PTHLexer.cpp revision e1b6498c41b94c3bc5cede17b0702282543385ef
1//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the PTHLexer interface. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Basic/TokenKinds.h" 15#include "clang/Basic/FileManager.h" 16#include "clang/Basic/IdentifierTable.h" 17#include "clang/Lex/PTHLexer.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/Lex/PTHManager.h" 20#include "clang/Lex/Token.h" 21#include "clang/Lex/Preprocessor.h" 22#include "llvm/ADT/StringMap.h" 23#include "llvm/ADT/OwningPtr.h" 24#include "llvm/Support/Compiler.h" 25#include "llvm/Support/MathExtras.h" 26#include "llvm/Support/MemoryBuffer.h" 27#include "llvm/System/Host.h" 28using namespace clang; 29 30#define DISK_TOKEN_SIZE (1+1+2+4+4) 31 32//===----------------------------------------------------------------------===// 33// Utility methods for reading from the mmap'ed PTH file. 34//===----------------------------------------------------------------------===// 35 36static inline uint16_t ReadUnalignedLE16(const unsigned char *&Data) { 37 uint16_t V = ((uint16_t)Data[0] << 0) | 38 ((uint16_t)Data[1] << 8); 39 Data += 2; 40 return V; 41} 42 43static inline uint32_t ReadLE32(const unsigned char *&Data) { 44 // Hosts that directly support little-endian 32-bit loads can just 45 // use them. Big-endian hosts need a bswap. 46 uint32_t V = *((uint32_t*)Data); 47 if (llvm::sys::isBigEndianHost()) 48 V = llvm::ByteSwap_32(V); 49 Data += 4; 50 return V; 51} 52 53 54//===----------------------------------------------------------------------===// 55// PTHLexer methods. 56//===----------------------------------------------------------------------===// 57 58PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D, 59 const unsigned char *ppcond, 60 PTHSpellingSearch &mySpellingSrch, PTHManager &PM) 61 : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0), 62 PPCond(ppcond), CurPPCondPtr(ppcond), MySpellingSrch(mySpellingSrch), 63 PTHMgr(PM) { 64 65 FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID); 66} 67 68void PTHLexer::Lex(Token& Tok) { 69LexNextToken: 70 71 //===--------------------------------------==// 72 // Read the raw token data. 73 //===--------------------------------------==// 74 75 // Shadow CurPtr into an automatic variable. 76 const unsigned char *CurPtrShadow = CurPtr; 77 78 // Read in the data for the token. 79 unsigned Word0 = ReadLE32(CurPtrShadow); 80 uint32_t IdentifierID = ReadLE32(CurPtrShadow); 81 uint32_t FileOffset = ReadLE32(CurPtrShadow); 82 83 tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF); 84 Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF); 85 uint32_t Len = Word0 >> 16; 86 87 CurPtr = CurPtrShadow; 88 89 //===--------------------------------------==// 90 // Construct the token itself. 91 //===--------------------------------------==// 92 93 Tok.startToken(); 94 Tok.setKind(TKind); 95 Tok.setFlag(TFlags); 96 assert(!LexingRawMode); 97 Tok.setLocation(FileStartLoc.getFileLocWithOffset(FileOffset)); 98 Tok.setLength(Len); 99 100 // Handle identifiers. 101 if (IdentifierID) { 102 MIOpt.ReadToken(); 103 IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1); 104 105 Tok.setIdentifierInfo(II); 106 107 // Change the kind of this identifier to the appropriate token kind, e.g. 108 // turning "for" into a keyword. 109 Tok.setKind(II->getTokenID()); 110 111 if (II->isHandleIdentifierCase()) 112 PP->HandleIdentifier(Tok); 113 return; 114 } 115 116 //===--------------------------------------==// 117 // Process the token. 