PTHLexer.cpp revision 898a0bb1972efb6e03cb1151412ec7392cef07de
1//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the PTHLexer interface. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Basic/TokenKinds.h" 15#include "clang/Basic/FileManager.h" 16#include "clang/Basic/IdentifierTable.h" 17#include "clang/Lex/PTHLexer.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/Lex/PTHManager.h" 20#include "clang/Lex/Token.h" 21#include "clang/Lex/Preprocessor.h" 22#include "llvm/Support/Compiler.h" 23#include "llvm/Support/MemoryBuffer.h" 24#include "llvm/ADT/StringMap.h" 25#include "llvm/ADT/OwningPtr.h" 26using namespace clang; 27 28#define DISK_TOKEN_SIZE (1+1+3+4+2) 29 30//===----------------------------------------------------------------------===// 31// Utility methods for reading from the mmap'ed PTH file. 32//===----------------------------------------------------------------------===// 33 34static inline uint8_t Read8(const unsigned char *&Data) { 35 uint8_t V = Data[0]; 36 Data += 1; 37 return V; 38} 39 40static inline uint16_t Read16(const unsigned char *&Data) { 41// Targets that directly support unaligned little-endian 16-bit loads can just 42// use them. 43#if defined(__i386__) || defined(__x86_64__) 44 uint16_t V = *((uint16_t*)Data); 45#else 46 uint16_t V = ((uint16_t)Data[0] << 0) | 47 ((uint16_t)Data[1] << 8); 48#endif 49 Data += 2; 50 return V; 51} 52 53static inline uint32_t Read24(const unsigned char *&Data) { 54// Targets that directly support unaligned little-endian 16-bit loads can just 55// use them. 56#if defined(__i386__) || defined(__x86_64__) 57 uint32_t V = ((uint16_t*)Data)[0] | 58 ((uint32_t)Data[2] << 16); 59#else 60 uint32_t V = ((uint32_t)Data[0] << 0) | 61 ((uint32_t)Data[1] << 8) | 62 ((uint32_t)Data[2] << 16); 63#endif 64 65 Data += 3; 66 return V; 67} 68 69static inline uint32_t Read32(const unsigned char *&Data) { 70// Targets that directly support unaligned little-endian 32-bit loads can just 71// use them. 72#if defined(__i386__) || defined(__x86_64__) 73 uint32_t V = *((uint32_t*)Data); 74#else 75 uint32_t V = ((uint32_t)Data[0] << 0) | 76 ((uint32_t)Data[1] << 8) | 77 ((uint32_t)Data[2] << 16) | 78 ((uint32_t)Data[3] << 24); 79#endif 80 Data += 4; 81 return V; 82} 83 84 85//===----------------------------------------------------------------------===// 86// PTHLexer methods. 87//===----------------------------------------------------------------------===// 88 89PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D, 90 const unsigned char *ppcond, 91 PTHSpellingSearch &mySpellingSrch, PTHManager &PM) 92 : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0), 93 PPCond(ppcond), CurPPCondPtr(ppcond), MySpellingSrch(mySpellingSrch), 94 PTHMgr(PM) { 95 96 FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID); 97} 98 99void PTHLexer::Lex(Token& Tok) { 100LexNextToken: 101 102 //===--------------------------------------==// 103 // Read the raw token data. 104 //===--------------------------------------==// 105 106 // Shadow CurPtr into an automatic variable. 107 const unsigned char *CurPtrShadow = CurPtr; 108 109 // Read in the data for the token. 110 tok::TokenKind TKind = (tok::TokenKind) Read8(CurPtrShadow); 111 Token::TokenFlags TFlags = (Token::TokenFlags) Read8(CurPtrShadow); 112 uint32_t IdentifierID = Read24(CurPtrShadow); 113 uint32_t FileOffset = Read32(CurPtrShadow); 114 uint32_t Len = Read16(CurPtrShadow); 115 CurPtr = CurPtrShadow; 116 117 //===--------------------------------------==// 118 // Construct the token itself. 119 //===--------------------------------------==// 120 121 Tok.startToken(); 122 Tok.setKind(TKind); 123 Tok.setFlag(TFlags); 124 assert(!LexingRawMode); 125 if (IdentifierID) 126 Tok.setIdentifierInfo(PTHMgr.GetIdentifierInfo(IdentifierID-1)); 127 Tok.setLocation(FileStartLoc.getFileLocWithOffset(FileOffset)); 128 Tok.setLength(Len); 129 130 //===--------------------------------------==// 131 // Process the token. 