AnalysisBasedWarnings.cpp revision a189d8976f1193b788508a1a29b2e9d0aca06aca
1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines analysis_warnings::[Policy,Executor].
11// Together they are used by Sema to issue warnings based on inexpensive
12// static analysis algorithms in libAnalysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/AnalysisBasedWarnings.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Basic/SourceManager.h"
20#include "clang/Basic/SourceLocation.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/StmtVisitor.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/Analysis/AnalysisContext.h"
32#include "clang/Analysis/CFG.h"
33#include "clang/Analysis/Analyses/ReachableCode.h"
34#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
35#include "clang/Analysis/Analyses/ThreadSafety.h"
36#include "clang/Analysis/CFGStmtMap.h"
37#include "clang/Analysis/Analyses/UninitializedValues.h"
38#include "llvm/ADT/BitVector.h"
39#include "llvm/ADT/FoldingSet.h"
40#include "llvm/ADT/ImmutableMap.h"
41#include "llvm/ADT/PostOrderIterator.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/StringRef.h"
44#include "llvm/Support/Casting.h"
45#include <algorithm>
46#include <iterator>
47#include <vector>
48#include <deque>
49
50using namespace clang;
51
52//===----------------------------------------------------------------------===//
53// Unreachable code analysis.
54//===----------------------------------------------------------------------===//
55
56namespace {
57  class UnreachableCodeHandler : public reachable_code::Callback {
58    Sema &S;
59  public:
60    UnreachableCodeHandler(Sema &s) : S(s) {}
61
62    void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
63      S.Diag(L, diag::warn_unreachable) << R1 << R2;
64    }
65  };
66}
67
68/// CheckUnreachable - Check for unreachable code.
69static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
70  UnreachableCodeHandler UC(S);
71  reachable_code::FindUnreachableCode(AC, UC);
72}
73
74//===----------------------------------------------------------------------===//
75// Check for missing return value.
76//===----------------------------------------------------------------------===//
77
78enum ControlFlowKind {
79  UnknownFallThrough,
80  NeverFallThrough,
81  MaybeFallThrough,
82  AlwaysFallThrough,
83  NeverFallThroughOrReturn
84};
85
86/// CheckFallThrough - Check that we don't fall off the end of a
87/// Statement that should return a value.
88///
89/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
90/// MaybeFallThrough iff we might or might not fall off the end,
91/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
92/// return.  We assume NeverFallThrough iff we never fall off the end of the
93/// statement but we may return.  We assume that functions not marked noreturn
94/// will return.
95static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
96  CFG *cfg = AC.getCFG();
97  if (cfg == 0) return UnknownFallThrough;
98
99  // The CFG leaves in dead things, and we don't want the dead code paths to
100  // confuse us, so we mark all live things first.
101  llvm::BitVector live(cfg->getNumBlockIDs());
102  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
103                                                          live);
104
105  bool AddEHEdges = AC.getAddEHEdges();
106  if (!AddEHEdges && count != cfg->getNumBlockIDs())
107    // When there are things remaining dead, and we didn't add EH edges
108    // from CallExprs to the catch clauses, we have to go back and
109    // mark them as live.
110    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
111      CFGBlock &b = **I;
112      if (!live[b.getBlockID()]) {
113        if (b.pred_begin() == b.pred_end()) {
114          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
115            // When not adding EH edges from calls, catch clauses
116            // can otherwise seem dead.  Avoid noting them as dead.
117            count += reachable_code::ScanReachableFromBlock(&b, live);
118          continue;
119        }
120      }
121    }
122
123  // Now we know what is live, we check the live precessors of the exit block
124  // and look for fall through paths, being careful to ignore normal returns,
125  // and exceptional paths.
126  bool HasLiveReturn = false;
127  bool HasFakeEdge = false;
128  bool HasPlainEdge = false;
129  bool HasAbnormalEdge = false;
130
131  // Ignore default cases that aren't likely to be reachable because all
132  // enums in a switch(X) have explicit case statements.
133  CFGBlock::FilterOptions FO;
134  FO.IgnoreDefaultsWithCoveredEnums = 1;
135
136  for (CFGBlock::filtered_pred_iterator
137	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
138    const CFGBlock& B = **I;
139    if (!live[B.getBlockID()])
140      continue;
141
142    // Skip blocks which contain an element marked as no-return. They don't
143    // represent actually viable edges into the exit block, so mark them as
144    // abnormal.
145    if (B.hasNoReturnElement()) {
146      HasAbnormalEdge = true;
147      continue;
148    }
149
150    // Destructors can appear after the 'return' in the CFG.  This is
151    // normal.  We need to look pass the destructors for the return
152    // statement (if it exists).
153    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
154
155    for ( ; ri != re ; ++ri)
156      if (isa<CFGStmt>(*ri))
157        break;
158
159    // No more CFGElements in the block?
160    if (ri == re) {
161      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
162        HasAbnormalEdge = true;
163        continue;
164      }
165      // A labeled empty statement, or the entry block...