118 //===--------------------------------------==// 119#if 0 120 SourceManager& SM = PP->getSourceManager(); 121 llvm::cerr << SM.getFileEntryForID(FileID)->getName() 122 << ':' << SM.getLogicalLineNumber(Tok.getLocation()) 123 << ':' << SM.getLogicalColumnNumber(Tok.getLocation()) 124 << '\n'; 125#endif 126 127 if (TKind == tok::eof) { 128 // Save the end-of-file token. 129 EofToken = Tok; 130 131 Preprocessor *PPCache = PP; 132 133 assert(!ParsingPreprocessorDirective); 134 assert(!LexingRawMode); 135 136 // FIXME: Issue diagnostics similar to Lexer. 137 if (PP->HandleEndOfFile(Tok, false)) 138 return; 139 140 assert(PPCache && "Raw buffer::LexEndOfFile should return a token"); 141 return PPCache->Lex(Tok); 142 } 143 144 if (TKind == tok::hash && Tok.isAtStartOfLine()) { 145 LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE; 146 assert(!LexingRawMode); 147 PP->HandleDirective(Tok); 148 149 if (PP->isCurrentLexer(this)) 150 goto LexNextToken; 151 152 return PP->Lex(Tok); 153 } 154 155 if (TKind == tok::eom) { 156 assert(ParsingPreprocessorDirective); 157 ParsingPreprocessorDirective = false; 158 return; 159 } 160 161 MIOpt.ReadToken(); 162} 163 164// FIXME: We can just grab the last token instead of storing a copy 165// into EofToken. 166void PTHLexer::getEOF(Token& Tok) { 167 assert(EofToken.is(tok::eof)); 168 Tok = EofToken; 169} 170 171void PTHLexer::DiscardToEndOfLine() { 172 assert(ParsingPreprocessorDirective && ParsingFilename == false && 173 "Must be in a preprocessing directive!"); 174 175 // We assume that if the preprocessor wishes to discard to the end of 176 // the line that it also means to end the current preprocessor directive. 177 ParsingPreprocessorDirective = false; 178 179 // Skip tokens by only peeking at their token kind and the flags. 180 // We don't need to actually reconstruct full tokens from the token buffer. 181 // This saves some copies and it also reduces IdentifierInfo* lookup. 182 const unsigned char* p = CurPtr; 183 while (1) { 184 // Read the token kind. Are we at the end of the file? 185 tok::TokenKind x = (tok::TokenKind) (uint8_t) *p; 186 if (x == tok::eof) break; 187 188 // Read the token flags. Are we at the start of the next line? 189 Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1]; 190 if (y & Token::StartOfLine) break; 191 192 // Skip to the next token. 193 p += DISK_TOKEN_SIZE; 194 } 195 196 CurPtr = p; 197} 198 199/// SkipBlock - Used by Preprocessor to skip the current conditional block. 200bool PTHLexer::SkipBlock() { 201 assert(CurPPCondPtr && "No cached PP conditional information."); 202 assert(LastHashTokPtr && "No known '#' token."); 203 204 const unsigned char* HashEntryI = 0; 205 uint32_t Offset; 206 uint32_t TableIdx; 207 208 do { 209 // Read the token offset from the side-table. 210 Offset = ReadLE32(CurPPCondPtr); 211 212 // Read the target table index from the side-table. 213 TableIdx = ReadLE32(CurPPCondPtr); 214 215 // Compute the actual memory address of the '#' token data for this entry. 216 HashEntryI = TokBuf + Offset; 217 218 // Optmization: "Sibling jumping". #if...#else...#endif blocks can 219 // contain nested blocks. In the side-table we can jump over these 220 // nested blocks instead of doing a linear search if the next "sibling" 221 // entry is not at a location greater than LastHashTokPtr. 222 if (HashEntryI < LastHashTokPtr && TableIdx) { 223 // In the side-table we are still at an entry for a '#' token that 224 // is earlier than the last one we saw. Check if the location we would 225 // stride gets us closer. 226 const unsigned char* NextPPCondPtr = 227 PPCond + TableIdx*(sizeof(uint32_t)*2); 228 assert(NextPPCondPtr >= CurPPCondPtr); 229 // Read where we should jump to. 230 uint32_t TmpOffset = ReadLE32(NextPPCondPtr); 231 const unsigned char* HashEntryJ = TokBuf + TmpOffset; 232 233 if (HashEntryJ <= LastHashTokPtr) { 234 // Jump directly to the next entry in the side table. 