PTHLexer.cpp revision 6f78c3b8b9343e7e9fbf2d457cccf00df6da5d47
1//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the PTHLexer interface. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Basic/TokenKinds.h" 15#include "clang/Basic/FileManager.h" 16#include "clang/Basic/IdentifierTable.h" 17#include "clang/Lex/PTHLexer.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/Lex/PTHManager.h" 20#include "clang/Lex/Token.h" 21#include "clang/Lex/Preprocessor.h" 22#include "llvm/ADT/StringMap.h" 23#include "llvm/ADT/OwningPtr.h" 24#include "llvm/Support/Compiler.h" 25#include "llvm/Support/MathExtras.h" 26#include "llvm/Support/MemoryBuffer.h" 27#include "llvm/System/Host.h" 28using namespace clang; 29 30#define DISK_TOKEN_SIZE (1+1+2+4+4) 31 32//===----------------------------------------------------------------------===// 33// Utility methods for reading from the mmap'ed PTH file. 34//===----------------------------------------------------------------------===// 35 36static inline uint16_t ReadUnalignedLE16(const unsigned char *&Data) { 37 uint16_t V = ((uint16_t)Data[0] << 0) | 38 ((uint16_t)Data[1] << 8); 39 Data += 2; 40 return V; 41} 42 43static inline uint32_t ReadLE32(const unsigned char *&Data) { 44 // Hosts that directly support unaligned little-endian 32-bit loads can just 45 // use them. 46 uint32_t V = *((uint32_t*)Data); 47 if (llvm::sys::isBigEndianHost()) 48 V = llvm::ByteSwap_32(V); 49 Data += 4; 50 return V; 51} 52 53 54//===----------------------------------------------------------------------===// 55// PTHLexer methods. 56//===----------------------------------------------------------------------===// 57 58PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D, 59 const unsigned char *ppcond, 60 PTHSpellingSearch &mySpellingSrch, PTHManager &PM) 61 : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0), 62 PPCond(ppcond), CurPPCondPtr(ppcond), MySpellingSrch(mySpellingSrch), 63 PTHMgr(PM) { 64 65 FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID); 66} 67 68void PTHLexer::Lex(Token& Tok) { 69LexNextToken: 70 71 //===--------------------------------------==// 72 // Read the raw token data. 73 //===--------------------------------------==// 74 75 // Shadow CurPtr into an automatic variable. 76 const unsigned char *CurPtrShadow = CurPtr; 77 78 // Read in the data for the token. 79 unsigned Word0 = ReadLE32(CurPtrShadow); 80 uint32_t IdentifierID = ReadLE32(CurPtrShadow); 81 uint32_t FileOffset = ReadLE32(CurPtrShadow); 82 83 tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF); 84 Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF); 85 uint32_t Len = Word0 >> 16; 86 87 CurPtr = CurPtrShadow; 88 89 //===--------------------------------------==// 90 // Construct the token itself. 91 //===--------------------------------------==// 92 93 Tok.startToken(); 94 Tok.setKind(TKind); 95 Tok.setFlag(TFlags); 96 assert(!LexingRawMode); 97 Tok.setLocation(FileStartLoc.getFileLocWithOffset(FileOffset)); 98 Tok.setLength(Len); 99 100 // Handle identifiers. 101 if (IdentifierID) { 102 MIOpt.ReadToken(); 103 IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1); 104 Tok.setIdentifierInfo(II); 105 if (II->isHandleIdentifierCase()) 106 PP->HandleIdentifier(Tok); 107 return; 108 } 109 110 //===--------------------------------------==// 111 // Process the token. 112 //===--------------------------------------==// 113#if 0 114 SourceManager& SM = PP->getSourceManager(); 115 llvm::cerr << SM.getFileEntryForID(FileID)->getName() 116 << ':' << SM.getLogicalLineNumber(Tok.getLocation()) 117 << ':' << SM.getLogicalColumnNumber(Tok.getLocation()) 118 << '\n'; 119#endif 120 121 if (TKind == tok::eof) { 122 // Save the end-of-file token. 