166      HasPlainEdge = true;
167      continue;
168    }
169
170    CFGStmt CS = cast<CFGStmt>(*ri);
171    const Stmt *S = CS.getStmt();
172    if (isa<ReturnStmt>(S)) {
173      HasLiveReturn = true;
174      continue;
175    }
176    if (isa<ObjCAtThrowStmt>(S)) {
177      HasFakeEdge = true;
178      continue;
179    }
180    if (isa<CXXThrowExpr>(S)) {
181      HasFakeEdge = true;
182      continue;
183    }
184    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
185      if (AS->isMSAsm()) {
186        HasFakeEdge = true;
187        HasLiveReturn = true;
188        continue;
189      }
190    }
191    if (isa<CXXTryStmt>(S)) {
192      HasAbnormalEdge = true;
193      continue;
194    }
195    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
196        == B.succ_end()) {
197      HasAbnormalEdge = true;
198      continue;
199    }
200
201    HasPlainEdge = true;
202  }
203  if (!HasPlainEdge) {
204    if (HasLiveReturn)
205      return NeverFallThrough;
206    return NeverFallThroughOrReturn;
207  }
208  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
209    return MaybeFallThrough;
210  // This says AlwaysFallThrough for calls to functions that are not marked
211  // noreturn, that don't return.  If people would like this warning to be more
212  // accurate, such functions should be marked as noreturn.
213  return AlwaysFallThrough;
214}
215
216namespace {
217
218struct CheckFallThroughDiagnostics {
219  unsigned diag_MaybeFallThrough_HasNoReturn;
220  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
221  unsigned diag_AlwaysFallThrough_HasNoReturn;
222  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
223  unsigned diag_NeverFallThroughOrReturn;
224  enum { Function, Block, Lambda } funMode;
225  SourceLocation FuncLoc;
226
227  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
228    CheckFallThroughDiagnostics D;
229    D.FuncLoc = Func->getLocation();
230    D.diag_MaybeFallThrough_HasNoReturn =
231      diag::warn_falloff_noreturn_function;
232    D.diag_MaybeFallThrough_ReturnsNonVoid =
233      diag::warn_maybe_falloff_nonvoid_function;
234    D.diag_AlwaysFallThrough_HasNoReturn =
235      diag::warn_falloff_noreturn_function;
236    D.diag_AlwaysFallThrough_ReturnsNonVoid =
237      diag::warn_falloff_nonvoid_function;
238
239    // Don't suggest that virtual functions be marked "noreturn", since they
240    // might be overridden by non-noreturn functions.
241    bool isVirtualMethod = false;
242    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
243      isVirtualMethod = Method->isVirtual();
244
245    // Don't suggest that template instantiations be marked "noreturn"
246    bool isTemplateInstantiation = false;
247    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
248      isTemplateInstantiation = Function->isTemplateInstantiation();
249
250    if (!isVirtualMethod && !isTemplateInstantiation)
251      D.diag_NeverFallThroughOrReturn =
252        diag::warn_suggest_noreturn_function;
253    else
254      D.diag_NeverFallThroughOrReturn = 0;
255
256    D.funMode = Function;
257    return D;
258  }
259
260  static CheckFallThroughDiagnostics MakeForBlock() {
261    CheckFallThroughDiagnostics D;
262    D.diag_MaybeFallThrough_HasNoReturn =
263      diag::err_noreturn_block_has_return_expr;
264    D.diag_MaybeFallThrough_ReturnsNonVoid =
265      diag::err_maybe_falloff_nonvoid_block;
266    D.diag_AlwaysFallThrough_HasNoReturn =
267      diag::err_noreturn_block_has_return_expr;
268    D.diag_AlwaysFallThrough_ReturnsNonVoid =
269      diag::err_falloff_nonvoid_block;
270    D.diag_NeverFallThroughOrReturn =
271      diag::warn_suggest_noreturn_block;
272    D.funMode = Block;
273    return D;
274  }
275
276  static CheckFallThroughDiagnostics MakeForLambda() {
277    CheckFallThroughDiagnostics D;
278    D.diag_MaybeFallThrough_HasNoReturn =
279      diag::err_noreturn_lambda_has_return_expr;
280    D.diag_MaybeFallThrough_ReturnsNonVoid =
281      diag::warn_maybe_falloff_nonvoid_lambda;
282    D.diag_AlwaysFallThrough_HasNoReturn =
283      diag::err_noreturn_lambda_has_return_expr;
284    D.diag_AlwaysFallThrough_ReturnsNonVoid =
285      diag::warn_falloff_nonvoid_lambda;
286    D.diag_NeverFallThroughOrReturn = 0;
287    D.funMode = Lambda;
288    return D;
289  }
290
291  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
292                        bool HasNoReturn) const {
293    if (funMode == Function) {
294      return (ReturnsVoid ||
295              D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
296                                   FuncLoc) == DiagnosticsEngine::Ignored)
297        && (!HasNoReturn ||
298            D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
299                                 FuncLoc) == DiagnosticsEngine::Ignored)
300        && (!ReturnsVoid ||
301            D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
302              == DiagnosticsEngine::Ignored);
303    }
304
305    // For blocks / lambdas.
306    return ReturnsVoid && !HasNoReturn
307            && ((funMode == Lambda) ||
308                D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
309                  == DiagnosticsEngine::Ignored);
310  }
311};
312
313}
314
315/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
316/// function that should return a value.  Check that we don't fall off the end
317/// of a noreturn function.  We assume that functions and blocks not marked
318/// noreturn will return.