235 HashEntryI = HashEntryJ; 236 Offset = TmpOffset; 237 TableIdx = ReadLE32(NextPPCondPtr); 238 CurPPCondPtr = NextPPCondPtr; 239 } 240 } 241 } 242 while (HashEntryI < LastHashTokPtr); 243 assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'"); 244 assert(TableIdx && "No jumping from #endifs."); 245 246 // Update our side-table iterator. 247 const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2); 248 assert(NextPPCondPtr >= CurPPCondPtr); 249 CurPPCondPtr = NextPPCondPtr; 250 251 // Read where we should jump to. 252 HashEntryI = TokBuf + ReadLE32(NextPPCondPtr); 253 uint32_t NextIdx = ReadLE32(NextPPCondPtr); 254 255 // By construction NextIdx will be zero if this is a #endif. This is useful 256 // to know to obviate lexing another token. 257 bool isEndif = NextIdx == 0; 258 259 // This case can occur when we see something like this: 260 // 261 // #if ... 262 // /* a comment or nothing */ 263 // #elif 264 // 265 // If we are skipping the first #if block it will be the case that CurPtr 266 // already points 'elif'. Just return. 267 268 if (CurPtr > HashEntryI) { 269 assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE); 270 // Did we reach a #endif? If so, go ahead and consume that token as well. 271 if (isEndif) 272 CurPtr += DISK_TOKEN_SIZE*2; 273 else 274 LastHashTokPtr = HashEntryI; 275 276 return isEndif; 277 } 278 279 // Otherwise, we need to advance. Update CurPtr to point to the '#' token. 280 CurPtr = HashEntryI; 281 282 // Update the location of the last observed '#'. This is useful if we 283 // are skipping multiple blocks. 284 LastHashTokPtr = CurPtr; 285 286 // Skip the '#' token. 287 assert(((tok::TokenKind)*CurPtr) == tok::hash); 288 CurPtr += DISK_TOKEN_SIZE; 289 290 // Did we reach a #endif? If so, go ahead and consume that token as well. 291 if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; } 292 293 return isEndif; 294} 295 296SourceLocation PTHLexer::getSourceLocation() { 297 // getSourceLocation is not on the hot path. It is used to get the location 298 // of the next token when transitioning back to this lexer when done 299 // handling a #included file. Just read the necessary data from the token 300 // data buffer to construct the SourceLocation object. 301 // NOTE: This is a virtual function; hence it is defined out-of-line. 302 const unsigned char *OffsetPtr = CurPtr + (DISK_TOKEN_SIZE - 4); 303 uint32_t Offset = ReadLE32(OffsetPtr); 304 return FileStartLoc.getFileLocWithOffset(Offset); 305} 306 307//===----------------------------------------------------------------------===// 308// getSpelling() - Use cached data in PTH files for getSpelling(). 309//===----------------------------------------------------------------------===// 310 311unsigned PTHManager::getSpelling(FileID FID, unsigned FPos, 312 const char *&Buffer) { 313 llvm::DenseMap<FileID, PTHSpellingSearch*>::iterator I =SpellingMap.find(FID); 314 315 if (I == SpellingMap.end()) 316 return 0; 317 318 return I->second->getSpellingBinarySearch(FPos, Buffer); 319} 320 321unsigned PTHManager::getSpelling(SourceLocation Loc, const char *&Buffer) { 322 SourceManager &SM = PP->getSourceManager(); 323 Loc = SM.getSpellingLoc(Loc); 324 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 325 return getSpelling(LocInfo.first, LocInfo.second, Buffer); 326} 327 328unsigned PTHManager::getSpellingAtPTHOffset(unsigned PTHOffset, 329 const char *&Buffer) { 330 assert(PTHOffset < Buf->getBufferSize()); 331 const unsigned char* Ptr = 332 (const unsigned char*)Buf->getBufferStart() + PTHOffset; 333 334 // The string is prefixed by 16 bits for its length, followed by the string 335 // itself. 