132 //===--------------------------------------==// 133#if 0 134 SourceManager& SM = PP->getSourceManager(); 135 llvm::cerr << SM.getFileEntryForID(FileID)->getName() 136 << ':' << SM.getLogicalLineNumber(Tok.getLocation()) 137 << ':' << SM.getLogicalColumnNumber(Tok.getLocation()) 138 << '\n'; 139#endif 140 141 if (TKind == tok::identifier) { 142 MIOpt.ReadToken(); 143 return PP->HandleIdentifier(Tok); 144 } 145 146 if (TKind == tok::eof) { 147 // Save the end-of-file token. 148 EofToken = Tok; 149 150 Preprocessor *PPCache = PP; 151 152 assert(!ParsingPreprocessorDirective); 153 assert(!LexingRawMode); 154 155 // FIXME: Issue diagnostics similar to Lexer. 156 if (PP->HandleEndOfFile(Tok, false)) 157 return; 158 159 assert(PPCache && "Raw buffer::LexEndOfFile should return a token"); 160 return PPCache->Lex(Tok); 161 } 162 163 if (TKind == tok::hash && Tok.isAtStartOfLine()) { 164 LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE; 165 assert(!LexingRawMode); 166 PP->HandleDirective(Tok); 167 168 if (PP->isCurrentLexer(this)) 169 goto LexNextToken; 170 171 return PP->Lex(Tok); 172 } 173 174 if (TKind == tok::eom) { 175 assert(ParsingPreprocessorDirective); 176 ParsingPreprocessorDirective = false; 177 return; 178 } 179 180 MIOpt.ReadToken(); 181} 182 183// FIXME: We can just grab the last token instead of storing a copy 184// into EofToken. 185void PTHLexer::getEOF(Token& Tok) { 186 assert(EofToken.is(tok::eof)); 187 Tok = EofToken; 188} 189 190void PTHLexer::DiscardToEndOfLine() { 191 assert(ParsingPreprocessorDirective && ParsingFilename == false && 192 "Must be in a preprocessing directive!"); 193 194 // We assume that if the preprocessor wishes to discard to the end of 195 // the line that it also means to end the current preprocessor directive. 196 ParsingPreprocessorDirective = false; 197 198 // Skip tokens by only peeking at their token kind and the flags. 199 // We don't need to actually reconstruct full tokens from the token buffer. 200 // This saves some copies and it also reduces IdentifierInfo* lookup. 201 const unsigned char* p = CurPtr; 202 while (1) { 203 // Read the token kind. Are we at the end of the file? 204 tok::TokenKind x = (tok::TokenKind) (uint8_t) *p; 205 if (x == tok::eof) break; 206 207 // Read the token flags. Are we at the start of the next line? 208 Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1]; 209 if (y & Token::StartOfLine) break; 210 211 // Skip to the next token. 212 p += DISK_TOKEN_SIZE; 213 } 214 215 CurPtr = p; 216} 217 218/// SkipBlock - Used by Preprocessor to skip the current conditional block. 219bool PTHLexer::SkipBlock() { 220 assert(CurPPCondPtr && "No cached PP conditional information."); 221 assert(LastHashTokPtr && "No known '#' token."); 222 223 const unsigned char* HashEntryI = 0; 224 uint32_t Offset; 225 uint32_t TableIdx; 226 227 do { 228 // Read the token offset from the side-table. 229 Offset = Read32(CurPPCondPtr); 230 231 // Read the target table index from the side-table. 232 TableIdx = Read32(CurPPCondPtr); 233 234 // Compute the actual memory address of the '#' token data for this entry. 235 HashEntryI = TokBuf + Offset; 236 237 // Optmization: "Sibling jumping". #if...#else...#endif blocks can 238 // contain nested blocks. In the side-table we can jump over these 239 // nested blocks instead of doing a linear search if the next "sibling" 240 // entry is not at a location greater than LastHashTokPtr. 241 if (HashEntryI < LastHashTokPtr && TableIdx) { 242 // In the side-table we are still at an entry for a '#' token that 243 // is earlier than the last one we saw. Check if the location we would 244 // stride gets us closer. 