319static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
320                                    const BlockExpr *blkExpr,
321                                    const CheckFallThroughDiagnostics& CD,
322                                    AnalysisDeclContext &AC) {
323
324  bool ReturnsVoid = false;
325  bool HasNoReturn = false;
326
327  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
328    ReturnsVoid = FD->getResultType()->isVoidType();
329    HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
330       FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
331  }
332  else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
333    ReturnsVoid = MD->getResultType()->isVoidType();
334    HasNoReturn = MD->hasAttr<NoReturnAttr>();
335  }
336  else if (isa<BlockDecl>(D)) {
337    QualType BlockTy = blkExpr->getType();
338    if (const FunctionType *FT =
339          BlockTy->getPointeeType()->getAs<FunctionType>()) {
340      if (FT->getResultType()->isVoidType())
341        ReturnsVoid = true;
342      if (FT->getNoReturnAttr())
343        HasNoReturn = true;
344    }
345  }
346
347  DiagnosticsEngine &Diags = S.getDiagnostics();
348
349  // Short circuit for compilation speed.
350  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
351      return;
352
353  // FIXME: Function try block
354  if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
355    switch (CheckFallThrough(AC)) {
356      case UnknownFallThrough:
357        break;
358
359      case MaybeFallThrough:
360        if (HasNoReturn)
361          S.Diag(Compound->getRBracLoc(),
362                 CD.diag_MaybeFallThrough_HasNoReturn);
363        else if (!ReturnsVoid)
364          S.Diag(Compound->getRBracLoc(),
365                 CD.diag_MaybeFallThrough_ReturnsNonVoid);
366        break;
367      case AlwaysFallThrough:
368        if (HasNoReturn)
369          S.Diag(Compound->getRBracLoc(),
370                 CD.diag_AlwaysFallThrough_HasNoReturn);
371        else if (!ReturnsVoid)
372          S.Diag(Compound->getRBracLoc(),
373                 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
374        break;
375      case NeverFallThroughOrReturn:
376        if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
377          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
378            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
379              << 0 << FD;
380          } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
381            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
382              << 1 << MD;
383          } else {
384            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
385          }
386        }
387        break;
388      case NeverFallThrough:
389        break;
390    }
391  }
392}
393
394//===----------------------------------------------------------------------===//
395// -Wuninitialized
396//===----------------------------------------------------------------------===//
397
398namespace {
399/// ContainsReference - A visitor class to search for references to
400/// a particular declaration (the needle) within any evaluated component of an
401/// expression (recursively).
402class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
403  bool FoundReference;
404  const DeclRefExpr *Needle;
405
406public:
407  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
408    : EvaluatedExprVisitor<ContainsReference>(Context),
409      FoundReference(false), Needle(Needle) {}
410
411  void VisitExpr(Expr *E) {
412    // Stop evaluating if we already have a reference.
413    if (FoundReference)
414      return;
415
416    EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
417  }
418
419  void VisitDeclRefExpr(DeclRefExpr *E) {
420    if (E == Needle)
421      FoundReference = true;
422    else
423      EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
424  }
425
426  bool doesContainReference() const { return FoundReference; }
427};
428}
429
430static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
431  QualType VariableTy = VD->getType().getCanonicalType();
432  if (VariableTy->isBlockPointerType() &&
433      !VD->hasAttr<BlocksAttr>()) {
434    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName()
435    << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
436    return true;
437  }
438
439  // Don't issue a fixit if there is already an initializer.
440  if (VD->getInit())
441    return false;
442
443  // Suggest possible initialization (if any).
444  std::string Init = S.getFixItZeroInitializerForType(VariableTy);
445  if (Init.empty())
446    return false;
447
448  // Don't suggest a fixit inside macros.
449  if (VD->getLocEnd().isMacroID())
450    return false;
451
452  SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
453
454  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
455    << FixItHint::CreateInsertion(Loc, Init);
456  return true;
457}
458
459/// NoteUninitBranches -- Helper function to produce notes for branches which
460/// inevitably lead to an uninitialized variable use.
461static void NoteUninitBranches(Sema &S, const UninitUse &Use) {
462  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
463       I != E; ++I) {
464    const Stmt *Term = I->Terminator;
465    unsigned DiagKind;
466    SourceRange Range;
467    const char *Str;
468    switch (Term->getStmtClass()) {
469    default:
470      // Don't know how to report this.
471      continue;
472
473    // "condition is true / condition is false".
474    case Stmt::IfStmtClass:
475      DiagKind = 0;
476      Str = "if";
477      Range = cast<IfStmt>(Term)->getCond()->getSourceRange();
478      break;
479    case Stmt::ConditionalOperatorClass:
480      DiagKind = 0;
481      Str = "?:";
482      Range = cast<ConditionalOperator>(Term)->getCond()->getSourceRange();
483      break;
484    case Stmt::BinaryOperatorClass: {
485      const BinaryOperator *BO = cast<BinaryOperator>(Term);
486      if (!BO->isLogicalOp())
487        continue;
488      DiagKind = 0;
489      Str = BO->getOpcodeStr();
490      Range = BO->getLHS()->getSourceRange();
491      break;
492    }
493
494    // "loop is entered / loop is exited".
495    case Stmt::WhileStmtClass:
496      DiagKind = 1;
497      Str = "while";
498      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
499      break;
500    case Stmt::ForStmtClass:
501      DiagKind = 1;
502      Str = "for";
503      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
504      break;
505    case Stmt::CXXForRangeStmtClass:
506      DiagKind = 1;
507      Str = "for";
508      Range = cast<CXXForRangeStmt>(Term)->getCond()->getSourceRange();
509      break;
510
511    // "condition is true / loop is exited".