336 unsigned Len = ReadUnalignedLE16(Ptr); 337 Buffer = (const char *)Ptr; 338 return Len; 339} 340 341unsigned PTHSpellingSearch::getSpellingLinearSearch(unsigned FPos, 342 const char *&Buffer) { 343 const unsigned char *Ptr = LinearItr; 344 unsigned Len = 0; 345 346 if (Ptr == TableEnd) 347 return getSpellingBinarySearch(FPos, Buffer); 348 349 do { 350 uint32_t TokOffset = ReadLE32(Ptr); 351 352 if (TokOffset > FPos) 353 return getSpellingBinarySearch(FPos, Buffer); 354 355 // Did we find a matching token offset for this spelling? 356 if (TokOffset == FPos) { 357 uint32_t SpellingPTHOffset = ReadLE32(Ptr); 358 Len = PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer); 359 break; 360 } 361 } while (Ptr != TableEnd); 362 363 LinearItr = Ptr; 364 return Len; 365} 366 367 368unsigned PTHSpellingSearch::getSpellingBinarySearch(unsigned FPos, 369 const char *&Buffer) { 370 371 assert((TableEnd - TableBeg) % SpellingEntrySize == 0); 372 assert(TableEnd >= TableBeg); 373 374 if (TableEnd == TableBeg) 375 return 0; 376 377 unsigned min = 0; 378 const unsigned char *tb = TableBeg; 379 unsigned max = NumSpellings; 380 381 do { 382 unsigned i = (max - min) / 2 + min; 383 const unsigned char *Ptr = tb + (i * SpellingEntrySize); 384 385 uint32_t TokOffset = ReadLE32(Ptr); 386 if (TokOffset > FPos) { 387 max = i; 388 assert(!(max == min) || (min == i)); 389 continue; 390 } 391 392 if (TokOffset < FPos) { 393 if (i == min) 394 break; 395 396 min = i; 397 continue; 398 } 399 400 uint32_t SpellingPTHOffset = ReadLE32(Ptr); 401 return PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer); 402 } 403 while (min != max); 404 405 return 0; 406} 407 408unsigned PTHLexer::getSpelling(SourceLocation Loc, const char *&Buffer) { 409 SourceManager &SM = PP->getSourceManager(); 410 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedSpellingLoc(Loc); 411 412 FileID FID = LocInfo.first; 413 unsigned FPos = LocInfo.second; 414 415 if (FID == getFileID()) 416 return MySpellingSrch.getSpellingLinearSearch(FPos, Buffer); 417 return PTHMgr.getSpelling(FID, FPos, Buffer); 418} 419 420//===----------------------------------------------------------------------===// 421// Internal Data Structures for PTH file lookup and resolving identifiers. 422//===----------------------------------------------------------------------===// 423 424 425/// PTHFileLookup - This internal data structure is used by the PTHManager 426/// to map from FileEntry objects managed by FileManager to offsets within 427/// the PTH file. 428namespace { 429class VISIBILITY_HIDDEN PTHFileLookup { 430public: 431 class Val { 432 uint32_t TokenOff; 433 uint32_t PPCondOff; 434 uint32_t SpellingOff; 435 public: 436 Val() : TokenOff(~0) {} 437 Val(uint32_t toff, uint32_t poff, uint32_t soff) 438 : TokenOff(toff), PPCondOff(poff), SpellingOff(soff) {} 439 440 bool isValid() const { return TokenOff != ~((uint32_t)0); } 441 442 uint32_t getTokenOffset() const { 443 assert(isValid() && "PTHFileLookup entry initialized."); 444 return TokenOff; 445 } 446 447 uint32_t getPPCondOffset() const { 448 assert(isValid() && "PTHFileLookup entry initialized."); 449 return PPCondOff; 450 } 451 452 uint32_t getSpellingOffset() const { 453 assert(isValid() && "PTHFileLookup entry initialized."); 454 return SpellingOff; 455 } 456 }; 457 458private: 459 llvm::StringMap<Val> FileMap; 460 461public: 462 PTHFileLookup() {}; 463 464 bool isEmpty() const { 465 return FileMap.empty(); 466 } 467 468 Val Lookup(const FileEntry* FE) { 469 const char* s = FE->getName(); 470 unsigned size = strlen(s); 471 return FileMap.GetOrCreateValue(s, s+size).getValue(); 472 } 473 474 void ReadTable(const unsigned char* D) { 475 uint32_t N = ReadLE32(D); // Read the length of the table. 