123 EofToken = Tok; 124 125 Preprocessor *PPCache = PP; 126 127 assert(!ParsingPreprocessorDirective); 128 assert(!LexingRawMode); 129 130 // FIXME: Issue diagnostics similar to Lexer. 131 if (PP->HandleEndOfFile(Tok, false)) 132 return; 133 134 assert(PPCache && "Raw buffer::LexEndOfFile should return a token"); 135 return PPCache->Lex(Tok); 136 } 137 138 if (TKind == tok::hash && Tok.isAtStartOfLine()) { 139 LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE; 140 assert(!LexingRawMode); 141 PP->HandleDirective(Tok); 142 143 if (PP->isCurrentLexer(this)) 144 goto LexNextToken; 145 146 return PP->Lex(Tok); 147 } 148 149 if (TKind == tok::eom) { 150 assert(ParsingPreprocessorDirective); 151 ParsingPreprocessorDirective = false; 152 return; 153 } 154 155 MIOpt.ReadToken(); 156} 157 158// FIXME: We can just grab the last token instead of storing a copy 159// into EofToken. 160void PTHLexer::getEOF(Token& Tok) { 161 assert(EofToken.is(tok::eof)); 162 Tok = EofToken; 163} 164 165void PTHLexer::DiscardToEndOfLine() { 166 assert(ParsingPreprocessorDirective && ParsingFilename == false && 167 "Must be in a preprocessing directive!"); 168 169 // We assume that if the preprocessor wishes to discard to the end of 170 // the line that it also means to end the current preprocessor directive. 171 ParsingPreprocessorDirective = false; 172 173 // Skip tokens by only peeking at their token kind and the flags. 174 // We don't need to actually reconstruct full tokens from the token buffer. 175 // This saves some copies and it also reduces IdentifierInfo* lookup. 176 const unsigned char* p = CurPtr; 177 while (1) { 178 // Read the token kind. Are we at the end of the file? 179 tok::TokenKind x = (tok::TokenKind) (uint8_t) *p; 180 if (x == tok::eof) break; 181 182 // Read the token flags. Are we at the start of the next line? 183 Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1]; 184 if (y & Token::StartOfLine) break; 185 186 // Skip to the next token. 187 p += DISK_TOKEN_SIZE; 188 } 189 190 CurPtr = p; 191} 192 193/// SkipBlock - Used by Preprocessor to skip the current conditional block. 194bool PTHLexer::SkipBlock() { 195 assert(CurPPCondPtr && "No cached PP conditional information."); 196 assert(LastHashTokPtr && "No known '#' token."); 197 198 const unsigned char* HashEntryI = 0; 199 uint32_t Offset; 200 uint32_t TableIdx; 201 202 do { 203 // Read the token offset from the side-table. 204 Offset = ReadLE32(CurPPCondPtr); 205 206 // Read the target table index from the side-table. 207 TableIdx = ReadLE32(CurPPCondPtr); 208 209 // Compute the actual memory address of the '#' token data for this entry. 210 HashEntryI = TokBuf + Offset; 211 212 // Optmization: "Sibling jumping". #if...#else...#endif blocks can 213 // contain nested blocks. In the side-table we can jump over these 214 // nested blocks instead of doing a linear search if the next "sibling" 215 // entry is not at a location greater than LastHashTokPtr. 216 if (HashEntryI < LastHashTokPtr && TableIdx) { 217 // In the side-table we are still at an entry for a '#' token that 218 // is earlier than the last one we saw. Check if the location we would 219 // stride gets us closer. 220 const unsigned char* NextPPCondPtr = 221 PPCond + TableIdx*(sizeof(uint32_t)*2); 222 assert(NextPPCondPtr >= CurPPCondPtr); 223 // Read where we should jump to. 224 uint32_t TmpOffset = ReadLE32(NextPPCondPtr); 225 const unsigned char* HashEntryJ = TokBuf + TmpOffset; 226 227 if (HashEntryJ <= LastHashTokPtr) { 228 // Jump directly to the next entry in the side table. 