512    case Stmt::DoStmtClass:
513      DiagKind = 2;
514      Str = "do";
515      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
516      break;
517
518    // "switch case is taken".
519    case Stmt::CaseStmtClass:
520      DiagKind = 3;
521      Str = "case";
522      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
523      break;
524    case Stmt::DefaultStmtClass:
525      DiagKind = 3;
526      Str = "default";
527      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
528      break;
529    }
530
531    S.Diag(Range.getBegin(), diag::note_sometimes_uninit_var_branch)
532      << DiagKind << Str << I->Output << Range;
533  }
534}
535
536/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
537/// uninitialized variable. This manages the different forms of diagnostic
538/// emitted for particular types of uses. Returns true if the use was diagnosed
539/// as a warning. If a particular use is one we omit warnings for, returns
540/// false.
541static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
542                                     const UninitUse &Use,
543                                     bool alwaysReportSelfInit = false) {
544
545  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
546    // Inspect the initializer of the variable declaration which is
547    // being referenced prior to its initialization. We emit
548    // specialized diagnostics for self-initialization, and we
549    // specifically avoid warning about self references which take the
550    // form of:
551    //
552    //   int x = x;
553    //
554    // This is used to indicate to GCC that 'x' is intentionally left
555    // uninitialized. Proven code paths which access 'x' in
556    // an uninitialized state after this will still warn.
557    if (const Expr *Initializer = VD->getInit()) {
558      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
559        return false;
560
561      ContainsReference CR(S.Context, DRE);
562      CR.Visit(const_cast<Expr*>(Initializer));
563      if (CR.doesContainReference()) {
564        S.Diag(DRE->getLocStart(),
565               diag::warn_uninit_self_reference_in_init)
566          << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
567        return true;
568      }
569    }
570
571    unsigned DiagID = 0;
572    switch (Use.getKind()) {
573    case UninitUse::Always: DiagID = diag::warn_uninit_var; break;
574    case UninitUse::Sometimes: DiagID = diag::warn_sometimes_uninit_var; break;
575    case UninitUse::Maybe: DiagID = diag::warn_maybe_uninit_var; break;
576    }
577    S.Diag(DRE->getLocStart(), DiagID)
578      << VD->getDeclName() << DRE->getSourceRange();
579    NoteUninitBranches(S, Use);
580  } else {
581    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
582    if (VD->getType()->isBlockPointerType() &&
583        !VD->hasAttr<BlocksAttr>())
584      S.Diag(BE->getLocStart(), diag::warn_uninit_byref_blockvar_captured_by_block)
585        << VD->getDeclName();
586    else {
587      unsigned DiagID = 0;
588      switch (Use.getKind()) {
589      case UninitUse::Always:
590        DiagID = diag::warn_uninit_var_captured_by_block;
591        break;
592      case UninitUse::Sometimes:
593        DiagID = diag::warn_sometimes_uninit_var_captured_by_block;
594        break;
595      case UninitUse::Maybe:
596        DiagID = diag::warn_maybe_uninit_var_captured_by_block;
597        break;
598      }
599      S.Diag(BE->getLocStart(), DiagID) << VD->getDeclName();
600      NoteUninitBranches(S, Use);
601    }
602  }
603
604  // Report where the variable was declared when the use wasn't within
605  // the initializer of that declaration & we didn't already suggest
606  // an initialization fixit.
607  if (!SuggestInitializationFixit(S, VD))
608    S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
609      << VD->getDeclName();
610
611  return true;
612}
613
614namespace {
615  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
616  public:
617    FallthroughMapper(Sema &S)
618      : FoundSwitchStatements(false),
619        S(S) {
620    }
621
622    bool foundSwitchStatements() const { return FoundSwitchStatements; }
623
624    void markFallthroughVisited(const AttributedStmt *Stmt) {
625      bool Found = FallthroughStmts.erase(Stmt);
626      assert(Found);
627      (void)Found;
628    }
629
630    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
631
632    const AttrStmts &getFallthroughStmts() const {
633      return FallthroughStmts;
634    }
635
636    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
637      int UnannotatedCnt = 0;
638      AnnotatedCnt = 0;
639
640      std::deque<const CFGBlock*> BlockQueue;
641
642      std::copy(B.pred_begin(), B.pred_end(), std::back_inserter(BlockQueue));
643
644      while (!BlockQueue.empty()) {
645        const CFGBlock *P = BlockQueue.front();
646        BlockQueue.pop_front();
647
648        const Stmt *Term = P->getTerminator();
649        if (Term && isa<SwitchStmt>(Term))
650          continue; // Switch statement, good.
651
652        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
653        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
654          continue; // Previous case label has no statements, good.
655
656        if (P->pred_begin() == P->pred_end()) {  // The block is unreachable.
657          // This only catches trivially unreachable blocks.
658          for (CFGBlock::const_iterator ElIt = P->begin(), ElEnd = P->end();
659               ElIt != ElEnd; ++ElIt) {
660            if (const CFGStmt *CS = ElIt->getAs<CFGStmt>()){
661              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
662                S.Diag(AS->getLocStart(),
663                       diag::warn_fallthrough_attr_unreachable);
664                markFallthroughVisited(AS);
665                ++AnnotatedCnt;
666              }
667              // Don't care about other unreachable statements.
