CGF.LoadCXXThis();
709  QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
710  LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
711
712  EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
713
714  // Special case: if we are in a copy or move constructor, and we are copying
715  // an array of PODs or classes with trivial copy constructors, ignore the
716  // AST and perform the copy we know is equivalent.
717  // FIXME: This is hacky at best... if we had a bit more explicit information
718  // in the AST, we could generalize it more easily.
719  const ConstantArrayType *Array
720    = CGF.getContext().getAsConstantArrayType(FieldType);
721  if (Array && Constructor->isDefaulted() &&
722      Constructor->isCopyOrMoveConstructor()) {
723    QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
724    CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
725    if (BaseElementTy.isPODType(CGF.getContext()) ||
726        (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
727      unsigned SrcArgIndex =
728          CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
729      llvm::Value *SrcPtr
730        = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
731      LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
732      LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
733
734      // Copy the aggregate.
735      CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
736                            LHS.isVolatileQualified());
737      // Ensure that we destroy the objects if an exception is thrown later in
738      // the constructor.
739      QualType::DestructionKind dtorKind = FieldType.isDestructedType();
740      if (CGF.needsEHCleanup(dtorKind))
741        CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
742      return;
743    }
744  }
745
746  ArrayRef<VarDecl *> ArrayIndexes;
747  if (MemberInit->getNumArrayIndices())
748    ArrayIndexes = MemberInit->getArrayIndexes();
749  CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
750}
751
752void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
753                                Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) {
754  QualType FieldType = Field->getType();
755  switch (getEvaluationKind(FieldType)) {
756  case TEK_Scalar:
757    if (LHS.isSimple()) {
758      EmitExprAsInit(Init, Field, LHS, false);
759    } else {
760      RValue RHS = RValue::get(EmitScalarExpr(Init));
761      EmitStoreThroughLValue(RHS, LHS);
762    }
763    break;
764  case TEK_Complex:
765    EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
766    break;
767  case TEK_Aggregate: {
768    Address ArrayIndexVar = Address::invalid();
769    if (ArrayIndexes.size()) {
770      // The LHS is a pointer to the first object we'll be constructing, as
771      // a flat array.
772      QualType BaseElementTy = getContext().getBaseElementType(FieldType);
773      llvm::Type *BasePtr = ConvertType(BaseElementTy);
774      BasePtr = llvm::PointerType::getUnqual(BasePtr);
775      Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr);
776      LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
777
778      // Create an array index that will be used to walk over all of the
779      // objects we're constructing.
780      ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index");
781      llvm::Value *Zero =
782        llvm::Constant::getNullValue(ArrayIndexVar.getElementType());
783      Builder.CreateStore(Zero, ArrayIndexVar);
784
785      // Emit the block variables for the array indices, if any.
786      for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
787        EmitAutoVarDecl(*ArrayIndexes[I]);
788    }
789
790    EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
791                             ArrayIndexes, 0);
792  }
793  }
794
795  // Ensure that we destroy this object if an exception is thrown
796  // later in the constructor.
797  QualType::DestructionKind dtorKind = FieldType.isDestructedType();
798  if (needsEHCleanup(dtorKind))
799    pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
800}
801
802/// Checks whether the given constructor is a valid subject for the
803/// complete-to-base constructor delegation optimization, i.e.
804/// emitting the complete constructor as a simple call to the base
805/// constructor.
806static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
807
808  // Currently we disable the optimization for classes with virtual
809  // bases because (1) the addresses of parameter variables need to be
810  // consistent across all initializers but (2) the delegate function
811  // call necessarily creates a second copy of the parameter variable.
812  //
813  // The limiting example (purely theoretical AFAIK):
814  //   struct A { A(int &c) { c++; } };
815  //   struct B : virtual A {
816  //     B(int count) : A(count) { printf("%d\n", count); }
817  //   };
818  // ...although even this example could in principle be emitted as a
819  // delegation since the address of the parameter doesn't escape.
820  if (Ctor->getParent()->getNumVBases()) {
821    // TODO: white-list trivial vbase initializers.  This case wouldn't
822    // be subject to the restrictions below.
823
824    // TODO: white-list cases where:
825    //  - there are no non-reference parameters to the constructor
826    //  - the initializers don't access any non-reference parameters
827    //  - the initializers don't take the address of non-reference
828    //    parameters
829    //  - etc.
830    // If we ever add any of the above cases, remember that:
831    //  - function-try-blocks will always blacklist this optimization
832    //  - we need to perform the constructor prologue and cleanup in
833    //    EmitConstructorBody.
834
835    return false;
836  }
837
838  // We also disable the optimization for variadic functions because
839  // it's impossible to "re-pass" varargs.
840  if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
841    return false;
842
843  // FIXME: Decide if we can do a delegation of a delegating constructor.
844  if (Ctor->isDelegatingConstructor())
845    return false;
846
847  return true;
848}
849
850// Emit code in ctor (Prologue==true) or dtor (Prologue==false)
851// to poison the extra field paddings inserted under
852// -fsanitize-address-field-padding=1|2.
853void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
854  ASTContext &Context = getContext();
855  const CXXRecordDecl *ClassDecl =
856      Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
857               : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
858  if (!ClassDecl->mayInsertExtraPadding()) return;
859
860  struct SizeAndOffset {
861    uint64_t Size;
862    uint64_t Offset;
863  };
864
865  unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
866  const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
867
868  // Populate sizes and offsets of fields.
869  SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
870  for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
871    SSV[i].Offset =
872        Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
873
874  size_t NumFields = 0;
875  for (const auto *Field : ClassDecl->fields()) {
876    const FieldDecl *D = Field;
877    std::pair<CharUnits, CharUnits> FieldInfo =
878        Context.getTypeInfoInChars(D->getType());
879    CharUnits FieldSize = FieldInfo.first;
880    assert(NumFields < SSV.size());
881    SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
882    NumFields++;
883  }
884  assert(NumFields == SSV.size());
885  if (SSV.size() <= 1) return;
886
887  // We will insert calls to __asan_* run-time functions.
888  // LLVM AddressSanitizer pass may decide to inline them later.
889  llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
890  llvm::FunctionType *FTy =
891      llvm::FunctionType::get(CGM.VoidTy, Args, false);
892  llvm::Constant *F = CGM.CreateRuntimeFunction(
893      FTy, Prologue ? "__asan_poison_intra_object_redzone"
894                    : "__asan_unpoison_intra_object_redzone");
895
896  llvm::Value *ThisPtr = LoadCXXThis();
897  ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
898  uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
899  // For each field check if it has sufficient padding,
900  // if so (un)poison it with a call.
901  for (size_t i = 0; i < SSV.size(); i++) {
902    uint64_t AsanAlignment = 8;
903    uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
904    uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
905    uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
906    if (PoisonSize < AsanAlignment || !SSV[i].Size ||
907        (NextField % AsanAlignment) != 0)
908      continue;
909    Builder.CreateCall(
910        F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
911            Builder.getIntN(PtrSize, PoisonSize)});
912  }
913}
914
915/// EmitConstructorBody - Emits the body of the current constructor.
916void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
917  EmitAsanPrologueOrEpilogue(true);
918  const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
919  CXXCtorType CtorType = CurGD.getCtorType();
920
921  assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
922          CtorType == Ctor_Complete) &&
923         "can only generate complete ctor for this ABI");
924
925  // Before we go any further, try the complete->base constructor
926  // delegation optimization.
927  if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
928      CGM.getTarget().getCXXABI().hasConstructorVariants()) {
929    EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
930    return;
931  }
932
933  const FunctionDecl *Definition = nullptr;
934  Stmt *Body = Ctor->getBody(Definition);
935  assert(Definition == Ctor && "emitting wrong constructor body");
936
937  // Enter the function-try-block before the constructor prologue if
938  // applicable.
939  bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
940  if (IsTryBody)
941    EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
942
943  incrementProfileCounter(Body);
944
945  RunCleanupsScope RunCleanups(*this);
946
947  // TODO: in restricted cases, we can emit the vbase initializers of
948  // a complete ctor and then delegate to the base ctor.
949
950  // Emit the constructor prologue, i.e. the base and member
951  // initializers.