245 const unsigned char* NextPPCondPtr = 246 PPCond + TableIdx*(sizeof(uint32_t)*2); 247 assert(NextPPCondPtr >= CurPPCondPtr); 248 // Read where we should jump to. 249 uint32_t TmpOffset = Read32(NextPPCondPtr); 250 const unsigned char* HashEntryJ = TokBuf + TmpOffset; 251 252 if (HashEntryJ <= LastHashTokPtr) { 253 // Jump directly to the next entry in the side table. 254 HashEntryI = HashEntryJ; 255 Offset = TmpOffset; 256 TableIdx = Read32(NextPPCondPtr); 257 CurPPCondPtr = NextPPCondPtr; 258 } 259 } 260 } 261 while (HashEntryI < LastHashTokPtr); 262 assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'"); 263 assert(TableIdx && "No jumping from #endifs."); 264 265 // Update our side-table iterator. 266 const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2); 267 assert(NextPPCondPtr >= CurPPCondPtr); 268 CurPPCondPtr = NextPPCondPtr; 269 270 // Read where we should jump to. 271 HashEntryI = TokBuf + Read32(NextPPCondPtr); 272 uint32_t NextIdx = Read32(NextPPCondPtr); 273 274 // By construction NextIdx will be zero if this is a #endif. This is useful 275 // to know to obviate lexing another token. 276 bool isEndif = NextIdx == 0; 277 278 // This case can occur when we see something like this: 279 // 280 // #if ... 281 // /* a comment or nothing */ 282 // #elif 283 // 284 // If we are skipping the first #if block it will be the case that CurPtr 285 // already points 'elif'. Just return. 286 287 if (CurPtr > HashEntryI) { 288 assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE); 289 // Did we reach a #endif? If so, go ahead and consume that token as well. 290 if (isEndif) 291 CurPtr += DISK_TOKEN_SIZE*2; 292 else 293 LastHashTokPtr = HashEntryI; 294 295 return isEndif; 296 } 297 298 // Otherwise, we need to advance. Update CurPtr to point to the '#' token. 299 CurPtr = HashEntryI; 300 301 // Update the location of the last observed '#'. This is useful if we 302 // are skipping multiple blocks. 303 LastHashTokPtr = CurPtr; 304 305 // Skip the '#' token. 306 assert(((tok::TokenKind)*CurPtr) == tok::hash); 307 CurPtr += DISK_TOKEN_SIZE; 308 309 // Did we reach a #endif? If so, go ahead and consume that token as well. 310 if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; } 311 312 return isEndif; 313} 314 315SourceLocation PTHLexer::getSourceLocation() { 316 // getSourceLocation is not on the hot path. It is used to get the location 317 // of the next token when transitioning back to this lexer when done 318 // handling a #included file. Just read the necessary data from the token 319 // data buffer to construct the SourceLocation object. 320 // NOTE: This is a virtual function; hence it is defined out-of-line. 321 const unsigned char *OffsetPtr = CurPtr + (1 + 1 + 3); 322 uint32_t Offset = Read32(OffsetPtr); 323 return FileStartLoc.getFileLocWithOffset(Offset); 324} 325 326//===----------------------------------------------------------------------===// 327// getSpelling() - Use cached data in PTH files for getSpelling(). 328//===----------------------------------------------------------------------===// 329 330unsigned PTHManager::getSpelling(FileID FID, unsigned FPos, 331 const char *&Buffer) { 332 llvm::DenseMap<FileID, PTHSpellingSearch*>::iterator I =SpellingMap.find(FID); 333 334 if (I == SpellingMap.end()) 335 return 0; 336 337 return I->second->getSpellingBinarySearch(FPos, Buffer); 338} 339 340unsigned PTHManager::getSpelling(SourceLocation Loc, const char *&Buffer) { 341 SourceManager &SM = PP->getSourceManager(); 342 Loc = SM.getSpellingLoc(Loc); 343 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedFileLoc(Loc); 344 return getSpelling(LocInfo.first, LocInfo.second, Buffer); 345} 346 347unsigned PTHManager::getSpellingAtPTHOffset(unsigned PTHOffset, 348 const char *&Buffer) { 349 assert(PTHOffset < Buf->getBufferSize()); 350 const unsigned char* Ptr = 351 (const unsigned char*)Buf->getBufferStart() + PTHOffset; 352 353 // The string is prefixed by 16 bits for its length, followed by the string 354 // itself. 