668            }
669          }
670          // If there are no unreachable statements, this may be a special
671          // case in CFG:
672          // case X: {
673          //    A a;  // A has a destructor.
674          //    break;
675          // }
676          // // <<<< This place is represented by a 'hanging' CFG block.
677          // case Y:
678          continue;
679        }
680
681        const Stmt *LastStmt = getLastStmt(*P);
682        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
683          markFallthroughVisited(AS);
684          ++AnnotatedCnt;
685          continue; // Fallthrough annotation, good.
686        }
687
688        if (!LastStmt) { // This block contains no executable statements.
689          // Traverse its predecessors.
690          std::copy(P->pred_begin(), P->pred_end(),
691                    std::back_inserter(BlockQueue));
692          continue;
693        }
694
695        ++UnannotatedCnt;
696      }
697      return !!UnannotatedCnt;
698    }
699
700    // RecursiveASTVisitor setup.
701    bool shouldWalkTypesOfTypeLocs() const { return false; }
702
703    bool VisitAttributedStmt(AttributedStmt *S) {
704      if (asFallThroughAttr(S))
705        FallthroughStmts.insert(S);
706      return true;
707    }
708
709    bool VisitSwitchStmt(SwitchStmt *S) {
710      FoundSwitchStatements = true;
711      return true;
712    }
713
714  private:
715
716    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
717      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
718        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
719          return AS;
720      }
721      return 0;
722    }
723
724    static const Stmt *getLastStmt(const CFGBlock &B) {
725      if (const Stmt *Term = B.getTerminator())
726        return Term;
727      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
728                                            ElemEnd = B.rend();
729                                            ElemIt != ElemEnd; ++ElemIt) {
730        if (const CFGStmt *CS = ElemIt->getAs<CFGStmt>())
731          return CS->getStmt();
732      }
733      // Workaround to detect a statement thrown out by CFGBuilder:
734      //   case X: {} case Y:
735      //   case X: ; case Y:
736      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
737        if (!isa<SwitchCase>(SW->getSubStmt()))
738          return SW->getSubStmt();
739
740      return 0;
741    }
742
743    bool FoundSwitchStatements;
744    AttrStmts FallthroughStmts;
745    Sema &S;
746  };
747}
748
749static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC) {
750  FallthroughMapper FM(S);
751  FM.TraverseStmt(AC.getBody());
752
753  if (!FM.foundSwitchStatements())
754    return;
755
756  CFG *Cfg = AC.getCFG();
757
758  if (!Cfg)
759    return;
760
761  int AnnotatedCnt;
762
763  for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
764    const CFGBlock &B = **I;
765    const Stmt *Label = B.getLabel();
766
767    if (!Label || !isa<SwitchCase>(Label))
768      continue;
769
770    if (!FM.checkFallThroughIntoBlock(B, AnnotatedCnt))
771      continue;
772
773    S.Diag(Label->getLocStart(), diag::warn_unannotated_fallthrough);
774
775    if (!AnnotatedCnt) {
776      SourceLocation L = Label->getLocStart();
777      if (L.isMacroID())
778        continue;
779      if (S.getLangOpts().CPlusPlus0x) {
780        const Stmt *Term = B.getTerminator();
781        if (!(B.empty() && Term && isa<BreakStmt>(Term))) {
782          S.Diag(L, diag::note_insert_fallthrough_fixit) <<
783            FixItHint::CreateInsertion(L, "[[clang::fallthrough]]; ");
784        }
785      }
786      S.Diag(L, diag::note_insert_break_fixit) <<
787        FixItHint::CreateInsertion(L, "break; ");
788    }
789  }
790
791  const FallthroughMapper::AttrStmts &Fallthroughs = FM.getFallthroughStmts();
792  for (FallthroughMapper::AttrStmts::const_iterator I = Fallthroughs.begin(),
793                                                    E = Fallthroughs.end();
794                                                    I != E; ++I) {
795    S.Diag((*I)->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
796  }
797
798}
799
800namespace {
801struct SLocSort {
802  bool operator()(const UninitUse &a, const UninitUse &b) {
803    // Prefer a more confident report over a less confident one.
804    if (a.getKind() != b.getKind())
805      return a.getKind() > b.getKind();
806    SourceLocation aLoc = a.getUser()->getLocStart();
807    SourceLocation bLoc = b.getUser()->getLocStart();
808    return aLoc.getRawEncoding() < bLoc.getRawEncoding();
809  }
810};
811
812class UninitValsDiagReporter : public UninitVariablesHandler {
813  Sema &S;
814  typedef SmallVector<UninitUse, 2> UsesVec;
815  typedef llvm::DenseMap<const VarDecl *, std::pair<UsesVec*, bool> > UsesMap;
816  UsesMap *uses;
817
818public:
819  UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
820  ~UninitValsDiagReporter() {
821    flushDiagnostics();
822  }
823
824  std::pair<UsesVec*, bool> &getUses(const VarDecl *vd) {
825    if (!uses)
826      uses = new UsesMap();
827
828    UsesMap::mapped_type &V = (*uses)[vd];
829    UsesVec *&vec = V.first;
830    if (!vec)
831      vec = new UsesVec();
832
833    return V;
834  }
835
836  void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) {
837    getUses(vd).first->push_back(use);
838  }
839
840  void handleSelfInit(const VarDecl *vd) {
841    getUses(vd).second = true;
842  }
843
844  void flushDiagnostics() {
845    if (!uses)
846      return;
847
848    // FIXME: This iteration order, and thus the resulting diagnostic order,
849    //        is nondeterministic.