952  EmitCtorPrologue(Ctor, CtorType, Args);
953
954  // Emit the body of the statement.
955  if (IsTryBody)
956    EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
957  else if (Body)
958    EmitStmt(Body);
959
960  // Emit any cleanup blocks associated with the member or base
961  // initializers, which includes (along the exceptional path) the
962  // destructors for those members and bases that were fully
963  // constructed.
964  RunCleanups.ForceCleanup();
965
966  if (IsTryBody)
967    ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
968}
969
970namespace {
971  /// RAII object to indicate that codegen is copying the value representation
972  /// instead of the object representation. Useful when copying a struct or
973  /// class which has uninitialized members and we're only performing
974  /// lvalue-to-rvalue conversion on the object but not its members.
975  class CopyingValueRepresentation {
976  public:
977    explicit CopyingValueRepresentation(CodeGenFunction &CGF)
978        : CGF(CGF), OldSanOpts(CGF.SanOpts) {
979      CGF.SanOpts.set(SanitizerKind::Bool, false);
980      CGF.SanOpts.set(SanitizerKind::Enum, false);
981    }
982    ~CopyingValueRepresentation() {
983      CGF.SanOpts = OldSanOpts;
984    }
985  private:
986    CodeGenFunction &CGF;
987    SanitizerSet OldSanOpts;
988  };
989}
990
991namespace {
992  class FieldMemcpyizer {
993  public:
994    FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
995                    const VarDecl *SrcRec)
996      : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
997        RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
998        FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
999        LastFieldOffset(0), LastAddedFieldIndex(0) {}
1000
1001    bool isMemcpyableField(FieldDecl *F) const {
1002      // Never memcpy fields when we are adding poisoned paddings.
1003      if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
1004        return false;
1005      Qualifiers Qual = F->getType().getQualifiers();
1006      if (Qual.hasVolatile() || Qual.hasObjCLifetime())
1007        return false;
1008      return true;
1009    }
1010
1011    void addMemcpyableField(FieldDecl *F) {
1012      if (!FirstField)
1013        addInitialField(F);
1014      else
1015        addNextField(F);
1016    }
1017
1018    CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
1019      unsigned LastFieldSize =
1020        LastField->isBitField() ?
1021          LastField->getBitWidthValue(CGF.getContext()) :
1022          CGF.getContext().getTypeSize(LastField->getType());
1023      uint64_t MemcpySizeBits =
1024        LastFieldOffset + LastFieldSize - FirstByteOffset +
1025        CGF.getContext().getCharWidth() - 1;
1026      CharUnits MemcpySize =
1027        CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
1028      return MemcpySize;
1029    }
1030
1031    void emitMemcpy() {
1032      // Give the subclass a chance to bail out if it feels the memcpy isn't
1033      // worth it (e.g. Hasn't aggregated enough data).
1034      if (!FirstField) {
1035        return;
1036      }
1037
1038      uint64_t FirstByteOffset;
1039      if (FirstField->isBitField()) {
1040        const CGRecordLayout &RL =
1041          CGF.getTypes().getCGRecordLayout(FirstField->getParent());
1042        const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
1043        // FirstFieldOffset is not appropriate for bitfields,
1044        // we need to use the storage offset instead.
1045        FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
1046      } else {
1047        FirstByteOffset = FirstFieldOffset;
1048      }
1049
1050      CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
1051      QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1052      Address ThisPtr = CGF.LoadCXXThisAddress();
1053      LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1054      LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
1055      llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
1056      LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
1057      LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
1058
1059      emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
1060                   Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
1061                   MemcpySize);
1062      reset();
1063    }
1064
1065    void reset() {
1066      FirstField = nullptr;
1067    }
1068
1069  protected:
1070    CodeGenFunction &CGF;
1071    const CXXRecordDecl *ClassDecl;
1072
1073  private:
1074
1075    void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1076      llvm::PointerType *DPT = DestPtr.getType();
1077      llvm::Type *DBP =
1078        llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
1079      DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
1080
1081      llvm::PointerType *SPT = SrcPtr.getType();
1082      llvm::Type *SBP =
1083        llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
1084      SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
1085
1086      CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1087    }
1088
1089    void addInitialField(FieldDecl *F) {
1090        FirstField = F;
1091        LastField = F;
1092        FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1093        LastFieldOffset = FirstFieldOffset;
1094        LastAddedFieldIndex = F->getFieldIndex();
1095        return;
1096      }
1097
1098    void addNextField(FieldDecl *F) {
1099      // For the most part, the following invariant will hold:
1100      //   F->getFieldIndex() == LastAddedFieldIndex + 1
1101      // The one exception is that Sema won't add a copy-initializer for an
1102      // unnamed bitfield, which will show up here as a gap in the sequence.
1103      assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1104             "Cannot aggregate fields out of order.");
1105      LastAddedFieldIndex = F->getFieldIndex();
1106
1107      // The 'first' and 'last' fields are chosen by offset, rather than field
1108      // index. This allows the code to support bitfields, as well as regular
1109      // fields.
1110      uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1111      if (FOffset < FirstFieldOffset) {
1112        FirstField = F;
1113        FirstFieldOffset = FOffset;
1114      } else if (FOffset > LastFieldOffset) {
1115        LastField = F;
1116        LastFieldOffset = FOffset;
1117      }
1118    }
1119
1120    const VarDecl *SrcRec;
1121    const ASTRecordLayout &RecLayout;
1122    FieldDecl *FirstField;
1123    FieldDecl *LastField;
1124    uint64_t FirstFieldOffset, LastFieldOffset;
1125    unsigned LastAddedFieldIndex;
1126  };
1127
1128  class ConstructorMemcpyizer : public FieldMemcpyizer {
1129  private:
1130
1131    /// Get source argument for copy constructor. Returns null if not a copy
1132    /// constructor.
1133    static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1134                                               const CXXConstructorDecl *CD,
1135                                               FunctionArgList &Args) {
1136      if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1137        return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1138      return nullptr;
1139    }
1140
1141    // Returns true if a CXXCtorInitializer represents a member initialization
1142    // that can be rolled into a memcpy.
1143    bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1144      if (!MemcpyableCtor)
1145        return false;
1146      FieldDecl *Field = MemberInit->getMember();
1147      assert(Field && "No field for member init.");
1148      QualType FieldType = Field->getType();
1149      CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1150
1151      // Bail out on non-memcpyable, not-trivially-copyable members.
1152      if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1153          !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1154            FieldType->isReferenceType()))
1155        return false;
1156
1157      // Bail out on volatile fields.
1158      if (!isMemcpyableField(Field))
1159        return false;
1160
1161      // Otherwise we're good.
1162      return true;
1163    }
1164
1165  public:
1166    ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1167                          FunctionArgList &Args)
1168      : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1169        ConstructorDecl(CD),
1170        MemcpyableCtor(CD->isDefaulted() &&
1171                       CD->isCopyOrMoveConstructor() &&
1172                       CGF.getLangOpts().getGC() == LangOptions::NonGC),
1173        Args(Args) { }
1174
1175    void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1176      if (isMemberInitMemcpyable(MemberInit)) {
1177        AggregatedInits.push_back(MemberInit);
1178        addMemcpyableField(MemberInit->getMember());
1179      } else {
1180        emitAggregatedInits();
1181        EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1182                              ConstructorDecl, Args);
1183      }
1184    }
1185
1186    void emitAggregatedInits() {
1187      if (AggregatedInits.size() <= 1) {
1188        // This memcpy is too small to be worthwhile. Fall back on default
1189        // codegen.