355 unsigned Len = Read16(Ptr); 356 Buffer = (const char *)Ptr; 357 return Len; 358} 359 360unsigned PTHSpellingSearch::getSpellingLinearSearch(unsigned FPos, 361 const char *&Buffer) { 362 const unsigned char *Ptr = LinearItr; 363 unsigned Len = 0; 364 365 if (Ptr == TableEnd) 366 return getSpellingBinarySearch(FPos, Buffer); 367 368 do { 369 uint32_t TokOffset = Read32(Ptr); 370 371 if (TokOffset > FPos) 372 return getSpellingBinarySearch(FPos, Buffer); 373 374 // Did we find a matching token offset for this spelling? 375 if (TokOffset == FPos) { 376 uint32_t SpellingPTHOffset = Read32(Ptr); 377 Len = PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer); 378 break; 379 } 380 } while (Ptr != TableEnd); 381 382 LinearItr = Ptr; 383 return Len; 384} 385 386 387unsigned PTHSpellingSearch::getSpellingBinarySearch(unsigned FPos, 388 const char *&Buffer) { 389 390 assert((TableEnd - TableBeg) % SpellingEntrySize == 0); 391 assert(TableEnd >= TableBeg); 392 393 if (TableEnd == TableBeg) 394 return 0; 395 396 unsigned min = 0; 397 const unsigned char *tb = TableBeg; 398 unsigned max = NumSpellings; 399 400 do { 401 unsigned i = (max - min) / 2 + min; 402 const unsigned char *Ptr = tb + (i * SpellingEntrySize); 403 404 uint32_t TokOffset = Read32(Ptr); 405 if (TokOffset > FPos) { 406 max = i; 407 assert(!(max == min) || (min == i)); 408 continue; 409 } 410 411 if (TokOffset < FPos) { 412 if (i == min) 413 break; 414 415 min = i; 416 continue; 417 } 418 419 uint32_t SpellingPTHOffset = Read32(Ptr); 420 return PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer); 421 } 422 while (min != max); 423 424 return 0; 425} 426 427unsigned PTHLexer::getSpelling(SourceLocation Loc, const char *&Buffer) { 428 SourceManager &SM = PP->getSourceManager(); 429 Loc = SM.getSpellingLoc(Loc); 430 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedFileLoc(Loc); 431 432 FileID FID = LocInfo.first; 433 unsigned FPos = LocInfo.second; 434 435 if (FID == getFileID()) 436 return MySpellingSrch.getSpellingLinearSearch(FPos, Buffer); 437 return PTHMgr.getSpelling(FID, FPos, Buffer); 438} 439 440//===----------------------------------------------------------------------===// 441// Internal Data Structures for PTH file lookup and resolving identifiers. 442//===----------------------------------------------------------------------===// 443 444 445/// PTHFileLookup - This internal data structure is used by the PTHManager 446/// to map from FileEntry objects managed by FileManager to offsets within 447/// the PTH file. 448namespace { 449class VISIBILITY_HIDDEN PTHFileLookup { 450public: 451 class Val { 452 uint32_t TokenOff; 453 uint32_t PPCondOff; 454 uint32_t SpellingOff; 455 public: 456 Val() : TokenOff(~0) {} 457 Val(uint32_t toff, uint32_t poff, uint32_t soff) 458 : TokenOff(toff), PPCondOff(poff), SpellingOff(soff) {} 459 460 bool isValid() const { return TokenOff != ~((uint32_t)0); } 461 462 uint32_t getTokenOffset() const { 463 assert(isValid() && "PTHFileLookup entry initialized."); 464 return TokenOff; 465 } 466 467 uint32_t getPPCondOffset() const { 468 assert(isValid() && "PTHFileLookup entry initialized."); 469 return PPCondOff; 470 } 471 472 uint32_t getSpellingOffset() const { 473 assert(isValid() && "PTHFileLookup entry initialized."); 474 return SpellingOff; 475 } 476 }; 477 478private: 479 llvm::StringMap<Val> FileMap; 480 481public: 482 PTHFileLookup() {}; 483 484 Val Lookup(const FileEntry* FE) { 485 const char* s = FE->getName(); 486 unsigned size = strlen(s); 487 return FileMap.GetOrCreateValue(s, s+size).getValue(); 488 } 489 490 void ReadTable(const unsigned char* D) { 491 uint32_t N = Read32(D); // Read the length of the table. 