850    for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
851      const VarDecl *vd = i->first;
852      const UsesMap::mapped_type &V = i->second;
853
854      UsesVec *vec = V.first;
855      bool hasSelfInit = V.second;
856
857      // Specially handle the case where we have uses of an uninitialized
858      // variable, but the root cause is an idiomatic self-init.  We want
859      // to report the diagnostic at the self-init since that is the root cause.
860      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
861        DiagnoseUninitializedUse(S, vd,
862                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
863                                           /* isAlwaysUninit */ true),
864                                 /* alwaysReportSelfInit */ true);
865      else {
866        // Sort the uses by their SourceLocations.  While not strictly
867        // guaranteed to produce them in line/column order, this will provide
868        // a stable ordering.
869        std::sort(vec->begin(), vec->end(), SLocSort());
870
871        for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
872             ++vi) {
873          // If we have self-init, downgrade all uses to 'may be uninitialized'.
874          UninitUse Use = hasSelfInit ? UninitUse(vi->getUser(), false) : *vi;
875
876          if (DiagnoseUninitializedUse(S, vd, Use))
877            // Skip further diagnostics for this variable. We try to warn only
878            // on the first point at which a variable is used uninitialized.
879            break;
880        }
881      }
882
883      // Release the uses vector.
884      delete vec;
885    }
886    delete uses;
887  }
888
889private:
890  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
891  for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) {
892    if (i->getKind() == UninitUse::Always) {
893      return true;
894    }
895  }
896  return false;
897}
898};
899}
900
901
902//===----------------------------------------------------------------------===//
903// -Wthread-safety
904//===----------------------------------------------------------------------===//
905namespace clang {
906namespace thread_safety {
907typedef llvm::SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
908typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
909typedef std::list<DelayedDiag> DiagList;
910
911struct SortDiagBySourceLocation {
912  SourceManager &SM;
913  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
914
915  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
916    // Although this call will be slow, this is only called when outputting
917    // multiple warnings.
918    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
919  }
920};
921
922namespace {
923class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
924  Sema &S;
925  DiagList Warnings;
926  SourceLocation FunLocation, FunEndLocation;
927
928  // Helper functions
929  void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
930    // Gracefully handle rare cases when the analysis can't get a more
931    // precise source location.
932    if (!Loc.isValid())
933      Loc = FunLocation;
934    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << LockName);
935    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
936  }
937
938 public:
939  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
940    : S(S), FunLocation(FL), FunEndLocation(FEL) {}
941
942  /// \brief Emit all buffered diagnostics in order of sourcelocation.
943  /// We need to output diagnostics produced while iterating through
944  /// the lockset in deterministic order, so this function orders diagnostics
945  /// and outputs them.
946  void emitDiagnostics() {
947    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
948    for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
949         I != E; ++I) {
950      S.Diag(I->first.first, I->first.second);
951      const OptionalNotes &Notes = I->second;
952      for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI)
953        S.Diag(Notes[NoteI].first, Notes[NoteI].second);
954    }
955  }
956
957  void handleInvalidLockExp(SourceLocation Loc) {
958    PartialDiagnosticAt Warning(Loc,
959                                S.PDiag(diag::warn_cannot_resolve_lock) << Loc);
960    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
961  }
962  void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
963    warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
964  }
965
966  void handleDoubleLock(Name LockName, SourceLocation Loc) {
967    warnLockMismatch(diag::warn_double_lock, LockName, Loc);
968  }
969
970  void handleMutexHeldEndOfScope(Name LockName, SourceLocation LocLocked,
971                                 SourceLocation LocEndOfScope,
972                                 LockErrorKind LEK){
973    unsigned DiagID = 0;
974    switch (LEK) {
975      case LEK_LockedSomePredecessors:
976        DiagID = diag::warn_lock_some_predecessors;
977        break;
978      case LEK_LockedSomeLoopIterations:
979        DiagID = diag::warn_expecting_lock_held_on_loop;
980        break;
981      case LEK_LockedAtEndOfFunction:
982        DiagID = diag::warn_no_unlock;
983        break;
984    }
985    if (LocEndOfScope.isInvalid())
986      LocEndOfScope = FunEndLocation;
987
988    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << LockName);
989    PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here));
990    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
991  }
992
993
994  void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
995                                SourceLocation Loc2) {
996    PartialDiagnosticAt Warning(
997      Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName);
998    PartialDiagnosticAt Note(
999      Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << LockName);
1000    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1001  }
1002
1003  void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
1004                         AccessKind AK, SourceLocation Loc) {
1005    assert((POK == POK_VarAccess || POK == POK_VarDereference)
1006             && "Only works for variables");
1007    unsigned DiagID = POK == POK_VarAccess?