229 HashEntryI = HashEntryJ; 230 Offset = TmpOffset; 231 TableIdx = ReadLE32(NextPPCondPtr); 232 CurPPCondPtr = NextPPCondPtr; 233 } 234 } 235 } 236 while (HashEntryI < LastHashTokPtr); 237 assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'"); 238 assert(TableIdx && "No jumping from #endifs."); 239 240 // Update our side-table iterator. 241 const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2); 242 assert(NextPPCondPtr >= CurPPCondPtr); 243 CurPPCondPtr = NextPPCondPtr; 244 245 // Read where we should jump to. 246 HashEntryI = TokBuf + ReadLE32(NextPPCondPtr); 247 uint32_t NextIdx = ReadLE32(NextPPCondPtr); 248 249 // By construction NextIdx will be zero if this is a #endif. This is useful 250 // to know to obviate lexing another token. 251 bool isEndif = NextIdx == 0; 252 253 // This case can occur when we see something like this: 254 // 255 // #if ... 256 // /* a comment or nothing */ 257 // #elif 258 // 259 // If we are skipping the first #if block it will be the case that CurPtr 260 // already points 'elif'. Just return. 261 262 if (CurPtr > HashEntryI) { 263 assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE); 264 // Did we reach a #endif? If so, go ahead and consume that token as well. 265 if (isEndif) 266 CurPtr += DISK_TOKEN_SIZE*2; 267 else 268 LastHashTokPtr = HashEntryI; 269 270 return isEndif; 271 } 272 273 // Otherwise, we need to advance. Update CurPtr to point to the '#' token. 274 CurPtr = HashEntryI; 275 276 // Update the location of the last observed '#'. This is useful if we 277 // are skipping multiple blocks. 278 LastHashTokPtr = CurPtr; 279 280 // Skip the '#' token. 281 assert(((tok::TokenKind)*CurPtr) == tok::hash); 282 CurPtr += DISK_TOKEN_SIZE; 283 284 // Did we reach a #endif? If so, go ahead and consume that token as well. 285 if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; } 286 287 return isEndif; 288} 289 290SourceLocation PTHLexer::getSourceLocation() { 291 // getSourceLocation is not on the hot path. It is used to get the location 292 // of the next token when transitioning back to this lexer when done 293 // handling a #included file. Just read the necessary data from the token 294 // data buffer to construct the SourceLocation object. 295 // NOTE: This is a virtual function; hence it is defined out-of-line. 296 const unsigned char *OffsetPtr = CurPtr + (DISK_TOKEN_SIZE - 4); 297 uint32_t Offset = ReadLE32(OffsetPtr); 298 return FileStartLoc.getFileLocWithOffset(Offset); 299} 300 301//===----------------------------------------------------------------------===// 302// getSpelling() - Use cached data in PTH files for getSpelling(). 303//===----------------------------------------------------------------------===// 304 305unsigned PTHManager::getSpelling(FileID FID, unsigned FPos, 306 const char *&Buffer) { 307 llvm::DenseMap<FileID, PTHSpellingSearch*>::iterator I =SpellingMap.find(FID); 308 309 if (I == SpellingMap.end()) 310 return 0; 311 312 return I->second->getSpellingBinarySearch(FPos, Buffer); 313} 314 315unsigned PTHManager::getSpelling(SourceLocation Loc, const char *&Buffer) { 316 SourceManager &SM = PP->getSourceManager(); 317 Loc = SM.getSpellingLoc(Loc); 318 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedFileLoc(Loc); 319 return getSpelling(LocInfo.first, LocInfo.second, Buffer); 320} 321 322unsigned PTHManager::getSpellingAtPTHOffset(unsigned PTHOffset, 323 const char *&Buffer) { 324 assert(PTHOffset < Buf->getBufferSize()); 325 const unsigned char* Ptr = 326 (const unsigned char*)Buf->getBufferStart() + PTHOffset; 327 328 // The string is prefixed by 16 bits for its length, followed by the string 329 // itself. 