492 493 for ( ; N > 0; --N) { // The rest of the data is the table itself. 494 uint32_t Len = Read32(D); 495 const char* s = (const char *)D; 496 D += Len; 497 498 uint32_t TokenOff = Read32(D); 499 uint32_t PPCondOff = Read32(D); 500 uint32_t SpellingOff = Read32(D); 501 502 FileMap.GetOrCreateValue(s, s+Len).getValue() = 503 Val(TokenOff, PPCondOff, SpellingOff); 504 } 505 } 506}; 507} // end anonymous namespace 508 509//===----------------------------------------------------------------------===// 510// PTHManager methods. 511//===----------------------------------------------------------------------===// 512 513PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup, 514 const unsigned char* idDataTable, 515 IdentifierInfo** perIDCache, 516 const unsigned char* sortedIdTable, unsigned numIds) 517: Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup), 518 IdDataTable(idDataTable), SortedIdTable(sortedIdTable), 519 NumIds(numIds), PP(0) {} 520 521PTHManager::~PTHManager() { 522 delete Buf; 523 delete (PTHFileLookup*) FileLookup; 524 free(PerIDCache); 525} 526 527PTHManager* PTHManager::Create(const std::string& file) { 528 // Memory map the PTH file. 529 llvm::OwningPtr<llvm::MemoryBuffer> 530 File(llvm::MemoryBuffer::getFile(file.c_str())); 531 532 if (!File) 533 return 0; 534 535 // Get the buffer ranges and check if there are at least three 32-bit 536 // words at the end of the file. 537 const unsigned char* BufBeg = (unsigned char*)File->getBufferStart(); 538 const unsigned char* BufEnd = (unsigned char*)File->getBufferEnd(); 539 540 if(!(BufEnd > BufBeg + sizeof(uint32_t)*3)) { 541 assert(false && "Invalid PTH file."); 542 return 0; // FIXME: Proper error diagnostic? 543 } 544 545 // Compute the address of the index table at the end of the PTH file. 546 // This table contains the offset of the file lookup table, the 547 // persistent ID -> identifer data table. 548 // FIXME: We should just embed this offset in the PTH file. 549 const unsigned char* EndTable = BufEnd - sizeof(uint32_t)*4; 550 551 // Construct the file lookup table. This will be used for mapping from 552 // FileEntry*'s to cached tokens. 553 const unsigned char* FileTableOffset = EndTable + sizeof(uint32_t)*3; 554 const unsigned char* FileTable = BufBeg + Read32(FileTableOffset); 555 556 if (!(FileTable > BufBeg && FileTable < BufEnd)) { 557 assert(false && "Invalid PTH file."); 558 return 0; // FIXME: Proper error diagnostic? 559 } 560 561 llvm::OwningPtr<PTHFileLookup> FL(new PTHFileLookup()); 562 FL->ReadTable(FileTable); 563 564 // Get the location of the table mapping from persistent ids to the 565 // data needed to reconstruct identifiers. 566 const unsigned char* IDTableOffset = EndTable + sizeof(uint32_t)*1; 567 const unsigned char* IData = BufBeg + Read32(IDTableOffset); 568 if (!(IData > BufBeg && IData < BufEnd)) { 569 assert(false && "Invalid PTH file."); 570 return 0; // FIXME: Proper error diagnostic? 571 } 572 573 // Get the location of the lexigraphically-sorted table of persistent IDs. 574 const unsigned char* SortedIdTableOffset = EndTable + sizeof(uint32_t)*2; 575 const unsigned char* SortedIdTable = BufBeg + Read32(SortedIdTableOffset); 576 if (!(SortedIdTable > BufBeg && SortedIdTable < BufEnd)) { 577 assert(false && "Invalid PTH file."); 578 return 0; // FIXME: Proper error diagnostic? 579 } 580 581 // Get the number of IdentifierInfos and pre-allocate the identifier cache. 582 uint32_t NumIds = Read32(IData); 583 584 // Pre-allocate the peristent ID -> IdentifierInfo* cache. We use calloc() 585 // so that we in the best case only zero out memory once when the OS returns 586 // us new pages. 