476 477 for ( ; N > 0; --N) { // The rest of the data is the table itself. 478 uint32_t Len = ReadLE32(D); 479 const char* s = (const char *)D; 480 D += Len; 481 482 uint32_t TokenOff = ReadLE32(D); 483 uint32_t PPCondOff = ReadLE32(D); 484 uint32_t SpellingOff = ReadLE32(D); 485 486 FileMap.GetOrCreateValue(s, s+Len).getValue() = 487 Val(TokenOff, PPCondOff, SpellingOff); 488 } 489 } 490}; 491} // end anonymous namespace 492 493//===----------------------------------------------------------------------===// 494// PTHManager methods. 495//===----------------------------------------------------------------------===// 496 497PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup, 498 const unsigned char* idDataTable, 499 IdentifierInfo** perIDCache, 500 const unsigned char* sortedIdTable, unsigned numIds) 501: Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup), 502 IdDataTable(idDataTable), SortedIdTable(sortedIdTable), 503 NumIds(numIds), PP(0) {} 504 505PTHManager::~PTHManager() { 506 delete Buf; 507 delete (PTHFileLookup*) FileLookup; 508 free(PerIDCache); 509} 510 511PTHManager* PTHManager::Create(const std::string& file) { 512 // Memory map the PTH file. 513 llvm::OwningPtr<llvm::MemoryBuffer> 514 File(llvm::MemoryBuffer::getFile(file.c_str())); 515 516 if (!File) 517 return 0; 518 519 // Get the buffer ranges and check if there are at least three 32-bit 520 // words at the end of the file. 521 const unsigned char* BufBeg = (unsigned char*)File->getBufferStart(); 522 const unsigned char* BufEnd = (unsigned char*)File->getBufferEnd(); 523 524 // Check the prologue of the file. 525 if ((BufEnd - BufBeg) < (unsigned) (sizeof("cfe-pth") + 3) || 526 memcmp(BufBeg, "cfe-pth", sizeof("cfe-pth") - 1) != 0) 527 return 0; 528 529 // Compute the address of the index table at the end of the PTH file. 530 const unsigned char *p = BufBeg + (sizeof("cfe-pth") - 1); 531 const unsigned char *EndTable = BufBeg + ReadLE32(p); 532 533 if (EndTable >= BufEnd) 534 return 0; 535 536 // Construct the file lookup table. This will be used for mapping from 537 // FileEntry*'s to cached tokens. 538 const unsigned char* FileTableOffset = EndTable + sizeof(uint32_t)*3; 539 const unsigned char* FileTable = BufBeg + ReadLE32(FileTableOffset); 540 541 if (!(FileTable > BufBeg && FileTable < BufEnd)) { 542 assert(false && "Invalid PTH file."); 543 return 0; // FIXME: Proper error diagnostic? 544 } 545 546 llvm::OwningPtr<PTHFileLookup> FL(new PTHFileLookup()); 547 FL->ReadTable(FileTable); 548 549 if (FL->isEmpty()) 550 return 0; 551 552 // Get the location of the table mapping from persistent ids to the 553 // data needed to reconstruct identifiers. 554 const unsigned char* IDTableOffset = EndTable + sizeof(uint32_t)*1; 555 const unsigned char* IData = BufBeg + ReadLE32(IDTableOffset); 556 557 if (!(IData >= BufBeg && IData < BufEnd)) { 558 assert(false && "Invalid PTH file."); 559 return 0; // FIXME: Proper error diagnostic? 560 } 561 562 // Get the location of the lexigraphically-sorted table of persistent IDs. 563 const unsigned char* SortedIdTableOffset = EndTable + sizeof(uint32_t)*2; 564 const unsigned char* SortedIdTable = BufBeg + ReadLE32(SortedIdTableOffset); 565 if (!(SortedIdTable >= BufBeg && SortedIdTable < BufEnd)) { 566 assert(false && "Invalid PTH file."); 567 return 0; // FIXME: Proper error diagnostic? 568 } 569 570 // Get the number of IdentifierInfos and pre-allocate the identifier cache. 