1190        if (!AggregatedInits.empty()) {
1191          CopyingValueRepresentation CVR(CGF);
1192          EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1193                                AggregatedInits[0], ConstructorDecl, Args);
1194          AggregatedInits.clear();
1195        }
1196        reset();
1197        return;
1198      }
1199
1200      pushEHDestructors();
1201      emitMemcpy();
1202      AggregatedInits.clear();
1203    }
1204
1205    void pushEHDestructors() {
1206      Address ThisPtr = CGF.LoadCXXThisAddress();
1207      QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1208      LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1209
1210      for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1211        CXXCtorInitializer *MemberInit = AggregatedInits[i];
1212        QualType FieldType = MemberInit->getAnyMember()->getType();
1213        QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1214        if (!CGF.needsEHCleanup(dtorKind))
1215          continue;
1216        LValue FieldLHS = LHS;
1217        EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1218        CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1219      }
1220    }
1221
1222    void finish() {
1223      emitAggregatedInits();
1224    }
1225
1226  private:
1227    const CXXConstructorDecl *ConstructorDecl;
1228    bool MemcpyableCtor;
1229    FunctionArgList &Args;
1230    SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1231  };
1232
1233  class AssignmentMemcpyizer : public FieldMemcpyizer {
1234  private:
1235
1236    // Returns the memcpyable field copied by the given statement, if one
1237    // exists. Otherwise returns null.
1238    FieldDecl *getMemcpyableField(Stmt *S) {
1239      if (!AssignmentsMemcpyable)
1240        return nullptr;
1241      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1242        // Recognise trivial assignments.
1243        if (BO->getOpcode() != BO_Assign)
1244          return nullptr;
1245        MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1246        if (!ME)
1247          return nullptr;
1248        FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1249        if (!Field || !isMemcpyableField(Field))
1250          return nullptr;
1251        Stmt *RHS = BO->getRHS();
1252        if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1253          RHS = EC->getSubExpr();
1254        if (!RHS)
1255          return nullptr;
1256        MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1257        if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1258          return nullptr;
1259        return Field;
1260      } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1261        CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1262        if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1263          return nullptr;
1264        MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1265        if (!IOA)
1266          return nullptr;
1267        FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1268        if (!Field || !isMemcpyableField(Field))
1269          return nullptr;
1270        MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1271        if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1272          return nullptr;
1273        return Field;
1274      } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1275        FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1276        if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1277          return nullptr;
1278        Expr *DstPtr = CE->getArg(0);
1279        if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1280          DstPtr = DC->getSubExpr();
1281        UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1282        if (!DUO || DUO->getOpcode() != UO_AddrOf)
1283          return nullptr;
1284        MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1285        if (!ME)
1286          return nullptr;
1287        FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1288        if (!Field || !isMemcpyableField(Field))
1289          return nullptr;
1290        Expr *SrcPtr = CE->getArg(1);
1291        if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1292          SrcPtr = SC->getSubExpr();
1293        UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1294        if (!SUO || SUO->getOpcode() != UO_AddrOf)
1295          return nullptr;
1296        MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1297        if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1298          return nullptr;
1299        return Field;
1300      }
1301
1302      return nullptr;
1303    }
1304
1305    bool AssignmentsMemcpyable;
1306    SmallVector<Stmt*, 16> AggregatedStmts;
1307
1308  public:
1309
1310    AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1311                         FunctionArgList &Args)
1312      : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1313        AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1314      assert(Args.size() == 2);
1315    }
1316
1317    void emitAssignment(Stmt *S) {
1318      FieldDecl *F = getMemcpyableField(S);
1319      if (F) {
1320        addMemcpyableField(F);
1321        AggregatedStmts.push_back(S);
1322      } else {
1323        emitAggregatedStmts();
1324        CGF.EmitStmt(S);
1325      }
1326    }
1327
1328    void emitAggregatedStmts() {
1329      if (AggregatedStmts.size() <= 1) {
1330        if (!AggregatedStmts.empty()) {
1331          CopyingValueRepresentation CVR(CGF);
1332          CGF.EmitStmt(AggregatedStmts[0]);
1333        }
1334        reset();
1335      }
1336
1337      emitMemcpy();
1338      AggregatedStmts.clear();
1339    }
1340
1341    void finish() {
1342      emitAggregatedStmts();
1343    }
1344  };
1345} // end anonymous namespace
1346
1347static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1348  const Type *BaseType = BaseInit->getBaseClass();
1349  const auto *BaseClassDecl =
1350          cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1351  return BaseClassDecl->isDynamicClass();
1352}
1353
1354/// EmitCtorPrologue - This routine generates necessary code to initialize
1355/// base classes and non-static data members belonging to this constructor.
1356void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1357                                       CXXCtorType CtorType,
1358                                       FunctionArgList &Args) {
1359  if (CD->isDelegatingConstructor())
1360    return EmitDelegatingCXXConstructorCall(CD, Args);
1361
1362  const CXXRecordDecl *ClassDecl = CD->getParent();
1363
1364  CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1365                                          E = CD->init_end();
1366
1367  llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1368  if (ClassDecl->getNumVBases() &&
1369      !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1370    // The ABIs that don't have constructor variants need to put a branch
1371    // before the virtual base initialization code.
1372    BaseCtorContinueBB =
1373      CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1374    assert(BaseCtorContinueBB);
1375  }
1376
1377  llvm::Value *const OldThis = CXXThisValue;
1378  // Virtual base initializers first.
1379  for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1380    if (CGM.getCodeGenOpts().StrictVTablePointers &&
1381        CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1382        isInitializerOfDynamicClass(*B))
1383      CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1384    EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1385  }
1386
1387  if (BaseCtorContinueBB) {
1388    // Complete object handler should continue to the remaining initializers.
1389    Builder.CreateBr(BaseCtorContinueBB);
1390    EmitBlock(BaseCtorContinueBB);
1391  }
1392
1393  // Then, non-virtual base initializers.
1394  for (; B != E && (*B)->isBaseInitializer(); B++) {
1395    assert(!(*B)->isBaseVirtual());
1396
1397    if (CGM.getCodeGenOpts().StrictVTablePointers &&
1398        CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1399        isInitializerOfDynamicClass(*B))
1400      CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1401    EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1402  }
1403
1404  CXXThisValue = OldThis;
1405
1406  InitializeVTablePointers(ClassDecl);
1407
1408  // And finally, initialize class members.
1409  FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1410  ConstructorMemcpyizer CM(*this, CD, Args);
1411  for (; B != E; B++) {
1412    CXXCtorInitializer *Member = (*B);
1413    assert(!Member->isBaseInitializer());
1414    assert(Member->isAnyMemberInitializer() &&
1415           "Delegating initializer on non-delegating constructor");
1416    CM.addMemberInitializer(Member);
1417  }
1418  CM.finish();
1419}
1420
1421static bool
1422FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1423
1424static bool
1425HasTrivialDestructorBody(ASTContext &Context,
1426                         const CXXRecordDecl *BaseClassDecl,
1427                         const CXXRecordDecl *MostDerivedClassDecl)
1428{
1429  // If the destructor is trivial we don't have to check anything else.
1430  if (BaseClassDecl->hasTrivialDestructor())
1431    return true;
1432
1433  if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1434    return false;
1435
1436  // Check fields.
1437  for (const auto *Field : BaseClassDecl->fields())
1438    if (!FieldHasTrivialDestructorBody(Context, Field))
1439      return false;
1440
1441  // Check non-virtual bases.
1442  for (const auto &I : BaseClassDecl->bases()) {
1443    if (I.isVirtual())
1444      continue;
1445
1446    const CXXRecordDecl *NonVirtualBase =
1447      cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1448    if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1449                                  MostDerivedClassDecl))
1450      return false;
1451  }
1452
1453  if (BaseClassDecl == MostDerivedClassDecl) {
1454    // Check virtual bases.
1455    for (const auto &I : BaseClassDecl->vbases()) {
1456      const CXXRecordDecl *VirtualBase =
1457        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1458      if (!HasTrivialDestructorBody(Context, VirtualBase,
1459                                    MostDerivedClassDecl))
1460        return false;
1461    }
1462  }
1463
1464  return true;
1465}
1466
1467static bool
1468FieldHasTrivialDestructorBody(ASTContext &Context,
1469                                          const FieldDecl *Field)
1470{
1471  QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1472
1473  const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1474  if (!RT)
1475    return true;
1476
1477  CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1478
1479  // The destructor for an implicit anonymous union member is never invoked.
1480  if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1481    return false;
1482
1483  return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1484}
1485
1486/// CanSkipVTablePointerInitialization - Check whether we need to initialize
1487/// any vtable pointers before calling this destructor.