587 IdentifierInfo** PerIDCache = 588 (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache)); 589 590 if (!PerIDCache) { 591 assert(false && "Could not allocate Persistent ID cache."); 592 return 0; 593 } 594 595 // Create the new PTHManager. 596 return new PTHManager(File.take(), FL.take(), IData, PerIDCache, 597 SortedIdTable, NumIds); 598} 599 600IdentifierInfo* PTHManager::GetIdentifierInfo(unsigned persistentID) { 601 602 // Check if the IdentifierInfo has already been resolved. 603 IdentifierInfo* II = PerIDCache[persistentID]; 604 if (II) return II; 605 606 // Look in the PTH file for the string data for the IdentifierInfo object. 607 const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*persistentID; 608 const unsigned char* IDData = 609 (const unsigned char*)Buf->getBufferStart() + Read32(TableEntry); 610 assert(IDData < (const unsigned char*)Buf->getBufferEnd()); 611 612 // Allocate the object. 613 std::pair<IdentifierInfo,const unsigned char*> *Mem = 614 Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >(); 615 616 Mem->second = IDData; 617 II = new ((void*) Mem) IdentifierInfo(true); 618 619 // Store the new IdentifierInfo in the cache. 620 PerIDCache[persistentID] = II; 621 return II; 622} 623 624IdentifierInfo* PTHManager::get(const char *NameStart, const char *NameEnd) { 625 unsigned min = 0; 626 unsigned max = NumIds; 627 unsigned Len = NameEnd - NameStart; 628 629 do { 630 unsigned i = (max - min) / 2 + min; 631 const unsigned char *Ptr = SortedIdTable + (i * 4); 632 633 // Read the persistentID. 634 unsigned perID = Read32(Ptr); 635 636 // Get the IdentifierInfo. 637 IdentifierInfo* II = GetIdentifierInfo(perID); 638 639 // First compare the lengths. 640 unsigned IILen = II->getLength(); 641 if (Len < IILen) goto IsLess; 642 if (Len > IILen) goto IsGreater; 643 644 // Now compare the strings! 645 { 646 signed comp = strncmp(NameStart, II->getName(), Len); 647 if (comp < 0) goto IsLess; 648 if (comp > 0) goto IsGreater; 649 } 650 // We found a match! 651 return II; 652 653 IsGreater: 654 if (i == min) break; 655 min = i; 656 continue; 657 658 IsLess: 659 max = i; 660 assert(!(max == min) || (min == i)); 661 } 662 while (min != max); 663 664 return 0; 665} 666 667 668PTHLexer *PTHManager::CreateLexer(FileID FID) { 669 const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID); 670 if (!FE) 671 return 0; 672 673 // Lookup the FileEntry object in our file lookup data structure. It will 674 // return a variant that indicates whether or not there is an offset within 675 // the PTH file that contains cached tokens. 676 PTHFileLookup::Val FileData = ((PTHFileLookup*)FileLookup)->Lookup(FE); 677 678 if (!FileData.isValid()) // No tokens available. 679 return 0; 680 681 const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart(); 682 // Compute the offset of the token data within the buffer. 683 const unsigned char* data = BufStart + FileData.getTokenOffset(); 684 685 // Get the location of pp-conditional table. 686 const unsigned char* ppcond = BufStart + FileData.getPPCondOffset(); 687 uint32_t Len = Read32(ppcond); 688 if (Len == 0) ppcond = 0; 689 690 // Get the location of the spelling table. 691 const unsigned char* spellingTable = BufStart + FileData.getSpellingOffset(); 692 693 Len = Read32(spellingTable); 694 if (Len == 0) spellingTable = 0; 695 696 assert(data < (const unsigned char*)Buf->getBufferEnd()); 697 698 // Create the SpellingSearch object for this FileID. 699 PTHSpellingSearch* ss = new PTHSpellingSearch(*this, Len, spellingTable); 700 SpellingMap[FID] = ss; 701 702 assert(PP && "No preprocessor set yet!"); 703 return new PTHLexer(*PP, FID, data, ppcond, *ss, *this); 704} 705