330 unsigned Len = ReadUnalignedLE16(Ptr); 331 Buffer = (const char *)Ptr; 332 return Len; 333} 334 335unsigned PTHSpellingSearch::getSpellingLinearSearch(unsigned FPos, 336 const char *&Buffer) { 337 const unsigned char *Ptr = LinearItr; 338 unsigned Len = 0; 339 340 if (Ptr == TableEnd) 341 return getSpellingBinarySearch(FPos, Buffer); 342 343 do { 344 uint32_t TokOffset = ReadLE32(Ptr); 345 346 if (TokOffset > FPos) 347 return getSpellingBinarySearch(FPos, Buffer); 348 349 // Did we find a matching token offset for this spelling? 350 if (TokOffset == FPos) { 351 uint32_t SpellingPTHOffset = ReadLE32(Ptr); 352 Len = PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer); 353 break; 354 } 355 } while (Ptr != TableEnd); 356 357 LinearItr = Ptr; 358 return Len; 359} 360 361 362unsigned PTHSpellingSearch::getSpellingBinarySearch(unsigned FPos, 363 const char *&Buffer) { 364 365 assert((TableEnd - TableBeg) % SpellingEntrySize == 0); 366 assert(TableEnd >= TableBeg); 367 368 if (TableEnd == TableBeg) 369 return 0; 370 371 unsigned min = 0; 372 const unsigned char *tb = TableBeg; 373 unsigned max = NumSpellings; 374 375 do { 376 unsigned i = (max - min) / 2 + min; 377 const unsigned char *Ptr = tb + (i * SpellingEntrySize); 378 379 uint32_t TokOffset = ReadLE32(Ptr); 380 if (TokOffset > FPos) { 381 max = i; 382 assert(!(max == min) || (min == i)); 383 continue; 384 } 385 386 if (TokOffset < FPos) { 387 if (i == min) 388 break; 389 390 min = i; 391 continue; 392 } 393 394 uint32_t SpellingPTHOffset = ReadLE32(Ptr); 395 return PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer); 396 } 397 while (min != max); 398 399 return 0; 400} 401 402unsigned PTHLexer::getSpelling(SourceLocation Loc, const char *&Buffer) { 403 SourceManager &SM = PP->getSourceManager(); 404 Loc = SM.getSpellingLoc(Loc); 405 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedFileLoc(Loc); 406 407 FileID FID = LocInfo.first; 408 unsigned FPos = LocInfo.second; 409 410 if (FID == getFileID()) 411 return MySpellingSrch.getSpellingLinearSearch(FPos, Buffer); 412 return PTHMgr.getSpelling(FID, FPos, Buffer); 413} 414 415//===----------------------------------------------------------------------===// 416// Internal Data Structures for PTH file lookup and resolving identifiers. 417//===----------------------------------------------------------------------===// 418 419 420/// PTHFileLookup - This internal data structure is used by the PTHManager 421/// to map from FileEntry objects managed by FileManager to offsets within 422/// the PTH file. 423namespace { 424class VISIBILITY_HIDDEN PTHFileLookup { 425public: 426 class Val { 427 uint32_t TokenOff; 428 uint32_t PPCondOff; 429 uint32_t SpellingOff; 430 public: 431 Val() : TokenOff(~0) {} 432 Val(uint32_t toff, uint32_t poff, uint32_t soff) 433 : TokenOff(toff), PPCondOff(poff), SpellingOff(soff) {} 434 435 bool isValid() const { return TokenOff != ~((uint32_t)0); } 436 437 uint32_t getTokenOffset() const { 438 assert(isValid() && "PTHFileLookup entry initialized."); 439 return TokenOff; 440 } 441 442 uint32_t getPPCondOffset() const { 443 assert(isValid() && "PTHFileLookup entry initialized."); 444 return PPCondOff; 445 } 446 447 uint32_t getSpellingOffset() const { 448 assert(isValid() && "PTHFileLookup entry initialized."); 449 return SpellingOff; 450 } 451 }; 452 453private: 454 llvm::StringMap<Val> FileMap; 455 456public: 457 PTHFileLookup() {}; 458 459 bool isEmpty() const { 460 return FileMap.empty(); 461 } 462 463 Val Lookup(const FileEntry* FE) { 464 const char* s = FE->getName(); 465 unsigned size = strlen(s); 466 return FileMap.GetOrCreateValue(s, s+size).getValue(); 467 } 468 469 void ReadTable(const unsigned char* D) { 470 uint32_t N = ReadLE32(D); // Read the length of the table. 