1488static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1489                                               const CXXDestructorDecl *Dtor) {
1490  const CXXRecordDecl *ClassDecl = Dtor->getParent();
1491  if (!ClassDecl->isDynamicClass())
1492    return true;
1493
1494  if (!Dtor->hasTrivialBody())
1495    return false;
1496
1497  // Check the fields.
1498  for (const auto *Field : ClassDecl->fields())
1499    if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1500      return false;
1501
1502  return true;
1503}
1504
1505/// EmitDestructorBody - Emits the body of the current destructor.
1506void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1507  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1508  CXXDtorType DtorType = CurGD.getDtorType();
1509
1510  Stmt *Body = Dtor->getBody();
1511  if (Body)
1512    incrementProfileCounter(Body);
1513
1514  // The call to operator delete in a deleting destructor happens
1515  // outside of the function-try-block, which means it's always
1516  // possible to delegate the destructor body to the complete
1517  // destructor.  Do so.
1518  if (DtorType == Dtor_Deleting) {
1519    EnterDtorCleanups(Dtor, Dtor_Deleting);
1520    EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1521                          /*Delegating=*/false, LoadCXXThisAddress());
1522    PopCleanupBlock();
1523    return;
1524  }
1525
1526  // If the body is a function-try-block, enter the try before
1527  // anything else.
1528  bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1529  if (isTryBody)
1530    EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1531  EmitAsanPrologueOrEpilogue(false);
1532
1533  // Enter the epilogue cleanups.
1534  RunCleanupsScope DtorEpilogue(*this);
1535
1536  // If this is the complete variant, just invoke the base variant;
1537  // the epilogue will destruct the virtual bases.  But we can't do
1538  // this optimization if the body is a function-try-block, because
1539  // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1540  // always delegate because we might not have a definition in this TU.
1541  switch (DtorType) {
1542  case Dtor_Comdat:
1543    llvm_unreachable("not expecting a COMDAT");
1544
1545  case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1546
1547  case Dtor_Complete:
1548    assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1549           "can't emit a dtor without a body for non-Microsoft ABIs");
1550
1551    // Enter the cleanup scopes for virtual bases.
1552    EnterDtorCleanups(Dtor, Dtor_Complete);
1553
1554    if (!isTryBody) {
1555      EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1556                            /*Delegating=*/false, LoadCXXThisAddress());
1557      break;
1558    }
1559    // Fallthrough: act like we're in the base variant.
1560
1561  case Dtor_Base:
1562    assert(Body);
1563
1564    // Enter the cleanup scopes for fields and non-virtual bases.
1565    EnterDtorCleanups(Dtor, Dtor_Base);
1566
1567    // Initialize the vtable pointers before entering the body.
1568    if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1569      // Insert the llvm.invariant.group.barrier intrinsic before initializing
1570      // the vptrs to cancel any previous assumptions we might have made.
1571      if (CGM.getCodeGenOpts().StrictVTablePointers &&
1572          CGM.getCodeGenOpts().OptimizationLevel > 0)
1573        CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1574      InitializeVTablePointers(Dtor->getParent());
1575    }
1576
1577    if (isTryBody)
1578      EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1579    else if (Body)
1580      EmitStmt(Body);
1581    else {
1582      assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1583      // nothing to do besides what's in the epilogue
1584    }
1585    // -fapple-kext must inline any call to this dtor into
1586    // the caller's body.
1587    if (getLangOpts().AppleKext)
1588      CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1589
1590    break;
1591  }
1592
1593  // Jump out through the epilogue cleanups.
1594  DtorEpilogue.ForceCleanup();
1595
1596  // Exit the try if applicable.
1597  if (isTryBody)
1598    ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1599}
1600
1601void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1602  const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1603  const Stmt *RootS = AssignOp->getBody();
1604  assert(isa<CompoundStmt>(RootS) &&
1605         "Body of an implicit assignment operator should be compound stmt.");
1606  const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1607
1608  LexicalScope Scope(*this, RootCS->getSourceRange());
1609
1610  AssignmentMemcpyizer AM(*this, AssignOp, Args);
1611  for (auto *I : RootCS->body())
1612    AM.emitAssignment(I);
1613  AM.finish();
1614}
1615
1616namespace {
1617  /// Call the operator delete associated with the current destructor.
1618  struct CallDtorDelete final : EHScopeStack::Cleanup {
1619    CallDtorDelete() {}
1620
1621    void Emit(CodeGenFunction &CGF, Flags flags) override {
1622      const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1623      const CXXRecordDecl *ClassDecl = Dtor->getParent();
1624      CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1625                         CGF.getContext().getTagDeclType(ClassDecl));
1626    }
1627  };
1628
1629  struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1630    llvm::Value *ShouldDeleteCondition;
1631  public:
1632    CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1633        : ShouldDeleteCondition(ShouldDeleteCondition) {
1634      assert(ShouldDeleteCondition != nullptr);
1635    }
1636
1637    void Emit(CodeGenFunction &CGF, Flags flags) override {
1638      llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1639      llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1640      llvm::Value *ShouldCallDelete
1641        = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1642      CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1643
1644      CGF.EmitBlock(callDeleteBB);
1645      const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1646      const CXXRecordDecl *ClassDecl = Dtor->getParent();
1647      CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1648                         CGF.getContext().getTagDeclType(ClassDecl));
1649      CGF.Builder.CreateBr(continueBB);
1650
1651      CGF.EmitBlock(continueBB);
1652    }
1653  };
1654
1655  class DestroyField  final : public EHScopeStack::Cleanup {
1656    const FieldDecl *field;
1657    CodeGenFunction::Destroyer *destroyer;
1658    bool useEHCleanupForArray;
1659
1660  public:
1661    DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1662                 bool useEHCleanupForArray)
1663        : field(field), destroyer(destroyer),
1664          useEHCleanupForArray(useEHCleanupForArray) {}
1665
1666    void Emit(CodeGenFunction &CGF, Flags flags) override {
1667      // Find the address of the field.
1668      Address thisValue = CGF.LoadCXXThisAddress();
1669      QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1670      LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1671      LValue LV = CGF.EmitLValueForField(ThisLV, field);
1672      assert(LV.isSimple());
1673
1674      CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1675                      flags.isForNormalCleanup() && useEHCleanupForArray);
1676    }
1677  };
1678
1679 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1680             CharUnits::QuantityType PoisonSize) {
1681   // Pass in void pointer and size of region as arguments to runtime
1682   // function
1683   llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1684                          llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1685
1686   llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1687
1688   llvm::FunctionType *FnType =
1689       llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1690   llvm::Value *Fn =
1691       CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1692   CGF.EmitNounwindRuntimeCall(Fn, Args);
1693 }
1694
1695  class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1696    const CXXDestructorDecl *Dtor;
1697
1698  public:
1699    SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1700
1701    // Generate function call for handling object poisoning.
1702    // Disables tail call elimination, to prevent the current stack frame
1703    // from disappearing from the stack trace.
1704    void Emit(CodeGenFunction &CGF, Flags flags) override {
1705      const ASTRecordLayout &Layout =
1706          CGF.getContext().getASTRecordLayout(Dtor->getParent());
1707
1708      // Nothing to poison.
1709      if (Layout.getFieldCount() == 0)
1710        return;
1711
1712      // Prevent the current stack frame from disappearing from the stack trace.
1713      CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1714
1715      // Construct pointer to region to begin poisoning, and calculate poison
1716      // size, so that only members declared in this class are poisoned.
1717      ASTContext &Context = CGF.getContext();
1718      unsigned fieldIndex = 0;
1719      int startIndex = -1;
1720      // RecordDecl::field_iterator Field;
1721      for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1722        // Poison field if it is trivial
1723        if (FieldHasTrivialDestructorBody(Context, Field)) {
1724          // Start sanitizing at this field
1725          if (startIndex < 0)
1726            startIndex = fieldIndex;
1727
1728          // Currently on the last field, and it must be poisoned with the
1729          // current block.