1008                        diag::warn_variable_requires_any_lock:
1009                        diag::warn_var_deref_requires_any_lock;
1010    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1011      << D->getName() << getLockKindFromAccessKind(AK));
1012    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1013  }
1014
1015  void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
1016                          Name LockName, LockKind LK, SourceLocation Loc) {
1017    unsigned DiagID = 0;
1018    switch (POK) {
1019      case POK_VarAccess:
1020        DiagID = diag::warn_variable_requires_lock;
1021        break;
1022      case POK_VarDereference:
1023        DiagID = diag::warn_var_deref_requires_lock;
1024        break;
1025      case POK_FunctionCall:
1026        DiagID = diag::warn_fun_requires_lock;
1027        break;
1028    }
1029    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1030      << D->getName() << LockName << LK);
1031    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1032  }
1033
1034  void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
1035    PartialDiagnosticAt Warning(Loc,
1036      S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName);
1037    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1038  }
1039};
1040}
1041}
1042}
1043
1044//===----------------------------------------------------------------------===//
1045// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1046//  warnings on a function, method, or block.
1047//===----------------------------------------------------------------------===//
1048
1049clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1050  enableCheckFallThrough = 1;
1051  enableCheckUnreachable = 0;
1052  enableThreadSafetyAnalysis = 0;
1053}
1054
1055clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1056  : S(s),
1057    NumFunctionsAnalyzed(0),
1058    NumFunctionsWithBadCFGs(0),
1059    NumCFGBlocks(0),
1060    MaxCFGBlocksPerFunction(0),
1061    NumUninitAnalysisFunctions(0),
1062    NumUninitAnalysisVariables(0),
1063    MaxUninitAnalysisVariablesPerFunction(0),
1064    NumUninitAnalysisBlockVisits(0),
1065    MaxUninitAnalysisBlockVisitsPerFunction(0) {
1066  DiagnosticsEngine &D = S.getDiagnostics();
1067  DefaultPolicy.enableCheckUnreachable = (unsigned)
1068    (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
1069        DiagnosticsEngine::Ignored);
1070  DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
1071    (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
1072     DiagnosticsEngine::Ignored);
1073
1074}
1075
1076static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
1077  for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1078       i = fscope->PossiblyUnreachableDiags.begin(),
1079       e = fscope->PossiblyUnreachableDiags.end();
1080       i != e; ++i) {
1081    const sema::PossiblyUnreachableDiag &D = *i;
1082    S.Diag(D.Loc, D.PD);
1083  }
1084}
1085
1086void clang::sema::
1087AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1088                                     sema::FunctionScopeInfo *fscope,
1089                                     const Decl *D, const BlockExpr *blkExpr) {
1090
1091  // We avoid doing analysis-based warnings when there are errors for
1092  // two reasons:
1093  // (1) The CFGs often can't be constructed (if the body is invalid), so
1094  //     don't bother trying.
1095  // (2) The code already has problems; running the analysis just takes more
1096  //     time.
1097  DiagnosticsEngine &Diags = S.getDiagnostics();
1098
1099  // Do not do any analysis for declarations in system headers if we are
1100  // going to just ignore them.
1101  if (Diags.getSuppressSystemWarnings() &&
1102      S.SourceMgr.isInSystemHeader(D->getLocation()))
1103    return;
1104
1105  // For code in dependent contexts, we'll do this at instantiation time.
1106  if (cast<DeclContext>(D)->isDependentContext())
1107    return;
1108
1109  if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1110    // Flush out any possibly unreachable diagnostics.
1111    flushDiagnostics(S, fscope);
1112    return;
1113  }
1114
1115  const Stmt *Body = D->getBody();
1116  assert(Body);
1117
1118  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0, D);
1119
1120  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1121  // explosion for destrutors that can result and the compile time hit.
1122  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1123  AC.getCFGBuildOptions().AddEHEdges = false;
1124  AC.getCFGBuildOptions().AddInitializers = true;
1125  AC.getCFGBuildOptions().AddImplicitDtors = true;
1126
1127  // Force that certain expressions appear as CFGElements in the CFG.  This
1128  // is used to speed up various analyses.
1129  // FIXME: This isn't the right factoring.  This is here for initial
1130  // prototyping, but we need a way for analyses to say what expressions they
1131  // expect to always be CFGElements and then fill in the BuildOptions
1132  // appropriately.  This is essentially a layering violation.
1133  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis) {
1134    // Unreachable code analysis and thread safety require a linearized CFG.
1135    AC.getCFGBuildOptions().setAllAlwaysAdd();
1136  }
1137  else {
1138    AC.getCFGBuildOptions()
1139      .setAlwaysAdd(Stmt::BinaryOperatorClass)
1140      .setAlwaysAdd(Stmt::BlockExprClass)
1141      .setAlwaysAdd(Stmt::CStyleCastExprClass)
1142      .setAlwaysAdd(Stmt::DeclRefExprClass)
1143      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1144      .setAlwaysAdd(Stmt::UnaryOperatorClass)
1145      .setAlwaysAdd(Stmt::AttributedStmtClass);
1146  }
1147
1148  // Construct the analysis context with the specified CFG build options.
1149
1150  // Emit delayed diagnostics.
1151  if (!fscope->PossiblyUnreachableDiags.empty()) {
1152    bool analyzed = false;
1153
1154    // Register the expressions with the CFGBuilder.