471 472 for ( ; N > 0; --N) { // The rest of the data is the table itself. 473 uint32_t Len = ReadLE32(D); 474 const char* s = (const char *)D; 475 D += Len; 476 477 uint32_t TokenOff = ReadLE32(D); 478 uint32_t PPCondOff = ReadLE32(D); 479 uint32_t SpellingOff = ReadLE32(D); 480 481 FileMap.GetOrCreateValue(s, s+Len).getValue() = 482 Val(TokenOff, PPCondOff, SpellingOff); 483 } 484 } 485}; 486} // end anonymous namespace 487 488//===----------------------------------------------------------------------===// 489// PTHManager methods. 490//===----------------------------------------------------------------------===// 491 492PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup, 493 const unsigned char* idDataTable, 494 IdentifierInfo** perIDCache, 495 const unsigned char* sortedIdTable, unsigned numIds) 496: Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup), 497 IdDataTable(idDataTable), SortedIdTable(sortedIdTable), 498 NumIds(numIds), PP(0) {} 499 500PTHManager::~PTHManager() { 501 delete Buf; 502 delete (PTHFileLookup*) FileLookup; 503 free(PerIDCache); 504} 505 506PTHManager* PTHManager::Create(const std::string& file) { 507 // Memory map the PTH file. 508 llvm::OwningPtr<llvm::MemoryBuffer> 509 File(llvm::MemoryBuffer::getFile(file.c_str())); 510 511 if (!File) 512 return 0; 513 514 // Get the buffer ranges and check if there are at least three 32-bit 515 // words at the end of the file. 516 const unsigned char* BufBeg = (unsigned char*)File->getBufferStart(); 517 const unsigned char* BufEnd = (unsigned char*)File->getBufferEnd(); 518 519 if(!(BufEnd > BufBeg + sizeof(uint32_t)*3)) { 520 assert(false && "Invalid PTH file."); 521 return 0; // FIXME: Proper error diagnostic? 522 } 523 524 // Compute the address of the index table at the end of the PTH file. 525 // This table contains the offset of the file lookup table, the 526 // persistent ID -> identifer data table. 527 // FIXME: We should just embed this offset in the PTH file. 528 const unsigned char* EndTable = BufEnd - sizeof(uint32_t)*4; 529 530 // Construct the file lookup table. This will be used for mapping from 531 // FileEntry*'s to cached tokens. 532 const unsigned char* FileTableOffset = EndTable + sizeof(uint32_t)*3; 533 const unsigned char* FileTable = BufBeg + ReadLE32(FileTableOffset); 534 535 if (!(FileTable > BufBeg && FileTable < BufEnd)) { 536 assert(false && "Invalid PTH file."); 537 return 0; // FIXME: Proper error diagnostic? 538 } 539 540 llvm::OwningPtr<PTHFileLookup> FL(new PTHFileLookup()); 541 FL->ReadTable(FileTable); 542 543 if (FL->isEmpty()) 544 return 0; 545 546 // Get the location of the table mapping from persistent ids to the 547 // data needed to reconstruct identifiers. 548 const unsigned char* IDTableOffset = EndTable + sizeof(uint32_t)*1; 549 const unsigned char* IData = BufBeg + ReadLE32(IDTableOffset); 550 551 if (!(IData >= BufBeg && IData < BufEnd)) { 552 assert(false && "Invalid PTH file."); 553 return 0; // FIXME: Proper error diagnostic? 554 } 555 556 // Get the location of the lexigraphically-sorted table of persistent IDs. 557 const unsigned char* SortedIdTableOffset = EndTable + sizeof(uint32_t)*2; 558 const unsigned char* SortedIdTable = BufBeg + ReadLE32(SortedIdTableOffset); 559 if (!(SortedIdTable >= BufBeg && SortedIdTable < BufEnd)) { 560 assert(false && "Invalid PTH file."); 561 return 0; // FIXME: Proper error diagnostic? 562 } 563 564 // Get the number of IdentifierInfos and pre-allocate the identifier cache. 565 uint32_t NumIds = ReadLE32(IData); 566 567 // Pre-allocate the peristent ID -> IdentifierInfo* cache. We use calloc() 568 // so that we in the best case only zero out memory once when the OS returns 569 // us new pages. 