1730          if (fieldIndex == Layout.getFieldCount() - 1) {
1731            PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1732          }
1733        } else if (startIndex >= 0) {
1734          // No longer within a block of memory to poison, so poison the block
1735          PoisonMembers(CGF, startIndex, fieldIndex);
1736          // Re-set the start index
1737          startIndex = -1;
1738        }
1739        fieldIndex += 1;
1740      }
1741    }
1742
1743  private:
1744    /// \param layoutStartOffset index of the ASTRecordLayout field to
1745    ///     start poisoning (inclusive)
1746    /// \param layoutEndOffset index of the ASTRecordLayout field to
1747    ///     end poisoning (exclusive)
1748    void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1749                     unsigned layoutEndOffset) {
1750      ASTContext &Context = CGF.getContext();
1751      const ASTRecordLayout &Layout =
1752          Context.getASTRecordLayout(Dtor->getParent());
1753
1754      llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1755          CGF.SizeTy,
1756          Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1757              .getQuantity());
1758
1759      llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1760          CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1761          OffsetSizePtr);
1762
1763      CharUnits::QuantityType PoisonSize;
1764      if (layoutEndOffset >= Layout.getFieldCount()) {
1765        PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1766                     Context.toCharUnitsFromBits(
1767                                Layout.getFieldOffset(layoutStartOffset))
1768                         .getQuantity();
1769      } else {
1770        PoisonSize = Context.toCharUnitsFromBits(
1771                                Layout.getFieldOffset(layoutEndOffset) -
1772                                Layout.getFieldOffset(layoutStartOffset))
1773                         .getQuantity();
1774      }
1775
1776      if (PoisonSize == 0)
1777        return;
1778
1779      EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1780    }
1781  };
1782
1783 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1784    const CXXDestructorDecl *Dtor;
1785
1786  public:
1787    SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1788
1789    // Generate function call for handling vtable pointer poisoning.
1790    void Emit(CodeGenFunction &CGF, Flags flags) override {
1791      assert(Dtor->getParent()->isDynamicClass());
1792      (void)Dtor;
1793      ASTContext &Context = CGF.getContext();
1794      // Poison vtable and vtable ptr if they exist for this class.
1795      llvm::Value *VTablePtr = CGF.LoadCXXThis();
1796
1797      CharUnits::QuantityType PoisonSize =
1798          Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1799      // Pass in void pointer and size of region as arguments to runtime
1800      // function
1801      EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1802    }
1803 };
1804} // end anonymous namespace
1805
1806/// \brief Emit all code that comes at the end of class's
1807/// destructor. This is to call destructors on members and base classes
1808/// in reverse order of their construction.
1809void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1810                                        CXXDtorType DtorType) {
1811  assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1812         "Should not emit dtor epilogue for non-exported trivial dtor!");
1813
1814  // The deleting-destructor phase just needs to call the appropriate
1815  // operator delete that Sema picked up.
1816  if (DtorType == Dtor_Deleting) {
1817    assert(DD->getOperatorDelete() &&
1818           "operator delete missing - EnterDtorCleanups");
1819    if (CXXStructorImplicitParamValue) {
1820      // If there is an implicit param to the deleting dtor, it's a boolean
1821      // telling whether we should call delete at the end of the dtor.
1822      EHStack.pushCleanup<CallDtorDeleteConditional>(
1823          NormalAndEHCleanup, CXXStructorImplicitParamValue);
1824    } else {
1825      EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1826    }
1827    return;
1828  }
1829
1830  const CXXRecordDecl *ClassDecl = DD->getParent();
1831
1832  // Unions have no bases and do not call field destructors.
1833  if (ClassDecl->isUnion())
1834    return;
1835
1836  // The complete-destructor phase just destructs all the virtual bases.
1837  if (DtorType == Dtor_Complete) {
1838    // Poison the vtable pointer such that access after the base
1839    // and member destructors are invoked is invalid.
1840    if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1841        SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1842        ClassDecl->isPolymorphic())
1843      EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1844
1845    // We push them in the forward order so that they'll be popped in
1846    // the reverse order.
1847    for (const auto &Base : ClassDecl->vbases()) {
1848      CXXRecordDecl *BaseClassDecl
1849        = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1850
1851      // Ignore trivial destructors.
1852      if (BaseClassDecl->hasTrivialDestructor())
1853        continue;
1854
1855      EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1856                                        BaseClassDecl,
1857                                        /*BaseIsVirtual*/ true);
1858    }
1859
1860    return;
1861  }
1862
1863  assert(DtorType == Dtor_Base);
1864  // Poison the vtable pointer if it has no virtual bases, but inherits
1865  // virtual functions.
1866  if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1867      SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1868      ClassDecl->isPolymorphic())
1869    EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1870
1871  // Destroy non-virtual bases.
1872  for (const auto &Base : ClassDecl->bases()) {
1873    // Ignore virtual bases.
1874    if (Base.isVirtual())
1875      continue;
1876
1877    CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1878
1879    // Ignore trivial destructors.
1880    if (BaseClassDecl->hasTrivialDestructor())
1881      continue;
1882
1883    EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1884                                      BaseClassDecl,
1885                                      /*BaseIsVirtual*/ false);
1886  }
1887
1888  // Poison fields such that access after their destructors are
1889  // invoked, and before the base class destructor runs, is invalid.
1890  if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1891      SanOpts.has(SanitizerKind::Memory))
1892    EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1893
1894  // Destroy direct fields.
1895  for (const auto *Field : ClassDecl->fields()) {
1896    QualType type = Field->getType();
1897    QualType::DestructionKind dtorKind = type.isDestructedType();
1898    if (!dtorKind) continue;
1899
1900    // Anonymous union members do not have their destructors called.
1901    const RecordType *RT = type->getAsUnionType();
1902    if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1903
1904    CleanupKind cleanupKind = getCleanupKind(dtorKind);
1905    EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1906                                      getDestroyer(dtorKind),
1907                                      cleanupKind & EHCleanup);
1908  }
1909}
1910
1911/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1912/// constructor for each of several members of an array.
1913///
1914/// \param ctor the constructor to call for each element
1915/// \param arrayType the type of the array to initialize
1916/// \param arrayBegin an arrayType*
1917/// \param zeroInitialize true if each element should be
1918///   zero-initialized before it is constructed
1919void CodeGenFunction::EmitCXXAggrConstructorCall(
1920    const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1921    Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1922  QualType elementType;
1923  llvm::Value *numElements =
1924    emitArrayLength(arrayType, elementType, arrayBegin);
1925
1926  EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1927}
1928
1929/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1930/// constructor for each of several members of an array.
1931///
1932/// \param ctor the constructor to call for each element
1933/// \param numElements the number of elements in the array;
1934///   may be zero
1935/// \param arrayBase a T*, where T is the type constructed by ctor
1936/// \param zeroInitialize true if each element should be
1937///   zero-initialized before it is constructed
1938void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1939                                                 llvm::Value *numElements,
1940                                                 Address arrayBase,
1941                                                 const CXXConstructExpr *E,
1942                                                 bool zeroInitialize) {
1943  // It's legal for numElements to be zero.  This can happen both
1944  // dynamically, because x can be zero in 'new A[x]', and statically,
1945  // because of GCC extensions that permit zero-length arrays.  There
1946  // are probably legitimate places where we could assume that this
1947  // doesn't happen, but it's not clear that it's worth it.
1948  llvm::BranchInst *zeroCheckBranch = nullptr;
1949
1950  // Optimize for a constant count.
1951  llvm::ConstantInt *constantCount
1952    = dyn_cast<llvm::ConstantInt>(numElements);
1953  if (constantCount) {
1954    // Just skip out if the constant count is zero.
1955    if (constantCount->isZero()) return;
1956
1957  // Otherwise, emit the check.
1958  } else {
1959    llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1960    llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1961    zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1962    EmitBlock(loopBB);
1963  }
1964
1965  // Find the end of the array.
1966  llvm::Value *arrayBegin = arrayBase.getPointer();
1967  llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1968                                                    "arrayctor.end");
1969
1970  // Enter the loop, setting up a phi for the current location to initialize.
1971  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1972  llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1973  EmitBlock(loopBB);
1974  llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1975                                         "arrayctor.cur");
1976  cur->addIncoming(arrayBegin, entryBB);
1977
1978  // Inside the loop body, emit the constructor call on the array element.
1979
1980  // The alignment of the base, adjusted by the size of a single element,
1981  // provides a conservative estimate of the alignment of every element.