571 uint32_t NumIds = ReadLE32(IData); 572 573 // Pre-allocate the peristent ID -> IdentifierInfo* cache. We use calloc() 574 // so that we in the best case only zero out memory once when the OS returns 575 // us new pages. 576 IdentifierInfo** PerIDCache = 0; 577 578 if (NumIds) { 579 PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache)); 580 if (!PerIDCache) { 581 assert(false && "Could not allocate Persistent ID cache."); 582 return 0; 583 } 584 } 585 586 // Create the new PTHManager. 587 return new PTHManager(File.take(), FL.take(), IData, PerIDCache, 588 SortedIdTable, NumIds); 589} 590IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) { 591 // Look in the PTH file for the string data for the IdentifierInfo object. 592 const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID; 593 const unsigned char* IDData = 594 (const unsigned char*)Buf->getBufferStart() + ReadLE32(TableEntry); 595 assert(IDData < (const unsigned char*)Buf->getBufferEnd()); 596 597 // Allocate the object. 598 std::pair<IdentifierInfo,const unsigned char*> *Mem = 599 Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >(); 600 601 Mem->second = IDData; 602 IdentifierInfo *II = new ((void*) Mem) IdentifierInfo(); 603 604 // Store the new IdentifierInfo in the cache. 605 PerIDCache[PersistentID] = II; 606 return II; 607} 608 609IdentifierInfo* PTHManager::get(const char *NameStart, const char *NameEnd) { 610 unsigned min = 0; 611 unsigned max = NumIds; 612 unsigned Len = NameEnd - NameStart; 613 614 do { 615 unsigned i = (max - min) / 2 + min; 616 const unsigned char *Ptr = SortedIdTable + (i * 4); 617 618 // Read the persistentID. 619 unsigned perID = ReadLE32(Ptr); 620 621 // Get the IdentifierInfo. 622 IdentifierInfo* II = GetIdentifierInfo(perID); 623 624 // First compare the lengths. 625 unsigned IILen = II->getLength(); 626 if (Len < IILen) goto IsLess; 627 if (Len > IILen) goto IsGreater; 628 629 // Now compare the strings! 630 { 631 signed comp = strncmp(NameStart, II->getName(), Len); 632 if (comp < 0) goto IsLess; 633 if (comp > 0) goto IsGreater; 634 } 635 // We found a match! 636 return II; 637 638 IsGreater: 639 if (i == min) break; 640 min = i; 641 continue; 642 643 IsLess: 644 max = i; 645 assert(!(max == min) || (min == i)); 646 } 647 while (min != max); 648 649 return 0; 650} 651 652 653PTHLexer *PTHManager::CreateLexer(FileID FID) { 654 const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID); 655 if (!FE) 656 return 0; 657 658 // Lookup the FileEntry object in our file lookup data structure. It will 659 // return a variant that indicates whether or not there is an offset within 660 // the PTH file that contains cached tokens. 661 PTHFileLookup::Val FileData = ((PTHFileLookup*)FileLookup)->Lookup(FE); 662 663 if (!FileData.isValid()) // No tokens available. 664 return 0; 665 666 const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart(); 667 // Compute the offset of the token data within the buffer. 668 const unsigned char* data = BufStart + FileData.getTokenOffset(); 669 670 // Get the location of pp-conditional table. 671 const unsigned char* ppcond = BufStart + FileData.getPPCondOffset(); 672 uint32_t Len = ReadLE32(ppcond); 673 if (Len == 0) ppcond = 0; 674 675 // Get the location of the spelling table. 676 const unsigned char* spellingTable = BufStart + FileData.getSpellingOffset(); 677 678 Len = ReadLE32(spellingTable); 679 if (Len == 0) spellingTable = 0; 680 681 assert(data < (const unsigned char*)Buf->getBufferEnd()); 682 683 // Create the SpellingSearch object for this FileID. 684 PTHSpellingSearch* ss = new PTHSpellingSearch(*this, Len, spellingTable); 685 SpellingMap[FID] = ss; 686 687 assert(PP && "No preprocessor set yet!"); 688 return new PTHLexer(*PP, FID, data, ppcond, *ss, *this); 689} 690