570 IdentifierInfo** PerIDCache = 0; 571 572 if (NumIds) { 573 PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache)); 574 if (!PerIDCache) { 575 assert(false && "Could not allocate Persistent ID cache."); 576 return 0; 577 } 578 } 579 580 // Create the new PTHManager. 581 return new PTHManager(File.take(), FL.take(), IData, PerIDCache, 582 SortedIdTable, NumIds); 583} 584IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) { 585 // Look in the PTH file for the string data for the IdentifierInfo object. 586 const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID; 587 const unsigned char* IDData = 588 (const unsigned char*)Buf->getBufferStart() + ReadLE32(TableEntry); 589 assert(IDData < (const unsigned char*)Buf->getBufferEnd()); 590 591 // Allocate the object. 592 std::pair<IdentifierInfo,const unsigned char*> *Mem = 593 Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >(); 594 595 Mem->second = IDData; 596 IdentifierInfo *II = new ((void*) Mem) IdentifierInfo(); 597 598 // Store the new IdentifierInfo in the cache. 599 PerIDCache[PersistentID] = II; 600 return II; 601} 602 603IdentifierInfo* PTHManager::get(const char *NameStart, const char *NameEnd) { 604 unsigned min = 0; 605 unsigned max = NumIds; 606 unsigned Len = NameEnd - NameStart; 607 608 do { 609 unsigned i = (max - min) / 2 + min; 610 const unsigned char *Ptr = SortedIdTable + (i * 4); 611 612 // Read the persistentID. 613 unsigned perID = ReadLE32(Ptr); 614 615 // Get the IdentifierInfo. 616 IdentifierInfo* II = GetIdentifierInfo(perID); 617 618 // First compare the lengths. 619 unsigned IILen = II->getLength(); 620 if (Len < IILen) goto IsLess; 621 if (Len > IILen) goto IsGreater; 622 623 // Now compare the strings! 624 { 625 signed comp = strncmp(NameStart, II->getName(), Len); 626 if (comp < 0) goto IsLess; 627 if (comp > 0) goto IsGreater; 628 } 629 // We found a match! 630 return II; 631 632 IsGreater: 633 if (i == min) break; 634 min = i; 635 continue; 636 637 IsLess: 638 max = i; 639 assert(!(max == min) || (min == i)); 640 } 641 while (min != max); 642 643 return 0; 644} 645 646 647PTHLexer *PTHManager::CreateLexer(FileID FID) { 648 const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID); 649 if (!FE) 650 return 0; 651 652 // Lookup the FileEntry object in our file lookup data structure. It will 653 // return a variant that indicates whether or not there is an offset within 654 // the PTH file that contains cached tokens. 655 PTHFileLookup::Val FileData = ((PTHFileLookup*)FileLookup)->Lookup(FE); 656 657 if (!FileData.isValid()) // No tokens available. 658 return 0; 659 660 const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart(); 661 // Compute the offset of the token data within the buffer. 662 const unsigned char* data = BufStart + FileData.getTokenOffset(); 663 664 // Get the location of pp-conditional table. 665 const unsigned char* ppcond = BufStart + FileData.getPPCondOffset(); 666 uint32_t Len = ReadLE32(ppcond); 667 if (Len == 0) ppcond = 0; 668 669 // Get the location of the spelling table. 670 const unsigned char* spellingTable = BufStart + FileData.getSpellingOffset(); 671 672 Len = ReadLE32(spellingTable); 673 if (Len == 0) spellingTable = 0; 674 675 assert(data < (const unsigned char*)Buf->getBufferEnd()); 676 677 // Create the SpellingSearch object for this FileID. 678 PTHSpellingSearch* ss = new PTHSpellingSearch(*this, Len, spellingTable); 679 SpellingMap[FID] = ss; 680 681 assert(PP && "No preprocessor set yet!"); 682 return new PTHLexer(*PP, FID, data, ppcond, *ss, *this); 683} 684