1982  // (This assumes we never start tracking offsetted alignments.)
1983  //
1984  // Note that these are complete objects and so we don't need to
1985  // use the non-virtual size or alignment.
1986  QualType type = getContext().getTypeDeclType(ctor->getParent());
1987  CharUnits eltAlignment =
1988    arrayBase.getAlignment()
1989             .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1990  Address curAddr = Address(cur, eltAlignment);
1991
1992  // Zero initialize the storage, if requested.
1993  if (zeroInitialize)
1994    EmitNullInitialization(curAddr, type);
1995
1996  // C++ [class.temporary]p4:
1997  // There are two contexts in which temporaries are destroyed at a different
1998  // point than the end of the full-expression. The first context is when a
1999  // default constructor is called to initialize an element of an array.
2000  // If the constructor has one or more default arguments, the destruction of
2001  // every temporary created in a default argument expression is sequenced
2002  // before the construction of the next array element, if any.
2003
2004  {
2005    RunCleanupsScope Scope(*this);
2006
2007    // Evaluate the constructor and its arguments in a regular
2008    // partial-destroy cleanup.
2009    if (getLangOpts().Exceptions &&
2010        !ctor->getParent()->hasTrivialDestructor()) {
2011      Destroyer *destroyer = destroyCXXObject;
2012      pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2013                                     *destroyer);
2014    }
2015
2016    EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2017                           /*Delegating=*/false, curAddr, E);
2018  }
2019
2020  // Go to the next element.
2021  llvm::Value *next =
2022    Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
2023                              "arrayctor.next");
2024  cur->addIncoming(next, Builder.GetInsertBlock());
2025
2026  // Check whether that's the end of the loop.
2027  llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2028  llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2029  Builder.CreateCondBr(done, contBB, loopBB);
2030
2031  // Patch the earlier check to skip over the loop.
2032  if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2033
2034  EmitBlock(contBB);
2035}
2036
2037void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2038                                       Address addr,
2039                                       QualType type) {
2040  const RecordType *rtype = type->castAs<RecordType>();
2041  const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2042  const CXXDestructorDecl *dtor = record->getDestructor();
2043  assert(!dtor->isTrivial());
2044  CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2045                            /*Delegating=*/false, addr);
2046}
2047
2048void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2049                                             CXXCtorType Type,
2050                                             bool ForVirtualBase,
2051                                             bool Delegating, Address This,
2052                                             const CXXConstructExpr *E) {
2053  const CXXRecordDecl *ClassDecl = D->getParent();
2054
2055  // C++11 [class.mfct.non-static]p2:
2056  //   If a non-static member function of a class X is called for an object that
2057  //   is not of type X, or of a type derived from X, the behavior is undefined.
2058  // FIXME: Provide a source location here.
2059  EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2060                This.getPointer(), getContext().getRecordType(ClassDecl));
2061
2062  if (D->isTrivial() && D->isDefaultConstructor()) {
2063    assert(E->getNumArgs() == 0 && "trivial default ctor with args");
2064    return;
2065  }
2066
2067  // If this is a trivial constructor, just emit what's needed. If this is a
2068  // union copy constructor, we must emit a memcpy, because the AST does not
2069  // model that copy.
2070  if (isMemcpyEquivalentSpecialMember(D)) {
2071    assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2072
2073    const Expr *Arg = E->getArg(0);
2074    QualType SrcTy = Arg->getType();
2075    Address Src = EmitLValue(Arg).getAddress();
2076    QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2077    EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2078    return;
2079  }
2080
2081  CallArgList Args;
2082
2083  // Push the this ptr.
2084  Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2085
2086  // Add the rest of the user-supplied arguments.
2087  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2088  EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor());
2089
2090  // Insert any ABI-specific implicit constructor arguments.
2091  unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
2092      *this, D, Type, ForVirtualBase, Delegating, Args);
2093
2094  // Emit the call.
2095  llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2096  const CGFunctionInfo &Info =
2097      CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
2098  EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
2099
2100  // Generate vtable assumptions if we're constructing a complete object
2101  // with a vtable.  We don't do this for base subobjects for two reasons:
2102  // first, it's incorrect for classes with virtual bases, and second, we're
2103  // about to overwrite the vptrs anyway.
2104  // We also have to make sure if we can refer to vtable:
2105  // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2106  // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2107  // sure that definition of vtable is not hidden,
2108  // then we are always safe to refer to it.
2109  // FIXME: It looks like InstCombine is very inefficient on dealing with
2110  // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2111  if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2112      ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2113      CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2114      CGM.getCodeGenOpts().StrictVTablePointers)
2115    EmitVTableAssumptionLoads(ClassDecl, This);
2116}
2117
2118void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2119  llvm::Value *VTableGlobal =
2120      CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2121  if (!VTableGlobal)
2122    return;
2123
2124  // We can just use the base offset in the complete class.
2125  CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2126
2127  if (!NonVirtualOffset.isZero())
2128    This =
2129        ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2130                                        Vptr.VTableClass, Vptr.NearestVBase);
2131
2132  llvm::Value *VPtrValue =
2133      GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2134  llvm::Value *Cmp =
2135      Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2136  Builder.CreateAssumption(Cmp);
2137}
2138
2139void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2140                                                Address This) {
2141  if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2142    for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2143      EmitVTableAssumptionLoad(Vptr, This);
2144}
2145
2146void
2147CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2148                                                Address This, Address Src,
2149                                                const CXXConstructExpr *E) {
2150  if (isMemcpyEquivalentSpecialMember(D)) {
2151    assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2152    assert(D->isCopyOrMoveConstructor() &&
2153           "trivial 1-arg ctor not a copy/move ctor");
2154    EmitAggregateCopyCtor(This, Src,
2155                          getContext().getTypeDeclType(D->getParent()),
2156                          (*E->arg_begin())->getType());
2157    return;
2158  }
2159  llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
2160  assert(D->isInstance() &&
2161         "Trying to emit a member call expr on a static method!");
2162
2163  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2164
2165  CallArgList Args;
2166
2167  // Push the this ptr.
2168  Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2169
2170  // Push the src ptr.
2171  QualType QT = *(FPT->param_type_begin());
2172  llvm::Type *t = CGM.getTypes().ConvertType(QT);
2173  Src = Builder.CreateBitCast(Src, t);
2174  Args.add(RValue::get(Src.getPointer()), QT);
2175
2176  // Skip over first argument (Src).
2177  EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2178               /*ParamsToSkip*/ 1);
2179
2180  EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
2181           Callee, ReturnValueSlot(), Args, D);
2182}
2183
2184void
2185CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2186                                                CXXCtorType CtorType,
2187                                                const FunctionArgList &Args,
2188                                                SourceLocation Loc) {
2189  CallArgList DelegateArgs;
2190
2191  FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2192  assert(I != E && "no parameters to constructor");
2193
2194  // this
2195  DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
2196  ++I;
2197
2198  // vtt
2199  if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
2200                                         /*ForVirtualBase=*/false,
2201                                         /*Delegating=*/true)) {
2202    QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
2203    DelegateArgs.add(RValue::get(VTT), VoidPP);
2204
2205    if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2206      assert(I != E && "cannot skip vtt parameter, already done with args");
2207      assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
2208      ++I;
2209    }
2210  }
2211
2212  // Explicit arguments.