1155    for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1156         i = fscope->PossiblyUnreachableDiags.begin(),
1157         e = fscope->PossiblyUnreachableDiags.end();
1158         i != e; ++i) {
1159      if (const Stmt *stmt = i->stmt)
1160        AC.registerForcedBlockExpression(stmt);
1161    }
1162
1163    if (AC.getCFG()) {
1164      analyzed = true;
1165      for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1166            i = fscope->PossiblyUnreachableDiags.begin(),
1167            e = fscope->PossiblyUnreachableDiags.end();
1168            i != e; ++i)
1169      {
1170        const sema::PossiblyUnreachableDiag &D = *i;
1171        bool processed = false;
1172        if (const Stmt *stmt = i->stmt) {
1173          const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
1174          CFGReverseBlockReachabilityAnalysis *cra =
1175              AC.getCFGReachablityAnalysis();
1176          // FIXME: We should be able to assert that block is non-null, but
1177          // the CFG analysis can skip potentially-evaluated expressions in
1178          // edge cases; see test/Sema/vla-2.c.
1179          if (block && cra) {
1180            // Can this block be reached from the entrance?
1181            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1182              S.Diag(D.Loc, D.PD);
1183            processed = true;
1184          }
1185        }
1186        if (!processed) {
1187          // Emit the warning anyway if we cannot map to a basic block.
1188          S.Diag(D.Loc, D.PD);
1189        }
1190      }
1191    }
1192
1193    if (!analyzed)
1194      flushDiagnostics(S, fscope);
1195  }
1196
1197
1198  // Warning: check missing 'return'
1199  if (P.enableCheckFallThrough) {
1200    const CheckFallThroughDiagnostics &CD =
1201      (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1202       : (isa<CXXMethodDecl>(D) &&
1203          cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1204          cast<CXXMethodDecl>(D)->getParent()->isLambda())
1205            ? CheckFallThroughDiagnostics::MakeForLambda()
1206            : CheckFallThroughDiagnostics::MakeForFunction(D));
1207    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1208  }
1209
1210  // Warning: check for unreachable code
1211  if (P.enableCheckUnreachable) {
1212    // Only check for unreachable code on non-template instantiations.
1213    // Different template instantiations can effectively change the control-flow
1214    // and it is very difficult to prove that a snippet of code in a template
1215    // is unreachable for all instantiations.
1216    bool isTemplateInstantiation = false;
1217    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1218      isTemplateInstantiation = Function->isTemplateInstantiation();
1219    if (!isTemplateInstantiation)
1220      CheckUnreachable(S, AC);
1221  }
1222
1223  // Check for thread safety violations
1224  if (P.enableThreadSafetyAnalysis) {
1225    SourceLocation FL = AC.getDecl()->getLocation();
1226    SourceLocation FEL = AC.getDecl()->getLocEnd();
1227    thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
1228    thread_safety::runThreadSafetyAnalysis(AC, Reporter);
1229    Reporter.emitDiagnostics();
1230  }
1231
1232  if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
1233      != DiagnosticsEngine::Ignored ||
1234      Diags.getDiagnosticLevel(diag::warn_sometimes_uninit_var,D->getLocStart())
1235      != DiagnosticsEngine::Ignored ||
1236      Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
1237      != DiagnosticsEngine::Ignored) {
1238    if (CFG *cfg = AC.getCFG()) {
1239      UninitValsDiagReporter reporter(S);
1240      UninitVariablesAnalysisStats stats;
1241      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1242      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1243                                        reporter, stats);
1244
1245      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1246        ++NumUninitAnalysisFunctions;
1247        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1248        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1249        MaxUninitAnalysisVariablesPerFunction =
1250            std::max(MaxUninitAnalysisVariablesPerFunction,
1251                     stats.NumVariablesAnalyzed);
1252        MaxUninitAnalysisBlockVisitsPerFunction =
1253            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1254                     stats.NumBlockVisits);
1255      }
1256    }
1257  }
1258
1259  if (Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough,
1260                              D->getLocStart()) != DiagnosticsEngine::Ignored) {
1261    DiagnoseSwitchLabelsFallthrough(S, AC);
1262  }
1263
1264  // Collect statistics about the CFG if it was built.
1265  if (S.CollectStats && AC.isCFGBuilt()) {
1266    ++NumFunctionsAnalyzed;
1267    if (CFG *cfg = AC.getCFG()) {
1268      // If we successfully built a CFG for this context, record some more
1269      // detail information about it.
1270      NumCFGBlocks += cfg->getNumBlockIDs();
1271      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1272                                         cfg->getNumBlockIDs());
1273    } else {
1274      ++NumFunctionsWithBadCFGs;
1275    }
1276  }
1277}
1278
1279void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1280  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1281
1282  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1283  unsigned AvgCFGBlocksPerFunction =
1284      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1285  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1286               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1287               << "  " << NumCFGBlocks << " CFG blocks built.\n"
1288               << "  " << AvgCFGBlocksPerFunction
1289               << " average CFG blocks per function.\n"
1290               << "  " << MaxCFGBlocksPerFunction
1291               << " max CFG blocks per function.\n";
1292
1293  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1294      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1295  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1296      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1297  llvm::errs() << NumUninitAnalysisFunctions
1298               << " functions analyzed for uninitialiazed variables\n"
1299               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
1300               << "  " << AvgUninitVariablesPerFunction
1301               << " average variables per function.\n"
1302               << "  " << MaxUninitAnalysisVariablesPerFunction
1303               << " max variables per function.\n"
1304               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
1305               << "  " << AvgUninitBlockVisitsPerFunction
1306               << " average block visits per function.\n"
1307               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
1308               << " max block visits per function.\n";
1309}
1310