2213  for (; I != E; ++I) {
2214    const VarDecl *param = *I;
2215    // FIXME: per-argument source location
2216    EmitDelegateCallArg(DelegateArgs, param, Loc);
2217  }
2218
2219  llvm::Value *Callee =
2220      CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
2221  EmitCall(CGM.getTypes()
2222               .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
2223           Callee, ReturnValueSlot(), DelegateArgs, Ctor);
2224}
2225
2226namespace {
2227  struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2228    const CXXDestructorDecl *Dtor;
2229    Address Addr;
2230    CXXDtorType Type;
2231
2232    CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2233                           CXXDtorType Type)
2234      : Dtor(D), Addr(Addr), Type(Type) {}
2235
2236    void Emit(CodeGenFunction &CGF, Flags flags) override {
2237      CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2238                                /*Delegating=*/true, Addr);
2239    }
2240  };
2241} // end anonymous namespace
2242
2243void
2244CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2245                                                  const FunctionArgList &Args) {
2246  assert(Ctor->isDelegatingConstructor());
2247
2248  Address ThisPtr = LoadCXXThisAddress();
2249
2250  AggValueSlot AggSlot =
2251    AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2252                          AggValueSlot::IsDestructed,
2253                          AggValueSlot::DoesNotNeedGCBarriers,
2254                          AggValueSlot::IsNotAliased);
2255
2256  EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2257
2258  const CXXRecordDecl *ClassDecl = Ctor->getParent();
2259  if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2260    CXXDtorType Type =
2261      CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2262
2263    EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2264                                                ClassDecl->getDestructor(),
2265                                                ThisPtr, Type);
2266  }
2267}
2268
2269void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2270                                            CXXDtorType Type,
2271                                            bool ForVirtualBase,
2272                                            bool Delegating,
2273                                            Address This) {
2274  CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2275                                     Delegating, This);
2276}
2277
2278namespace {
2279  struct CallLocalDtor final : EHScopeStack::Cleanup {
2280    const CXXDestructorDecl *Dtor;
2281    Address Addr;
2282
2283    CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2284      : Dtor(D), Addr(Addr) {}
2285
2286    void Emit(CodeGenFunction &CGF, Flags flags) override {
2287      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2288                                /*ForVirtualBase=*/false,
2289                                /*Delegating=*/false, Addr);
2290    }
2291  };
2292}
2293
2294void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2295                                            Address Addr) {
2296  EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2297}
2298
2299void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2300  CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2301  if (!ClassDecl) return;
2302  if (ClassDecl->hasTrivialDestructor()) return;
2303
2304  const CXXDestructorDecl *D = ClassDecl->getDestructor();
2305  assert(D && D->isUsed() && "destructor not marked as used!");
2306  PushDestructorCleanup(D, Addr);
2307}
2308
2309void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2310  // Compute the address point.
2311  llvm::Value *VTableAddressPoint =
2312      CGM.getCXXABI().getVTableAddressPointInStructor(
2313          *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2314
2315  if (!VTableAddressPoint)
2316    return;
2317
2318  // Compute where to store the address point.
2319  llvm::Value *VirtualOffset = nullptr;
2320  CharUnits NonVirtualOffset = CharUnits::Zero();
2321
2322  if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2323    // We need to use the virtual base offset offset because the virtual base
2324    // might have a different offset in the most derived class.
2325
2326    VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2327        *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2328    NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2329  } else {
2330    // We can just use the base offset in the complete class.
2331    NonVirtualOffset = Vptr.Base.getBaseOffset();
2332  }
2333
2334  // Apply the offsets.
2335  Address VTableField = LoadCXXThisAddress();
2336
2337  if (!NonVirtualOffset.isZero() || VirtualOffset)
2338    VTableField = ApplyNonVirtualAndVirtualOffset(
2339        *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2340        Vptr.NearestVBase);
2341
2342  // Finally, store the address point. Use the same LLVM types as the field to
2343  // support optimization.
2344  llvm::Type *VTablePtrTy =
2345      llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2346          ->getPointerTo()
2347          ->getPointerTo();
2348  VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2349  VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2350
2351  llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2352  CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
2353  if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2354      CGM.getCodeGenOpts().StrictVTablePointers)
2355    CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2356}
2357
2358CodeGenFunction::VPtrsVector
2359CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2360  CodeGenFunction::VPtrsVector VPtrsResult;
2361  VisitedVirtualBasesSetTy VBases;
2362  getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2363                    /*NearestVBase=*/nullptr,
2364                    /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2365                    /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2366                    VPtrsResult);
2367  return VPtrsResult;
2368}
2369
2370void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2371                                        const CXXRecordDecl *NearestVBase,
2372                                        CharUnits OffsetFromNearestVBase,
2373                                        bool BaseIsNonVirtualPrimaryBase,
2374                                        const CXXRecordDecl *VTableClass,
2375                                        VisitedVirtualBasesSetTy &VBases,
2376                                        VPtrsVector &Vptrs) {
2377  // If this base is a non-virtual primary base the address point has already
2378  // been set.
2379  if (!BaseIsNonVirtualPrimaryBase) {
2380    // Initialize the vtable pointer for this base.
2381    VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2382    Vptrs.push_back(Vptr);
2383  }
2384
2385  const CXXRecordDecl *RD = Base.getBase();
2386
2387  // Traverse bases.
2388  for (const auto &I : RD->bases()) {
2389    CXXRecordDecl *BaseDecl
2390      = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2391
2392    // Ignore classes without a vtable.
2393    if (!BaseDecl->isDynamicClass())
2394      continue;
2395
2396    CharUnits BaseOffset;
2397    CharUnits BaseOffsetFromNearestVBase;
2398    bool BaseDeclIsNonVirtualPrimaryBase;
2399
2400    if (I.isVirtual()) {
2401      // Check if we've visited this virtual base before.
2402      if (!VBases.insert(BaseDecl).second)
2403        continue;
2404
2405      const ASTRecordLayout &Layout =
2406        getContext().getASTRecordLayout(VTableClass);
2407
2408      BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2409      BaseOffsetFromNearestVBase = CharUnits::Zero();
2410      BaseDeclIsNonVirtualPrimaryBase = false;
2411    } else {
2412      const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2413
2414      BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2415      BaseOffsetFromNearestVBase =
2416        OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2417      BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2418    }
2419
2420    getVTablePointers(
2421        BaseSubobject(BaseDecl, BaseOffset),
2422        I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2423        BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2424  }
2425}
2426
2427void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2428  // Ignore classes without a vtable.
2429  if (!RD->isDynamicClass())
2430    return;
2431
2432  // Initialize the vtable pointers for this class and all of its bases.
2433  if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2434    for (const VPtr &Vptr : getVTablePointers(RD))
2435      InitializeVTablePointer(Vptr);
2436
2437  if (RD->getNumVBases())
2438    CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2439}
2440
2441llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2442                                           llvm::Type *VTableTy,
2443                                           const CXXRecordDecl *RD) {
2444  Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2445  llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2446  CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
2447
2448  if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2449      CGM.getCodeGenOpts().StrictVTablePointers)
2450    CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2451
2452  return VTable;
2453}
2454
2455// If a class has a single non-virtual base and does not introduce or override
2456// virtual member functions or fields, it will have the same layout as its base.
2457// This function returns the least derived such class.
2458//
2459// Casting an instance of a base class to such a derived class is technically
2460// undefined behavior, but it is a relatively common hack for introducing member
2461// functions on class instances with specific properties (e.g. llvm::Operator)
2462// that works under most compilers and should not have security implications, so
2463// we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2464static const CXXRecordDecl *
2465LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2466  if (!RD->field_empty())
2467    return RD;
2468
2469  if (RD->getNumVBases() != 0)
2470    return RD;
2471
2472  if (RD->getNumBases() != 1)
2473    return RD;
2474
2475  for (const CXXMethodDecl *MD : RD->methods()) {
2476    if (MD->isVirtual()) {
2477      // Virtual member functions are only ok if they are implicit destructors
2478      // because the implicit destructor will have the same semantics as the
2479      // base class's destructor if no fields are added.
2480      if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2481        continue;
2482      return RD;
2483    }
2484  }
2485
2486  return LeastDerivedClassWithSameLayout(
2487      RD->bases_begin()->getType()->getAsCXXRecordDecl());
2488}
2489
2490void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD,
2491                                                llvm::Value *VTable,
2492                                                CFITypeCheckKind TCK,
2493                                                SourceLocation Loc) {
2494  const CXXRecordDecl *ClassDecl = MD->getParent();
2495  if (!SanOpts.has(SanitizerKind::CFICastStrict))
2496    ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2497
2498  EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2499}
2500
2501void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2502                                                llvm::Value *Derived,
2503                                                bool MayBeNull,
2504                                                CFITypeCheckKind TCK,
2505                                                SourceLocation Loc) {
2506  if (!getLangOpts().CPlusPlus)
2507    return;
2508
2509  auto *ClassTy = T->getAs<RecordType>();
2510  if (!ClassTy)
2511    return;
2512
2513  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2514
2515  if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2516    return;
2517
2518  if (!SanOpts.has(SanitizerKind::CFICastStrict))
2519    ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2520
2521  llvm::BasicBlock *ContBlock = nullptr;
2522
2523  if (MayBeNull) {
2524    llvm::Value *DerivedNotNull =
2525        Builder.CreateIsNotNull(Derived, "cast.nonnull");
2526
2527    llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2528    ContBlock = createBasicBlock("cast.cont");
2529
2530    Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2531
2532    EmitBlock(CheckBlock);
2533  }
2534
2535  llvm::Value *VTable =
2536    GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
2537
2538  EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2539
2540  if (MayBeNull) {
2541    Builder.CreateBr(ContBlock);
2542    EmitBlock(ContBlock);
2543  }
2544}
2545
2546void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2547                                         llvm::Value *VTable,
2548                                         CFITypeCheckKind TCK,
2549                                         SourceLocation Loc) {
2550  if (CGM.IsCFIBlacklistedRecord(RD))
2551    return;
2552
2553  SanitizerScope SanScope(this);
2554
2555  llvm::Metadata *MD =
2556      CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2557  llvm::Value *BitSetName = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2558
2559  llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2560  llvm::Value *BitSetTest =
2561      Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
2562                         {CastedVTable, BitSetName});
2563
2564  if (CGM.getCodeGenOpts().SanitizeCfiCrossDso) {
2565    if (auto TypeId = CGM.CreateCfiIdForTypeMetadata(MD)) {
2566      EmitCfiSlowPathCheck(BitSetTest, TypeId, CastedVTable);
2567      return;
2568    }
2569  }
2570
2571  SanitizerMask M;
2572  switch (TCK) {
2573  case CFITCK_VCall:
2574    M = SanitizerKind::CFIVCall;
2575    break;
2576  case CFITCK_NVCall:
2577    M = SanitizerKind::CFINVCall;
2578    break;
2579  case CFITCK_DerivedCast:
2580    M = SanitizerKind::CFIDerivedCast;
2581    break;
2582  case CFITCK_UnrelatedCast:
2583    M = SanitizerKind::CFIUnrelatedCast;
2584    break;
2585  }
2586
2587  llvm::Constant *StaticData[] = {
2588      EmitCheckSourceLocation(Loc),
2589      EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2590      llvm::ConstantInt::get(Int8Ty, TCK),
2591  };
2592  EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData,
2593            CastedVTable);
2594}
2595
2596// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2597// quite what we want.
2598static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2599  while (true) {
2600    if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2601      E = PE->getSubExpr();
2602      continue;
2603    }
2604
2605    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2606      if (CE->getCastKind() == CK_NoOp) {
2607        E = CE->getSubExpr();
2608        continue;
2609      }
2610    }
2611    if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2612      if (UO->getOpcode() == UO_Extension) {
2613        E = UO->getSubExpr();
2614        continue;
2615      }
2616    }
2617    return E;
2618  }
2619}
2620
2621bool
2622CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2623                                                   const CXXMethodDecl *MD) {
2624  // When building with -fapple-kext, all calls must go through the vtable since
2625  // the kernel linker can do runtime patching of vtables.
2626  if (getLangOpts().AppleKext)
2627    return false;
2628
2629  // If the most derived class is marked final, we know that no subclass can
2630  // override this member function and so we can devirtualize it. For example:
2631  //
2632  // struct A { virtual void f(); }
2633  // struct B final : A { };
2634  //
2635  // void f(B *b) {
2636  //   b->f();
2637  // }
2638  //
2639  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2640  if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2641    return true;
2642
2643  // If the member function is marked 'final', we know that it can't be
2644  // overridden and can therefore devirtualize it.
2645  if (MD->hasAttr<FinalAttr>())
2646    return true;
2647
2648  // Similarly, if the class itself is marked 'final' it can't be overridden
2649  // and we can therefore devirtualize the member function call.
2650  if (MD->getParent()->hasAttr<FinalAttr>())
2651    return true;
2652
2653  Base = skipNoOpCastsAndParens(Base);
2654  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2655    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2656      // This is a record decl. We know the type and can devirtualize it.
2657      return VD->getType()->isRecordType();
2658    }
2659
2660    return false;
2661  }
2662
2663  // We can devirtualize calls on an object accessed by a class member access
2664  // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2665  // a derived class object constructed in the same location.
2666  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2667    if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2668      return VD->getType()->isRecordType();
2669
2670  // We can always devirtualize calls on temporary object expressions.
2671  if (isa<CXXConstructExpr>(Base))
2672    return true;
2673
2674  // And calls on bound temporaries.
2675  if (isa<CXXBindTemporaryExpr>(Base))
2676    return true;
2677
2678  // Check if this is a call expr that returns a record type.
2679  if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2680    return CE->getCallReturnType(getContext())->isRecordType();
2681
2682  // We can't devirtualize the call.
2683  return false;
2684}
2685
2686void CodeGenFunction::EmitForwardingCallToLambda(
2687                                      const CXXMethodDecl *callOperator,
2688                                      CallArgList &callArgs) {
2689  // Get the address of the call operator.
2690  const CGFunctionInfo &calleeFnInfo =
2691    CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2692  llvm::Value *callee =
2693    CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2694                          CGM.getTypes().GetFunctionType(calleeFnInfo));
2695
2696  // Prepare the return slot.
2697  const FunctionProtoType *FPT =
2698    callOperator->getType()->castAs<FunctionProtoType>();
2699  QualType resultType = FPT->getReturnType();
2700  ReturnValueSlot returnSlot;
2701  if (!resultType->isVoidType() &&
2702      calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2703      !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2704    returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2705
2706  // We don't need to separately arrange the call arguments because
2707  // the call can't be variadic anyway --- it's impossible to forward
2708  // variadic arguments.
2709
2710  // Now emit our call.
2711  RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2712                       callArgs, callOperator);
2713
2714  // If necessary, copy the returned value into the slot.
2715  if (!resultType->isVoidType() && returnSlot.isNull())
2716    EmitReturnOfRValue(RV, resultType);
2717  else
2718    EmitBranchThroughCleanup(ReturnBlock);
2719}
2720
2721void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2722  const BlockDecl *BD = BlockInfo->getBlockDecl();
2723  const VarDecl *variable = BD->capture_begin()->getVariable();
2724  const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2725
2726  // Start building arguments for forwarding call
2727  CallArgList CallArgs;
2728
2729  QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2730  Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2731  CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2732
2733  // Add the rest of the parameters.
2734  for (auto param : BD->params())
2735    EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2736
2737  assert(!Lambda->isGenericLambda() &&
2738            "generic lambda interconversion to block not implemented");
2739  EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2740}
2741
2742void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2743  if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2744    // FIXME: Making this work correctly is nasty because it requires either
2745    // cloning the body of the call operator or making the call operator forward.
2746    CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2747    return;
2748  }
2749
2750  EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2751}
2752
2753void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2754  const CXXRecordDecl *Lambda = MD->getParent();
2755
2756  // Start building arguments for forwarding call
2757  CallArgList CallArgs;
2758
2759  QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2760  llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2761  CallArgs.add(RValue::get(ThisPtr), ThisType);
2762
2763  // Add the rest of the parameters.
2764  for (auto Param : MD->params())
2765    EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2766
2767  const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2768  // For a generic lambda, find the corresponding call operator specialization
2769  // to which the call to the static-invoker shall be forwarded.
2770  if (Lambda->isGenericLambda()) {
2771    assert(MD->isFunctionTemplateSpecialization());
2772    const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2773    FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2774    void *InsertPos = nullptr;
2775    FunctionDecl *CorrespondingCallOpSpecialization =
2776        CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2777    assert(CorrespondingCallOpSpecialization);
2778    CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2779  }
2780  EmitForwardingCallToLambda(CallOp, CallArgs);
2781}
2782
2783void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2784  if (MD->isVariadic()) {
2785    // FIXME: Making this work correctly is nasty because it requires either
2786    // cloning the body of the call operator or making the call operator forward.
2787    CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2788    return;
2789  }
2790
2791  EmitLambdaDelegatingInvokeBody(MD);
2792}
2793